/* * CDDL HEADER START * * The contents of this file are subject to the terms of the * Common Development and Distribution License, Version 1.0 only * (the "License"). You may not use this file except in compliance * with the License. * * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE * or http://www.opensolaris.org/os/licensing. * See the License for the specific language governing permissions * and limitations under the License. * * When distributing Covered Code, include this CDDL HEADER in each * file and include the License file at usr/src/OPENSOLARIS.LICENSE. * If applicable, add the following below this CDDL HEADER, with the * fields enclosed by brackets "[]" replaced with your own identifying * information: Portions Copyright [yyyy] [name of copyright owner] * * CDDL HEADER END * */ /* * Copyright 2005 Sun Microsystems, Inc. All rights reserved. * Use is subject to license terms. */ /* * Copyright (c) 2011, Joyent, Inc. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include extern void dtrace_getnanotime(struct timespec *tsp); extern int (*dtrace_invop_jump_addr)(struct trapframe *); int dtrace_invop(uintptr_t, struct trapframe *, void **); int dtrace_invop_start(struct trapframe *frame); void dtrace_invop_init(void); void dtrace_invop_uninit(void); typedef struct dtrace_invop_hdlr { int (*dtih_func)(uintptr_t, struct trapframe *, uintptr_t); struct dtrace_invop_hdlr *dtih_next; } dtrace_invop_hdlr_t; dtrace_invop_hdlr_t *dtrace_invop_hdlr; int dtrace_invop(uintptr_t addr, struct trapframe *frame, void **scratch) { struct thread *td; dtrace_invop_hdlr_t *hdlr; int rval; kmsan_mark(frame, sizeof(*frame), KMSAN_STATE_INITED); td = curthread; td->t_dtrace_trapframe = frame; rval = 0; for (hdlr = dtrace_invop_hdlr; hdlr != NULL; hdlr = hdlr->dtih_next) { rval = hdlr->dtih_func(addr, frame, (uintptr_t)scratch); if (rval != 0) break; } td->t_dtrace_trapframe = NULL; return (rval); } void dtrace_invop_add(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr; hdlr = kmem_alloc(sizeof (dtrace_invop_hdlr_t), KM_SLEEP); hdlr->dtih_func = func; hdlr->dtih_next = dtrace_invop_hdlr; dtrace_invop_hdlr = hdlr; } void dtrace_invop_remove(int (*func)(uintptr_t, struct trapframe *, uintptr_t)) { dtrace_invop_hdlr_t *hdlr = dtrace_invop_hdlr, *prev = NULL; for (;;) { if (hdlr == NULL) panic("attempt to remove non-existent invop handler"); if (hdlr->dtih_func == func) break; prev = hdlr; hdlr = hdlr->dtih_next; } if (prev == NULL) { ASSERT(dtrace_invop_hdlr == hdlr); dtrace_invop_hdlr = hdlr->dtih_next; } else { ASSERT(dtrace_invop_hdlr != hdlr); prev->dtih_next = hdlr->dtih_next; } kmem_free(hdlr, 0); } void dtrace_invop_init(void) { dtrace_invop_jump_addr = dtrace_invop_start; } void dtrace_invop_uninit(void) { dtrace_invop_jump_addr = NULL; } /*ARGSUSED*/ void dtrace_toxic_ranges(void (*func)(uintptr_t base, uintptr_t limit)) { (*func)(0, la57 ? (uintptr_t)addr_P5Tmap : (uintptr_t)addr_P4Tmap); } void dtrace_xcall(processorid_t cpu, dtrace_xcall_t func, void *arg) { cpuset_t cpus; if (cpu == DTRACE_CPUALL) cpus = all_cpus; else CPU_SETOF(cpu, &cpus); smp_rendezvous_cpus(cpus, smp_no_rendezvous_barrier, func, smp_no_rendezvous_barrier, arg); } static void dtrace_sync_func(void) { } void dtrace_sync(void) { dtrace_xcall(DTRACE_CPUALL, (dtrace_xcall_t)dtrace_sync_func, NULL); } #ifdef notyet void dtrace_safe_synchronous_signal(void) { kthread_t *t = curthread; struct regs *rp = lwptoregs(ttolwp(t)); size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; ASSERT(t->t_dtrace_on); /* * If we're not in the range of scratch addresses, we're not actually * tracing user instructions so turn off the flags. If the instruction * we copied out caused a synchonous trap, reset the pc back to its * original value and turn off the flags. */ if (rp->r_pc < t->t_dtrace_scrpc || rp->r_pc > t->t_dtrace_astpc + isz) { t->t_dtrace_ft = 0; } else if (rp->r_pc == t->t_dtrace_scrpc || rp->r_pc == t->t_dtrace_astpc) { rp->r_pc = t->t_dtrace_pc; t->t_dtrace_ft = 0; } } int dtrace_safe_defer_signal(void) { kthread_t *t = curthread; struct regs *rp = lwptoregs(ttolwp(t)); size_t isz = t->t_dtrace_npc - t->t_dtrace_pc; ASSERT(t->t_dtrace_on); /* * If we're not in the range of scratch addresses, we're not actually * tracing user instructions so turn off the flags. */ if (rp->r_pc < t->t_dtrace_scrpc || rp->r_pc > t->t_dtrace_astpc + isz) { t->t_dtrace_ft = 0; return (0); } /* * If we have executed the original instruction, but we have performed * neither the jmp back to t->t_dtrace_npc nor the clean up of any * registers used to emulate %rip-relative instructions in 64-bit mode, * we'll save ourselves some effort by doing that here and taking the * signal right away. We detect this condition by seeing if the program * counter is the range [scrpc + isz, astpc). */ if (rp->r_pc >= t->t_dtrace_scrpc + isz && rp->r_pc < t->t_dtrace_astpc) { #ifdef __amd64 /* * If there is a scratch register and we're on the * instruction immediately after the modified instruction, * restore the value of that scratch register. */ if (t->t_dtrace_reg != 0 && rp->r_pc == t->t_dtrace_scrpc + isz) { switch (t->t_dtrace_reg) { case REG_RAX: rp->r_rax = t->t_dtrace_regv; break; case REG_RCX: rp->r_rcx = t->t_dtrace_regv; break; case REG_R8: rp->r_r8 = t->t_dtrace_regv; break; case REG_R9: rp->r_r9 = t->t_dtrace_regv; break; } } #endif rp->r_pc = t->t_dtrace_npc; t->t_dtrace_ft = 0; return (0); } /* * Otherwise, make sure we'll return to the kernel after executing * the copied out instruction and defer the signal. */ if (!t->t_dtrace_step) { ASSERT(rp->r_pc < t->t_dtrace_astpc); rp->r_pc += t->t_dtrace_astpc - t->t_dtrace_scrpc; t->t_dtrace_step = 1; } t->t_dtrace_ast = 1; return (1); } #endif static int64_t tgt_cpu_tsc; static int64_t hst_cpu_tsc; static int64_t tsc_skew[MAXCPU]; static uint64_t nsec_scale; /* See below for the explanation of this macro. */ #define SCALE_SHIFT 28 static void dtrace_gethrtime_init_cpu(void *arg) { uintptr_t cpu = (uintptr_t) arg; if (cpu == curcpu) tgt_cpu_tsc = rdtsc(); else hst_cpu_tsc = rdtsc(); } static void dtrace_gethrtime_init(void *arg) { struct pcpu *pc; uint64_t tsc_f; cpuset_t map; int i; /* * Get TSC frequency known at this moment. * This should be constant if TSC is invariant. * Otherwise tick->time conversion will be inaccurate, but * will preserve monotonic property of TSC. */ tsc_f = atomic_load_acq_64(&tsc_freq); /* * The following line checks that nsec_scale calculated below * doesn't overflow 32-bit unsigned integer, so that it can multiply * another 32-bit integer without overflowing 64-bit. * Thus minimum supported TSC frequency is 62.5MHz. */ KASSERT(tsc_f > (NANOSEC >> (32 - SCALE_SHIFT)), ("TSC frequency is too low")); /* * We scale up NANOSEC/tsc_f ratio to preserve as much precision * as possible. * 2^28 factor was chosen quite arbitrarily from practical * considerations: * - it supports TSC frequencies as low as 62.5MHz (see above); * - it provides quite good precision (e < 0.01%) up to THz * (terahertz) values; */ nsec_scale = ((uint64_t)NANOSEC << SCALE_SHIFT) / tsc_f; if (vm_guest != VM_GUEST_NO) return; /* The current CPU is the reference one. */ sched_pin(); tsc_skew[curcpu] = 0; CPU_FOREACH(i) { if (i == curcpu) continue; pc = pcpu_find(i); CPU_SETOF(PCPU_GET(cpuid), &map); CPU_SET(pc->pc_cpuid, &map); smp_rendezvous_cpus(map, NULL, dtrace_gethrtime_init_cpu, smp_no_rendezvous_barrier, (void *)(uintptr_t) i); tsc_skew[i] = tgt_cpu_tsc - hst_cpu_tsc; } sched_unpin(); } SYSINIT(dtrace_gethrtime_init, SI_SUB_DTRACE, SI_ORDER_ANY, dtrace_gethrtime_init, NULL); /* * DTrace needs a high resolution time function which can * be called from a probe context and guaranteed not to have * instrumented with probes itself. * * Returns nanoseconds since boot. */ uint64_t dtrace_gethrtime(void) { uint64_t tsc; uint32_t lo, hi; register_t rflags; /* * We split TSC value into lower and higher 32-bit halves and separately * scale them with nsec_scale, then we scale them down by 2^28 * (see nsec_scale calculations) taking into account 32-bit shift of * the higher half and finally add. */ rflags = intr_disable(); tsc = rdtsc() - tsc_skew[curcpu]; intr_restore(rflags); lo = tsc; hi = tsc >> 32; return (((lo * nsec_scale) >> SCALE_SHIFT) + ((hi * nsec_scale) << (32 - SCALE_SHIFT))); } uint64_t dtrace_gethrestime(void) { struct timespec current_time; dtrace_getnanotime(¤t_time); return (current_time.tv_sec * 1000000000ULL + current_time.tv_nsec); } /* Function to handle DTrace traps during probes. See amd64/amd64/trap.c. */ int dtrace_trap(struct trapframe *frame, u_int type) { uint16_t nofault; /* * A trap can occur while DTrace executes a probe. Before * executing the probe, DTrace blocks re-scheduling and sets * a flag in its per-cpu flags to indicate that it doesn't * want to fault. On returning from the probe, the no-fault * flag is cleared and finally re-scheduling is enabled. * * Check if DTrace has enabled 'no-fault' mode: */ sched_pin(); nofault = cpu_core[curcpu].cpuc_dtrace_flags & CPU_DTRACE_NOFAULT; sched_unpin(); if (nofault) { KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled")); /* * There are only a couple of trap types that are expected. * All the rest will be handled in the usual way. */ switch (type) { /* General protection fault. */ case T_PROTFLT: /* Flag an illegal operation. */ cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_ILLOP; /* * Offset the instruction pointer to the instruction * following the one causing the fault. */ frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip); return (1); /* Page fault. */ case T_PAGEFLT: /* Flag a bad address. */ cpu_core[curcpu].cpuc_dtrace_flags |= CPU_DTRACE_BADADDR; cpu_core[curcpu].cpuc_dtrace_illval = frame->tf_addr; /* * Offset the instruction pointer to the instruction * following the one causing the fault. */ frame->tf_rip += dtrace_instr_size((uint8_t *) frame->tf_rip); return (1); default: /* Handle all other traps in the usual way. */ break; } } /* Handle the trap in the usual way. */ return (0); }