/* * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC. * Copyright (C) 2007 The Regents of the University of California. * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER). * Written by Brian Behlendorf . * UCRL-CODE-235197 * * This file is part of the SPL, Solaris Porting Layer. * * The SPL is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the * Free Software Foundation; either version 2 of the License, or (at your * option) any later version. * * The SPL is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * for more details. * * You should have received a copy of the GNU General Public License along * with the SPL. If not, see . * * Solaris Porting Layer (SPL) Proc Implementation. */ /* * Copyright (c) 2024, Rob Norris */ #include #include #include #include #include #include #include #include #include #include #include #include #include "zfs_gitrev.h" #if defined(CONSTIFY_PLUGIN) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 8, 0) typedef struct ctl_table __no_const spl_ctl_table; #else typedef struct ctl_table spl_ctl_table; #endif #ifdef HAVE_PROC_HANDLER_CTL_TABLE_CONST #define CONST_CTL_TABLE const struct ctl_table #else #define CONST_CTL_TABLE struct ctl_table #endif static unsigned long table_min = 0; static unsigned long table_max = ~0; static struct ctl_table_header *spl_header = NULL; #ifndef HAVE_REGISTER_SYSCTL_TABLE static struct ctl_table_header *spl_kmem = NULL; static struct ctl_table_header *spl_kstat = NULL; #endif static struct proc_dir_entry *proc_spl = NULL; static struct proc_dir_entry *proc_spl_kmem = NULL; static struct proc_dir_entry *proc_spl_kmem_slab = NULL; static struct proc_dir_entry *proc_spl_taskq_all = NULL; static struct proc_dir_entry *proc_spl_taskq = NULL; struct proc_dir_entry *proc_spl_kstat = NULL; #ifdef DEBUG_KMEM static int proc_domemused(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int rc = 0; unsigned long val; spl_ctl_table dummy = *table; dummy.data = &val; dummy.proc_handler = &proc_dointvec; dummy.extra1 = &table_min; dummy.extra2 = &table_max; if (write) { *ppos += *lenp; } else { #ifdef HAVE_ATOMIC64_T val = atomic64_read((atomic64_t *)table->data); #else val = atomic_read((atomic_t *)table->data); #endif /* HAVE_ATOMIC64_T */ rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos); } return (rc); } #endif /* DEBUG_KMEM */ static int proc_doslab(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { int rc = 0; unsigned long val = 0, mask; spl_ctl_table dummy = *table; spl_kmem_cache_t *skc = NULL; dummy.data = &val; dummy.proc_handler = &proc_dointvec; dummy.extra1 = &table_min; dummy.extra2 = &table_max; if (write) { *ppos += *lenp; } else { down_read(&spl_kmem_cache_sem); mask = (unsigned long)table->data; list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) { /* Only use slabs of the correct kmem/vmem type */ if (!(skc->skc_flags & mask)) continue; /* Sum the specified field for selected slabs */ switch (mask & (KMC_TOTAL | KMC_ALLOC | KMC_MAX)) { case KMC_TOTAL: val += skc->skc_slab_size * skc->skc_slab_total; break; case KMC_ALLOC: val += skc->skc_obj_size * skc->skc_obj_alloc; break; case KMC_MAX: val += skc->skc_obj_size * skc->skc_obj_max; break; } } up_read(&spl_kmem_cache_sem); rc = proc_doulongvec_minmax(&dummy, write, buffer, lenp, ppos); } return (rc); } static int proc_dohostid(CONST_CTL_TABLE *table, int write, void __user *buffer, size_t *lenp, loff_t *ppos) { char *end, str[32]; unsigned long hid; spl_ctl_table dummy = *table; dummy.data = str; dummy.maxlen = sizeof (str) - 1; if (!write) snprintf(str, sizeof (str), "%lx", (unsigned long) zone_get_hostid(NULL)); /* always returns 0 */ proc_dostring(&dummy, write, buffer, lenp, ppos); if (write) { /* * We can't use proc_doulongvec_minmax() in the write * case here because hostid, while a hex value, has no * leading 0x, which confuses the helper function. */ hid = simple_strtoul(str, &end, 16); if (str == end) return (-EINVAL); spl_hostid = hid; } return (0); } static void taskq_seq_show_headers(struct seq_file *f) { seq_printf(f, "%-25s %5s %5s %5s %5s %5s %5s %12s %5s %10s\n", "taskq", "act", "nthr", "spwn", "maxt", "pri", "mina", "maxa", "cura", "flags"); } /* indices into the lheads array below */ #define LHEAD_PEND 0 #define LHEAD_PRIO 1 #define LHEAD_DELAY 2 #define LHEAD_WAIT 3 #define LHEAD_ACTIVE 4 #define LHEAD_SIZE 5 static unsigned int spl_max_show_tasks = 512; /* CSTYLED */ module_param(spl_max_show_tasks, uint, 0644); MODULE_PARM_DESC(spl_max_show_tasks, "Max number of tasks shown in taskq proc"); static int taskq_seq_show_impl(struct seq_file *f, void *p, boolean_t allflag) { taskq_t *tq = p; taskq_thread_t *tqt = NULL; wait_queue_entry_t *wq; struct task_struct *tsk; taskq_ent_t *tqe; char name[100]; struct list_head *lheads[LHEAD_SIZE], *lh; static char *list_names[LHEAD_SIZE] = {"pend", "prio", "delay", "wait", "active" }; int i, j, have_lheads = 0; unsigned long wflags, flags; spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class); spin_lock_irqsave(&tq->tq_wait_waitq.lock, wflags); /* get the various lists and check whether they're empty */ lheads[LHEAD_PEND] = &tq->tq_pend_list; lheads[LHEAD_PRIO] = &tq->tq_prio_list; lheads[LHEAD_DELAY] = &tq->tq_delay_list; lheads[LHEAD_WAIT] = &tq->tq_wait_waitq.head; lheads[LHEAD_ACTIVE] = &tq->tq_active_list; for (i = 0; i < LHEAD_SIZE; ++i) { if (list_empty(lheads[i])) lheads[i] = NULL; else ++have_lheads; } /* early return in non-"all" mode if lists are all empty */ if (!allflag && !have_lheads) { spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); spin_unlock_irqrestore(&tq->tq_lock, flags); return (0); } /* unlock the waitq quickly */ if (!lheads[LHEAD_WAIT]) spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); /* show the base taskq contents */ snprintf(name, sizeof (name), "%s/%d", tq->tq_name, tq->tq_instance); seq_printf(f, "%-25s ", name); seq_printf(f, "%5d %5d %5d %5d %5d %5d %12d %5d %10x\n", tq->tq_nactive, tq->tq_nthreads, tq->tq_nspawn, tq->tq_maxthreads, tq->tq_pri, tq->tq_minalloc, tq->tq_maxalloc, tq->tq_nalloc, tq->tq_flags); /* show the active list */ if (lheads[LHEAD_ACTIVE]) { j = 0; list_for_each_entry(tqt, &tq->tq_active_list, tqt_active_list) { if (j == 0) seq_printf(f, "\t%s:", list_names[LHEAD_ACTIVE]); else if (j == 2) { seq_printf(f, "\n\t "); j = 0; } seq_printf(f, " [%d]%pf(%ps)", tqt->tqt_thread->pid, tqt->tqt_task->tqent_func, tqt->tqt_task->tqent_arg); ++j; } seq_printf(f, "\n"); } for (i = LHEAD_PEND; i <= LHEAD_WAIT; ++i) if (lheads[i]) { j = 0; list_for_each(lh, lheads[i]) { if (spl_max_show_tasks != 0 && j >= spl_max_show_tasks) { seq_printf(f, "\n\t(truncated)"); break; } /* show the wait waitq list */ if (i == LHEAD_WAIT) { wq = list_entry(lh, wait_queue_entry_t, entry); if (j == 0) seq_printf(f, "\t%s:", list_names[i]); else if (j % 8 == 0) seq_printf(f, "\n\t "); tsk = wq->private; seq_printf(f, " %d", tsk->pid); /* pend, prio and delay lists */ } else { tqe = list_entry(lh, taskq_ent_t, tqent_list); if (j == 0) seq_printf(f, "\t%s:", list_names[i]); else if (j % 2 == 0) seq_printf(f, "\n\t "); seq_printf(f, " %pf(%ps)", tqe->tqent_func, tqe->tqent_arg); } ++j; } seq_printf(f, "\n"); } if (lheads[LHEAD_WAIT]) spin_unlock_irqrestore(&tq->tq_wait_waitq.lock, wflags); spin_unlock_irqrestore(&tq->tq_lock, flags); return (0); } static int taskq_all_seq_show(struct seq_file *f, void *p) { return (taskq_seq_show_impl(f, p, B_TRUE)); } static int taskq_seq_show(struct seq_file *f, void *p) { return (taskq_seq_show_impl(f, p, B_FALSE)); } static void * taskq_seq_start(struct seq_file *f, loff_t *pos) { struct list_head *p; loff_t n = *pos; down_read(&tq_list_sem); if (!n) taskq_seq_show_headers(f); p = tq_list.next; while (n--) { p = p->next; if (p == &tq_list) return (NULL); } return (list_entry(p, taskq_t, tq_taskqs)); } static void * taskq_seq_next(struct seq_file *f, void *p, loff_t *pos) { taskq_t *tq = p; ++*pos; return ((tq->tq_taskqs.next == &tq_list) ? NULL : list_entry(tq->tq_taskqs.next, taskq_t, tq_taskqs)); } static void slab_seq_show_headers(struct seq_file *f) { seq_printf(f, "--------------------- cache ----------" "--------------------------------------------- " "----- slab ------ " "---- object ----- " "--- emergency ---\n"); seq_printf(f, "name " " flags size alloc slabsize objsize " "total alloc max " "total alloc max " "dlock alloc max\n"); } static int slab_seq_show(struct seq_file *f, void *p) { spl_kmem_cache_t *skc = p; ASSERT(skc->skc_magic == SKC_MAGIC); if (skc->skc_flags & KMC_SLAB) { /* * This cache is backed by a generic Linux kmem cache which * has its own accounting. For these caches we only track * the number of active allocated objects that exist within * the underlying Linux slabs. For the overall statistics of * the underlying Linux cache please refer to /proc/slabinfo. */ spin_lock(&skc->skc_lock); uint64_t objs_allocated = percpu_counter_sum(&skc->skc_linux_alloc); seq_printf(f, "%-36s ", skc->skc_name); seq_printf(f, "0x%05lx %9s %9lu %8s %8u " "%5s %5s %5s %5s %5lu %5s %5s %5s %5s\n", (long unsigned)skc->skc_flags, "-", (long unsigned)(skc->skc_obj_size * objs_allocated), "-", (unsigned)skc->skc_obj_size, "-", "-", "-", "-", (long unsigned)objs_allocated, "-", "-", "-", "-"); spin_unlock(&skc->skc_lock); return (0); } spin_lock(&skc->skc_lock); seq_printf(f, "%-36s ", skc->skc_name); seq_printf(f, "0x%05lx %9lu %9lu %8u %8u " "%5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu %5lu\n", (long unsigned)skc->skc_flags, (long unsigned)(skc->skc_slab_size * skc->skc_slab_total), (long unsigned)(skc->skc_obj_size * skc->skc_obj_alloc), (unsigned)skc->skc_slab_size, (unsigned)skc->skc_obj_size, (long unsigned)skc->skc_slab_total, (long unsigned)skc->skc_slab_alloc, (long unsigned)skc->skc_slab_max, (long unsigned)skc->skc_obj_total, (long unsigned)skc->skc_obj_alloc, (long unsigned)skc->skc_obj_max, (long unsigned)skc->skc_obj_deadlock, (long unsigned)skc->skc_obj_emergency, (long unsigned)skc->skc_obj_emergency_max); spin_unlock(&skc->skc_lock); return (0); } static void * slab_seq_start(struct seq_file *f, loff_t *pos) { struct list_head *p; loff_t n = *pos; down_read(&spl_kmem_cache_sem); if (!n) slab_seq_show_headers(f); p = spl_kmem_cache_list.next; while (n--) { p = p->next; if (p == &spl_kmem_cache_list) return (NULL); } return (list_entry(p, spl_kmem_cache_t, skc_list)); } static void * slab_seq_next(struct seq_file *f, void *p, loff_t *pos) { spl_kmem_cache_t *skc = p; ++*pos; return ((skc->skc_list.next == &spl_kmem_cache_list) ? NULL : list_entry(skc->skc_list.next, spl_kmem_cache_t, skc_list)); } static void slab_seq_stop(struct seq_file *f, void *v) { up_read(&spl_kmem_cache_sem); } static const struct seq_operations slab_seq_ops = { .show = slab_seq_show, .start = slab_seq_start, .next = slab_seq_next, .stop = slab_seq_stop, }; static int proc_slab_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &slab_seq_ops)); } static const kstat_proc_op_t proc_slab_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_slab_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_slab_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static void taskq_seq_stop(struct seq_file *f, void *v) { up_read(&tq_list_sem); } static const struct seq_operations taskq_all_seq_ops = { .show = taskq_all_seq_show, .start = taskq_seq_start, .next = taskq_seq_next, .stop = taskq_seq_stop, }; static const struct seq_operations taskq_seq_ops = { .show = taskq_seq_show, .start = taskq_seq_start, .next = taskq_seq_next, .stop = taskq_seq_stop, }; static int proc_taskq_all_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &taskq_all_seq_ops)); } static int proc_taskq_open(struct inode *inode, struct file *filp) { return (seq_open(filp, &taskq_seq_ops)); } static const kstat_proc_op_t proc_taskq_all_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_taskq_all_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_taskq_all_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static const kstat_proc_op_t proc_taskq_operations = { #ifdef HAVE_PROC_OPS_STRUCT .proc_open = proc_taskq_open, .proc_read = seq_read, .proc_lseek = seq_lseek, .proc_release = seq_release, #else .open = proc_taskq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, #endif }; static struct ctl_table spl_kmem_table[] = { #ifdef DEBUG_KMEM { .procname = "kmem_used", .data = &kmem_alloc_used, #ifdef HAVE_ATOMIC64_T .maxlen = sizeof (atomic64_t), #else .maxlen = sizeof (atomic_t), #endif /* HAVE_ATOMIC64_T */ .mode = 0444, .proc_handler = &proc_domemused, }, { .procname = "kmem_max", .data = &kmem_alloc_max, .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doulongvec_minmax, }, #endif /* DEBUG_KMEM */ { .procname = "slab_kvmem_total", .data = (void *)(KMC_KVMEM | KMC_TOTAL), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, { .procname = "slab_kvmem_alloc", .data = (void *)(KMC_KVMEM | KMC_ALLOC), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, { .procname = "slab_kvmem_max", .data = (void *)(KMC_KVMEM | KMC_MAX), .maxlen = sizeof (unsigned long), .extra1 = &table_min, .extra2 = &table_max, .mode = 0444, .proc_handler = &proc_doslab, }, {}, }; static struct ctl_table spl_kstat_table[] = { {}, }; static struct ctl_table spl_table[] = { /* * NB No .strategy entries have been provided since * sysctl(8) prefers to go via /proc for portability. */ { .procname = "gitrev", .data = (char *)ZFS_META_GITREV, .maxlen = sizeof (ZFS_META_GITREV), .mode = 0444, .proc_handler = &proc_dostring, }, { .procname = "hostid", .data = &spl_hostid, .maxlen = sizeof (unsigned long), .mode = 0644, .proc_handler = &proc_dohostid, }, #ifdef HAVE_REGISTER_SYSCTL_TABLE { .procname = "kmem", .mode = 0555, .child = spl_kmem_table, }, { .procname = "kstat", .mode = 0555, .child = spl_kstat_table, }, #endif {}, }; #ifdef HAVE_REGISTER_SYSCTL_TABLE static struct ctl_table spl_dir[] = { { .procname = "spl", .mode = 0555, .child = spl_table, }, {} }; static struct ctl_table spl_root[] = { { .procname = "kernel", .mode = 0555, .child = spl_dir, }, {} }; #endif static void spl_proc_cleanup(void) { remove_proc_entry("kstat", proc_spl); remove_proc_entry("slab", proc_spl_kmem); remove_proc_entry("kmem", proc_spl); remove_proc_entry("taskq-all", proc_spl); remove_proc_entry("taskq", proc_spl); remove_proc_entry("spl", NULL); #ifndef HAVE_REGISTER_SYSCTL_TABLE if (spl_kstat) { unregister_sysctl_table(spl_kstat); spl_kstat = NULL; } if (spl_kmem) { unregister_sysctl_table(spl_kmem); spl_kmem = NULL; } #endif if (spl_header) { unregister_sysctl_table(spl_header); spl_header = NULL; } } #ifndef HAVE_REGISTER_SYSCTL_TABLE /* * Traditionally, struct ctl_table arrays have been terminated by an "empty" * sentinel element (specifically, one with .procname == NULL). * * Linux 6.6 began migrating away from this, adding register_sysctl_sz() so * that callers could provide the size directly, and redefining * register_sysctl() to just call register_sysctl_sz() with the array size. It * retained support for the terminating element so that existing callers would * continue to work. * * Linux 6.11 removed support for the terminating element, instead interpreting * it as a real malformed element, and rejecting it. * * In order to continue support older kernels, we retain the terminating * sentinel element for our sysctl tables, but instead detect availability of * register_sysctl_sz(). If it exists, we pass it the array size -1, stopping * the kernel from trying to process the terminator. For pre-6.6 kernels that * don't have register_sysctl_sz(), we just use register_sysctl(), which can * handle the terminating element as it always has. */ #ifdef HAVE_REGISTER_SYSCTL_SZ #define spl_proc_register_sysctl(p, t) \ register_sysctl_sz(p, t, ARRAY_SIZE(t)-1) #else #define spl_proc_register_sysctl(p, t) \ register_sysctl(p, t) #endif #endif int spl_proc_init(void) { int rc = 0; #ifdef HAVE_REGISTER_SYSCTL_TABLE spl_header = register_sysctl_table(spl_root); if (spl_header == NULL) return (-EUNATCH); #else spl_header = spl_proc_register_sysctl("kernel/spl", spl_table); if (spl_header == NULL) return (-EUNATCH); spl_kmem = spl_proc_register_sysctl("kernel/spl/kmem", spl_kmem_table); if (spl_kmem == NULL) { rc = -EUNATCH; goto out; } spl_kstat = spl_proc_register_sysctl("kernel/spl/kstat", spl_kstat_table); if (spl_kstat == NULL) { rc = -EUNATCH; goto out; } #endif proc_spl = proc_mkdir("spl", NULL); if (proc_spl == NULL) { rc = -EUNATCH; goto out; } proc_spl_taskq_all = proc_create_data("taskq-all", 0444, proc_spl, &proc_taskq_all_operations, NULL); if (proc_spl_taskq_all == NULL) { rc = -EUNATCH; goto out; } proc_spl_taskq = proc_create_data("taskq", 0444, proc_spl, &proc_taskq_operations, NULL); if (proc_spl_taskq == NULL) { rc = -EUNATCH; goto out; } proc_spl_kmem = proc_mkdir("kmem", proc_spl); if (proc_spl_kmem == NULL) { rc = -EUNATCH; goto out; } proc_spl_kmem_slab = proc_create_data("slab", 0444, proc_spl_kmem, &proc_slab_operations, NULL); if (proc_spl_kmem_slab == NULL) { rc = -EUNATCH; goto out; } proc_spl_kstat = proc_mkdir("kstat", proc_spl); if (proc_spl_kstat == NULL) { rc = -EUNATCH; goto out; } out: if (rc) spl_proc_cleanup(); return (rc); } void spl_proc_fini(void) { spl_proc_cleanup(); }