/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2009 Alexander Motin * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer, * without modification, immediately at the beginning of the file. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #ifdef _KERNEL #include "opt_scsi.h" #include #include #include #include #else #include #include #include #include #ifndef min #define min(a,b) (((a)<(b))?(a):(b)) #endif #endif #include #include #include #include #include #include #include #include int ata_version(int ver) { int bit; if (ver == 0xffff) return 0; for (bit = 15; bit >= 0; bit--) if (ver & (1<control & 0x04) return ("SOFT_RESET"); switch (cmd->command) { case 0x00: switch (cmd->features) { case 0x00: return ("NOP FLUSHQUEUE"); case 0x01: return ("NOP AUTOPOLL"); } return ("NOP"); case 0x03: return ("CFA_REQUEST_EXTENDED_ERROR"); case 0x06: switch (cmd->features) { case 0x01: return ("DSM TRIM"); } return "DSM"; case 0x07: switch (cmd->features) { case 0x01: return ("DSM_XL TRIM"); } return "DSM_XL"; case 0x08: return ("DEVICE_RESET"); case 0x0b: return ("REQUEST_SENSE_DATA_EXT"); case 0x12: return ("GET_PHYSICAL_ELEMENT_STATUS"); case 0x20: return ("READ"); case 0x24: return ("READ48"); case 0x25: return ("READ_DMA48"); case 0x26: return ("READ_DMA_QUEUED48"); case 0x27: return ("READ_NATIVE_MAX_ADDRESS48"); case 0x29: return ("READ_MUL48"); case 0x2a: return ("READ_STREAM_DMA48"); case 0x2b: return ("READ_STREAM48"); case 0x2f: return ("READ_LOG_EXT"); case 0x30: return ("WRITE"); case 0x34: return ("WRITE48"); case 0x35: return ("WRITE_DMA48"); case 0x36: return ("WRITE_DMA_QUEUED48"); case 0x37: return ("SET_MAX_ADDRESS48"); case 0x39: return ("WRITE_MUL48"); case 0x3a: return ("WRITE_STREAM_DMA48"); case 0x3b: return ("WRITE_STREAM48"); case 0x3d: return ("WRITE_DMA_FUA48"); case 0x3e: return ("WRITE_DMA_QUEUED_FUA48"); case 0x3f: return ("WRITE_LOG_EXT"); case 0x40: return ("READ_VERIFY"); case 0x42: return ("READ_VERIFY48"); case 0x44: switch (cmd->features) { case 0x01: return ("ZERO_EXT TRIM"); } return "ZERO_EXT"; case 0x45: switch (cmd->features) { case 0x55: return ("WRITE_UNCORRECTABLE48 PSEUDO"); case 0xaa: return ("WRITE_UNCORRECTABLE48 FLAGGED"); } return "WRITE_UNCORRECTABLE48"; case 0x47: return ("READ_LOG_DMA_EXT"); case 0x4a: return ("ZAC_MANAGEMENT_IN"); case 0x51: return ("CONFIGURE_STREAM"); case 0x57: return ("WRITE_LOG_DMA_EXT"); case 0x5b: return ("TRUSTED_NON_DATA"); case 0x5c: return ("TRUSTED_RECEIVE"); case 0x5d: return ("TRUSTED_RECEIVE_DMA"); case 0x5e: return ("TRUSTED_SEND"); case 0x5f: return ("TRUSTED_SEND_DMA"); case 0x60: return ("READ_FPDMA_QUEUED"); case 0x61: return ("WRITE_FPDMA_QUEUED"); case 0x63: switch (cmd->features & 0xf) { case 0x00: return ("NCQ_NON_DATA ABORT NCQ QUEUE"); case 0x01: return ("NCQ_NON_DATA DEADLINE HANDLING"); case 0x02: return ("NCQ_NON_DATA HYBRID DEMOTE BY SIZE"); case 0x03: return ("NCQ_NON_DATA HYBRID CHANGE BY LBA RANGE"); case 0x04: return ("NCQ_NON_DATA HYBRID CONTROL"); case 0x05: return ("NCQ_NON_DATA SET FEATURES"); /* * XXX KDM need common decoding between NCQ and non-NCQ * versions of SET FEATURES. */ case 0x06: return ("NCQ_NON_DATA ZERO EXT"); case 0x07: return ("NCQ_NON_DATA ZAC MANAGEMENT OUT"); } return ("NCQ_NON_DATA"); case 0x64: switch (cmd->sector_count_exp & 0xf) { case 0x00: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT"); case 0x01: return ("SEND_FPDMA_QUEUED HYBRID EVICT"); case 0x02: return ("SEND_FPDMA_QUEUED WRITE LOG DMA EXT"); case 0x03: return ("SEND_FPDMA_QUEUED ZAC MANAGEMENT OUT"); case 0x04: return ("SEND_FPDMA_QUEUED DATA SET MANAGEMENT XL"); } return ("SEND_FPDMA_QUEUED"); case 0x65: switch (cmd->sector_count_exp & 0xf) { case 0x01: return ("RECEIVE_FPDMA_QUEUED READ LOG DMA EXT"); case 0x02: return ("RECEIVE_FPDMA_QUEUED ZAC MANAGEMENT IN"); } return ("RECEIVE_FPDMA_QUEUED"); case 0x67: if (cmd->features == 0xec) return ("SEP_ATTN IDENTIFY"); switch (cmd->lba_low) { case 0x00: return ("SEP_ATTN READ BUFFER"); case 0x02: return ("SEP_ATTN RECEIVE DIAGNOSTIC RESULTS"); case 0x80: return ("SEP_ATTN WRITE BUFFER"); case 0x82: return ("SEP_ATTN SEND DIAGNOSTIC"); } return ("SEP_ATTN"); case 0x70: return ("SEEK"); case 0x77: return ("SET_DATE_TIME_EXT"); case 0x78: switch (cmd->features) { case 0x00: return ("GET_NATIVE_MAX_ADDRESS_EXT"); case 0x01: return ("SET_ACCESSIBLE_MAX_ADDRESS_EXT"); case 0x02: return ("FREEZE_ACCESSIBLE_MAX_ADDRESS_EXT"); } return ("ACCESSIBLE_MAX_ADDRESS_CONFIGURATION"); case 0x7C: return ("REMOVE_ELEMENT_AND_TRUNCATE"); case 0x87: return ("CFA_TRANSLATE_SECTOR"); case 0x90: return ("EXECUTE_DEVICE_DIAGNOSTIC"); case 0x92: return ("DOWNLOAD_MICROCODE"); case 0x93: return ("DOWNLOAD_MICROCODE_DMA"); case 0x9a: return ("ZAC_MANAGEMENT_OUT"); case 0xa0: return ("PACKET"); case 0xa1: return ("ATAPI_IDENTIFY"); case 0xa2: return ("SERVICE"); case 0xb0: switch(cmd->features) { case 0xd0: return ("SMART READ ATTR VALUES"); case 0xd1: return ("SMART READ ATTR THRESHOLDS"); case 0xd3: return ("SMART SAVE ATTR VALUES"); case 0xd4: return ("SMART EXECUTE OFFLINE IMMEDIATE"); case 0xd5: return ("SMART READ LOG"); case 0xd6: return ("SMART WRITE LOG"); case 0xd8: return ("SMART ENABLE OPERATION"); case 0xd9: return ("SMART DISABLE OPERATION"); case 0xda: return ("SMART RETURN STATUS"); } return ("SMART"); case 0xb1: return ("DEVICE CONFIGURATION"); case 0xb2: return ("SET_SECTOR_CONFIGURATION_EXT"); case 0xb4: switch(cmd->features) { case 0x00: return ("SANITIZE_STATUS_EXT"); case 0x11: return ("CRYPTO_SCRAMBLE_EXT"); case 0x12: return ("BLOCK_ERASE_EXT"); case 0x14: return ("OVERWRITE_EXT"); case 0x20: return ("SANITIZE_FREEZE_LOCK_EXT"); case 0x40: return ("SANITIZE_ANTIFREEZE_LOCK_EXT"); } return ("SANITIZE_DEVICE"); case 0xc0: return ("CFA_ERASE"); case 0xc4: return ("READ_MUL"); case 0xc5: return ("WRITE_MUL"); case 0xc6: return ("SET_MULTI"); case 0xc7: return ("READ_DMA_QUEUED"); case 0xc8: return ("READ_DMA"); case 0xca: return ("WRITE_DMA"); case 0xcc: return ("WRITE_DMA_QUEUED"); case 0xcd: return ("CFA_WRITE_MULTIPLE_WITHOUT_ERASE"); case 0xce: return ("WRITE_MUL_FUA48"); case 0xd1: return ("CHECK_MEDIA_CARD_TYPE"); case 0xda: return ("GET_MEDIA_STATUS"); case 0xde: return ("MEDIA_LOCK"); case 0xdf: return ("MEDIA_UNLOCK"); case 0xe0: return ("STANDBY_IMMEDIATE"); case 0xe1: return ("IDLE_IMMEDIATE"); case 0xe2: return ("STANDBY"); case 0xe3: return ("IDLE"); case 0xe4: return ("READ_BUFFER/PM"); case 0xe5: return ("CHECK_POWER_MODE"); case 0xe6: return ("SLEEP"); case 0xe7: return ("FLUSHCACHE"); case 0xe8: return ("WRITE_BUFFER/PM"); case 0xe9: return ("READ_BUFFER_DMA"); case 0xea: return ("FLUSHCACHE48"); case 0xeb: return ("WRITE_BUFFER_DMA"); case 0xec: return ("ATA_IDENTIFY"); case 0xed: return ("MEDIA_EJECT"); case 0xef: /* * XXX KDM need common decoding between NCQ and non-NCQ * versions of SET FEATURES. */ switch (cmd->features) { case 0x02: return ("SETFEATURES ENABLE WCACHE"); case 0x03: return ("SETFEATURES SET TRANSFER MODE"); case 0x05: return ("SETFEATURES ENABLE APM"); case 0x06: return ("SETFEATURES ENABLE PUIS"); case 0x07: return ("SETFEATURES SPIN-UP"); case 0x0b: return ("SETFEATURES ENABLE WRITE READ VERIFY"); case 0x0c: return ("SETFEATURES ENABLE DEVICE LIFE CONTROL"); case 0x10: return ("SETFEATURES ENABLE SATA FEATURE"); case 0x41: return ("SETFEATURES ENABLE FREEFALL CONTROL"); case 0x43: return ("SETFEATURES SET MAX HOST INT SECT TIMES"); case 0x45: return ("SETFEATURES SET RATE BASIS"); case 0x4a: return ("SETFEATURES EXTENDED POWER CONDITIONS"); case 0x50: return ("SETFEATURES ADVANCED BACKGROUD OPERATION"); case 0x55: return ("SETFEATURES DISABLE RCACHE"); case 0x5d: return ("SETFEATURES ENABLE RELIRQ"); case 0x5e: return ("SETFEATURES ENABLE SRVIRQ"); case 0x62: return ("SETFEATURES LONG PHYS SECT ALIGN ERC"); case 0x63: return ("SETFEATURES DSN"); case 0x66: return ("SETFEATURES DISABLE DEFAULTS"); case 0x82: return ("SETFEATURES DISABLE WCACHE"); case 0x85: return ("SETFEATURES DISABLE APM"); case 0x86: return ("SETFEATURES DISABLE PUIS"); case 0x8b: return ("SETFEATURES DISABLE WRITE READ VERIFY"); case 0x8c: return ("SETFEATURES DISABLE DEVICE LIFE CONTROL"); case 0x90: return ("SETFEATURES DISABLE SATA FEATURE"); case 0xaa: return ("SETFEATURES ENABLE RCACHE"); case 0xC1: return ("SETFEATURES DISABLE FREEFALL CONTROL"); case 0xC3: return ("SETFEATURES SENSE DATA REPORTING"); case 0xC4: return ("SETFEATURES NCQ SENSE DATA RETURN"); case 0xCC: return ("SETFEATURES ENABLE DEFAULTS"); case 0xdd: return ("SETFEATURES DISABLE RELIRQ"); case 0xde: return ("SETFEATURES DISABLE SRVIRQ"); } return "SETFEATURES"; case 0xf1: return ("SECURITY_SET_PASSWORD"); case 0xf2: return ("SECURITY_UNLOCK"); case 0xf3: return ("SECURITY_ERASE_PREPARE"); case 0xf4: return ("SECURITY_ERASE_UNIT"); case 0xf5: return ("SECURITY_FREEZE_LOCK"); case 0xf6: return ("SECURITY_DISABLE_PASSWORD"); case 0xf8: return ("READ_NATIVE_MAX_ADDRESS"); case 0xf9: return ("SET_MAX_ADDRESS"); } return "UNKNOWN"; } char * ata_cmd_string(struct ata_cmd *cmd, char *cmd_string, size_t len) { struct sbuf sb; int error; if (len == 0) return (""); sbuf_new(&sb, cmd_string, len, SBUF_FIXEDLEN); ata_cmd_sbuf(cmd, &sb); error = sbuf_finish(&sb); if (error != 0 && #ifdef _KERNEL error != ENOMEM) #else errno != ENOMEM) #endif return (""); return(sbuf_data(&sb)); } void ata_cmd_sbuf(struct ata_cmd *cmd, struct sbuf *sb) { sbuf_printf(sb, "%02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x %02x", cmd->command, cmd->features, cmd->lba_low, cmd->lba_mid, cmd->lba_high, cmd->device, cmd->lba_low_exp, cmd->lba_mid_exp, cmd->lba_high_exp, cmd->features_exp, cmd->sector_count, cmd->sector_count_exp); } char * ata_res_string(struct ata_res *res, char *res_string, size_t len) { struct sbuf sb; int error; if (len == 0) return (""); sbuf_new(&sb, res_string, len, SBUF_FIXEDLEN); ata_res_sbuf(res, &sb); error = sbuf_finish(&sb); if (error != 0 && #ifdef _KERNEL error != ENOMEM) #else errno != ENOMEM) #endif return (""); return(sbuf_data(&sb)); } int ata_res_sbuf(struct ata_res *res, struct sbuf *sb) { sbuf_printf(sb, "%02x %02x %02x %02x " "%02x %02x %02x %02x %02x %02x %02x", res->status, res->error, res->lba_low, res->lba_mid, res->lba_high, res->device, res->lba_low_exp, res->lba_mid_exp, res->lba_high_exp, res->sector_count, res->sector_count_exp); return (0); } /* * ata_command_sbuf() returns 0 for success and -1 for failure. */ int ata_command_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) { sbuf_printf(sb, "%s. ACB: ", ata_op_string(&ataio->cmd)); ata_cmd_sbuf(&ataio->cmd, sb); return(0); } /* * ata_status_abuf() returns 0 for success and -1 for failure. */ int ata_status_sbuf(struct ccb_ataio *ataio, struct sbuf *sb) { sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s)", ataio->res.status, (ataio->res.status & 0x80) ? "BSY " : "", (ataio->res.status & 0x40) ? "DRDY " : "", (ataio->res.status & 0x20) ? "DF " : "", (ataio->res.status & 0x10) ? "SERV " : "", (ataio->res.status & 0x08) ? "DRQ " : "", (ataio->res.status & 0x04) ? "CORR " : "", (ataio->res.status & 0x02) ? "IDX " : "", (ataio->res.status & 0x01) ? "ERR" : ""); if (ataio->res.status & 1) { sbuf_printf(sb, ", error: %02x (%s%s%s%s%s%s%s%s)", ataio->res.error, (ataio->res.error & 0x80) ? "ICRC " : "", (ataio->res.error & 0x40) ? "UNC " : "", (ataio->res.error & 0x20) ? "MC " : "", (ataio->res.error & 0x10) ? "IDNF " : "", (ataio->res.error & 0x08) ? "MCR " : "", (ataio->res.error & 0x04) ? "ABRT " : "", (ataio->res.error & 0x02) ? "NM " : "", (ataio->res.error & 0x01) ? "ILI" : ""); } return(0); } void ata_print_ident(struct ata_params *ident_data) { const char *proto; char ata[12], sata[12]; ata_print_ident_short(ident_data); proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; if (ata_version(ident_data->version_major) == 0) { snprintf(ata, sizeof(ata), "%s", proto); } else if (ata_version(ident_data->version_major) <= 7) { snprintf(ata, sizeof(ata), "%s-%d", proto, ata_version(ident_data->version_major)); } else if (ata_version(ident_data->version_major) == 8) { snprintf(ata, sizeof(ata), "%s8-ACS", proto); } else { snprintf(ata, sizeof(ata), "ACS-%d %s", ata_version(ident_data->version_major) - 7, proto); } if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { if (ident_data->satacapabilities & ATA_SATA_GEN3) snprintf(sata, sizeof(sata), " SATA 3.x"); else if (ident_data->satacapabilities & ATA_SATA_GEN2) snprintf(sata, sizeof(sata), " SATA 2.x"); else if (ident_data->satacapabilities & ATA_SATA_GEN1) snprintf(sata, sizeof(sata), " SATA 1.x"); else snprintf(sata, sizeof(sata), " SATA"); } else sata[0] = 0; printf(" %s%s device\n", ata, sata); } void ata_print_ident_sbuf(struct ata_params *ident_data, struct sbuf *sb) { const char *proto, *sata; int version; ata_print_ident_short_sbuf(ident_data, sb); sbuf_printf(sb, " "); proto = (ident_data->config == ATA_PROTO_CFA) ? "CFA" : (ident_data->config & ATA_PROTO_ATAPI) ? "ATAPI" : "ATA"; version = ata_version(ident_data->version_major); switch (version) { case 0: sbuf_printf(sb, "%s", proto); break; case 1: case 2: case 3: case 4: case 5: case 6: case 7: sbuf_printf(sb, "%s-%d", proto, version); break; case 8: sbuf_printf(sb, "%s8-ACS", proto); break; default: sbuf_printf(sb, "ACS-%d %s", version - 7, proto); break; } if (ident_data->satacapabilities && ident_data->satacapabilities != 0xffff) { if (ident_data->satacapabilities & ATA_SATA_GEN3) sata = " SATA 3.x"; else if (ident_data->satacapabilities & ATA_SATA_GEN2) sata = " SATA 2.x"; else if (ident_data->satacapabilities & ATA_SATA_GEN1) sata = " SATA 1.x"; else sata = " SATA"; } else sata = ""; sbuf_printf(sb, "%s device\n", sata); } void ata_print_ident_short(struct ata_params *ident_data) { char product[48], revision[16]; cam_strvis(product, ident_data->model, sizeof(ident_data->model), sizeof(product)); cam_strvis(revision, ident_data->revision, sizeof(ident_data->revision), sizeof(revision)); printf("<%s %s>", product, revision); } void ata_print_ident_short_sbuf(struct ata_params *ident_data, struct sbuf *sb) { sbuf_printf(sb, "<"); cam_strvis_sbuf(sb, ident_data->model, sizeof(ident_data->model), 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, ident_data->revision, sizeof(ident_data->revision), 0); sbuf_printf(sb, ">"); } void semb_print_ident(struct sep_identify_data *ident_data) { char in[7], ins[5]; semb_print_ident_short(ident_data); cam_strvis(in, ident_data->interface_id, 6, sizeof(in)); cam_strvis(ins, ident_data->interface_rev, 4, sizeof(ins)); printf(" SEMB %s %s device\n", in, ins); } void semb_print_ident_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb) { semb_print_ident_short_sbuf(ident_data, sb); sbuf_printf(sb, " SEMB "); cam_strvis_sbuf(sb, ident_data->interface_id, 6, 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, ident_data->interface_rev, 4, 0); sbuf_printf(sb, " device\n"); } void semb_print_ident_short(struct sep_identify_data *ident_data) { char vendor[9], product[17], revision[5], fw[5]; cam_strvis(vendor, ident_data->vendor_id, 8, sizeof(vendor)); cam_strvis(product, ident_data->product_id, 16, sizeof(product)); cam_strvis(revision, ident_data->product_rev, 4, sizeof(revision)); cam_strvis(fw, ident_data->firmware_rev, 4, sizeof(fw)); printf("<%s %s %s %s>", vendor, product, revision, fw); } void semb_print_ident_short_sbuf(struct sep_identify_data *ident_data, struct sbuf *sb) { sbuf_printf(sb, "<"); cam_strvis_sbuf(sb, ident_data->vendor_id, 8, 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, ident_data->product_id, 16, 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, ident_data->product_rev, 4, 0); sbuf_printf(sb, " "); cam_strvis_sbuf(sb, ident_data->firmware_rev, 4, 0); sbuf_printf(sb, ">"); } uint32_t ata_logical_sector_size(struct ata_params *ident_data) { if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE && (ident_data->pss & ATA_PSS_LSSABOVE512)) { return (((uint32_t)ident_data->lss_1 | ((uint32_t)ident_data->lss_2 << 16)) * 2); } return (512); } uint64_t ata_physical_sector_size(struct ata_params *ident_data) { if ((ident_data->pss & ATA_PSS_VALID_MASK) == ATA_PSS_VALID_VALUE) { if (ident_data->pss & ATA_PSS_MULTLS) { return ((uint64_t)ata_logical_sector_size(ident_data) * (1 << (ident_data->pss & ATA_PSS_LSPPS))); } else { return (uint64_t)ata_logical_sector_size(ident_data); } } return (512); } uint64_t ata_logical_sector_offset(struct ata_params *ident_data) { if ((ident_data->lsalign & 0xc000) == 0x4000) { return ((uint64_t)ata_logical_sector_size(ident_data) * (ident_data->lsalign & 0x3fff)); } return (0); } void ata_28bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint8_t features, uint32_t lba, uint8_t sector_count) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = 0; if (cmd == ATA_READ_DMA || cmd == ATA_READ_DMA_QUEUED || cmd == ATA_WRITE_DMA || cmd == ATA_WRITE_DMA_QUEUED || cmd == ATA_TRUSTED_RECEIVE_DMA || cmd == ATA_TRUSTED_SEND_DMA || cmd == ATA_DOWNLOAD_MICROCODE_DMA || cmd == ATA_READ_BUFFER_DMA || cmd == ATA_WRITE_BUFFER_DMA) ataio->cmd.flags |= CAM_ATAIO_DMA; ataio->cmd.command = cmd; ataio->cmd.features = features; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA | ((lba >> 24) & 0x0f); ataio->cmd.sector_count = sector_count; } void ata_48bit_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint16_t features, uint64_t lba, uint16_t sector_count) { ataio->cmd.flags = CAM_ATAIO_48BIT; if (cmd == ATA_READ_DMA48 || cmd == ATA_READ_DMA_QUEUED48 || cmd == ATA_READ_STREAM_DMA48 || cmd == ATA_WRITE_DMA48 || cmd == ATA_WRITE_DMA_FUA48 || cmd == ATA_WRITE_DMA_QUEUED48 || cmd == ATA_WRITE_DMA_QUEUED_FUA48 || cmd == ATA_WRITE_STREAM_DMA48 || cmd == ATA_DATA_SET_MANAGEMENT || cmd == ATA_READ_LOG_DMA_EXT || cmd == ATA_WRITE_LOG_DMA_EXT) ataio->cmd.flags |= CAM_ATAIO_DMA; ataio->cmd.command = cmd; ataio->cmd.features = features; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA; ataio->cmd.lba_low_exp = lba >> 24; ataio->cmd.lba_mid_exp = lba >> 32; ataio->cmd.lba_high_exp = lba >> 40; ataio->cmd.features_exp = features >> 8; ataio->cmd.sector_count = sector_count; ataio->cmd.sector_count_exp = sector_count >> 8; ataio->cmd.control = 0; } void ata_ncq_cmd(struct ccb_ataio *ataio, uint8_t cmd, uint64_t lba, uint16_t sector_count) { ataio->cmd.flags = CAM_ATAIO_48BIT | CAM_ATAIO_FPDMA; ataio->cmd.command = cmd; ataio->cmd.features = sector_count; ataio->cmd.lba_low = lba; ataio->cmd.lba_mid = lba >> 8; ataio->cmd.lba_high = lba >> 16; ataio->cmd.device = ATA_DEV_LBA; ataio->cmd.lba_low_exp = lba >> 24; ataio->cmd.lba_mid_exp = lba >> 32; ataio->cmd.lba_high_exp = lba >> 40; ataio->cmd.features_exp = sector_count >> 8; ataio->cmd.sector_count = 0; ataio->cmd.sector_count_exp = 0; ataio->cmd.control = 0; } void ata_reset_cmd(struct ccb_ataio *ataio) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_CONTROL | CAM_ATAIO_NEEDRESULT; ataio->cmd.control = 0x04; } void ata_pm_read_cmd(struct ccb_ataio *ataio, int reg, int port) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = CAM_ATAIO_NEEDRESULT; ataio->cmd.command = ATA_READ_PM; ataio->cmd.features = reg; ataio->cmd.device = port & 0x0f; } void ata_pm_write_cmd(struct ccb_ataio *ataio, int reg, int port, uint32_t val) { bzero(&ataio->cmd, sizeof(ataio->cmd)); ataio->cmd.flags = 0; ataio->cmd.command = ATA_WRITE_PM; ataio->cmd.features = reg; ataio->cmd.sector_count = val; ataio->cmd.lba_low = val >> 8; ataio->cmd.lba_mid = val >> 16; ataio->cmd.lba_high = val >> 24; ataio->cmd.device = port & 0x0f; } void ata_read_log(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint32_t log_address, uint32_t page_number, uint16_t block_count, uint32_t protocol, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint64_t lba; cam_fill_ataio(ataio, /*retries*/ 1, /*cbfcnp*/ cbfcnp, /*flags*/ CAM_DIR_IN, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); lba = (((uint64_t)page_number & 0xff00) << 32) | ((page_number & 0x00ff) << 8) | (log_address & 0xff); ata_48bit_cmd(ataio, /*cmd*/ (protocol & CAM_ATAIO_DMA) ? ATA_READ_LOG_DMA_EXT : ATA_READ_LOG_EXT, /*features*/ 0, /*lba*/ lba, /*sector_count*/ block_count); } void ata_bswap(int8_t *buf, int len) { uint16_t *ptr = (uint16_t*)(buf + len); while (--ptr >= (uint16_t*)buf) *ptr = be16toh(*ptr); } void ata_btrim(int8_t *buf, int len) { int8_t *ptr; for (ptr = buf; ptr < buf+len; ++ptr) if (!*ptr || *ptr == '_') *ptr = ' '; for (ptr = buf + len - 1; ptr >= buf && *ptr == ' '; --ptr) *ptr = 0; } void ata_bpack(int8_t *src, int8_t *dst, int len) { int i, j, blank; for (i = j = blank = 0 ; i < len; i++) { if (blank && src[i] == ' ') continue; if (blank && src[i] != ' ') { dst[j++] = src[i]; blank = 0; continue; } if (src[i] == ' ') { blank = 1; if (i == 0) continue; } dst[j++] = src[i]; } while (j < len) dst[j++] = 0x00; } int ata_max_pmode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_64_70) { if (ap->apiomodes & 0x02) return ATA_PIO4; if (ap->apiomodes & 0x01) return ATA_PIO3; } if (ap->mwdmamodes & 0x04) return ATA_PIO4; if (ap->mwdmamodes & 0x02) return ATA_PIO3; if (ap->mwdmamodes & 0x01) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x200) return ATA_PIO2; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x100) return ATA_PIO1; if ((ap->retired_piomode & ATA_RETIRED_PIO_MASK) == 0x000) return ATA_PIO0; return ATA_PIO0; } int ata_max_wmode(struct ata_params *ap) { if (ap->mwdmamodes & 0x04) return ATA_WDMA2; if (ap->mwdmamodes & 0x02) return ATA_WDMA1; if (ap->mwdmamodes & 0x01) return ATA_WDMA0; return -1; } int ata_max_umode(struct ata_params *ap) { if (ap->atavalid & ATA_FLAG_88) { if (ap->udmamodes & 0x40) return ATA_UDMA6; if (ap->udmamodes & 0x20) return ATA_UDMA5; if (ap->udmamodes & 0x10) return ATA_UDMA4; if (ap->udmamodes & 0x08) return ATA_UDMA3; if (ap->udmamodes & 0x04) return ATA_UDMA2; if (ap->udmamodes & 0x02) return ATA_UDMA1; if (ap->udmamodes & 0x01) return ATA_UDMA0; } return -1; } int ata_max_mode(struct ata_params *ap, int maxmode) { if (maxmode == 0) maxmode = ATA_DMA_MAX; if (maxmode >= ATA_UDMA0 && ata_max_umode(ap) > 0) return (min(maxmode, ata_max_umode(ap))); if (maxmode >= ATA_WDMA0 && ata_max_wmode(ap) > 0) return (min(maxmode, ata_max_wmode(ap))); return (min(maxmode, ata_max_pmode(ap))); } char * ata_mode2string(int mode) { switch (mode) { case -1: return "UNSUPPORTED"; case 0: return "NONE"; case ATA_PIO0: return "PIO0"; case ATA_PIO1: return "PIO1"; case ATA_PIO2: return "PIO2"; case ATA_PIO3: return "PIO3"; case ATA_PIO4: return "PIO4"; case ATA_WDMA0: return "WDMA0"; case ATA_WDMA1: return "WDMA1"; case ATA_WDMA2: return "WDMA2"; case ATA_UDMA0: return "UDMA0"; case ATA_UDMA1: return "UDMA1"; case ATA_UDMA2: return "UDMA2"; case ATA_UDMA3: return "UDMA3"; case ATA_UDMA4: return "UDMA4"; case ATA_UDMA5: return "UDMA5"; case ATA_UDMA6: return "UDMA6"; default: if (mode & ATA_DMA_MASK) return "BIOSDMA"; else return "BIOSPIO"; } } int ata_string2mode(char *str) { if (!strcasecmp(str, "PIO0")) return (ATA_PIO0); if (!strcasecmp(str, "PIO1")) return (ATA_PIO1); if (!strcasecmp(str, "PIO2")) return (ATA_PIO2); if (!strcasecmp(str, "PIO3")) return (ATA_PIO3); if (!strcasecmp(str, "PIO4")) return (ATA_PIO4); if (!strcasecmp(str, "WDMA0")) return (ATA_WDMA0); if (!strcasecmp(str, "WDMA1")) return (ATA_WDMA1); if (!strcasecmp(str, "WDMA2")) return (ATA_WDMA2); if (!strcasecmp(str, "UDMA0")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA16")) return (ATA_UDMA0); if (!strcasecmp(str, "UDMA1")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA25")) return (ATA_UDMA1); if (!strcasecmp(str, "UDMA2")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA33")) return (ATA_UDMA2); if (!strcasecmp(str, "UDMA3")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA44")) return (ATA_UDMA3); if (!strcasecmp(str, "UDMA4")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA66")) return (ATA_UDMA4); if (!strcasecmp(str, "UDMA5")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA100")) return (ATA_UDMA5); if (!strcasecmp(str, "UDMA6")) return (ATA_UDMA6); if (!strcasecmp(str, "UDMA133")) return (ATA_UDMA6); return (-1); } u_int ata_mode2speed(int mode) { switch (mode) { case ATA_PIO0: default: return (3300); case ATA_PIO1: return (5200); case ATA_PIO2: return (8300); case ATA_PIO3: return (11100); case ATA_PIO4: return (16700); case ATA_WDMA0: return (4200); case ATA_WDMA1: return (13300); case ATA_WDMA2: return (16700); case ATA_UDMA0: return (16700); case ATA_UDMA1: return (25000); case ATA_UDMA2: return (33300); case ATA_UDMA3: return (44400); case ATA_UDMA4: return (66700); case ATA_UDMA5: return (100000); case ATA_UDMA6: return (133000); } } u_int ata_revision2speed(int revision) { switch (revision) { case 1: default: return (150000); case 2: return (300000); case 3: return (600000); } } int ata_speed2revision(u_int speed) { switch (speed) { case 0: return (0); case 150000: return (1); case 300000: return (2); case 600000: return (3); default: return (-1); } } int ata_identify_match(caddr_t identbuffer, caddr_t table_entry) { struct scsi_inquiry_pattern *entry; struct ata_params *ident; entry = (struct scsi_inquiry_pattern *)table_entry; ident = (struct ata_params *)identbuffer; if ((cam_strmatch(ident->model, entry->product, sizeof(ident->model)) == 0) && (cam_strmatch(ident->revision, entry->revision, sizeof(ident->revision)) == 0)) { return (0); } return (-1); } int ata_static_identify_match(caddr_t identbuffer, caddr_t table_entry) { struct scsi_static_inquiry_pattern *entry; struct ata_params *ident; entry = (struct scsi_static_inquiry_pattern *)table_entry; ident = (struct ata_params *)identbuffer; if ((cam_strmatch(ident->model, entry->product, sizeof(ident->model)) == 0) && (cam_strmatch(ident->revision, entry->revision, sizeof(ident->revision)) == 0)) { return (0); } return (-1); } void semb_receive_diagnostic_results(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, int pcv, uint8_t page_code, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, pcv ? page_code : 0, 0x02, length / 4); } void semb_send_diagnostic(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, length > 0 ? data_ptr[0] : 0, 0x82, length / 4); } void semb_read_buffer(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb*), uint8_t tag_action, uint8_t page_code, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/CAM_DIR_IN, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, page_code, 0x00, length / 4); } void semb_write_buffer(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action, uint8_t *data_ptr, uint16_t length, uint32_t timeout) { length = min(length, 1020); length = (length + 3) & ~3; cam_fill_ataio(ataio, retries, cbfcnp, /*flags*/length ? CAM_DIR_OUT : CAM_DIR_NONE, tag_action, data_ptr, length, timeout); ata_28bit_cmd(ataio, ATA_SEP_ATTN, length > 0 ? data_ptr[0] : 0, 0x80, length / 4); } void ata_zac_mgmt_out(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint16_t sector_count, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint8_t command_out, ata_flags; uint16_t features_out, sectors_out; uint32_t auxiliary; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_OUT; features_out = (zm_action & 0xf) | (zone_flags << 8); if (dxfer_len == 0) { ata_flags = 0; sectors_out = 0; } else { ata_flags = CAM_ATAIO_DMA; /* XXX KDM use sector count? */ sectors_out = ((dxfer_len >> 9) & 0xffff); } auxiliary = 0; } else { if (dxfer_len == 0) { command_out = ATA_NCQ_NON_DATA; features_out = ATA_NCQ_ZAC_MGMT_OUT; sectors_out = 0; } else { command_out = ATA_SEND_FPDMA_QUEUED; /* Note that we're defaulting to normal priority */ sectors_out = ATA_SFPDMA_ZAC_MGMT_OUT << 8; /* * For SEND FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it seems unlikely that we'll see * a transfer that large. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else { /* * Yes, the caller can theoretically send a * transfer larger than we can handle. * Anyone using this function needs enough * knowledge to avoid doing that. */ features_out = ((dxfer_len >> 9) & 0xffff); } } auxiliary = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_FPDMA; } cam_fill_ataio(ataio, /*retries*/ retries, /*cbfcnp*/ cbfcnp, /*flags*/ (dxfer_len > 0) ? CAM_DIR_OUT : CAM_DIR_NONE, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); ata_48bit_cmd(ataio, /*cmd*/ command_out, /*features*/ features_out, /*lba*/ zone_id, /*sector_count*/ sectors_out); ataio->cmd.flags |= ata_flags; if (auxiliary != 0) { ataio->ata_flags |= ATA_FLAG_AUX; ataio->aux = auxiliary; } } void ata_zac_mgmt_in(struct ccb_ataio *ataio, uint32_t retries, void (*cbfcnp)(struct cam_periph *, union ccb *), int use_ncq, uint8_t zm_action, uint64_t zone_id, uint8_t zone_flags, uint8_t *data_ptr, uint32_t dxfer_len, uint32_t timeout) { uint8_t command_out, ata_flags; uint16_t features_out, sectors_out; uint32_t auxiliary; if (use_ncq == 0) { command_out = ATA_ZAC_MANAGEMENT_IN; /* XXX KDM put a macro here */ features_out = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_DMA; sectors_out = ((dxfer_len >> 9) & 0xffff); auxiliary = 0; } else { command_out = ATA_RECV_FPDMA_QUEUED; sectors_out = ATA_RFPDMA_ZAC_MGMT_IN << 8; auxiliary = (zm_action & 0xf) | (zone_flags << 8); ata_flags = CAM_ATAIO_FPDMA; /* * For RECEIVE FPDMA QUEUED, the transfer length is * encoded in the FEATURE register, and 0 means * that 65536 512 byte blocks are to be tranferred. * In practice, it is unlikely we will see a transfer that * large. */ if (dxfer_len == (65536 * 512)) { features_out = 0; } else { /* * Yes, the caller can theoretically request a * transfer larger than we can handle. * Anyone using this function needs enough * knowledge to avoid doing that. */ features_out = ((dxfer_len >> 9) & 0xffff); } } cam_fill_ataio(ataio, /*retries*/ retries, /*cbfcnp*/ cbfcnp, /*flags*/ CAM_DIR_IN, /*tag_action*/ 0, /*data_ptr*/ data_ptr, /*dxfer_len*/ dxfer_len, /*timeout*/ timeout); ata_48bit_cmd(ataio, /*cmd*/ command_out, /*features*/ features_out, /*lba*/ zone_id, /*sector_count*/ sectors_out); ataio->cmd.flags |= ata_flags; if (auxiliary != 0) { ataio->ata_flags |= ATA_FLAG_AUX; ataio->aux = auxiliary; } } void ata_param_fixup(struct ata_params *ident_buf) { int16_t *ptr; for (ptr = (int16_t *)ident_buf; ptr < (int16_t *)ident_buf + sizeof(struct ata_params)/2; ptr++) { *ptr = le16toh(*ptr); } if (strncmp(ident_buf->model, "FX", 2) && strncmp(ident_buf->model, "NEC", 3) && strncmp(ident_buf->model, "Pioneer", 7) && strncmp(ident_buf->model, "SHARP", 5)) { ata_bswap(ident_buf->model, sizeof(ident_buf->model)); ata_bswap(ident_buf->revision, sizeof(ident_buf->revision)); ata_bswap(ident_buf->serial, sizeof(ident_buf->serial)); } ata_btrim(ident_buf->model, sizeof(ident_buf->model)); ata_bpack(ident_buf->model, ident_buf->model, sizeof(ident_buf->model)); ata_btrim(ident_buf->revision, sizeof(ident_buf->revision)); ata_bpack(ident_buf->revision, ident_buf->revision, sizeof(ident_buf->revision)); ata_btrim(ident_buf->serial, sizeof(ident_buf->serial)); ata_bpack(ident_buf->serial, ident_buf->serial, sizeof(ident_buf->serial)); }