/*- * Copyright (c) 2012-2016 Solarflare Communications Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * The views and conclusions contained in the software and documentation are * those of the authors and should not be interpreted as representing official * policies, either expressed or implied, of the FreeBSD Project. */ #include #include "efx.h" #include "efx_impl.h" #if EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 #if EFSYS_OPT_QSTATS #define EFX_TX_QSTAT_INCR(_etp, _stat) \ do { \ (_etp)->et_stat[_stat]++; \ _NOTE(CONSTANTCONDITION) \ } while (B_FALSE) #else #define EFX_TX_QSTAT_INCR(_etp, _stat) #endif static __checkReturn efx_rc_t efx_mcdi_init_txq( __in efx_nic_t *enp, __in uint32_t ndescs, __in uint32_t target_evq, __in uint32_t label, __in uint32_t instance, __in uint16_t flags, __in efsys_mem_t *esmp) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_INIT_TXQ_IN_LEN(EFX_TXQ_MAX_BUFS), MC_CMD_INIT_TXQ_OUT_LEN); efx_qword_t *dma_addr; uint64_t addr; int npages; int i; efx_rc_t rc; EFSYS_ASSERT(EFX_TXQ_MAX_BUFS >= EFX_TXQ_NBUFS(enp->en_nic_cfg.enc_txq_max_ndescs)); if ((esmp == NULL) || (EFSYS_MEM_SIZE(esmp) < EFX_TXQ_SIZE(ndescs))) { rc = EINVAL; goto fail1; } npages = EFX_TXQ_NBUFS(ndescs); if (MC_CMD_INIT_TXQ_IN_LEN(npages) > sizeof (payload)) { rc = EINVAL; goto fail2; } req.emr_cmd = MC_CMD_INIT_TXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_INIT_TXQ_IN_LEN(npages); req.emr_out_buf = payload; req.emr_out_length = MC_CMD_INIT_TXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_SIZE, ndescs); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_TARGET_EVQ, target_evq); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_LABEL, label); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_INSTANCE, instance); MCDI_IN_POPULATE_DWORD_9(req, INIT_TXQ_IN_FLAGS, INIT_TXQ_IN_FLAG_BUFF_MODE, 0, INIT_TXQ_IN_FLAG_IP_CSUM_DIS, (flags & EFX_TXQ_CKSUM_IPV4) ? 0 : 1, INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, (flags & EFX_TXQ_CKSUM_TCPUDP) ? 0 : 1, INIT_TXQ_EXT_IN_FLAG_INNER_IP_CSUM_EN, (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0, INIT_TXQ_EXT_IN_FLAG_INNER_TCP_CSUM_EN, (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0, INIT_TXQ_EXT_IN_FLAG_TSOV2_EN, (flags & EFX_TXQ_FATSOV2) ? 1 : 0, INIT_TXQ_IN_FLAG_TCP_UDP_ONLY, 0, INIT_TXQ_IN_CRC_MODE, 0, INIT_TXQ_IN_FLAG_TIMESTAMP, 0); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_OWNER_ID, 0); MCDI_IN_SET_DWORD(req, INIT_TXQ_IN_PORT_ID, EVB_PORT_ID_ASSIGNED); dma_addr = MCDI_IN2(req, efx_qword_t, INIT_TXQ_IN_DMA_ADDR); addr = EFSYS_MEM_ADDR(esmp); for (i = 0; i < npages; i++) { EFX_POPULATE_QWORD_2(*dma_addr, EFX_DWORD_1, (uint32_t)(addr >> 32), EFX_DWORD_0, (uint32_t)(addr & 0xffffffff)); dma_addr++; addr += EFX_BUF_SIZE; } efx_mcdi_execute(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail3; } return (0); fail3: EFSYS_PROBE(fail3); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } static __checkReturn efx_rc_t efx_mcdi_fini_txq( __in efx_nic_t *enp, __in uint32_t instance) { efx_mcdi_req_t req; EFX_MCDI_DECLARE_BUF(payload, MC_CMD_FINI_TXQ_IN_LEN, MC_CMD_FINI_TXQ_OUT_LEN); efx_rc_t rc; req.emr_cmd = MC_CMD_FINI_TXQ; req.emr_in_buf = payload; req.emr_in_length = MC_CMD_FINI_TXQ_IN_LEN; req.emr_out_buf = payload; req.emr_out_length = MC_CMD_FINI_TXQ_OUT_LEN; MCDI_IN_SET_DWORD(req, FINI_TXQ_IN_INSTANCE, instance); efx_mcdi_execute_quiet(enp, &req); if (req.emr_rc != 0) { rc = req.emr_rc; goto fail1; } return (0); fail1: /* * EALREADY is not an error, but indicates that the MC has rebooted and * that the TXQ has already been destroyed. */ if (rc != EALREADY) EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_init( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) return (0); } void ef10_tx_fini( __in efx_nic_t *enp) { _NOTE(ARGUNUSED(enp)) } __checkReturn efx_rc_t ef10_tx_qcreate( __in efx_nic_t *enp, __in unsigned int index, __in unsigned int label, __in efsys_mem_t *esmp, __in size_t ndescs, __in uint32_t id, __in uint16_t flags, __in efx_evq_t *eep, __in efx_txq_t *etp, __out unsigned int *addedp) { efx_nic_cfg_t *encp = &enp->en_nic_cfg; uint16_t inner_csum; efx_desc_t desc; efx_rc_t rc; _NOTE(ARGUNUSED(id)) inner_csum = EFX_TXQ_CKSUM_INNER_IPV4 | EFX_TXQ_CKSUM_INNER_TCPUDP; if (((flags & inner_csum) != 0) && (encp->enc_tunnel_encapsulations_supported == 0)) { rc = EINVAL; goto fail1; } if ((rc = efx_mcdi_init_txq(enp, ndescs, eep->ee_index, label, index, flags, esmp)) != 0) goto fail2; /* * A previous user of this TX queue may have written a descriptor to the * TX push collector, but not pushed the doorbell (e.g. after a crash). * The next doorbell write would then push the stale descriptor. * * Ensure the (per network port) TX push collector is cleared by writing * a no-op TX option descriptor. See bug29981 for details. */ *addedp = 1; ef10_tx_qdesc_checksum_create(etp, flags, &desc); EFSYS_MEM_WRITEQ(etp->et_esmp, 0, &desc.ed_eq); ef10_tx_qpush(etp, *addedp, 0); return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qdestroy( __in efx_txq_t *etp) { /* FIXME */ _NOTE(ARGUNUSED(etp)) /* FIXME */ } __checkReturn efx_rc_t ef10_tx_qpio_enable( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; efx_piobuf_handle_t handle; efx_rc_t rc; if (etp->et_pio_size != 0) { rc = EALREADY; goto fail1; } /* Sub-allocate a PIO block from a piobuf */ if ((rc = ef10_nic_pio_alloc(enp, &etp->et_pio_bufnum, &handle, &etp->et_pio_blknum, &etp->et_pio_offset, &etp->et_pio_size)) != 0) { goto fail2; } EFSYS_ASSERT3U(etp->et_pio_size, !=, 0); /* Link the piobuf to this TXQ */ if ((rc = ef10_nic_pio_link(enp, etp->et_index, handle)) != 0) { goto fail3; } /* * et_pio_offset is the offset of the sub-allocated block within the * hardware PIO buffer. It is used as the buffer address in the PIO * option descriptor. * * et_pio_write_offset is the offset of the sub-allocated block from the * start of the write-combined memory mapping, and is used for writing * data into the PIO buffer. */ etp->et_pio_write_offset = (etp->et_pio_bufnum * ER_DZ_TX_PIOBUF_STEP) + ER_DZ_TX_PIOBUF_OFST + etp->et_pio_offset; return (0); fail3: EFSYS_PROBE(fail3); (void) ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum); fail2: EFSYS_PROBE(fail2); etp->et_pio_size = 0; fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qpio_disable( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; if (etp->et_pio_size != 0) { /* Unlink the piobuf from this TXQ */ if (ef10_nic_pio_unlink(enp, etp->et_index) != 0) return; /* Free the sub-allocated PIO block */ (void) ef10_nic_pio_free(enp, etp->et_pio_bufnum, etp->et_pio_blknum); etp->et_pio_size = 0; etp->et_pio_write_offset = 0; } } __checkReturn efx_rc_t ef10_tx_qpio_write( __in efx_txq_t *etp, __in_ecount(length) uint8_t *buffer, __in size_t length, __in size_t offset) { efx_nic_t *enp = etp->et_enp; efsys_bar_t *esbp = enp->en_esbp; uint32_t write_offset; uint32_t write_offset_limit; efx_qword_t *eqp; efx_rc_t rc; EFSYS_ASSERT(length % sizeof (efx_qword_t) == 0); if (etp->et_pio_size == 0) { rc = ENOENT; goto fail1; } if (offset + length > etp->et_pio_size) { rc = ENOSPC; goto fail2; } /* * Writes to PIO buffers must be 64 bit aligned, and multiples of * 64 bits. */ write_offset = etp->et_pio_write_offset + offset; write_offset_limit = write_offset + length; eqp = (efx_qword_t *)buffer; while (write_offset < write_offset_limit) { EFSYS_BAR_WC_WRITEQ(esbp, write_offset, eqp); eqp++; write_offset += sizeof (efx_qword_t); } return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qpio_post( __in efx_txq_t *etp, __in size_t pkt_length, __in unsigned int completed, __inout unsigned int *addedp) { efx_qword_t pio_desc; unsigned int id; size_t offset; unsigned int added = *addedp; efx_rc_t rc; if (added - completed + 1 > EFX_TXQ_LIMIT(etp->et_mask + 1)) { rc = ENOSPC; goto fail1; } if (etp->et_pio_size == 0) { rc = ENOENT; goto fail2; } id = added++ & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_PROBE4(tx_pio_post, unsigned int, etp->et_index, unsigned int, id, uint32_t, etp->et_pio_offset, size_t, pkt_length); EFX_POPULATE_QWORD_5(pio_desc, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, 1, ESF_DZ_TX_PIO_CONT, 0, ESF_DZ_TX_PIO_BYTE_CNT, pkt_length, ESF_DZ_TX_PIO_BUF_ADDR, etp->et_pio_offset); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &pio_desc); EFX_TX_QSTAT_INCR(etp, TX_POST_PIO); *addedp = added; return (0); fail2: EFSYS_PROBE(fail2); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qpost( __in efx_txq_t *etp, __in_ecount(ndescs) efx_buffer_t *eb, __in unsigned int ndescs, __in unsigned int completed, __inout unsigned int *addedp) { unsigned int added = *addedp; unsigned int i; efx_rc_t rc; if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) { rc = ENOSPC; goto fail1; } for (i = 0; i < ndescs; i++) { efx_buffer_t *ebp = &eb[i]; efsys_dma_addr_t addr = ebp->eb_addr; size_t size = ebp->eb_size; boolean_t eop = ebp->eb_eop; unsigned int id; size_t offset; efx_qword_t qword; /* No limitations on boundary crossing */ EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max); id = added++ & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_PROBE5(tx_post, unsigned int, etp->et_index, unsigned int, id, efsys_dma_addr_t, addr, size_t, size, boolean_t, eop); EFX_POPULATE_QWORD_5(qword, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1, ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff), ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32)); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &qword); } EFX_TX_QSTAT_INCR(etp, TX_POST); *addedp = added; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } /* * This improves performance by, when possible, pushing a TX descriptor at the * same time as the doorbell. The descriptor must be added to the TXQ, so that * can be used if the hardware decides not to use the pushed descriptor. */ void ef10_tx_qpush( __in efx_txq_t *etp, __in unsigned int added, __in unsigned int pushed) { efx_nic_t *enp = etp->et_enp; unsigned int wptr; unsigned int id; size_t offset; efx_qword_t desc; efx_oword_t oword; wptr = added & etp->et_mask; id = pushed & etp->et_mask; offset = id * sizeof (efx_qword_t); EFSYS_MEM_READQ(etp->et_esmp, offset, &desc); /* * SF Bug 65776: TSO option descriptors cannot be pushed if pacer bypass * is enabled on the event queue this transmit queue is attached to. * * To ensure the code is safe, it is easiest to simply test the type of * the descriptor to push, and only push it is if it not a TSO option * descriptor. */ if ((EFX_QWORD_FIELD(desc, ESF_DZ_TX_DESC_IS_OPT) != 1) || (EFX_QWORD_FIELD(desc, ESF_DZ_TX_OPTION_TYPE) != ESE_DZ_TX_OPTION_DESC_TSO)) { /* Push the descriptor and update the wptr. */ EFX_POPULATE_OWORD_3(oword, ERF_DZ_TX_DESC_WPTR, wptr, ERF_DZ_TX_DESC_HWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_1), ERF_DZ_TX_DESC_LWORD, EFX_QWORD_FIELD(desc, EFX_DWORD_0)); /* Ensure ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1, wptr, id); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_VI_DOORBELL_WRITEO(enp, ER_DZ_TX_DESC_UPD_REG, etp->et_index, &oword); } else { efx_dword_t dword; /* * Only update the wptr. This is signalled to the hardware by * only writing one DWORD of the doorbell register. */ EFX_POPULATE_OWORD_1(oword, ERF_DZ_TX_DESC_WPTR, wptr); dword = oword.eo_dword[2]; /* Ensure ordering of memory (descriptors) and PIO (doorbell) */ EFX_DMA_SYNC_QUEUE_FOR_DEVICE(etp->et_esmp, etp->et_mask + 1, wptr, id); EFSYS_PIO_WRITE_BARRIER(); EFX_BAR_VI_WRITED2(enp, ER_DZ_TX_DESC_UPD_REG, etp->et_index, &dword, B_FALSE); } } __checkReturn efx_rc_t ef10_tx_qdesc_post( __in efx_txq_t *etp, __in_ecount(ndescs) efx_desc_t *ed, __in unsigned int ndescs, __in unsigned int completed, __inout unsigned int *addedp) { unsigned int added = *addedp; unsigned int i; if (added - completed + ndescs > EFX_TXQ_LIMIT(etp->et_mask + 1)) return (ENOSPC); for (i = 0; i < ndescs; i++) { efx_desc_t *edp = &ed[i]; unsigned int id; size_t offset; id = added++ & etp->et_mask; offset = id * sizeof (efx_desc_t); EFSYS_MEM_WRITEQ(etp->et_esmp, offset, &edp->ed_eq); } EFSYS_PROBE3(tx_desc_post, unsigned int, etp->et_index, unsigned int, added, unsigned int, ndescs); EFX_TX_QSTAT_INCR(etp, TX_POST); *addedp = added; return (0); } void ef10_tx_qdesc_dma_create( __in efx_txq_t *etp, __in efsys_dma_addr_t addr, __in size_t size, __in boolean_t eop, __out efx_desc_t *edp) { _NOTE(ARGUNUSED(etp)) /* No limitations on boundary crossing */ EFSYS_ASSERT(size <= etp->et_enp->en_nic_cfg.enc_tx_dma_desc_size_max); EFSYS_PROBE4(tx_desc_dma_create, unsigned int, etp->et_index, efsys_dma_addr_t, addr, size_t, size, boolean_t, eop); EFX_POPULATE_QWORD_5(edp->ed_eq, ESF_DZ_TX_KER_TYPE, 0, ESF_DZ_TX_KER_CONT, (eop) ? 0 : 1, ESF_DZ_TX_KER_BYTE_CNT, (uint32_t)(size), ESF_DZ_TX_KER_BUF_ADDR_DW0, (uint32_t)(addr & 0xffffffff), ESF_DZ_TX_KER_BUF_ADDR_DW1, (uint32_t)(addr >> 32)); } void ef10_tx_qdesc_tso_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint32_t tcp_seq, __in uint8_t tcp_flags, __out efx_desc_t *edp) { _NOTE(ARGUNUSED(etp)) EFSYS_PROBE4(tx_desc_tso_create, unsigned int, etp->et_index, uint16_t, ipv4_id, uint32_t, tcp_seq, uint8_t, tcp_flags); EFX_POPULATE_QWORD_5(edp->ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_TCP_FLAGS, tcp_flags, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq); } void ef10_tx_qdesc_tso2_create( __in efx_txq_t *etp, __in uint16_t ipv4_id, __in uint16_t outer_ipv4_id, __in uint32_t tcp_seq, __in uint16_t tcp_mss, __out_ecount(count) efx_desc_t *edp, __in int count) { _NOTE(ARGUNUSED(etp, count)) EFSYS_PROBE4(tx_desc_tso2_create, unsigned int, etp->et_index, uint16_t, ipv4_id, uint32_t, tcp_seq, uint16_t, tcp_mss); EFSYS_ASSERT(count >= EFX_TX_FATSOV2_OPT_NDESCS); EFX_POPULATE_QWORD_5(edp[0].ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2A, ESF_DZ_TX_TSO_IP_ID, ipv4_id, ESF_DZ_TX_TSO_TCP_SEQNO, tcp_seq); EFX_POPULATE_QWORD_5(edp[1].ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_TSO, ESF_DZ_TX_TSO_OPTION_TYPE, ESE_DZ_TX_TSO_OPTION_DESC_FATSO2B, ESF_DZ_TX_TSO_TCP_MSS, tcp_mss, ESF_DZ_TX_TSO_OUTER_IPID, outer_ipv4_id); } void ef10_tx_qdesc_vlantci_create( __in efx_txq_t *etp, __in uint16_t tci, __out efx_desc_t *edp) { _NOTE(ARGUNUSED(etp)) EFSYS_PROBE2(tx_desc_vlantci_create, unsigned int, etp->et_index, uint16_t, tci); EFX_POPULATE_QWORD_4(edp->ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_VLAN, ESF_DZ_TX_VLAN_OP, tci ? 1 : 0, ESF_DZ_TX_VLAN_TAG1, tci); } void ef10_tx_qdesc_checksum_create( __in efx_txq_t *etp, __in uint16_t flags, __out efx_desc_t *edp) { _NOTE(ARGUNUSED(etp)); EFSYS_PROBE2(tx_desc_checksum_create, unsigned int, etp->et_index, uint32_t, flags); EFX_POPULATE_QWORD_6(edp->ed_eq, ESF_DZ_TX_DESC_IS_OPT, 1, ESF_DZ_TX_OPTION_TYPE, ESE_DZ_TX_OPTION_DESC_CRC_CSUM, ESF_DZ_TX_OPTION_UDP_TCP_CSUM, (flags & EFX_TXQ_CKSUM_TCPUDP) ? 1 : 0, ESF_DZ_TX_OPTION_IP_CSUM, (flags & EFX_TXQ_CKSUM_IPV4) ? 1 : 0, ESF_DZ_TX_OPTION_INNER_UDP_TCP_CSUM, (flags & EFX_TXQ_CKSUM_INNER_TCPUDP) ? 1 : 0, ESF_DZ_TX_OPTION_INNER_IP_CSUM, (flags & EFX_TXQ_CKSUM_INNER_IPV4) ? 1 : 0); } __checkReturn efx_rc_t ef10_tx_qpace( __in efx_txq_t *etp, __in unsigned int ns) { efx_rc_t rc; /* FIXME */ _NOTE(ARGUNUSED(etp, ns)) _NOTE(CONSTANTCONDITION) if (B_FALSE) { rc = ENOTSUP; goto fail1; } /* FIXME */ return (0); fail1: /* * EALREADY is not an error, but indicates that the MC has rebooted and * that the TXQ has already been destroyed. Callers need to know that * the TXQ flush has completed to avoid waiting until timeout for a * flush done event that will not be delivered. */ if (rc != EALREADY) EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } __checkReturn efx_rc_t ef10_tx_qflush( __in efx_txq_t *etp) { efx_nic_t *enp = etp->et_enp; efx_rc_t rc; if ((rc = efx_mcdi_fini_txq(enp, etp->et_index)) != 0) goto fail1; return (0); fail1: EFSYS_PROBE1(fail1, efx_rc_t, rc); return (rc); } void ef10_tx_qenable( __in efx_txq_t *etp) { /* FIXME */ _NOTE(ARGUNUSED(etp)) /* FIXME */ } #if EFSYS_OPT_QSTATS void ef10_tx_qstats_update( __in efx_txq_t *etp, __inout_ecount(TX_NQSTATS) efsys_stat_t *stat) { unsigned int id; for (id = 0; id < TX_NQSTATS; id++) { efsys_stat_t *essp = &stat[id]; EFSYS_STAT_INCR(essp, etp->et_stat[id]); etp->et_stat[id] = 0; } } #endif /* EFSYS_OPT_QSTATS */ #endif /* EFSYS_OPT_HUNTINGTON || EFSYS_OPT_MEDFORD || EFSYS_OPT_MEDFORD2 */