/*- * Copyright (c) 2018 Emmanuel Vadot * Copyright (c) 2016 Jared McNeill * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ /* * Generic DT based cpufreq driver */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cpufreq_if.h" #if 0 #define DPRINTF(dev, msg...) device_printf(dev, "cpufreq_dt: " msg); #else #define DPRINTF(dev, msg...) #endif enum opp_version { OPP_V1 = 1, OPP_V2, }; struct cpufreq_dt_opp { uint64_t freq; uint32_t uvolt_target; uint32_t uvolt_min; uint32_t uvolt_max; uint32_t uamps; uint32_t clk_latency; bool turbo_mode; bool opp_suspend; }; #define CPUFREQ_DT_HAVE_REGULATOR(sc) ((sc)->reg != NULL) struct cpufreq_dt_softc { device_t dev; clk_t clk; regulator_t reg; struct cpufreq_dt_opp *opp; ssize_t nopp; int cpu; cpuset_t cpus; }; static void cpufreq_dt_notify(device_t dev, uint64_t freq) { struct cpufreq_dt_softc *sc; struct pcpu *pc; int cpu; sc = device_get_softc(dev); CPU_FOREACH(cpu) { if (CPU_ISSET(cpu, &sc->cpus)) { pc = pcpu_find(cpu); pc->pc_clock = freq; } } } static const struct cpufreq_dt_opp * cpufreq_dt_find_opp(device_t dev, uint64_t freq) { struct cpufreq_dt_softc *sc; uint64_t diff, best_diff; ssize_t n, best_n; sc = device_get_softc(dev); diff = 0; best_diff = ~0; DPRINTF(dev, "Looking for freq %ju\n", freq); for (n = 0; n < sc->nopp; n++) { diff = abs64((int64_t)sc->opp[n].freq - (int64_t)freq); DPRINTF(dev, "Testing %ju, diff is %ju\n", sc->opp[n].freq, diff); if (diff < best_diff) { best_diff = diff; best_n = n; DPRINTF(dev, "%ju is best for now\n", sc->opp[n].freq); } } DPRINTF(dev, "Will use %ju\n", sc->opp[best_n].freq); return (&sc->opp[best_n]); } static void cpufreq_dt_opp_to_setting(device_t dev, const struct cpufreq_dt_opp *opp, struct cf_setting *set) { memset(set, 0, sizeof(*set)); set->freq = opp->freq / 1000000; set->volts = opp->uvolt_target / 1000; set->power = CPUFREQ_VAL_UNKNOWN; set->lat = opp->clk_latency; set->dev = dev; } static int cpufreq_dt_get(device_t dev, struct cf_setting *set) { struct cpufreq_dt_softc *sc; const struct cpufreq_dt_opp *opp; uint64_t freq; sc = device_get_softc(dev); DPRINTF(dev, "cpufreq_dt_get\n"); if (clk_get_freq(sc->clk, &freq) != 0) return (ENXIO); opp = cpufreq_dt_find_opp(dev, freq); if (opp == NULL) { device_printf(dev, "Can't find the current freq in opp\n"); return (ENOENT); } cpufreq_dt_opp_to_setting(dev, opp, set); DPRINTF(dev, "Current freq %dMhz\n", set->freq); return (0); } static int cpufreq_dt_set(device_t dev, const struct cf_setting *set) { struct cpufreq_dt_softc *sc; const struct cpufreq_dt_opp *opp, *copp; uint64_t freq; int uvolt, error; sc = device_get_softc(dev); DPRINTF(dev, "Working on cpu %d\n", sc->cpu); DPRINTF(dev, "We have %d cpu on this dev\n", CPU_COUNT(&sc->cpus)); if (!CPU_ISSET(sc->cpu, &sc->cpus)) { DPRINTF(dev, "Not for this CPU\n"); return (0); } if (clk_get_freq(sc->clk, &freq) != 0) { device_printf(dev, "Can't get current clk freq\n"); return (ENXIO); } /* * Only do the regulator work if it's required. */ if (CPUFREQ_DT_HAVE_REGULATOR(sc)) { /* Try to get current valtage by using regulator first. */ error = regulator_get_voltage(sc->reg, &uvolt); if (error != 0) { /* * Try oppoints table as backup way. However, * this is insufficient because the actual processor * frequency may not be in the table. PLL frequency * granularity can be different that granularity of * oppoint table. */ copp = cpufreq_dt_find_opp(sc->dev, freq); if (copp == NULL) { device_printf(dev, "Can't find the current freq in opp\n"); return (ENOENT); } uvolt = copp->uvolt_target; } } else uvolt = 0; opp = cpufreq_dt_find_opp(sc->dev, set->freq * 1000000); if (opp == NULL) { device_printf(dev, "Couldn't find an opp for this freq\n"); return (EINVAL); } DPRINTF(sc->dev, "Current freq %ju, uvolt: %d\n", freq, uvolt); DPRINTF(sc->dev, "Target freq %ju, , uvolt: %d\n", opp->freq, opp->uvolt_target); if (CPUFREQ_DT_HAVE_REGULATOR(sc) && (uvolt < opp->uvolt_target)) { DPRINTF(dev, "Changing regulator from %u to %u\n", uvolt, opp->uvolt_target); error = regulator_set_voltage(sc->reg, opp->uvolt_min, opp->uvolt_max); if (error != 0) { DPRINTF(dev, "Failed, backout\n"); return (ENXIO); } } DPRINTF(dev, "Setting clk to %ju\n", opp->freq); error = clk_set_freq(sc->clk, opp->freq, CLK_SET_ROUND_DOWN); if (error != 0) { DPRINTF(dev, "Failed, backout\n"); /* Restore previous voltage (best effort) */ if (CPUFREQ_DT_HAVE_REGULATOR(sc)) error = regulator_set_voltage(sc->reg, copp->uvolt_min, copp->uvolt_max); return (ENXIO); } if (CPUFREQ_DT_HAVE_REGULATOR(sc) && (uvolt > opp->uvolt_target)) { DPRINTF(dev, "Changing regulator from %u to %u\n", uvolt, opp->uvolt_target); error = regulator_set_voltage(sc->reg, opp->uvolt_min, opp->uvolt_max); if (error != 0) { DPRINTF(dev, "Failed to switch regulator to %d\n", opp->uvolt_target); /* Restore previous CPU frequency (best effort) */ (void)clk_set_freq(sc->clk, copp->freq, 0); return (ENXIO); } } if (clk_get_freq(sc->clk, &freq) == 0) cpufreq_dt_notify(dev, freq); return (0); } static int cpufreq_dt_type(device_t dev, int *type) { if (type == NULL) return (EINVAL); *type = CPUFREQ_TYPE_ABSOLUTE; return (0); } static int cpufreq_dt_settings(device_t dev, struct cf_setting *sets, int *count) { struct cpufreq_dt_softc *sc; ssize_t n; DPRINTF(dev, "cpufreq_dt_settings\n"); if (sets == NULL || count == NULL) return (EINVAL); sc = device_get_softc(dev); if (*count < sc->nopp) { *count = (int)sc->nopp; return (E2BIG); } for (n = 0; n < sc->nopp; n++) cpufreq_dt_opp_to_setting(dev, &sc->opp[n], &sets[n]); *count = (int)sc->nopp; return (0); } static void cpufreq_dt_identify(driver_t *driver, device_t parent) { phandle_t node; /* Properties must be listed under node /cpus/cpu@0 */ node = ofw_bus_get_node(parent); /* The cpu@0 node must have the following properties */ if (!OF_hasprop(node, "clocks")) return; if (!OF_hasprop(node, "operating-points") && !OF_hasprop(node, "operating-points-v2")) return; if (device_find_child(parent, "cpufreq_dt", -1) != NULL) return; if (BUS_ADD_CHILD(parent, 0, "cpufreq_dt", device_get_unit(parent)) == NULL) device_printf(parent, "add cpufreq_dt child failed\n"); } static int cpufreq_dt_probe(device_t dev) { phandle_t node; node = ofw_bus_get_node(device_get_parent(dev)); /* * Note - supply isn't required here for probe; we'll check * it out in more detail during attach. */ if (!OF_hasprop(node, "clocks")) return (ENXIO); if (!OF_hasprop(node, "operating-points") && !OF_hasprop(node, "operating-points-v2")) return (ENXIO); device_set_desc(dev, "Generic cpufreq driver"); return (BUS_PROBE_GENERIC); } static int cpufreq_dt_oppv1_parse(struct cpufreq_dt_softc *sc, phandle_t node) { uint32_t *opp, lat; ssize_t n; sc->nopp = OF_getencprop_alloc_multi(node, "operating-points", sizeof(uint32_t) * 2, (void **)&opp); if (sc->nopp == -1) return (ENXIO); if (OF_getencprop(node, "clock-latency", &lat, sizeof(lat)) == -1) lat = CPUFREQ_VAL_UNKNOWN; sc->opp = malloc(sizeof(*sc->opp) * sc->nopp, M_DEVBUF, M_WAITOK); for (n = 0; n < sc->nopp; n++) { sc->opp[n].freq = opp[n * 2 + 0] * 1000; sc->opp[n].uvolt_min = opp[n * 2 + 1]; sc->opp[n].uvolt_max = sc->opp[n].uvolt_min; sc->opp[n].uvolt_target = sc->opp[n].uvolt_min; sc->opp[n].clk_latency = lat; if (bootverbose) device_printf(sc->dev, "%ju.%03ju MHz, %u uV\n", sc->opp[n].freq / 1000000, sc->opp[n].freq % 1000000, sc->opp[n].uvolt_target); } free(opp, M_OFWPROP); return (0); } static int cpufreq_dt_oppv2_parse(struct cpufreq_dt_softc *sc, phandle_t node) { phandle_t opp, opp_table, opp_xref; pcell_t cell[2]; uint32_t *volts, lat; int nvolt, i; /* * operating-points-v2 does not require the voltage entries * and a regulator. So, it's OK if they're not there. */ if (OF_getencprop(node, "operating-points-v2", &opp_xref, sizeof(opp_xref)) == -1) { device_printf(sc->dev, "Cannot get xref to oppv2 table\n"); return (ENXIO); } opp_table = OF_node_from_xref(opp_xref); if (opp_table == opp_xref) return (ENXIO); if (!OF_hasprop(opp_table, "opp-shared")) { device_printf(sc->dev, "Only opp-shared is supported\n"); return (ENXIO); } for (opp = OF_child(opp_table); opp > 0; opp = OF_peer(opp)) sc->nopp += 1; sc->opp = malloc(sizeof(*sc->opp) * sc->nopp, M_DEVBUF, M_WAITOK); for (i = 0, opp_table = OF_child(opp_table); opp_table > 0; opp_table = OF_peer(opp_table), i++) { /* opp-hz is a required property */ if (OF_getencprop(opp_table, "opp-hz", cell, sizeof(cell)) == -1) continue; sc->opp[i].freq = cell[0]; sc->opp[i].freq <<= 32; sc->opp[i].freq |= cell[1]; if (OF_getencprop(opp_table, "clock-latency", &lat, sizeof(lat)) == -1) sc->opp[i].clk_latency = CPUFREQ_VAL_UNKNOWN; else sc->opp[i].clk_latency = (int)lat; if (OF_hasprop(opp_table, "turbo-mode")) sc->opp[i].turbo_mode = true; if (OF_hasprop(opp_table, "opp-suspend")) sc->opp[i].opp_suspend = true; if (CPUFREQ_DT_HAVE_REGULATOR(sc)) { nvolt = OF_getencprop_alloc_multi(opp_table, "opp-microvolt", sizeof(*volts), (void **)&volts); if (nvolt == 1) { sc->opp[i].uvolt_target = volts[0]; sc->opp[i].uvolt_min = volts[0]; sc->opp[i].uvolt_max = volts[0]; } else if (nvolt == 3) { sc->opp[i].uvolt_target = volts[0]; sc->opp[i].uvolt_min = volts[1]; sc->opp[i].uvolt_max = volts[2]; } else { device_printf(sc->dev, "Wrong count of opp-microvolt property\n"); OF_prop_free(volts); free(sc->opp, M_DEVBUF); return (ENXIO); } OF_prop_free(volts); } else { /* No regulator required; don't add anything */ sc->opp[i].uvolt_target = 0; sc->opp[i].uvolt_min = 0; sc->opp[i].uvolt_max = 0; } if (bootverbose) device_printf(sc->dev, "%ju.%03ju Mhz (%u uV)\n", sc->opp[i].freq / 1000000, sc->opp[i].freq % 1000000, sc->opp[i].uvolt_target); } return (0); } static int cpufreq_dt_attach(device_t dev) { struct cpufreq_dt_softc *sc; phandle_t node; phandle_t cnode, opp, copp; int cpu; uint64_t freq; int rv = 0; char device_type[16]; enum opp_version version; sc = device_get_softc(dev); sc->dev = dev; node = ofw_bus_get_node(device_get_parent(dev)); sc->cpu = device_get_unit(device_get_parent(dev)); sc->reg = NULL; DPRINTF(dev, "cpu=%d\n", sc->cpu); if (sc->cpu >= mp_ncpus) { device_printf(dev, "Not attaching as cpu is not present\n"); rv = ENXIO; goto error; } /* * Cache if we have the regulator supply but don't error out * quite yet. If it's operating-points-v2 then regulator * and voltage entries are optional. */ if (regulator_get_by_ofw_property(dev, node, "cpu-supply", &sc->reg) == 0) device_printf(dev, "Found cpu-supply\n"); else if (regulator_get_by_ofw_property(dev, node, "cpu0-supply", &sc->reg) == 0) device_printf(dev, "Found cpu0-supply\n"); /* * Determine which operating mode we're in. Error out if we expect * a regulator but we're not getting it. */ if (OF_hasprop(node, "operating-points")) version = OPP_V1; else if (OF_hasprop(node, "operating-points-v2")) version = OPP_V2; else { device_printf(dev, "didn't find a valid operating-points or v2 node\n"); rv = ENXIO; goto error; } /* * Now, we only enforce needing a regulator for v1. */ if ((version == OPP_V1) && !CPUFREQ_DT_HAVE_REGULATOR(sc)) { device_printf(dev, "no regulator for %s\n", ofw_bus_get_name(device_get_parent(dev))); rv = ENXIO; goto error; } if (clk_get_by_ofw_index(dev, node, 0, &sc->clk) != 0) { device_printf(dev, "no clock for %s\n", ofw_bus_get_name(device_get_parent(dev))); rv = ENXIO; goto error; } if (version == OPP_V1) { rv = cpufreq_dt_oppv1_parse(sc, node); if (rv != 0) { device_printf(dev, "Failed to parse opp-v1 table\n"); goto error; } OF_getencprop(node, "operating-points", &opp, sizeof(opp)); } else if (version == OPP_V2) { rv = cpufreq_dt_oppv2_parse(sc, node); if (rv != 0) { device_printf(dev, "Failed to parse opp-v2 table\n"); goto error; } OF_getencprop(node, "operating-points-v2", &opp, sizeof(opp)); } else { device_printf(dev, "operating points version is incorrect\n"); goto error; } /* * Find all CPUs that share the same opp table */ CPU_ZERO(&sc->cpus); cnode = OF_parent(node); for (cpu = 0, cnode = OF_child(cnode); cnode > 0; cnode = OF_peer(cnode)) { if (OF_getprop(cnode, "device_type", device_type, sizeof(device_type)) <= 0) continue; if (strcmp(device_type, "cpu") != 0) continue; if (cpu == sc->cpu) { DPRINTF(dev, "Skipping our cpu\n"); CPU_SET(cpu, &sc->cpus); cpu++; continue; } DPRINTF(dev, "Testing CPU %d\n", cpu); copp = -1; if (version == OPP_V1) OF_getencprop(cnode, "operating-points", &copp, sizeof(copp)); else if (version == OPP_V2) OF_getencprop(cnode, "operating-points-v2", &copp, sizeof(copp)); if (opp == copp) { DPRINTF(dev, "CPU %d is using the same opp as this one (%d)\n", cpu, sc->cpu); CPU_SET(cpu, &sc->cpus); } cpu++; } if (clk_get_freq(sc->clk, &freq) == 0) cpufreq_dt_notify(dev, freq); cpufreq_register(dev); return (0); error: if (CPUFREQ_DT_HAVE_REGULATOR(sc)) regulator_release(sc->reg); return (rv); } static device_method_t cpufreq_dt_methods[] = { /* Device interface */ DEVMETHOD(device_identify, cpufreq_dt_identify), DEVMETHOD(device_probe, cpufreq_dt_probe), DEVMETHOD(device_attach, cpufreq_dt_attach), /* cpufreq interface */ DEVMETHOD(cpufreq_drv_get, cpufreq_dt_get), DEVMETHOD(cpufreq_drv_set, cpufreq_dt_set), DEVMETHOD(cpufreq_drv_type, cpufreq_dt_type), DEVMETHOD(cpufreq_drv_settings, cpufreq_dt_settings), DEVMETHOD_END }; static driver_t cpufreq_dt_driver = { "cpufreq_dt", cpufreq_dt_methods, sizeof(struct cpufreq_dt_softc), }; DRIVER_MODULE(cpufreq_dt, cpu, cpufreq_dt_driver, 0, 0); MODULE_VERSION(cpufreq_dt, 1);