//===- X86RecognizableInstr.cpp - Disassembler instruction spec -*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file is part of the X86 Disassembler Emitter. // It contains the implementation of a single recognizable instruction. // Documentation for the disassembler emitter in general can be found in // X86DisassemblerEmitter.h. // //===----------------------------------------------------------------------===// #include "X86RecognizableInstr.h" #include "X86DisassemblerShared.h" #include "X86DisassemblerTables.h" #include "X86ModRMFilters.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/TableGen/Record.h" #include using namespace llvm; using namespace X86Disassembler; std::string X86Disassembler::getMnemonic(const CodeGenInstruction *I, unsigned Variant) { // Extract a mnemonic assuming it's separated by \t std::string Mnemonic = StringRef(I->FlattenAsmStringVariants(I->AsmString, Variant)) .take_until([](char C) { return C == '\t'; }) .str(); // Special case: CMOVCC, JCC, SETCC, CMPCCXADD have "${cond}" in mnemonic. // Replace it with "CC" in-place. auto CondPos = Mnemonic.find("${cond}"); if (CondPos != std::string::npos) Mnemonic = Mnemonic.replace(CondPos, 7, "CC"); return StringRef(Mnemonic).upper(); } bool X86Disassembler::isRegisterOperand(const Record *Rec) { return Rec->isSubClassOf("RegisterClass") || Rec->isSubClassOf("RegisterOperand"); } bool X86Disassembler::isMemoryOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; } bool X86Disassembler::isImmediateOperand(const Record *Rec) { return Rec->isSubClassOf("Operand") && Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; } unsigned X86Disassembler::getRegOperandSize(const Record *RegRec) { if (RegRec->isSubClassOf("RegisterClass")) return RegRec->getValueAsInt("Alignment"); if (RegRec->isSubClassOf("RegisterOperand")) return RegRec->getValueAsDef("RegClass")->getValueAsInt("Alignment"); llvm_unreachable("Register operand's size not known!"); } unsigned X86Disassembler::getMemOperandSize(const Record *MemRec) { if (MemRec->isSubClassOf("X86MemOperand")) return MemRec->getValueAsInt("Size"); llvm_unreachable("Memory operand's size not known!"); } /// byteFromBitsInit - Extracts a value at most 8 bits in width from a BitsInit. /// Useful for switch statements and the like. /// /// @param init - A reference to the BitsInit to be decoded. /// @return - The field, with the first bit in the BitsInit as the lowest /// order bit. static uint8_t byteFromBitsInit(BitsInit &init) { int width = init.getNumBits(); assert(width <= 8 && "Field is too large for uint8_t!"); int index; uint8_t mask = 0x01; uint8_t ret = 0; for (index = 0; index < width; index++) { if (cast(init.getBit(index))->getValue()) ret |= mask; mask <<= 1; } return ret; } /// byteFromRec - Extract a value at most 8 bits in with from a Record given the /// name of the field. /// /// @param rec - The record from which to extract the value. /// @param name - The name of the field in the record. /// @return - The field, as translated by byteFromBitsInit(). static uint8_t byteFromRec(const Record *rec, StringRef name) { BitsInit *bits = rec->getValueAsBitsInit(name); return byteFromBitsInit(*bits); } RecognizableInstrBase::RecognizableInstrBase(const CodeGenInstruction &insn) { const Record *Rec = insn.TheDef; assert(Rec->isSubClassOf("X86Inst") && "Not a X86 Instruction"); OpPrefix = byteFromRec(Rec, "OpPrefixBits"); OpMap = byteFromRec(Rec, "OpMapBits"); Opcode = byteFromRec(Rec, "Opcode"); Form = byteFromRec(Rec, "FormBits"); Encoding = byteFromRec(Rec, "OpEncBits"); OpSize = byteFromRec(Rec, "OpSizeBits"); AdSize = byteFromRec(Rec, "AdSizeBits"); HasREX_W = Rec->getValueAsBit("hasREX_W"); HasVEX_4V = Rec->getValueAsBit("hasVEX_4V"); IgnoresW = Rec->getValueAsBit("IgnoresW"); IgnoresVEX_L = Rec->getValueAsBit("ignoresVEX_L"); HasEVEX_L2 = Rec->getValueAsBit("hasEVEX_L2"); HasEVEX_K = Rec->getValueAsBit("hasEVEX_K"); HasEVEX_KZ = Rec->getValueAsBit("hasEVEX_Z"); HasEVEX_B = Rec->getValueAsBit("hasEVEX_B"); HasEVEX_NF = Rec->getValueAsBit("hasEVEX_NF"); HasTwoConditionalOps = Rec->getValueAsBit("hasTwoConditionalOps"); IsCodeGenOnly = Rec->getValueAsBit("isCodeGenOnly"); IsAsmParserOnly = Rec->getValueAsBit("isAsmParserOnly"); ForceDisassemble = Rec->getValueAsBit("ForceDisassemble"); CD8_Scale = byteFromRec(Rec, "CD8_Scale"); HasVEX_L = Rec->getValueAsBit("hasVEX_L"); ExplicitREX2Prefix = byteFromRec(Rec, "explicitOpPrefixBits") == X86Local::ExplicitREX2; EncodeRC = HasEVEX_B && (Form == X86Local::MRMDestReg || Form == X86Local::MRMSrcReg); } bool RecognizableInstrBase::shouldBeEmitted() const { return Form != X86Local::Pseudo && (!IsCodeGenOnly || ForceDisassemble) && !IsAsmParserOnly; } RecognizableInstr::RecognizableInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) : RecognizableInstrBase(insn), Rec(insn.TheDef), Name(Rec->getName().str()), Is32Bit(false), Is64Bit(false), Operands(&insn.Operands.OperandList), UID(uid), Spec(&tables.specForUID(uid)) { // Check for 64-bit inst which does not require REX // FIXME: Is there some better way to check for In64BitMode? std::vector Predicates = Rec->getValueAsListOfDefs("Predicates"); for (unsigned i = 0, e = Predicates.size(); i != e; ++i) { if (Predicates[i]->getName().contains("Not64Bit") || Predicates[i]->getName().contains("In32Bit")) { Is32Bit = true; break; } if (Predicates[i]->getName().contains("In64Bit")) { Is64Bit = true; break; } } } void RecognizableInstr::processInstr(DisassemblerTables &tables, const CodeGenInstruction &insn, InstrUID uid) { if (!insn.TheDef->isSubClassOf("X86Inst")) return; RecognizableInstr recogInstr(tables, insn, uid); if (!recogInstr.shouldBeEmitted()) return; recogInstr.emitInstructionSpecifier(); recogInstr.emitDecodePath(tables); } #define EVEX_KB(n) \ (HasEVEX_KZ && HasEVEX_B \ ? n##_KZ_B \ : (HasEVEX_K && HasEVEX_B \ ? n##_K_B \ : (HasEVEX_KZ ? n##_KZ \ : (HasEVEX_K ? n##_K : (HasEVEX_B ? n##_B : n))))) #define EVEX_NF(n) (HasEVEX_NF ? n##_NF : n) #define EVEX_B_NF(n) (HasEVEX_B ? EVEX_NF(n##_B) : EVEX_NF(n)) #define EVEX_KB_ADSIZE(n) AdSize == X86Local::AdSize32 ? n##_ADSIZE : EVEX_KB(n) InstructionContext RecognizableInstr::insnContext() const { InstructionContext insnContext; if (Encoding == X86Local::EVEX) { if (HasVEX_L && HasEVEX_L2) { errs() << "Don't support VEX.L if EVEX_L2 is enabled: " << Name << "\n"; llvm_unreachable("Don't support VEX.L if EVEX_L2 is enabled"); } if (HasEVEX_NF) { if (OpPrefix == X86Local::PD) insnContext = EVEX_B_NF(IC_EVEX_OPSIZE); else if (HasREX_W) insnContext = EVEX_B_NF(IC_EVEX_W); else insnContext = EVEX_B_NF(IC_EVEX); } else if (!EncodeRC && HasVEX_L && HasREX_W) { // VEX_L & VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasVEX_L) { // VEX_L if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasEVEX_L2 && HasREX_W) { // EVEX_L2 & VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (!EncodeRC && HasEVEX_L2) { // EVEX_L2 if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_L2_OPSIZE); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_L2_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_L2_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_L2); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (HasREX_W) { // VEX_W if (OpPrefix == X86Local::PD) insnContext = EVEX_KB(IC_EVEX_W_OPSIZE); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB(IC_EVEX_W_XS); else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB(IC_EVEX_W_XD); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX_W); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } // No L, no W else if (OpPrefix == X86Local::PD) { insnContext = EVEX_KB_ADSIZE(IC_EVEX_OPSIZE); } else if (OpPrefix == X86Local::XD) insnContext = EVEX_KB_ADSIZE(IC_EVEX_XD); else if (OpPrefix == X86Local::XS) insnContext = EVEX_KB_ADSIZE(IC_EVEX_XS); else if (OpPrefix == X86Local::PS) insnContext = EVEX_KB(IC_EVEX); else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } /// eof EVEX } else if (Encoding == X86Local::VEX || Encoding == X86Local::XOP) { if (HasVEX_L && HasREX_W) { if (OpPrefix == X86Local::PD) insnContext = IC_VEX_L_W_OPSIZE; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_L_W_XS; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_L_W_XD; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX_L_W; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (OpPrefix == X86Local::PD && HasVEX_L) insnContext = IC_VEX_L_OPSIZE; else if (OpPrefix == X86Local::PD && HasREX_W) insnContext = IC_VEX_W_OPSIZE; else if (OpPrefix == X86Local::PD) insnContext = IC_VEX_OPSIZE; else if (HasVEX_L && OpPrefix == X86Local::XS) insnContext = IC_VEX_L_XS; else if (HasVEX_L && OpPrefix == X86Local::XD) insnContext = IC_VEX_L_XD; else if (HasREX_W && OpPrefix == X86Local::XS) insnContext = IC_VEX_W_XS; else if (HasREX_W && OpPrefix == X86Local::XD) insnContext = IC_VEX_W_XD; else if (HasREX_W && OpPrefix == X86Local::PS) insnContext = IC_VEX_W; else if (HasVEX_L && OpPrefix == X86Local::PS) insnContext = IC_VEX_L; else if (OpPrefix == X86Local::XD) insnContext = IC_VEX_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_VEX_XS; else if (OpPrefix == X86Local::PS) insnContext = IC_VEX; else { errs() << "Instruction does not use a prefix: " << Name << "\n"; llvm_unreachable("Invalid prefix"); } } else if (Is64Bit || HasREX_W || AdSize == X86Local::AdSize64) { if (HasREX_W && (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD)) insnContext = IC_64BIT_REXW_OPSIZE; else if (HasREX_W && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_REXW_ADSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS_OPSIZE; else if (AdSize == X86Local::AdSize32 && OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize32) insnContext = IC_64BIT_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_64BIT_OPSIZE; else if (AdSize == X86Local::AdSize32) insnContext = IC_64BIT_ADSIZE; else if (HasREX_W && OpPrefix == X86Local::XS) insnContext = IC_64BIT_REXW_XS; else if (HasREX_W && OpPrefix == X86Local::XD) insnContext = IC_64BIT_REXW_XD; else if (OpPrefix == X86Local::XD) insnContext = IC_64BIT_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_64BIT_XS; else if (ExplicitREX2Prefix) insnContext = IC_64BIT_REX2; else if (HasREX_W) insnContext = IC_64BIT_REXW; else insnContext = IC_64BIT; } else { if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_OPSIZE; else if (OpSize == X86Local::OpSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_OPSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XD) insnContext = IC_XD_ADSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::XS) insnContext = IC_XS_ADSIZE; else if (AdSize == X86Local::AdSize16 && OpPrefix == X86Local::PD) insnContext = IC_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 && AdSize == X86Local::AdSize16) insnContext = IC_OPSIZE_ADSIZE; else if (OpSize == X86Local::OpSize16 || OpPrefix == X86Local::PD) insnContext = IC_OPSIZE; else if (AdSize == X86Local::AdSize16) insnContext = IC_ADSIZE; else if (OpPrefix == X86Local::XD) insnContext = IC_XD; else if (OpPrefix == X86Local::XS) insnContext = IC_XS; else insnContext = IC; } return insnContext; } void RecognizableInstr::adjustOperandEncoding(OperandEncoding &encoding) { // The scaling factor for AVX512 compressed displacement encoding is an // instruction attribute. Adjust the ModRM encoding type to include the // scale for compressed displacement. if ((encoding != ENCODING_RM && encoding != ENCODING_VSIB && encoding != ENCODING_SIB) || CD8_Scale == 0) return; encoding = (OperandEncoding)(encoding + Log2_32(CD8_Scale)); assert(((encoding >= ENCODING_RM && encoding <= ENCODING_RM_CD64) || (encoding == ENCODING_SIB) || (encoding >= ENCODING_VSIB && encoding <= ENCODING_VSIB_CD64)) && "Invalid CDisp scaling"); } void RecognizableInstr::handleOperand( bool optional, unsigned &operandIndex, unsigned &physicalOperandIndex, unsigned numPhysicalOperands, const unsigned *operandMapping, OperandEncoding (*encodingFromString)(const std::string &, uint8_t OpSize)) { if (optional) { if (physicalOperandIndex >= numPhysicalOperands) return; } else { assert(physicalOperandIndex < numPhysicalOperands); } while (operandMapping[operandIndex] != operandIndex) { Spec->operands[operandIndex].encoding = ENCODING_DUP; Spec->operands[operandIndex].type = (OperandType)(TYPE_DUP0 + operandMapping[operandIndex]); ++operandIndex; } StringRef typeName = (*Operands)[operandIndex].Rec->getName(); OperandEncoding encoding = encodingFromString(std::string(typeName), OpSize); // Adjust the encoding type for an operand based on the instruction. adjustOperandEncoding(encoding); Spec->operands[operandIndex].encoding = encoding; Spec->operands[operandIndex].type = typeFromString(std::string(typeName), HasREX_W, OpSize); ++operandIndex; ++physicalOperandIndex; } void RecognizableInstr::emitInstructionSpecifier() { Spec->name = Name; Spec->insnContext = insnContext(); const std::vector &OperandList = *Operands; unsigned numOperands = OperandList.size(); unsigned numPhysicalOperands = 0; // operandMapping maps from operands in OperandList to their originals. // If operandMapping[i] != i, then the entry is a duplicate. unsigned operandMapping[X86_MAX_OPERANDS]; assert(numOperands <= X86_MAX_OPERANDS && "X86_MAX_OPERANDS is not large enough"); for (unsigned operandIndex = 0; operandIndex < numOperands; ++operandIndex) { if (!OperandList[operandIndex].Constraints.empty()) { const CGIOperandList::ConstraintInfo &Constraint = OperandList[operandIndex].Constraints[0]; if (Constraint.isTied()) { operandMapping[operandIndex] = operandIndex; operandMapping[Constraint.getTiedOperand()] = operandIndex; } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } else { ++numPhysicalOperands; operandMapping[operandIndex] = operandIndex; } } #define HANDLE_OPERAND(class) \ handleOperand(false, operandIndex, physicalOperandIndex, \ numPhysicalOperands, operandMapping, \ class##EncodingFromString); #define HANDLE_OPTIONAL(class) \ handleOperand(true, operandIndex, physicalOperandIndex, numPhysicalOperands, \ operandMapping, class##EncodingFromString); // operandIndex should always be < numOperands unsigned operandIndex = 0; // physicalOperandIndex should always be < numPhysicalOperands unsigned physicalOperandIndex = 0; #ifndef NDEBUG // Given the set of prefix bits, how many additional operands does the // instruction have? unsigned additionalOperands = 0; if (HasVEX_4V) ++additionalOperands; if (HasEVEX_K) ++additionalOperands; if (HasTwoConditionalOps) additionalOperands += 2; #endif bool IsND = OpMap == X86Local::T_MAP4 && HasEVEX_B && HasVEX_4V; switch (Form) { default: llvm_unreachable("Unhandled form"); case X86Local::PrefixByte: return; case X86Local::RawFrmSrc: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDst: HANDLE_OPERAND(relocation); return; case X86Local::RawFrmDstSrc: HANDLE_OPERAND(relocation); HANDLE_OPERAND(relocation); return; case X86Local::RawFrm: // Operand 1 (optional) is an address or immediate. assert(numPhysicalOperands <= 1 && "Unexpected number of operands for RawFrm"); HANDLE_OPTIONAL(relocation) break; case X86Local::RawFrmMemOffs: // Operand 1 is an address. HANDLE_OPERAND(relocation); break; case X86Local::AddRegFrm: // Operand 1 is added to the opcode. // Operand 2 (optional) is an address. assert(numPhysicalOperands >= 1 && numPhysicalOperands <= 2 && "Unexpected number of operands for AddRegFrm"); HANDLE_OPERAND(opcodeModifier) HANDLE_OPTIONAL(relocation) break; case X86Local::AddCCFrm: // Operand 1 (optional) is an address or immediate. assert(numPhysicalOperands == 2 && "Unexpected number of operands for AddCCFrm"); HANDLE_OPERAND(relocation) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMDestRegCC: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMDestRegCC"); HANDLE_OPERAND(rmRegister) HANDLE_OPERAND(roRegister) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMDestReg: // Operand 1 is a register operand in the R/M field. // - In AVX512 there may be a mask operand here - // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestReg"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(rmRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (!IsND && HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMDestMemCC: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMDestMemCC"); HANDLE_OPERAND(memory) HANDLE_OPERAND(roRegister) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMDestMem4VOp3CC: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a register operand in the R/M field. // Operand 3 is VEX.vvvv // Operand 4 is condition code. assert(numPhysicalOperands == 4 && "Unexpected number of operands for MRMDestMem4VOp3CC"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(memory) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMDestMem: case X86Local::MRMDestMemFSIB: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 is a register operand in the Reg/Opcode field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMDestMemFrm with VEX_4V"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(memory) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (!IsND && HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcReg: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a register operand in the R/M field. // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. // Operand 4 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcRegFrm"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (!IsND && HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(rmRegister) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMSrcReg4VOp3: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMSrcReg4VOp3Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(rmRegister) HANDLE_OPERAND(vvvvRegister) break; case X86Local::MRMSrcRegOp4: assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcRegOp4Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(immediate) // Register in imm[7:4] HANDLE_OPERAND(rmRegister) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcRegCC: assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && "Unexpected number of operands for MRMSrcRegCC"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPERAND(rmRegister) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMSrcMem: case X86Local::MRMSrcMemFSIB: // Operand 1 is a register operand in the Reg/Opcode field. // Operand 2 is a memory operand (possibly SIB-extended) // - In AVX, there is a register operand in the VEX.vvvv field here - // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 2 + additionalOperands && numPhysicalOperands <= 4 + additionalOperands && "Unexpected number of operands for MRMSrcMemFrm"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) if (!IsND && HasVEX_4V) // FIXME: In AVX, the register below becomes the one encoded // in ModRMVEX and the one above the one in the VEX.VVVV field HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) // above might be a register in 7:4 break; case X86Local::MRMSrcMem4VOp3: assert(numPhysicalOperands == 3 && "Unexpected number of operands for MRMSrcMem4VOp3Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(memory) HANDLE_OPERAND(vvvvRegister) break; case X86Local::MRMSrcMemOp4: assert(numPhysicalOperands >= 4 && numPhysicalOperands <= 5 && "Unexpected number of operands for MRMSrcMemOp4Frm"); HANDLE_OPERAND(roRegister) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(immediate) // Register in imm[7:4] HANDLE_OPERAND(memory) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMSrcMemCC: assert(numPhysicalOperands >= 3 && numPhysicalOperands <= 4 && "Unexpected number of operands for MRMSrcMemCC"); if (IsND) HANDLE_OPERAND(vvvvRegister) HANDLE_OPERAND(roRegister) HANDLE_OPERAND(memory) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMXrCC: assert(numPhysicalOperands == 2 && "Unexpected number of operands for MRMXrCC"); HANDLE_OPERAND(rmRegister) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMr0: // Operand 1 is a register operand in the R/M field. HANDLE_OPERAND(roRegister) break; case X86Local::MRMXr: case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: // Operand 1 is a register operand in the R/M field. // Operand 2 (optional) is an immediate or relocation. // Operand 3 (optional) is an immediate. assert(numPhysicalOperands >= 0 + additionalOperands && numPhysicalOperands <= 3 + additionalOperands && "Unexpected number of operands for MRMnr"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPTIONAL(rmRegister) HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) break; case X86Local::MRMXmCC: assert(numPhysicalOperands == 2 && "Unexpected number of operands for MRMXm"); HANDLE_OPERAND(memory) HANDLE_OPERAND(opcodeModifier) break; case X86Local::MRMXm: case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: // Operand 1 is a memory operand (possibly SIB-extended) // Operand 2 (optional) is an immediate or relocation. assert(numPhysicalOperands >= 1 + additionalOperands && numPhysicalOperands <= 2 + additionalOperands && "Unexpected number of operands for MRMnm"); if (HasVEX_4V) HANDLE_OPERAND(vvvvRegister) if (HasEVEX_K) HANDLE_OPERAND(writemaskRegister) HANDLE_OPERAND(memory) HANDLE_OPTIONAL(relocation) HANDLE_OPTIONAL(immediate) HANDLE_OPTIONAL(immediate) break; case X86Local::RawFrmImm8: // operand 1 is a 16-bit immediate // operand 2 is an 8-bit immediate assert(numPhysicalOperands == 2 && "Unexpected number of operands for X86Local::RawFrmImm8"); HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::RawFrmImm16: // operand 1 is a 16-bit immediate // operand 2 is a 16-bit immediate HANDLE_OPERAND(immediate) HANDLE_OPERAND(immediate) break; case X86Local::MRM0X: case X86Local::MRM1X: case X86Local::MRM2X: case X86Local::MRM3X: case X86Local::MRM4X: case X86Local::MRM5X: case X86Local::MRM6X: case X86Local::MRM7X: #define MAP(from, to) case X86Local::MRM_##from: X86_INSTR_MRM_MAPPING #undef MAP HANDLE_OPTIONAL(relocation) break; } #undef HANDLE_OPERAND #undef HANDLE_OPTIONAL } void RecognizableInstr::emitDecodePath(DisassemblerTables &tables) const { // Special cases where the LLVM tables are not complete #define MAP(from, to) case X86Local::MRM_##from: std::optional opcodeType; switch (OpMap) { default: llvm_unreachable("Invalid map!"); case X86Local::OB: opcodeType = ONEBYTE; break; case X86Local::TB: opcodeType = TWOBYTE; break; case X86Local::T8: opcodeType = THREEBYTE_38; break; case X86Local::TA: opcodeType = THREEBYTE_3A; break; case X86Local::XOP8: opcodeType = XOP8_MAP; break; case X86Local::XOP9: opcodeType = XOP9_MAP; break; case X86Local::XOPA: opcodeType = XOPA_MAP; break; case X86Local::ThreeDNow: opcodeType = THREEDNOW_MAP; break; case X86Local::T_MAP4: opcodeType = MAP4; break; case X86Local::T_MAP5: opcodeType = MAP5; break; case X86Local::T_MAP6: opcodeType = MAP6; break; case X86Local::T_MAP7: opcodeType = MAP7; break; } std::unique_ptr filter; switch (Form) { default: llvm_unreachable("Invalid form!"); case X86Local::Pseudo: llvm_unreachable("Pseudo should not be emitted!"); case X86Local::RawFrm: case X86Local::AddRegFrm: case X86Local::RawFrmMemOffs: case X86Local::RawFrmSrc: case X86Local::RawFrmDst: case X86Local::RawFrmDstSrc: case X86Local::RawFrmImm8: case X86Local::RawFrmImm16: case X86Local::AddCCFrm: case X86Local::PrefixByte: filter = std::make_unique(); break; case X86Local::MRMDestReg: case X86Local::MRMDestRegCC: case X86Local::MRMSrcReg: case X86Local::MRMSrcReg4VOp3: case X86Local::MRMSrcRegOp4: case X86Local::MRMSrcRegCC: case X86Local::MRMXrCC: case X86Local::MRMXr: filter = std::make_unique(true); break; case X86Local::MRMDestMem: case X86Local::MRMDestMemCC: case X86Local::MRMDestMem4VOp3CC: case X86Local::MRMDestMemFSIB: case X86Local::MRMSrcMem: case X86Local::MRMSrcMemFSIB: case X86Local::MRMSrcMem4VOp3: case X86Local::MRMSrcMemOp4: case X86Local::MRMSrcMemCC: case X86Local::MRMXmCC: case X86Local::MRMXm: filter = std::make_unique(false); break; case X86Local::MRM0r: case X86Local::MRM1r: case X86Local::MRM2r: case X86Local::MRM3r: case X86Local::MRM4r: case X86Local::MRM5r: case X86Local::MRM6r: case X86Local::MRM7r: filter = std::make_unique(true, Form - X86Local::MRM0r); break; case X86Local::MRM0X: case X86Local::MRM1X: case X86Local::MRM2X: case X86Local::MRM3X: case X86Local::MRM4X: case X86Local::MRM5X: case X86Local::MRM6X: case X86Local::MRM7X: filter = std::make_unique(true, Form - X86Local::MRM0X); break; case X86Local::MRMr0: filter = std::make_unique(true, Form - X86Local::MRMr0); break; case X86Local::MRM0m: case X86Local::MRM1m: case X86Local::MRM2m: case X86Local::MRM3m: case X86Local::MRM4m: case X86Local::MRM5m: case X86Local::MRM6m: case X86Local::MRM7m: filter = std::make_unique(false, Form - X86Local::MRM0m); break; X86_INSTR_MRM_MAPPING filter = std::make_unique(0xC0 + Form - X86Local::MRM_C0); break; } // switch (Form) uint8_t opcodeToSet = Opcode; unsigned AddressSize = 0; switch (AdSize) { case X86Local::AdSize16: AddressSize = 16; break; case X86Local::AdSize32: AddressSize = 32; break; case X86Local::AdSize64: AddressSize = 64; break; } assert(opcodeType && "Opcode type not set"); assert(filter && "Filter not set"); if (Form == X86Local::AddRegFrm || Form == X86Local::MRMSrcRegCC || Form == X86Local::MRMSrcMemCC || Form == X86Local::MRMXrCC || Form == X86Local::MRMXmCC || Form == X86Local::AddCCFrm || Form == X86Local::MRMDestRegCC || Form == X86Local::MRMDestMemCC || Form == X86Local::MRMDestMem4VOp3CC) { uint8_t Count = Form == X86Local::AddRegFrm ? 8 : 16; assert(((opcodeToSet % Count) == 0) && "ADDREG_FRM opcode not aligned"); uint8_t currentOpcode; for (currentOpcode = opcodeToSet; currentOpcode < (uint8_t)(opcodeToSet + Count); ++currentOpcode) tables.setTableFields(*opcodeType, insnContext(), currentOpcode, *filter, UID, Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, IgnoresW, AddressSize); } else { tables.setTableFields(*opcodeType, insnContext(), opcodeToSet, *filter, UID, Is32Bit, OpPrefix == 0, IgnoresVEX_L || EncodeRC, IgnoresW, AddressSize); } #undef MAP } #define TYPE(str, type) \ if (s == str) \ return type; OperandType RecognizableInstr::typeFromString(const std::string &s, bool hasREX_W, uint8_t OpSize) { if (hasREX_W) { // For instructions with a REX_W prefix, a declared 32-bit register encoding // is special. TYPE("GR32", TYPE_R32) } if (OpSize == X86Local::OpSize16) { // For OpSize16 instructions, a declared 16-bit register or // immediate encoding is special. TYPE("GR16", TYPE_Rv) } else if (OpSize == X86Local::OpSize32) { // For OpSize32 instructions, a declared 32-bit register or // immediate encoding is special. TYPE("GR32", TYPE_Rv) } TYPE("i16mem", TYPE_M) TYPE("i16imm", TYPE_IMM) TYPE("i16i8imm", TYPE_IMM) TYPE("GR16", TYPE_R16) TYPE("GR16orGR32orGR64", TYPE_R16) TYPE("i32mem", TYPE_M) TYPE("i32imm", TYPE_IMM) TYPE("i32i8imm", TYPE_IMM) TYPE("GR32", TYPE_R32) TYPE("GR32orGR64", TYPE_R32) TYPE("i64mem", TYPE_M) TYPE("i64i32imm", TYPE_IMM) TYPE("i64i8imm", TYPE_IMM) TYPE("GR64", TYPE_R64) TYPE("i8mem", TYPE_M) TYPE("i8imm", TYPE_IMM) TYPE("u4imm", TYPE_UIMM8) TYPE("u8imm", TYPE_UIMM8) TYPE("i16u8imm", TYPE_UIMM8) TYPE("i32u8imm", TYPE_UIMM8) TYPE("i64u8imm", TYPE_UIMM8) TYPE("GR8", TYPE_R8) TYPE("VR128", TYPE_XMM) TYPE("VR128X", TYPE_XMM) TYPE("f128mem", TYPE_M) TYPE("f256mem", TYPE_M) TYPE("f512mem", TYPE_M) TYPE("FR128", TYPE_XMM) TYPE("FR64", TYPE_XMM) TYPE("FR64X", TYPE_XMM) TYPE("f64mem", TYPE_M) TYPE("sdmem", TYPE_M) TYPE("FR16X", TYPE_XMM) TYPE("FR32", TYPE_XMM) TYPE("FR32X", TYPE_XMM) TYPE("f32mem", TYPE_M) TYPE("f16mem", TYPE_M) TYPE("ssmem", TYPE_M) TYPE("shmem", TYPE_M) TYPE("RST", TYPE_ST) TYPE("RSTi", TYPE_ST) TYPE("i128mem", TYPE_M) TYPE("i256mem", TYPE_M) TYPE("i512mem", TYPE_M) TYPE("i512mem_GR16", TYPE_M) TYPE("i512mem_GR32", TYPE_M) TYPE("i512mem_GR64", TYPE_M) TYPE("i64i32imm_brtarget", TYPE_REL) TYPE("i16imm_brtarget", TYPE_REL) TYPE("i32imm_brtarget", TYPE_REL) TYPE("ccode", TYPE_IMM) TYPE("cflags", TYPE_IMM) TYPE("AVX512RC", TYPE_IMM) TYPE("brtarget32", TYPE_REL) TYPE("brtarget16", TYPE_REL) TYPE("brtarget8", TYPE_REL) TYPE("f80mem", TYPE_M) TYPE("lea64_32mem", TYPE_M) TYPE("lea64mem", TYPE_M) TYPE("VR64", TYPE_MM64) TYPE("i64imm", TYPE_IMM) TYPE("anymem", TYPE_M) TYPE("opaquemem", TYPE_M) TYPE("sibmem", TYPE_MSIB) TYPE("SEGMENT_REG", TYPE_SEGMENTREG) TYPE("DEBUG_REG", TYPE_DEBUGREG) TYPE("CONTROL_REG", TYPE_CONTROLREG) TYPE("srcidx8", TYPE_SRCIDX) TYPE("srcidx16", TYPE_SRCIDX) TYPE("srcidx32", TYPE_SRCIDX) TYPE("srcidx64", TYPE_SRCIDX) TYPE("dstidx8", TYPE_DSTIDX) TYPE("dstidx16", TYPE_DSTIDX) TYPE("dstidx32", TYPE_DSTIDX) TYPE("dstidx64", TYPE_DSTIDX) TYPE("offset16_8", TYPE_MOFFS) TYPE("offset16_16", TYPE_MOFFS) TYPE("offset16_32", TYPE_MOFFS) TYPE("offset32_8", TYPE_MOFFS) TYPE("offset32_16", TYPE_MOFFS) TYPE("offset32_32", TYPE_MOFFS) TYPE("offset32_64", TYPE_MOFFS) TYPE("offset64_8", TYPE_MOFFS) TYPE("offset64_16", TYPE_MOFFS) TYPE("offset64_32", TYPE_MOFFS) TYPE("offset64_64", TYPE_MOFFS) TYPE("VR256", TYPE_YMM) TYPE("VR256X", TYPE_YMM) TYPE("VR512", TYPE_ZMM) TYPE("VK1", TYPE_VK) TYPE("VK1WM", TYPE_VK) TYPE("VK2", TYPE_VK) TYPE("VK2WM", TYPE_VK) TYPE("VK4", TYPE_VK) TYPE("VK4WM", TYPE_VK) TYPE("VK8", TYPE_VK) TYPE("VK8WM", TYPE_VK) TYPE("VK16", TYPE_VK) TYPE("VK16WM", TYPE_VK) TYPE("VK32", TYPE_VK) TYPE("VK32WM", TYPE_VK) TYPE("VK64", TYPE_VK) TYPE("VK64WM", TYPE_VK) TYPE("VK1Pair", TYPE_VK_PAIR) TYPE("VK2Pair", TYPE_VK_PAIR) TYPE("VK4Pair", TYPE_VK_PAIR) TYPE("VK8Pair", TYPE_VK_PAIR) TYPE("VK16Pair", TYPE_VK_PAIR) TYPE("vx64mem", TYPE_MVSIBX) TYPE("vx128mem", TYPE_MVSIBX) TYPE("vx256mem", TYPE_MVSIBX) TYPE("vy128mem", TYPE_MVSIBY) TYPE("vy256mem", TYPE_MVSIBY) TYPE("vx64xmem", TYPE_MVSIBX) TYPE("vx128xmem", TYPE_MVSIBX) TYPE("vx256xmem", TYPE_MVSIBX) TYPE("vy128xmem", TYPE_MVSIBY) TYPE("vy256xmem", TYPE_MVSIBY) TYPE("vy512xmem", TYPE_MVSIBY) TYPE("vz256mem", TYPE_MVSIBZ) TYPE("vz512mem", TYPE_MVSIBZ) TYPE("BNDR", TYPE_BNDR) TYPE("TILE", TYPE_TMM) errs() << "Unhandled type string " << s << "\n"; llvm_unreachable("Unhandled type string"); } #undef TYPE #define ENCODING(str, encoding) \ if (s == str) \ return encoding; OperandEncoding RecognizableInstr::immediateEncodingFromString(const std::string &s, uint8_t OpSize) { if (OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i32i8imm", ENCODING_IB) ENCODING("AVX512RC", ENCODING_IRC) ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("ccode", ENCODING_CC) ENCODING("cflags", ENCODING_CF) ENCODING("u4imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i16u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) ENCODING("i64u8imm", ENCODING_IB) // This is not a typo. Instructions like BLENDVPD put // register IDs in 8-bit immediates nowadays. ENCODING("FR32", ENCODING_IB) ENCODING("FR64", ENCODING_IB) ENCODING("FR128", ENCODING_IB) ENCODING("VR128", ENCODING_IB) ENCODING("VR256", ENCODING_IB) ENCODING("FR16X", ENCODING_IB) ENCODING("FR32X", ENCODING_IB) ENCODING("FR64X", ENCODING_IB) ENCODING("VR128X", ENCODING_IB) ENCODING("VR256X", ENCODING_IB) ENCODING("VR512", ENCODING_IB) ENCODING("TILE", ENCODING_IB) errs() << "Unhandled immediate encoding " << s << "\n"; llvm_unreachable("Unhandled immediate encoding"); } OperandEncoding RecognizableInstr::rmRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("RST", ENCODING_FP) ENCODING("RSTi", ENCODING_FP) ENCODING("GR16", ENCODING_RM) ENCODING("GR16orGR32orGR64", ENCODING_RM) ENCODING("GR32", ENCODING_RM) ENCODING("GR32orGR64", ENCODING_RM) ENCODING("GR64", ENCODING_RM) ENCODING("GR8", ENCODING_RM) ENCODING("VR128", ENCODING_RM) ENCODING("VR128X", ENCODING_RM) ENCODING("FR128", ENCODING_RM) ENCODING("FR64", ENCODING_RM) ENCODING("FR32", ENCODING_RM) ENCODING("FR64X", ENCODING_RM) ENCODING("FR32X", ENCODING_RM) ENCODING("FR16X", ENCODING_RM) ENCODING("VR64", ENCODING_RM) ENCODING("VR256", ENCODING_RM) ENCODING("VR256X", ENCODING_RM) ENCODING("VR512", ENCODING_RM) ENCODING("VK1", ENCODING_RM) ENCODING("VK2", ENCODING_RM) ENCODING("VK4", ENCODING_RM) ENCODING("VK8", ENCODING_RM) ENCODING("VK16", ENCODING_RM) ENCODING("VK32", ENCODING_RM) ENCODING("VK64", ENCODING_RM) ENCODING("BNDR", ENCODING_RM) ENCODING("TILE", ENCODING_RM) errs() << "Unhandled R/M register encoding " << s << "\n"; llvm_unreachable("Unhandled R/M register encoding"); } OperandEncoding RecognizableInstr::roRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR16", ENCODING_REG) ENCODING("GR16orGR32orGR64", ENCODING_REG) ENCODING("GR32", ENCODING_REG) ENCODING("GR32orGR64", ENCODING_REG) ENCODING("GR64", ENCODING_REG) ENCODING("GR8", ENCODING_REG) ENCODING("VR128", ENCODING_REG) ENCODING("FR128", ENCODING_REG) ENCODING("FR64", ENCODING_REG) ENCODING("FR32", ENCODING_REG) ENCODING("VR64", ENCODING_REG) ENCODING("SEGMENT_REG", ENCODING_REG) ENCODING("DEBUG_REG", ENCODING_REG) ENCODING("CONTROL_REG", ENCODING_REG) ENCODING("VR256", ENCODING_REG) ENCODING("VR256X", ENCODING_REG) ENCODING("VR128X", ENCODING_REG) ENCODING("FR64X", ENCODING_REG) ENCODING("FR32X", ENCODING_REG) ENCODING("FR16X", ENCODING_REG) ENCODING("VR512", ENCODING_REG) ENCODING("VK1", ENCODING_REG) ENCODING("VK2", ENCODING_REG) ENCODING("VK4", ENCODING_REG) ENCODING("VK8", ENCODING_REG) ENCODING("VK16", ENCODING_REG) ENCODING("VK32", ENCODING_REG) ENCODING("VK64", ENCODING_REG) ENCODING("VK1Pair", ENCODING_REG) ENCODING("VK2Pair", ENCODING_REG) ENCODING("VK4Pair", ENCODING_REG) ENCODING("VK8Pair", ENCODING_REG) ENCODING("VK16Pair", ENCODING_REG) ENCODING("VK1WM", ENCODING_REG) ENCODING("VK2WM", ENCODING_REG) ENCODING("VK4WM", ENCODING_REG) ENCODING("VK8WM", ENCODING_REG) ENCODING("VK16WM", ENCODING_REG) ENCODING("VK32WM", ENCODING_REG) ENCODING("VK64WM", ENCODING_REG) ENCODING("BNDR", ENCODING_REG) ENCODING("TILE", ENCODING_REG) errs() << "Unhandled reg/opcode register encoding " << s << "\n"; llvm_unreachable("Unhandled reg/opcode register encoding"); } OperandEncoding RecognizableInstr::vvvvRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR8", ENCODING_VVVV) ENCODING("GR16", ENCODING_VVVV) ENCODING("GR32", ENCODING_VVVV) ENCODING("GR64", ENCODING_VVVV) ENCODING("FR32", ENCODING_VVVV) ENCODING("FR128", ENCODING_VVVV) ENCODING("FR64", ENCODING_VVVV) ENCODING("VR128", ENCODING_VVVV) ENCODING("VR256", ENCODING_VVVV) ENCODING("FR16X", ENCODING_VVVV) ENCODING("FR32X", ENCODING_VVVV) ENCODING("FR64X", ENCODING_VVVV) ENCODING("VR128X", ENCODING_VVVV) ENCODING("VR256X", ENCODING_VVVV) ENCODING("VR512", ENCODING_VVVV) ENCODING("VK1", ENCODING_VVVV) ENCODING("VK2", ENCODING_VVVV) ENCODING("VK4", ENCODING_VVVV) ENCODING("VK8", ENCODING_VVVV) ENCODING("VK16", ENCODING_VVVV) ENCODING("VK32", ENCODING_VVVV) ENCODING("VK64", ENCODING_VVVV) ENCODING("TILE", ENCODING_VVVV) errs() << "Unhandled VEX.vvvv register encoding " << s << "\n"; llvm_unreachable("Unhandled VEX.vvvv register encoding"); } OperandEncoding RecognizableInstr::writemaskRegisterEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("VK1WM", ENCODING_WRITEMASK) ENCODING("VK2WM", ENCODING_WRITEMASK) ENCODING("VK4WM", ENCODING_WRITEMASK) ENCODING("VK8WM", ENCODING_WRITEMASK) ENCODING("VK16WM", ENCODING_WRITEMASK) ENCODING("VK32WM", ENCODING_WRITEMASK) ENCODING("VK64WM", ENCODING_WRITEMASK) errs() << "Unhandled mask register encoding " << s << "\n"; llvm_unreachable("Unhandled mask register encoding"); } OperandEncoding RecognizableInstr::memoryEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("i16mem", ENCODING_RM) ENCODING("i32mem", ENCODING_RM) ENCODING("i64mem", ENCODING_RM) ENCODING("i8mem", ENCODING_RM) ENCODING("shmem", ENCODING_RM) ENCODING("ssmem", ENCODING_RM) ENCODING("sdmem", ENCODING_RM) ENCODING("f128mem", ENCODING_RM) ENCODING("f256mem", ENCODING_RM) ENCODING("f512mem", ENCODING_RM) ENCODING("f64mem", ENCODING_RM) ENCODING("f32mem", ENCODING_RM) ENCODING("f16mem", ENCODING_RM) ENCODING("i128mem", ENCODING_RM) ENCODING("i256mem", ENCODING_RM) ENCODING("i512mem", ENCODING_RM) ENCODING("i512mem_GR16", ENCODING_RM) ENCODING("i512mem_GR32", ENCODING_RM) ENCODING("i512mem_GR64", ENCODING_RM) ENCODING("f80mem", ENCODING_RM) ENCODING("lea64_32mem", ENCODING_RM) ENCODING("lea64mem", ENCODING_RM) ENCODING("anymem", ENCODING_RM) ENCODING("opaquemem", ENCODING_RM) ENCODING("sibmem", ENCODING_SIB) ENCODING("vx64mem", ENCODING_VSIB) ENCODING("vx128mem", ENCODING_VSIB) ENCODING("vx256mem", ENCODING_VSIB) ENCODING("vy128mem", ENCODING_VSIB) ENCODING("vy256mem", ENCODING_VSIB) ENCODING("vx64xmem", ENCODING_VSIB) ENCODING("vx128xmem", ENCODING_VSIB) ENCODING("vx256xmem", ENCODING_VSIB) ENCODING("vy128xmem", ENCODING_VSIB) ENCODING("vy256xmem", ENCODING_VSIB) ENCODING("vy512xmem", ENCODING_VSIB) ENCODING("vz256mem", ENCODING_VSIB) ENCODING("vz512mem", ENCODING_VSIB) errs() << "Unhandled memory encoding " << s << "\n"; llvm_unreachable("Unhandled memory encoding"); } OperandEncoding RecognizableInstr::relocationEncodingFromString(const std::string &s, uint8_t OpSize) { if (OpSize != X86Local::OpSize16) { // For instructions without an OpSize prefix, a declared 16-bit register or // immediate encoding is special. ENCODING("i16imm", ENCODING_IW) } ENCODING("i16imm", ENCODING_Iv) ENCODING("i16i8imm", ENCODING_IB) ENCODING("i32imm", ENCODING_Iv) ENCODING("i32i8imm", ENCODING_IB) ENCODING("i64i32imm", ENCODING_ID) ENCODING("i64i8imm", ENCODING_IB) ENCODING("i8imm", ENCODING_IB) ENCODING("u8imm", ENCODING_IB) ENCODING("i16u8imm", ENCODING_IB) ENCODING("i32u8imm", ENCODING_IB) ENCODING("i64u8imm", ENCODING_IB) ENCODING("i64i32imm_brtarget", ENCODING_ID) ENCODING("i16imm_brtarget", ENCODING_IW) ENCODING("i32imm_brtarget", ENCODING_ID) ENCODING("brtarget32", ENCODING_ID) ENCODING("brtarget16", ENCODING_IW) ENCODING("brtarget8", ENCODING_IB) ENCODING("i64imm", ENCODING_IO) ENCODING("offset16_8", ENCODING_Ia) ENCODING("offset16_16", ENCODING_Ia) ENCODING("offset16_32", ENCODING_Ia) ENCODING("offset32_8", ENCODING_Ia) ENCODING("offset32_16", ENCODING_Ia) ENCODING("offset32_32", ENCODING_Ia) ENCODING("offset32_64", ENCODING_Ia) ENCODING("offset64_8", ENCODING_Ia) ENCODING("offset64_16", ENCODING_Ia) ENCODING("offset64_32", ENCODING_Ia) ENCODING("offset64_64", ENCODING_Ia) ENCODING("srcidx8", ENCODING_SI) ENCODING("srcidx16", ENCODING_SI) ENCODING("srcidx32", ENCODING_SI) ENCODING("srcidx64", ENCODING_SI) ENCODING("dstidx8", ENCODING_DI) ENCODING("dstidx16", ENCODING_DI) ENCODING("dstidx32", ENCODING_DI) ENCODING("dstidx64", ENCODING_DI) errs() << "Unhandled relocation encoding " << s << "\n"; llvm_unreachable("Unhandled relocation encoding"); } OperandEncoding RecognizableInstr::opcodeModifierEncodingFromString(const std::string &s, uint8_t OpSize) { ENCODING("GR32", ENCODING_Rv) ENCODING("GR64", ENCODING_RO) ENCODING("GR16", ENCODING_Rv) ENCODING("GR8", ENCODING_RB) ENCODING("ccode", ENCODING_CC) errs() << "Unhandled opcode modifier encoding " << s << "\n"; llvm_unreachable("Unhandled opcode modifier encoding"); } #undef ENCODING