/*- * Copyright (c) 2015-2017 Ruslan Bukin * All rights reserved. * * This software was developed by SRI International and the University of * Cambridge Computer Laboratory under DARPA/AFRL contract FA8750-10-C-0237 * ("CTSRD"), as part of the DARPA CRASH research programme. * * This software was developed by the University of Cambridge Computer * Laboratory as part of the CTSRD Project, with support from the UK Higher * Education Innovation Fund (HEIF). * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include #include #include #include "debug.h" #include "rtld.h" #include "rtld_printf.h" /* * It is possible for the compiler to emit relocations for unaligned data. * We handle this situation with these inlines. */ #define RELOC_ALIGNED_P(x) \ (((uintptr_t)(x) & (sizeof(void *) - 1)) == 0) uint64_t set_gp(Obj_Entry *obj) { uint64_t old; SymLook req; uint64_t gp; int res; __asm __volatile("mv %0, gp" : "=r"(old)); symlook_init(&req, "__global_pointer$"); req.ventry = NULL; req.flags = SYMLOOK_EARLY; res = symlook_obj(&req, obj); if (res == 0) { gp = req.sym_out->st_value; __asm __volatile("mv gp, %0" :: "r"(gp)); } return (old); } void init_pltgot(Obj_Entry *obj) { if (obj->pltgot != NULL) { obj->pltgot[0] = (Elf_Addr)&_rtld_bind_start; obj->pltgot[1] = (Elf_Addr)obj; } } int do_copy_relocations(Obj_Entry *dstobj) { const Obj_Entry *srcobj, *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *srcsym; const Elf_Sym *dstsym; const void *srcaddr; const char *name; void *dstaddr; SymLook req; size_t size; int res; /* * COPY relocs are invalid outside of the main program */ assert(dstobj->mainprog); relalim = (const Elf_Rela *)((const char *)dstobj->rela + dstobj->relasize); for (rela = dstobj->rela; rela < relalim; rela++) { if (ELF_R_TYPE(rela->r_info) != R_RISCV_COPY) continue; dstaddr = (void *)(dstobj->relocbase + rela->r_offset); dstsym = dstobj->symtab + ELF_R_SYM(rela->r_info); name = dstobj->strtab + dstsym->st_name; size = dstsym->st_size; symlook_init(&req, name); req.ventry = fetch_ventry(dstobj, ELF_R_SYM(rela->r_info)); req.flags = SYMLOOK_EARLY; for (srcobj = globallist_next(dstobj); srcobj != NULL; srcobj = globallist_next(srcobj)) { res = symlook_obj(&req, srcobj); if (res == 0) { srcsym = req.sym_out; defobj = req.defobj_out; break; } } if (srcobj == NULL) { _rtld_error( "Undefined symbol \"%s\" referenced from COPY relocation in %s", name, dstobj->path); return (-1); } srcaddr = (const void *)(defobj->relocbase + srcsym->st_value); memcpy(dstaddr, srcaddr, size); } return (0); } /* * Process the PLT relocations. */ int reloc_plt(Obj_Entry *obj, int flags __unused, RtldLockState *lockstate __unused) { const Elf_Rela *relalim; const Elf_Rela *rela; relalim = (const Elf_Rela *)((const char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { Elf_Addr *where; assert(ELF_R_TYPE(rela->r_info) == R_RISCV_JUMP_SLOT); where = (Elf_Addr *)(obj->relocbase + rela->r_offset); *where += (Elf_Addr)obj->relocbase; } return (0); } /* * LD_BIND_NOW was set - force relocation for all jump slots */ int reloc_jmpslots(Obj_Entry *obj, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; relalim = (const Elf_Rela *)((const char *)obj->pltrela + obj->pltrelasize); for (rela = obj->pltrela; rela < relalim; rela++) { Elf_Addr *where; where = (Elf_Addr *)(obj->relocbase + rela->r_offset); switch(ELF_R_TYPE(rela->r_info)) { case R_RISCV_JUMP_SLOT: def = find_symdef(ELF_R_SYM(rela->r_info), obj, &defobj, SYMLOOK_IN_PLT | flags, NULL, lockstate); if (def == NULL) { dbg("reloc_jmpslots: sym not found"); return (-1); } *where = (Elf_Addr)(defobj->relocbase + def->st_value); break; default: _rtld_error("Unknown relocation type %x in jmpslot", (unsigned int)ELF_R_TYPE(rela->r_info)); return (-1); } } return (0); } int reloc_iresolve(Obj_Entry *obj __unused, struct Struct_RtldLockState *lockstate __unused) { /* XXX not implemented */ return (0); } int reloc_iresolve_nonplt(Obj_Entry *obj __unused, struct Struct_RtldLockState *lockstate __unused) { /* XXX not implemented */ return (0); } int reloc_gnu_ifunc(Obj_Entry *obj __unused, int flags __unused, struct Struct_RtldLockState *lockstate __unused) { /* XXX not implemented */ return (0); } Elf_Addr reloc_jmpslot(Elf_Addr *where, Elf_Addr target, const Obj_Entry *defobj __unused, const Obj_Entry *obj __unused, const Elf_Rel *rel) { assert(ELF_R_TYPE(rel->r_info) == R_RISCV_JUMP_SLOT); if (*where != target && !ld_bind_not) *where = target; return (target); } /* * Process non-PLT relocations */ int reloc_non_plt(Obj_Entry *obj, Obj_Entry *obj_rtld, int flags, RtldLockState *lockstate) { const Obj_Entry *defobj; const Elf_Rela *relalim; const Elf_Rela *rela; const Elf_Sym *def; SymCache *cache; Elf_Addr *where; unsigned long symnum; if ((flags & SYMLOOK_IFUNC) != 0) /* XXX not implemented */ return (0); /* * The dynamic loader may be called from a thread, we have * limited amounts of stack available so we cannot use alloca(). */ if (obj == obj_rtld) cache = NULL; else cache = calloc(obj->dynsymcount, sizeof(SymCache)); /* No need to check for NULL here */ relalim = (const Elf_Rela *)((const char *)obj->rela + obj->relasize); for (rela = obj->rela; rela < relalim; rela++) { where = (Elf_Addr *)(obj->relocbase + rela->r_offset); symnum = ELF_R_SYM(rela->r_info); switch (ELF_R_TYPE(rela->r_info)) { case R_RISCV_JUMP_SLOT: /* This will be handled by the plt/jmpslot routines */ break; case R_RISCV_NONE: break; case R_RISCV_64: def = find_symdef(symnum, obj, &defobj, flags, cache, lockstate); if (def == NULL) return (-1); *where = (Elf_Addr)(defobj->relocbase + def->st_value + rela->r_addend); break; case R_RISCV_TLS_DTPMOD64: def = find_symdef(symnum, obj, &defobj, flags, cache, lockstate); if (def == NULL) return -1; *where += (Elf_Addr)defobj->tlsindex; break; case R_RISCV_COPY: /* * These are deferred until all other relocations have * been done. All we do here is make sure that the * COPY relocation is not in a shared library. They * are allowed only in executable files. */ if (!obj->mainprog) { _rtld_error("%s: Unexpected R_RISCV_COPY " "relocation in shared library", obj->path); return (-1); } break; case R_RISCV_TLS_DTPREL64: def = find_symdef(symnum, obj, &defobj, flags, cache, lockstate); if (def == NULL) return (-1); /* * We lazily allocate offsets for static TLS as we * see the first relocation that references the * TLS block. This allows us to support (small * amounts of) static TLS in dynamically loaded * modules. If we run out of space, we generate an * error. */ if (!defobj->tls_static) { if (!allocate_tls_offset( __DECONST(Obj_Entry *, defobj))) { _rtld_error( "%s: No space available for static " "Thread Local Storage", obj->path); return (-1); } } *where += (Elf_Addr)(def->st_value + rela->r_addend - TLS_DTV_OFFSET); break; case R_RISCV_TLS_TPREL64: def = find_symdef(symnum, obj, &defobj, flags, cache, lockstate); if (def == NULL) return (-1); /* * We lazily allocate offsets for static TLS as we * see the first relocation that references the * TLS block. This allows us to support (small * amounts of) static TLS in dynamically loaded * modules. If we run out of space, we generate an * error. */ if (!defobj->tls_static) { if (!allocate_tls_offset( __DECONST(Obj_Entry *, defobj))) { _rtld_error( "%s: No space available for static " "Thread Local Storage", obj->path); return (-1); } } *where = (def->st_value + rela->r_addend + defobj->tlsoffset - TLS_TP_OFFSET - TLS_TCB_SIZE); break; case R_RISCV_RELATIVE: *where = (Elf_Addr)(obj->relocbase + rela->r_addend); break; default: rtld_printf("%s: Unhandled relocation %lu\n", obj->path, ELF_R_TYPE(rela->r_info)); return (-1); } } return (0); } void ifunc_init(Elf_Auxinfo aux_info[__min_size(AT_COUNT)] __unused) { } void allocate_initial_tls(Obj_Entry *objs) { /* * Fix the size of the static TLS block by using the maximum * offset allocated so far and adding a bit for dynamic modules to * use. */ tls_static_space = tls_last_offset + tls_last_size + ld_static_tls_extra; _tcb_set(allocate_tls(objs, NULL, TLS_TCB_SIZE, TLS_TCB_ALIGN)); } void * __tls_get_addr(tls_index* ti) { uintptr_t **dtvp; void *p; dtvp = &_tcb_get()->tcb_dtv; p = tls_get_addr_common(dtvp, ti->ti_module, ti->ti_offset); return ((char*)p + TLS_DTV_OFFSET); }