/*- * SPDX-License-Identifier: BSD-3-Clause * * Copyright (c) 1996-1999 * Kazutaka YOKOTA (yokota@zodiac.mech.utsunomiya-u.ac.jp) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. The name of the author may not be used to endorse or promote * products derived from this software without specific prior written * permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from kbdio.c,v 1.13 1998/09/25 11:55:46 yokota Exp */ #include #include "opt_kbd.h" #include #include #include #include #include #include #include #include #if defined(__amd64__) #include #endif #include #include /* constants */ #define MAXKBDC 1 /* XXX */ /* macros */ #ifndef MAX #define MAX(x, y) ((x) > (y) ? (x) : (y)) #endif #define nextq(i) (((i) + 1) % KBDQ_BUFSIZE) #define availq(q) ((q)->head != (q)->tail) #if KBDIO_DEBUG >= 2 #define emptyq(q) ((q)->tail = (q)->head = (q)->qcount = 0) #else #define emptyq(q) ((q)->tail = (q)->head = 0) #endif #define read_data(k) (bus_space_read_1((k)->iot, (k)->ioh0, 0)) #define read_status(k) (bus_space_read_1((k)->iot, (k)->ioh1, 0)) #define write_data(k, d) \ (bus_space_write_1((k)->iot, (k)->ioh0, 0, (d))) #define write_command(k, d) \ (bus_space_write_1((k)->iot, (k)->ioh1, 0, (d))) /* local variables */ /* * We always need at least one copy of the kbdc_softc struct for the * low-level console. As the low-level console accesses the keyboard * controller before kbdc, and all other devices, is probed, we * statically allocate one entry. XXX */ static atkbdc_softc_t default_kbdc; static atkbdc_softc_t *atkbdc_softc[MAXKBDC] = { &default_kbdc }; static int verbose = KBDIO_DEBUG; /* function prototypes */ static int atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag, bus_space_handle_t h0, bus_space_handle_t h1); static int addq(kqueue *q, int c); static int removeq(kqueue *q); static int wait_while_controller_busy(atkbdc_softc_t *kbdc); static int wait_for_data(atkbdc_softc_t *kbdc); static int wait_for_kbd_data(atkbdc_softc_t *kbdc); static int wait_for_kbd_ack(atkbdc_softc_t *kbdc); static int wait_for_aux_data(atkbdc_softc_t *kbdc); static int wait_for_aux_ack(atkbdc_softc_t *kbdc); struct atkbdc_quirks { const char *bios_vendor; const char *maker; const char *product; const char *version; int quirk; }; /* Old chromebooks running coreboot with i8042 emulation quirks */ #define CHROMEBOOK_WORKAROUND \ (KBDC_QUIRK_KEEP_ACTIVATED | KBDC_QUIRK_IGNORE_PROBE_RESULT | \ KBDC_QUIRK_RESET_AFTER_PROBE | KBDC_QUIRK_SETLEDS_ON_INIT) static struct atkbdc_quirks quirks[] = { /* * Older chromebooks running coreboot have an EC that imperfectly emulates * i8042 w/o fixes to its firmware. Since we can't probe for the problem, * include all chromebooks by matching 'Google_' in the bios version string * or a maker of either 'Google' or 'GOOGLE'. This is imperfect, but catches * all chromebooks while omitting non-Google systems from System76 and * Purism. */ {"coreboot", NULL, NULL, "Google_", CHROMEBOOK_WORKAROUND}, {"coreboot", "GOOGLE", NULL, NULL, CHROMEBOOK_WORKAROUND}, {"coreboot", "Google", NULL, NULL, CHROMEBOOK_WORKAROUND}, /* KBDC hangs on Lenovo X120e and X121e after disabling AUX MUX */ {NULL, "LENOVO", NULL, NULL, KBDC_QUIRK_DISABLE_MUX_PROBE}, }; #define QUIRK_STR_EQUAL(s1, s2) \ (s1 == NULL || \ (s2 != NULL && strcmp(s1, s2) == 0)) #define QUIRK_STR_MATCH(s1, s2) \ (s1 == NULL || \ (s2 != NULL && strncmp(s1, s2, strlen(s1)) == 0)) static int atkbdc_getquirks(void) { int i; char *bios_vendor = kern_getenv("smbios.bios.vendor"); char *maker = kern_getenv("smbios.system.maker"); char *product = kern_getenv("smbios.system.product"); char *version = kern_getenv("smbios.bios.version"); for (i = 0; i < nitems(quirks); i++) if (QUIRK_STR_EQUAL(quirks[i].bios_vendor, bios_vendor) && QUIRK_STR_EQUAL(quirks[i].maker, maker) && QUIRK_STR_EQUAL(quirks[i].product, product) && QUIRK_STR_MATCH(quirks[i].version, version)) return (quirks[i].quirk); return (0); } atkbdc_softc_t *atkbdc_get_softc(int unit) { atkbdc_softc_t *sc; if (unit >= nitems(atkbdc_softc)) return NULL; sc = atkbdc_softc[unit]; if (sc == NULL) { sc = atkbdc_softc[unit] = malloc(sizeof(*sc), M_DEVBUF, M_NOWAIT | M_ZERO); if (sc == NULL) return NULL; } return sc; } int atkbdc_probe_unit(int unit, struct resource *port0, struct resource *port1) { if (rman_get_start(port0) <= 0) return ENXIO; if (rman_get_start(port1) <= 0) return ENXIO; return 0; } int atkbdc_attach_unit(int unit, atkbdc_softc_t *sc, struct resource *port0, struct resource *port1) { return atkbdc_setup(sc, rman_get_bustag(port0), rman_get_bushandle(port0), rman_get_bushandle(port1)); } /* the backdoor to the keyboard controller! XXX */ int atkbdc_configure(void) { bus_space_tag_t tag; bus_space_handle_t h0; bus_space_handle_t h1; #if defined(__i386__) || defined(__amd64__) volatile int i; register_t flags; #endif int port0; int port1; /* XXX: tag should be passed from the caller */ #if defined(__amd64__) || defined(__i386__) tag = X86_BUS_SPACE_IO; #else #error "define tag!" #endif port0 = IO_KBD; resource_int_value("atkbdc", 0, "port", &port0); port1 = IO_KBD + KBD_STATUS_PORT; #ifdef notyet bus_space_map(tag, port0, IO_KBDSIZE, 0, &h0); bus_space_map(tag, port1, IO_KBDSIZE, 0, &h1); #else h0 = (bus_space_handle_t)port0; h1 = (bus_space_handle_t)port1; #endif #if defined(__i386__) || defined(__amd64__) /* * Check if we really have AT keyboard controller. Poll status * register until we get "all clear" indication. If no such * indication comes, it probably means that there is no AT * keyboard controller present. Give up in such case. Check relies * on the fact that reading from non-existing in/out port returns * 0xff on i386. May or may not be true on other platforms. */ flags = intr_disable(); for (i = 0; i != 65535; i++) { if ((bus_space_read_1(tag, h1, 0) & 0x2) == 0) break; } intr_restore(flags); if (i == 65535) return ENXIO; #endif return atkbdc_setup(atkbdc_softc[0], tag, h0, h1); } static int atkbdc_setup(atkbdc_softc_t *sc, bus_space_tag_t tag, bus_space_handle_t h0, bus_space_handle_t h1) { #if defined(__amd64__) u_int64_t tscval[3], read_delay; register_t flags; #endif if (sc->ioh0 == 0) { /* XXX */ sc->command_byte = -1; sc->command_mask = 0; sc->lock = FALSE; sc->kbd.head = sc->kbd.tail = 0; sc->aux.head = sc->aux.tail = 0; sc->aux_mux_enabled = FALSE; #if KBDIO_DEBUG >= 2 sc->kbd.call_count = 0; sc->kbd.qcount = sc->kbd.max_qcount = 0; sc->aux.call_count = 0; sc->aux.qcount = sc->aux.max_qcount = 0; #endif } sc->iot = tag; sc->ioh0 = h0; sc->ioh1 = h1; #if defined(__amd64__) /* * On certain chipsets AT keyboard controller isn't present and is * emulated by BIOS using SMI interrupt. On those chipsets reading * from the status port may be thousand times slower than usually. * Sometimes this emilation is not working properly resulting in * commands timing our and since we assume that inb() operation * takes very little time to complete we need to adjust number of * retries to keep waiting time within a designed limits (100ms). * Measure time it takes to make read_status() call and adjust * number of retries accordingly. */ flags = intr_disable(); tscval[0] = rdtsc(); read_status(sc); tscval[1] = rdtsc(); DELAY(1000); tscval[2] = rdtsc(); intr_restore(flags); read_delay = tscval[1] - tscval[0]; read_delay /= (tscval[2] - tscval[1]) / 1000; sc->retry = 100000 / ((KBDD_DELAYTIME * 2) + read_delay); #else sc->retry = 5000; #endif sc->quirks = atkbdc_getquirks(); return 0; } /* open a keyboard controller */ KBDC atkbdc_open(int unit) { if (unit <= 0) unit = 0; if (unit >= MAXKBDC) return NULL; if ((atkbdc_softc[unit]->port0 != NULL) || (atkbdc_softc[unit]->ioh0 != 0)) /* XXX */ return atkbdc_softc[unit]; return NULL; } /* * I/O access arbitration in `kbdio' * * The `kbdio' module uses a simplistic convention to arbitrate * I/O access to the controller/keyboard/mouse. The convention requires * close cooperation of the calling device driver. * * The device drivers which utilize the `kbdio' module are assumed to * have the following set of routines. * a. An interrupt handler (the bottom half of the driver). * b. Timeout routines which may briefly poll the keyboard controller. * c. Routines outside interrupt context (the top half of the driver). * They should follow the rules below: * 1. The interrupt handler may assume that it always has full access * to the controller/keyboard/mouse. * 2. The other routines must issue `spltty()' if they wish to * prevent the interrupt handler from accessing * the controller/keyboard/mouse. * 3. The timeout routines and the top half routines of the device driver * arbitrate I/O access by observing the lock flag in `kbdio'. * The flag is manipulated via `kbdc_lock()'; when one wants to * perform I/O, call `kbdc_lock(kbdc, TRUE)' and proceed only if * the call returns with TRUE. Otherwise the caller must back off. * Call `kbdc_lock(kbdc, FALSE)' when necessary I/O operaion * is finished. This mechanism does not prevent the interrupt * handler from being invoked at any time and carrying out I/O. * Therefore, `spltty()' must be strategically placed in the device * driver code. Also note that the timeout routine may interrupt * `kbdc_lock()' called by the top half of the driver, but this * interruption is OK so long as the timeout routine observes * rule 4 below. * 4. The interrupt and timeout routines should not extend I/O operation * across more than one interrupt or timeout; they must complete any * necessary I/O operation within one invocation of the routine. * This means that if the timeout routine acquires the lock flag, * it must reset the flag to FALSE before it returns. */ /* set/reset polling lock */ int kbdc_lock(KBDC p, int lock) { int prevlock; prevlock = p->lock; p->lock = lock; return (prevlock != lock); } /* check if any data is waiting to be processed */ int kbdc_data_ready(KBDC p) { return (availq(&p->kbd) || availq(&p->aux) || (read_status(p) & KBDS_ANY_BUFFER_FULL)); } /* queuing functions */ static int addq(kqueue *q, int c) { if (nextq(q->tail) != q->head) { q->q[q->tail] = c; q->tail = nextq(q->tail); #if KBDIO_DEBUG >= 2 ++q->call_count; ++q->qcount; if (q->qcount > q->max_qcount) q->max_qcount = q->qcount; #endif return TRUE; } return FALSE; } static int removeq(kqueue *q) { int c; if (q->tail != q->head) { c = q->q[q->head]; q->head = nextq(q->head); #if KBDIO_DEBUG >= 2 --q->qcount; #endif return c; } return -1; } /* * device I/O routines */ static int wait_while_controller_busy(struct atkbdc_softc *kbdc) { int retry; int f; /* CPU will stay inside the loop for 100msec at most */ retry = kbdc->retry; while ((f = read_status(kbdc)) & KBDS_INPUT_BUFFER_FULL) { if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&kbdc->kbd, read_data(kbdc)); } else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&kbdc->aux, read_data(kbdc)); } DELAY(KBDC_DELAYTIME); if (--retry < 0) return FALSE; } return TRUE; } /* * wait for any data; whether it's from the controller, * the keyboard, or the aux device. */ static int wait_for_data(struct atkbdc_softc *kbdc) { int retry; int f; /* CPU will stay inside the loop for 200msec at most */ retry = kbdc->retry * 2; while ((f = read_status(kbdc) & KBDS_ANY_BUFFER_FULL) == 0) { DELAY(KBDC_DELAYTIME); if (--retry < 0) return 0; } DELAY(KBDD_DELAYTIME); return f; } /* wait for data from the keyboard */ static int wait_for_kbd_data(struct atkbdc_softc *kbdc) { int retry; int f; /* CPU will stay inside the loop for 200msec at most */ retry = kbdc->retry * 2; while ((f = read_status(kbdc) & KBDS_BUFFER_FULL) != KBDS_KBD_BUFFER_FULL) { if (f == KBDS_AUX_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&kbdc->aux, read_data(kbdc)); } DELAY(KBDC_DELAYTIME); if (--retry < 0) return 0; } DELAY(KBDD_DELAYTIME); return f; } /* * wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the keyboard. * queue anything else. */ static int wait_for_kbd_ack(struct atkbdc_softc *kbdc) { int retry; int f; int b; /* CPU will stay inside the loop for 200msec at most */ retry = kbdc->retry * 2; while (retry-- > 0) { if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); b = read_data(kbdc); if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) { if ((b == KBD_ACK) || (b == KBD_RESEND) || (b == KBD_RESET_FAIL)) return b; addq(&kbdc->kbd, b); } else if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) { addq(&kbdc->aux, b); } } DELAY(KBDC_DELAYTIME); } return -1; } /* wait for data from the aux device */ static int wait_for_aux_data(struct atkbdc_softc *kbdc) { int retry; int f; /* CPU will stay inside the loop for 200msec at most */ retry = kbdc->retry * 2; while ((f = read_status(kbdc) & KBDS_BUFFER_FULL) != KBDS_AUX_BUFFER_FULL) { if (f == KBDS_KBD_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&kbdc->kbd, read_data(kbdc)); } DELAY(KBDC_DELAYTIME); if (--retry < 0) return 0; } DELAY(KBDD_DELAYTIME); return f; } /* * wait for an ACK(FAh), RESEND(FEh), or RESET_FAIL(FCh) from the aux device. * queue anything else. */ static int wait_for_aux_ack(struct atkbdc_softc *kbdc) { int retry; int f; int b; /* CPU will stay inside the loop for 200msec at most */ retry = kbdc->retry * 2; while (retry-- > 0) { if ((f = read_status(kbdc)) & KBDS_ANY_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); b = read_data(kbdc); if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) { if ((b == PSM_ACK) || (b == PSM_RESEND) || (b == PSM_RESET_FAIL)) return b; addq(&kbdc->aux, b); } else if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) { addq(&kbdc->kbd, b); } } DELAY(KBDC_DELAYTIME); } return -1; } /* write a one byte command to the controller */ int write_controller_command(KBDC p, int c) { if (!wait_while_controller_busy(p)) return FALSE; write_command(p, c); return TRUE; } /* write a one byte data to the controller */ int write_controller_data(KBDC p, int c) { if (!wait_while_controller_busy(p)) return FALSE; write_data(p, c); return TRUE; } /* write a one byte keyboard command */ int write_kbd_command(KBDC p, int c) { if (!wait_while_controller_busy(p)) return FALSE; write_data(p, c); return TRUE; } /* write a one byte auxiliary device command */ int write_aux_command(KBDC p, int c) { int f; f = aux_mux_is_enabled(p) ? KBDC_WRITE_TO_AUX_MUX + p->aux_mux_port : KBDC_WRITE_TO_AUX; if (!write_controller_command(p, f)) return FALSE; return write_controller_data(p, c); } /* send a command to the keyboard and wait for ACK */ int send_kbd_command(KBDC p, int c) { int retry = KBD_MAXRETRY; int res = -1; while (retry-- > 0) { if (!write_kbd_command(p, c)) continue; res = wait_for_kbd_ack(p); if (res == KBD_ACK) break; } return res; } /* send a command to the auxiliary device and wait for ACK */ int send_aux_command(KBDC p, int c) { int retry = KBD_MAXRETRY; int res = -1; while (retry-- > 0) { if (!write_aux_command(p, c)) continue; /* * FIXME: XXX * The aux device may have already sent one or two bytes of * status data, when a command is received. It will immediately * stop data transmission, thus, leaving an incomplete data * packet in our buffer. We have to discard any unprocessed * data in order to remove such packets. Well, we may remove * unprocessed, but necessary data byte as well... */ emptyq(&p->aux); res = wait_for_aux_ack(p); if (res == PSM_ACK) break; } return res; } /* send a command and a data to the keyboard, wait for ACKs */ int send_kbd_command_and_data(KBDC p, int c, int d) { int retry; int res = -1; for (retry = KBD_MAXRETRY; retry > 0; --retry) { if (!write_kbd_command(p, c)) continue; res = wait_for_kbd_ack(p); if (res == KBD_ACK) break; else if (res != KBD_RESEND) return res; } if (retry <= 0) return res; for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) { if (!write_kbd_command(p, d)) continue; res = wait_for_kbd_ack(p); if (res != KBD_RESEND) break; } return res; } /* send a command and a data to the auxiliary device, wait for ACKs */ int send_aux_command_and_data(KBDC p, int c, int d) { int retry; int res = -1; for (retry = KBD_MAXRETRY; retry > 0; --retry) { if (!write_aux_command(p, c)) continue; emptyq(&p->aux); res = wait_for_aux_ack(p); if (res == PSM_ACK) break; else if (res != PSM_RESEND) return res; } if (retry <= 0) return res; for (retry = KBD_MAXRETRY, res = -1; retry > 0; --retry) { if (!write_aux_command(p, d)) continue; res = wait_for_aux_ack(p); if (res != PSM_RESEND) break; } return res; } /* * read one byte from any source; whether from the controller, * the keyboard, or the aux device */ int read_controller_data(KBDC p) { if (availq(&p->kbd)) return removeq(&p->kbd); if (availq(&p->aux)) return removeq(&p->aux); if (!wait_for_data(p)) return -1; /* timeout */ return read_data(p); } #if KBDIO_DEBUG >= 2 static int call = 0; #endif /* read one byte from the keyboard */ int read_kbd_data(KBDC p) { #if KBDIO_DEBUG >= 2 if (++call > 2000) { call = 0; log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, " "aux q: %d calls, max %d chars\n", p->kbd.call_count, p->kbd.max_qcount, p->aux.call_count, p->aux.max_qcount); } #endif if (availq(&p->kbd)) return removeq(&p->kbd); if (!wait_for_kbd_data(p)) return -1; /* timeout */ return read_data(p); } /* read one byte from the keyboard, but return immediately if * no data is waiting */ int read_kbd_data_no_wait(KBDC p) { int f; #if KBDIO_DEBUG >= 2 if (++call > 2000) { call = 0; log(LOG_DEBUG, "kbdc: kbd q: %d calls, max %d chars, " "aux q: %d calls, max %d chars\n", p->kbd.call_count, p->kbd.max_qcount, p->aux.call_count, p->aux.max_qcount); } #endif if (availq(&p->kbd)) return removeq(&p->kbd); f = read_status(p) & KBDS_BUFFER_FULL; if (f == KBDS_AUX_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&p->aux, read_data(p)); f = read_status(p) & KBDS_BUFFER_FULL; } if (f == KBDS_KBD_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); return read_data(p); } return -1; /* no data */ } /* read one byte from the aux device */ int read_aux_data(KBDC p) { if (availq(&p->aux)) return removeq(&p->aux); if (!wait_for_aux_data(p)) return -1; /* timeout */ return read_data(p); } /* read one byte from the aux device, but return immediately if * no data is waiting */ int read_aux_data_no_wait(KBDC p) { int f; if (availq(&p->aux)) return removeq(&p->aux); f = read_status(p) & KBDS_BUFFER_FULL; if (f == KBDS_KBD_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); addq(&p->kbd, read_data(p)); f = read_status(p) & KBDS_BUFFER_FULL; } if (f == KBDS_AUX_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); return read_data(p); } return -1; /* no data */ } /* discard data from the keyboard */ void empty_kbd_buffer(KBDC p, int wait) { int t; int b; int f; #if KBDIO_DEBUG >= 2 int c1 = 0; int c2 = 0; #endif int delta = 2; for (t = wait; t > 0; ) { if ((f = read_status(p)) & KBDS_ANY_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); b = read_data(p); if ((f & KBDS_BUFFER_FULL) == KBDS_AUX_BUFFER_FULL) { addq(&p->aux, b); #if KBDIO_DEBUG >= 2 ++c2; } else { ++c1; #endif } t = wait; } else { t -= delta; } DELAY(delta*1000); } #if KBDIO_DEBUG >= 2 if ((c1 > 0) || (c2 > 0)) log(LOG_DEBUG, "kbdc: %d:%d char read (empty_kbd_buffer)\n", c1, c2); #endif emptyq(&p->kbd); } /* discard data from the aux device */ void empty_aux_buffer(KBDC p, int wait) { int t; int b; int f; #if KBDIO_DEBUG >= 2 int c1 = 0; int c2 = 0; #endif int delta = 2; for (t = wait; t > 0; ) { if ((f = read_status(p)) & KBDS_ANY_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); b = read_data(p); if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) { addq(&p->kbd, b); #if KBDIO_DEBUG >= 2 ++c1; } else { ++c2; #endif } t = wait; } else { t -= delta; } DELAY(delta*1000); } #if KBDIO_DEBUG >= 2 if ((c1 > 0) || (c2 > 0)) log(LOG_DEBUG, "kbdc: %d:%d char read (empty_aux_buffer)\n", c1, c2); #endif emptyq(&p->aux); } /* discard any data from the keyboard or the aux device */ void empty_both_buffers(KBDC p, int wait) { int t; int f; int waited = 0; #if KBDIO_DEBUG >= 2 int c1 = 0; int c2 = 0; #endif int delta = 2; for (t = wait; t > 0; ) { if ((f = read_status(p)) & KBDS_ANY_BUFFER_FULL) { DELAY(KBDD_DELAYTIME); (void)read_data(p); #if KBDIO_DEBUG >= 2 if ((f & KBDS_BUFFER_FULL) == KBDS_KBD_BUFFER_FULL) ++c1; else ++c2; #endif t = wait; } else { t -= delta; } /* * Some systems (Intel/IBM blades) do not have keyboard devices and * will thus hang in this procedure. Time out after delta seconds to * avoid this hang -- the keyboard attach will fail later on. */ waited += (delta * 1000); if (waited == (delta * 1000000)) return; DELAY(delta*1000); } #if KBDIO_DEBUG >= 2 if ((c1 > 0) || (c2 > 0)) log(LOG_DEBUG, "kbdc: %d:%d char read (empty_both_buffers)\n", c1, c2); #endif emptyq(&p->kbd); emptyq(&p->aux); } /* keyboard and mouse device control */ /* NOTE: enable the keyboard port but disable the keyboard * interrupt before calling "reset_kbd()". */ int reset_kbd(KBDC p) { int retry = KBD_MAXRETRY; int again = KBD_MAXWAIT; int c = KBD_RESEND; /* keep the compiler happy */ while (retry-- > 0) { empty_both_buffers(p, 10); if (!write_kbd_command(p, KBDC_RESET_KBD)) continue; emptyq(&p->kbd); c = read_controller_data(p); if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: RESET_KBD return code:%04x\n", c); if (c == KBD_ACK) /* keyboard has agreed to reset itself... */ break; } if (retry < 0) return FALSE; while (again-- > 0) { /* wait awhile, well, in fact we must wait quite loooooooooooong */ DELAY(KBD_RESETDELAY*1000); c = read_controller_data(p); /* RESET_DONE/RESET_FAIL */ if (c != -1) /* wait again if the controller is not ready */ break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: RESET_KBD status:%04x\n", c); if (c != KBD_RESET_DONE) return FALSE; return TRUE; } /* NOTE: enable the aux port but disable the aux interrupt * before calling `reset_aux_dev()'. */ int reset_aux_dev(KBDC p) { int retry = KBD_MAXRETRY; int again = KBD_MAXWAIT; int c = PSM_RESEND; /* keep the compiler happy */ while (retry-- > 0) { empty_both_buffers(p, 10); if (!write_aux_command(p, PSMC_RESET_DEV)) continue; emptyq(&p->aux); /* NOTE: Compaq Armada laptops require extra delay here. XXX */ for (again = KBD_MAXWAIT; again > 0; --again) { DELAY(KBD_RESETDELAY*1000); c = read_aux_data_no_wait(p); if (c != -1) break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: RESET_AUX return code:%04x\n", c); if (c == PSM_ACK) /* aux dev is about to reset... */ break; } if (retry < 0) return FALSE; for (again = KBD_MAXWAIT; again > 0; --again) { /* wait awhile, well, quite looooooooooooong */ DELAY(KBD_RESETDELAY*1000); c = read_aux_data_no_wait(p); /* RESET_DONE/RESET_FAIL */ if (c != -1) /* wait again if the controller is not ready */ break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: RESET_AUX status:%04x\n", c); if (c != PSM_RESET_DONE) /* reset status */ return FALSE; c = read_aux_data(p); /* device ID */ if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: RESET_AUX ID:%04x\n", c); /* NOTE: we could check the device ID now, but leave it later... */ return TRUE; } /* controller diagnostics and setup */ int test_controller(KBDC p) { int retry = KBD_MAXRETRY; int again = KBD_MAXWAIT; int c = KBD_DIAG_FAIL; while (retry-- > 0) { empty_both_buffers(p, 10); if (write_controller_command(p, KBDC_DIAGNOSE)) break; } if (retry < 0) return FALSE; emptyq(&p->kbd); while (again-- > 0) { /* wait awhile */ DELAY(KBD_RESETDELAY*1000); c = read_controller_data(p); /* DIAG_DONE/DIAG_FAIL */ if (c != -1) /* wait again if the controller is not ready */ break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: DIAGNOSE status:%04x\n", c); return (c == KBD_DIAG_DONE); } int test_kbd_port(KBDC p) { int retry = KBD_MAXRETRY; int again = KBD_MAXWAIT; int c = -1; while (retry-- > 0) { empty_both_buffers(p, 10); if (write_controller_command(p, KBDC_TEST_KBD_PORT)) break; } if (retry < 0) return FALSE; emptyq(&p->kbd); while (again-- > 0) { c = read_controller_data(p); if (c != -1) /* try again if the controller is not ready */ break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: TEST_KBD_PORT status:%04x\n", c); return c; } int test_aux_port(KBDC p) { int retry = KBD_MAXRETRY; int again = KBD_MAXWAIT; int c = -1; while (retry-- > 0) { empty_both_buffers(p, 10); if (write_controller_command(p, KBDC_TEST_AUX_PORT)) break; } if (retry < 0) return FALSE; emptyq(&p->kbd); while (again-- > 0) { c = read_controller_data(p); if (c != -1) /* try again if the controller is not ready */ break; } if (verbose || bootverbose) log(LOG_DEBUG, "kbdc: TEST_AUX_PORT status:%04x\n", c); return c; } int kbdc_get_device_mask(KBDC p) { return p->command_mask; } void kbdc_set_device_mask(KBDC p, int mask) { p->command_mask = mask & (((p->quirks & KBDC_QUIRK_KEEP_ACTIVATED) ? 0 : KBD_KBD_CONTROL_BITS) | KBD_AUX_CONTROL_BITS); } int get_controller_command_byte(KBDC p) { if (p->command_byte != -1) return p->command_byte; if (!write_controller_command(p, KBDC_GET_COMMAND_BYTE)) return -1; emptyq(&p->kbd); p->command_byte = read_controller_data(p); return p->command_byte; } int set_controller_command_byte(KBDC p, int mask, int command) { if (get_controller_command_byte(p) == -1) return FALSE; command = (p->command_byte & ~mask) | (command & mask); if (command & KBD_DISABLE_KBD_PORT) { if (!write_controller_command(p, KBDC_DISABLE_KBD_PORT)) return FALSE; } if (!write_controller_command(p, KBDC_SET_COMMAND_BYTE)) return FALSE; if (!write_controller_data(p, command)) return FALSE; p->command_byte = command; if (verbose) log(LOG_DEBUG, "kbdc: new command byte:%04x (set_controller...)\n", command); return TRUE; } /* * Rudimentary support for active PS/2 AUX port multiplexing. * Only write commands can be routed to a selected AUX port. * Source port of data processed by read commands is totally ignored. */ static int set_aux_mux_state(KBDC p, int enabled) { int command, version; if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 || write_controller_data(p, 0xF0) == 0 || read_controller_data(p) != 0xF0) return (-1); if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 || write_controller_data(p, 0x56) == 0 || read_controller_data(p) != 0x56) return (-1); command = enabled ? 0xa4 : 0xa5; if (write_controller_command(p, KBDC_FORCE_AUX_OUTPUT) == 0 || write_controller_data(p, command) == 0 || (version = read_controller_data(p)) == command) return (-1); return (version); } int set_active_aux_mux_port(KBDC p, int port) { if (!aux_mux_is_enabled(p)) return (FALSE); if (port < 0 || port >= KBDC_AUX_MUX_NUM_PORTS) return (FALSE); p->aux_mux_port = port; return (TRUE); } /* Checks for active multiplexing support and enables it */ int enable_aux_mux(KBDC p) { int version; version = set_aux_mux_state(p, TRUE); if (version >= 0) { p->aux_mux_enabled = TRUE; set_active_aux_mux_port(p, 0); } return (version); } int disable_aux_mux(KBDC p) { p->aux_mux_enabled = FALSE; return (set_aux_mux_state(p, FALSE)); } int aux_mux_is_enabled(KBDC p) { return (p->aux_mux_enabled); }