/*- * Copyright (c) 2015-2016 Landon Fuller * Copyright (c) 2017 The FreeBSD Foundation * All rights reserved. * * Portions of this software were developed by Landon Fuller * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any * redistribution must be conditioned upon including a substantially * similar Disclaimer requirement for further binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGES. */ #include #include #include #include #include #include #include #include #include #include "sibareg.h" #include "sibavar.h" #include "siba_eromvar.h" struct siba_erom; struct siba_erom_io; static int siba_eio_init(struct siba_erom_io *io, struct bhnd_erom_io *eio, u_int ncores); static uint32_t siba_eio_read_4(struct siba_erom_io *io, u_int core_idx, bus_size_t offset); static int siba_eio_read_core_id(struct siba_erom_io *io, u_int core_idx, int unit, struct siba_core_id *sid); static int siba_eio_read_chipid(struct siba_erom_io *io, bus_addr_t enum_addr, struct bhnd_chipid *cid); /** * SIBA EROM generic I/O context */ struct siba_erom_io { struct bhnd_erom_io *eio; /**< erom I/O callbacks */ bhnd_addr_t base_addr; /**< address of first core */ u_int ncores; /**< core count */ }; /** * SIBA EROM per-instance state. */ struct siba_erom { struct bhnd_erom obj; struct siba_erom_io io; /**< i/o context */ }; #define EROM_LOG(io, fmt, ...) do { \ printf("%s: " fmt, __FUNCTION__, ##__VA_ARGS__); \ } while(0) /* SIBA implementation of BHND_EROM_PROBE() */ static int siba_erom_probe(bhnd_erom_class_t *cls, struct bhnd_erom_io *eio, const struct bhnd_chipid *hint, struct bhnd_chipid *cid) { struct siba_erom_io io; uint32_t idreg; int error; /* Initialize I/O context, assuming at least the first core is mapped */ if ((error = siba_eio_init(&io, eio, 1))) return (error); /* Try using the provided hint. */ if (hint != NULL) { struct siba_core_id sid; /* Validate bus type */ if (hint->chip_type != BHND_CHIPTYPE_SIBA) return (ENXIO); /* * Verify the first core's IDHIGH/IDLOW identification. * * The core must be a Broadcom core, but must *not* be * a chipcommon core; those shouldn't be hinted. * * The first core on EXTIF-equipped devices varies, but on the * BCM4710, it's a SDRAM core (0x803). */ if ((error = siba_eio_read_core_id(&io, 0, 0, &sid))) return (error); if (sid.core_info.vendor != BHND_MFGID_BCM) return (ENXIO); if (sid.core_info.device == BHND_COREID_CC) return (EINVAL); *cid = *hint; } else { /* Validate bus type */ idreg = siba_eio_read_4(&io, 0, CHIPC_ID); if (CHIPC_GET_BITS(idreg, CHIPC_ID_BUS) != BHND_CHIPTYPE_SIBA) return (ENXIO); /* Identify the chipset */ if ((error = siba_eio_read_chipid(&io, SIBA_ENUM_ADDR, cid))) return (error); /* Verify the chip type */ if (cid->chip_type != BHND_CHIPTYPE_SIBA) return (ENXIO); } /* * gcc hack: ensure bhnd_chipid.ncores cannot exceed SIBA_MAX_CORES * without triggering build failure due to -Wtype-limits * * if (cid.ncores > SIBA_MAX_CORES) * return (EINVAL) */ _Static_assert((2^sizeof(cid->ncores)) <= SIBA_MAX_CORES, "ncores could result in over-read of backing resource"); return (0); } /* SIBA implementation of BHND_EROM_INIT() */ static int siba_erom_init(bhnd_erom_t *erom, const struct bhnd_chipid *cid, struct bhnd_erom_io *eio) { struct siba_erom *sc; int error; sc = (struct siba_erom *)erom; /* Attempt to map the full core enumeration space */ error = bhnd_erom_io_map(eio, cid->enum_addr, cid->ncores * SIBA_CORE_SIZE); if (error) { printf("%s: failed to map %u cores: %d\n", __FUNCTION__, cid->ncores, error); return (error); } /* Initialize I/O context */ return (siba_eio_init(&sc->io, eio, cid->ncores)); } /* SIBA implementation of BHND_EROM_FINI() */ static void siba_erom_fini(bhnd_erom_t *erom) { struct siba_erom *sc = (struct siba_erom *)erom; bhnd_erom_io_fini(sc->io.eio); } /* Initialize siba_erom resource I/O context */ static int siba_eio_init(struct siba_erom_io *io, struct bhnd_erom_io *eio, u_int ncores) { io->eio = eio; io->ncores = ncores; return (0); } /** * Read a 32-bit value from @p offset relative to the base address of * the given @p core_idx. * * @param io EROM I/O context. * @param core_idx Core index. * @param offset Core register offset. */ static uint32_t siba_eio_read_4(struct siba_erom_io *io, u_int core_idx, bus_size_t offset) { /* Sanity check core index and offset */ if (core_idx >= io->ncores) panic("core index %u out of range (ncores=%u)", core_idx, io->ncores); if (offset > SIBA_CORE_SIZE - sizeof(uint32_t)) panic("invalid core offset %#jx", (uintmax_t)offset); /* Perform read */ return (bhnd_erom_io_read(io->eio, SIBA_CORE_OFFSET(core_idx) + offset, 4)); } /** * Read and parse identification registers for the given @p core_index. * * @param io EROM I/O context. * @param core_idx The core index. * @param unit The caller-specified unit number to be included in the return * value. * @param[out] sid On success, the parsed siba core id. * * @retval 0 success * @retval non-zero if reading or parsing the identification registers * otherwise fails, a regular unix error code will be * returned. */ static int siba_eio_read_core_id(struct siba_erom_io *io, u_int core_idx, int unit, struct siba_core_id *sid) { struct siba_admatch admatch[SIBA_MAX_ADDRSPACE]; uint32_t idhigh, idlow; uint32_t tpsflag; uint16_t ocp_vendor; uint8_t sonics_rev; uint8_t num_admatch; uint8_t num_admatch_en; uint8_t num_cfg; bool intr_en; u_int intr_flag; int error; idhigh = siba_eio_read_4(io, core_idx, SB0_REG_ABS(SIBA_CFG0_IDHIGH)); idlow = siba_eio_read_4(io, core_idx, SB0_REG_ABS(SIBA_CFG0_IDLOW)); tpsflag = siba_eio_read_4(io, core_idx, SB0_REG_ABS(SIBA_CFG0_TPSFLAG)); ocp_vendor = SIBA_REG_GET(idhigh, IDH_VENDOR); sonics_rev = SIBA_REG_GET(idlow, IDL_SBREV); num_admatch = SIBA_REG_GET(idlow, IDL_NRADDR) + 1 /* + enum block */; if (num_admatch > nitems(admatch)) { printf("core%u: invalid admatch count %hhu\n", core_idx, num_admatch); return (EINVAL); } /* Determine backplane interrupt distribution configuration */ intr_en = ((tpsflag & SIBA_TPS_F0EN0) != 0); intr_flag = SIBA_REG_GET(tpsflag, TPS_NUM0); /* Determine the number of sonics config register blocks */ num_cfg = SIBA_CFG_NUM_2_2; if (sonics_rev >= SIBA_IDL_SBREV_2_3) num_cfg = SIBA_CFG_NUM_2_3; /* Parse all admatch descriptors */ num_admatch_en = 0; for (uint8_t i = 0; i < num_admatch; i++) { uint32_t am_value; u_int am_offset; KASSERT(i < nitems(admatch), ("invalid admatch index")); /* Determine the register offset */ am_offset = siba_admatch_offset(i); if (am_offset == 0) { printf("core%u: addrspace %hhu is unsupported", core_idx, i); return (ENODEV); } /* Read and parse the address match register */ am_value = siba_eio_read_4(io, core_idx, am_offset); error = siba_parse_admatch(am_value, &admatch[num_admatch_en]); if (error) { printf("core%u: failed to decode admatch[%hhu] " "register value 0x%x\n", core_idx, i, am_value); return (error); } /* Skip disabled entries */ if (!admatch[num_admatch_en].am_enabled) continue; /* Reject unsupported negative matches. These are not used on * any known devices */ if (admatch[num_admatch_en].am_negative) { printf("core%u: unsupported negative admatch[%hhu] " "value 0x%x\n", core_idx, i, am_value); return (ENXIO); } num_admatch_en++; } /* Populate the result */ *sid = (struct siba_core_id) { .core_info = { .vendor = siba_get_bhnd_mfgid(ocp_vendor), .device = SIBA_REG_GET(idhigh, IDH_DEVICE), .hwrev = SIBA_IDH_CORE_REV(idhigh), .core_idx = core_idx, .unit = unit }, .sonics_vendor = ocp_vendor, .sonics_rev = sonics_rev, .intr_en = intr_en, .intr_flag = intr_flag, .num_admatch = num_admatch_en, .num_cfg_blocks = num_cfg }; memcpy(sid->admatch, admatch, num_admatch_en * sizeof(admatch[0])); return (0); } /** * Read and parse the SSB identification registers for the given @p core_index, * returning the siba(4) core identification in @p sid. * * @param sc A siba EROM instance. * @param core_idx The index of the core to be identified. * @param[out] result On success, the parsed siba core id. * * @retval 0 success * @retval non-zero if reading or parsing the identification registers * otherwise fails, a regular unix error code will be * returned. */ int siba_erom_get_core_id(struct siba_erom *sc, u_int core_idx, struct siba_core_id *result) { struct siba_core_id sid; int error; /* Fetch the core info, assuming a unit number of 0 */ if ((error = siba_eio_read_core_id(&sc->io, core_idx, 0, &sid))) return (error); /* Scan preceding cores to determine the real unit number. */ for (u_int i = 0; i < core_idx; i++) { struct siba_core_id prev; if ((error = siba_eio_read_core_id(&sc->io, i, 0, &prev))) return (error); /* Bump the unit number? */ if (sid.core_info.vendor == prev.core_info.vendor && sid.core_info.device == prev.core_info.device) sid.core_info.unit++; } *result = sid; return (0); } /** * Read and parse the chip identification register from the ChipCommon core. * * @param io EROM I/O context. * @param enum_addr The physical address mapped by @p io. * @param cid On success, the parsed chip identifier. */ static int siba_eio_read_chipid(struct siba_erom_io *io, bus_addr_t enum_addr, struct bhnd_chipid *cid) { struct siba_core_id ccid; int error; /* Identify the chipcommon core */ if ((error = siba_eio_read_core_id(io, 0, 0, &ccid))) return (error); if (ccid.core_info.vendor != BHND_MFGID_BCM || ccid.core_info.device != BHND_COREID_CC) { if (bootverbose) { EROM_LOG(io, "first core not chipcommon " "(vendor=%#hx, core=%#hx)\n", ccid.core_info.vendor, ccid.core_info.device); } return (ENXIO); } /* Identify the chipset */ if ((error = bhnd_erom_read_chipid(io->eio, cid))) return (error); /* Do we need to fix up the core count? */ if (CHIPC_NCORES_MIN_HWREV(ccid.core_info.hwrev)) return (0); switch (cid->chip_id) { case BHND_CHIPID_BCM4306: cid->ncores = 6; break; case BHND_CHIPID_BCM4704: cid->ncores = 9; break; case BHND_CHIPID_BCM5365: /* * BCM5365 does support ID_NUMCORE in at least * some of its revisions, but for unknown * reasons, Broadcom's drivers always exclude * the ChipCommon revision (0x5) used by BCM5365 * from the set of revisions supporting * ID_NUMCORE, and instead supply a fixed value. * * Presumably, at least some of these devices * shipped with a broken ID_NUMCORE value. */ cid->ncores = 7; break; default: return (EINVAL); } return (0); } static int siba_erom_lookup_core(bhnd_erom_t *erom, const struct bhnd_core_match *desc, struct bhnd_core_info *core) { struct siba_erom *sc; struct bhnd_core_match imatch; int error; sc = (struct siba_erom *)erom; /* We can't determine a core's unit number during the initial scan. */ imatch = *desc; imatch.m.match.core_unit = 0; /* Locate the first matching core */ for (u_int i = 0; i < sc->io.ncores; i++) { struct siba_core_id sid; struct bhnd_core_info ci; /* Read the core info */ if ((error = siba_eio_read_core_id(&sc->io, i, 0, &sid))) return (error); ci = sid.core_info; /* Check for initial match */ if (!bhnd_core_matches(&ci, &imatch)) continue; /* Re-scan preceding cores to determine the unit number. */ for (u_int j = 0; j < i; j++) { error = siba_eio_read_core_id(&sc->io, j, 0, &sid); if (error) return (error); /* Bump the unit number? */ if (sid.core_info.vendor == ci.vendor && sid.core_info.device == ci.device) ci.unit++; } /* Check for full match against now-valid unit number */ if (!bhnd_core_matches(&ci, desc)) continue; /* Matching core found */ *core = ci; return (0); } /* Not found */ return (ENOENT); } static int siba_erom_lookup_core_addr(bhnd_erom_t *erom, const struct bhnd_core_match *desc, bhnd_port_type type, u_int port, u_int region, struct bhnd_core_info *info, bhnd_addr_t *addr, bhnd_size_t *size) { struct siba_erom *sc; struct bhnd_core_info core; struct siba_core_id sid; struct siba_admatch admatch; uint32_t am; u_int am_offset; u_int addrspace, cfg; int error; sc = (struct siba_erom *)erom; /* Locate the requested core */ if ((error = siba_erom_lookup_core(erom, desc, &core))) return (error); /* Fetch full siba core ident */ error = siba_eio_read_core_id(&sc->io, core.core_idx, core.unit, &sid); if (error) return (error); /* Is port valid? */ if (!siba_is_port_valid(&sid, type, port)) return (ENOENT); /* Is region valid? */ if (region >= siba_port_region_count(&sid, type, port)) return (ENOENT); /* Is this a siba configuration region? If so, this is mapped to an * offset within the device0.0 port */ error = siba_cfg_index(&sid, type, port, region, &cfg); if (!error) { bhnd_addr_t region_addr; bhnd_addr_t region_size; bhnd_size_t cfg_offset, cfg_size; cfg_offset = SIBA_CFG_OFFSET(cfg); cfg_size = SIBA_CFG_SIZE; /* Fetch the device0.0 addr/size */ error = siba_erom_lookup_core_addr(erom, desc, BHND_PORT_DEVICE, 0, 0, NULL, ®ion_addr, ®ion_size); if (error) return (error); /* Verify that our offset fits within the region */ if (region_size < cfg_size) { printf("%s%u.%u offset %ju exceeds %s0.0 size %ju\n", bhnd_port_type_name(type), port, region, cfg_offset, bhnd_port_type_name(BHND_PORT_DEVICE), region_size); return (ENXIO); } if (BHND_ADDR_MAX - region_addr < cfg_offset) { printf("%s%u.%u offset %ju would overflow %s0.0 addr " "%ju\n", bhnd_port_type_name(type), port, region, cfg_offset, bhnd_port_type_name(BHND_PORT_DEVICE), region_addr); return (ENXIO); } if (info != NULL) *info = core; *addr = region_addr + cfg_offset; *size = cfg_size; return (0); } /* * Otherwise, must be a device port. * * Map the bhnd device port to a siba addrspace index. Unlike siba(4) * bus drivers, we do not exclude the siba(4) configuration blocks from * the first device port. */ error = siba_addrspace_index(&sid, type, port, region, &addrspace); if (error) return (error); /* Determine the register offset */ am_offset = siba_admatch_offset(addrspace); if (am_offset == 0) { printf("addrspace %u is unsupported", addrspace); return (ENODEV); } /* Read and parse the address match register */ am = siba_eio_read_4(&sc->io, core.core_idx, am_offset); if ((error = siba_parse_admatch(am, &admatch))) { printf("failed to decode address match register value 0x%x\n", am); return (error); } if (info != NULL) *info = core; *addr = admatch.am_base; *size = admatch.am_size; return (0); } /* BHND_EROM_GET_CORE_TABLE() */ static int siba_erom_get_core_table(bhnd_erom_t *erom, struct bhnd_core_info **cores, u_int *num_cores) { struct siba_erom *sc; struct bhnd_core_info *out; int error; sc = (struct siba_erom *)erom; /* Allocate our core array */ out = mallocarray(sc->io.ncores, sizeof(*out), M_BHND, M_NOWAIT); if (out == NULL) return (ENOMEM); *cores = out; *num_cores = sc->io.ncores; /* Enumerate all cores. */ for (u_int i = 0; i < sc->io.ncores; i++) { struct siba_core_id sid; /* Read the core info */ if ((error = siba_eio_read_core_id(&sc->io, i, 0, &sid))) return (error); out[i] = sid.core_info; /* Determine unit number */ for (u_int j = 0; j < i; j++) { if (out[j].vendor == out[i].vendor && out[j].device == out[i].device) out[i].unit++; } } return (0); } /* BHND_EROM_FREE_CORE_TABLE() */ static void siba_erom_free_core_table(bhnd_erom_t *erom, struct bhnd_core_info *cores) { free(cores, M_BHND); } /* BHND_EROM_DUMP() */ static int siba_erom_dump(bhnd_erom_t *erom) { struct siba_erom *sc; int error; sc = (struct siba_erom *)erom; /* Enumerate all cores. */ for (u_int i = 0; i < sc->io.ncores; i++) { uint32_t idhigh, idlow; uint32_t nraddr; idhigh = siba_eio_read_4(&sc->io, i, SB0_REG_ABS(SIBA_CFG0_IDHIGH)); idlow = siba_eio_read_4(&sc->io, i, SB0_REG_ABS(SIBA_CFG0_IDLOW)); printf("siba core %u:\n", i); printf("\tvendor:\t0x%04x\n", SIBA_REG_GET(idhigh, IDH_VENDOR)); printf("\tdevice:\t0x%04x\n", SIBA_REG_GET(idhigh, IDH_DEVICE)); printf("\trev:\t0x%04x\n", SIBA_IDH_CORE_REV(idhigh)); printf("\tsbrev:\t0x%02x\n", SIBA_REG_GET(idlow, IDL_SBREV)); /* Enumerate the address match registers */ nraddr = SIBA_REG_GET(idlow, IDL_NRADDR); printf("\tnraddr\t0x%04x\n", nraddr); for (size_t addrspace = 0; addrspace < nraddr; addrspace++) { struct siba_admatch admatch; uint32_t am; u_int am_offset; /* Determine the register offset */ am_offset = siba_admatch_offset(addrspace); if (am_offset == 0) { printf("addrspace %zu unsupported", addrspace); break; } /* Read and parse the address match register */ am = siba_eio_read_4(&sc->io, i, am_offset); if ((error = siba_parse_admatch(am, &admatch))) { printf("failed to decode address match " "register value 0x%x\n", am); continue; } printf("\taddrspace %zu\n", addrspace); printf("\t\taddr: 0x%08x\n", admatch.am_base); printf("\t\tsize: 0x%08x\n", admatch.am_size); } } return (0); } static kobj_method_t siba_erom_methods[] = { KOBJMETHOD(bhnd_erom_probe, siba_erom_probe), KOBJMETHOD(bhnd_erom_init, siba_erom_init), KOBJMETHOD(bhnd_erom_fini, siba_erom_fini), KOBJMETHOD(bhnd_erom_get_core_table, siba_erom_get_core_table), KOBJMETHOD(bhnd_erom_free_core_table, siba_erom_free_core_table), KOBJMETHOD(bhnd_erom_lookup_core, siba_erom_lookup_core), KOBJMETHOD(bhnd_erom_lookup_core_addr, siba_erom_lookup_core_addr), KOBJMETHOD(bhnd_erom_dump, siba_erom_dump), KOBJMETHOD_END }; BHND_EROM_DEFINE_CLASS(siba_erom, siba_erom_parser, siba_erom_methods, sizeof(struct siba_erom));