//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting the memory fold tables of // the X86 backend instructions. // //===----------------------------------------------------------------------===// #include "Common/CodeGenInstruction.h" #include "Common/CodeGenTarget.h" #include "X86RecognizableInstr.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/Support/X86FoldTablesUtils.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include using namespace llvm; using namespace X86Disassembler; namespace { // Represents an entry in the manual mapped instructions set. struct ManualMapEntry { const char *RegInstStr; const char *MemInstStr; uint16_t Strategy; }; // List of instructions requiring explicitly aligned memory. const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; // List of instructions NOT requiring explicit memory alignment. const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", "PCMPESTRM", "PCMPESTRI", "PCMPISTRM", "PCMPISTRI"}; const ManualMapEntry ManualMapSet[] = { #define ENTRY(REG, MEM, FLAGS) {#REG, #MEM, FLAGS}, #include "X86ManualFoldTables.def" }; const std::set NoFoldSet = { #define NOFOLD(INSN) #INSN, #include "X86ManualFoldTables.def" }; static bool isExplicitAlign(const CodeGenInstruction *Inst) { return any_of(ExplicitAlign, [Inst](const char *InstStr) { return Inst->TheDef->getName().contains(InstStr); }); } static bool isExplicitUnalign(const CodeGenInstruction *Inst) { return any_of(ExplicitUnalign, [Inst](const char *InstStr) { return Inst->TheDef->getName().contains(InstStr); }); } class X86FoldTablesEmitter { RecordKeeper &Records; CodeGenTarget Target; // Represents an entry in the folding table class X86FoldTableEntry { const CodeGenInstruction *RegInst; const CodeGenInstruction *MemInst; public: bool NoReverse = false; bool NoForward = false; bool FoldLoad = false; bool FoldStore = false; enum BcastType { BCAST_NONE, BCAST_W, BCAST_D, BCAST_Q, BCAST_SS, BCAST_SD, BCAST_SH, }; BcastType BroadcastKind = BCAST_NONE; Align Alignment; X86FoldTableEntry() = default; X86FoldTableEntry(const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst) : RegInst(RegInst), MemInst(MemInst) {} void print(raw_ostream &OS) const { OS.indent(2); OS << "{X86::" << RegInst->TheDef->getName() << ", "; OS << "X86::" << MemInst->TheDef->getName() << ", "; std::string Attrs; if (FoldLoad) Attrs += "TB_FOLDED_LOAD|"; if (FoldStore) Attrs += "TB_FOLDED_STORE|"; if (NoReverse) Attrs += "TB_NO_REVERSE|"; if (NoForward) Attrs += "TB_NO_FORWARD|"; if (Alignment != Align(1)) Attrs += "TB_ALIGN_" + std::to_string(Alignment.value()) + "|"; switch (BroadcastKind) { case BCAST_NONE: break; case BCAST_W: Attrs += "TB_BCAST_W|"; break; case BCAST_D: Attrs += "TB_BCAST_D|"; break; case BCAST_Q: Attrs += "TB_BCAST_Q|"; break; case BCAST_SS: Attrs += "TB_BCAST_SS|"; break; case BCAST_SD: Attrs += "TB_BCAST_SD|"; break; case BCAST_SH: Attrs += "TB_BCAST_SH|"; break; } StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|"); if (SimplifiedAttrs.empty()) SimplifiedAttrs = "0"; OS << SimplifiedAttrs << "},\n"; } #ifndef NDEBUG // Check that Uses and Defs are same after memory fold. void checkCorrectness() const { auto &RegInstRec = *RegInst->TheDef; auto &MemInstRec = *MemInst->TheDef; auto ListOfUsesReg = RegInstRec.getValueAsListOfDefs("Uses"); auto ListOfUsesMem = MemInstRec.getValueAsListOfDefs("Uses"); auto ListOfDefsReg = RegInstRec.getValueAsListOfDefs("Defs"); auto ListOfDefsMem = MemInstRec.getValueAsListOfDefs("Defs"); if (ListOfUsesReg != ListOfUsesMem || ListOfDefsReg != ListOfDefsMem) report_fatal_error("Uses/Defs couldn't be changed after folding " + RegInstRec.getName() + " to " + MemInstRec.getName()); } #endif }; // NOTE: We check the fold tables are sorted in X86InstrFoldTables.cpp by the // enum of the instruction, which is computed in // CodeGenTarget::ComputeInstrsByEnum. So we should use the same comparator // here. // FIXME: Could we share the code with CodeGenTarget::ComputeInstrsByEnum? struct CompareInstrsByEnum { bool operator()(const CodeGenInstruction *LHS, const CodeGenInstruction *RHS) const { assert(LHS && RHS && "LHS and RHS shouldn't be nullptr"); const auto &D1 = *LHS->TheDef; const auto &D2 = *RHS->TheDef; return std::tuple(!D1.getValueAsBit("isPseudo"), D1.getName()) < std::tuple(!D2.getValueAsBit("isPseudo"), D2.getName()); } }; typedef std::map FoldTable; // Table2Addr - Holds instructions which their memory form performs // load+store. // // Table#i - Holds instructions which the their memory form // performs a load OR a store, and their #i'th operand is folded. // // BroadcastTable#i - Holds instructions which the their memory form performs // a broadcast load and their #i'th operand is folded. FoldTable Table2Addr; FoldTable Table0; FoldTable Table1; FoldTable Table2; FoldTable Table3; FoldTable Table4; FoldTable BroadcastTable1; FoldTable BroadcastTable2; FoldTable BroadcastTable3; FoldTable BroadcastTable4; public: X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} // run - Generate the 6 X86 memory fold tables. void run(raw_ostream &OS); private: // Decides to which table to add the entry with the given instructions. // S sets the strategy of adding the TB_NO_REVERSE flag. void updateTables(const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst, uint16_t S = 0, bool IsManual = false, bool IsBroadcast = false); // Generates X86FoldTableEntry with the given instructions and fill it with // the appropriate flags, then adds it to a memory fold table. void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst, uint16_t S, unsigned FoldedIdx, bool IsManual); // Generates X86FoldTableEntry with the given instructions and adds it to a // broadcast table. void addBroadcastEntry(FoldTable &Table, const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst); // Print the given table as a static const C++ array of type // X86FoldTableEntry. void printTable(const FoldTable &Table, StringRef TableName, raw_ostream &OS) { OS << "static const X86FoldTableEntry " << TableName << "[] = {\n"; for (auto &E : Table) E.second.print(OS); OS << "};\n\n"; } }; // Return true if one of the instruction's operands is a RST register class static bool hasRSTRegClass(const CodeGenInstruction *Inst) { return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi"; }); } // Return true if one of the instruction's operands is a ptr_rc_tailcall static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { return OpIn.Rec->getName() == "ptr_rc_tailcall"; }); } static uint8_t byteFromBitsInit(const BitsInit *B) { unsigned N = B->getNumBits(); assert(N <= 8 && "Field is too large for uint8_t!"); uint8_t Value = 0; for (unsigned I = 0; I != N; ++I) { BitInit *Bit = cast(B->getBit(I)); Value |= Bit->getValue() << I; } return Value; } static bool mayFoldFromForm(uint8_t Form) { switch (Form) { default: return Form >= X86Local::MRM0r && Form <= X86Local::MRM7r; case X86Local::MRMXr: case X86Local::MRMXrCC: case X86Local::MRMDestReg: case X86Local::MRMSrcReg: case X86Local::MRMSrcReg4VOp3: case X86Local::MRMSrcRegOp4: case X86Local::MRMSrcRegCC: return true; } } static bool mayFoldToForm(uint8_t Form) { switch (Form) { default: return Form >= X86Local::MRM0m && Form <= X86Local::MRM7m; case X86Local::MRMXm: case X86Local::MRMXmCC: case X86Local::MRMDestMem: case X86Local::MRMSrcMem: case X86Local::MRMSrcMem4VOp3: case X86Local::MRMSrcMemOp4: case X86Local::MRMSrcMemCC: return true; } } static bool mayFoldFromLeftToRight(uint8_t LHS, uint8_t RHS) { switch (LHS) { default: llvm_unreachable("Unexpected Form!"); case X86Local::MRM0r: return RHS == X86Local::MRM0m; case X86Local::MRM1r: return RHS == X86Local::MRM1m; case X86Local::MRM2r: return RHS == X86Local::MRM2m; case X86Local::MRM3r: return RHS == X86Local::MRM3m; case X86Local::MRM4r: return RHS == X86Local::MRM4m; case X86Local::MRM5r: return RHS == X86Local::MRM5m; case X86Local::MRM6r: return RHS == X86Local::MRM6m; case X86Local::MRM7r: return RHS == X86Local::MRM7m; case X86Local::MRMXr: return RHS == X86Local::MRMXm; case X86Local::MRMXrCC: return RHS == X86Local::MRMXmCC; case X86Local::MRMDestReg: return RHS == X86Local::MRMDestMem; case X86Local::MRMSrcReg: return RHS == X86Local::MRMSrcMem; case X86Local::MRMSrcReg4VOp3: return RHS == X86Local::MRMSrcMem4VOp3; case X86Local::MRMSrcRegOp4: return RHS == X86Local::MRMSrcMemOp4; case X86Local::MRMSrcRegCC: return RHS == X86Local::MRMSrcMemCC; } } static bool isNOREXRegClass(const Record *Op) { return Op->getName().contains("_NOREX"); } // Function object - Operator() returns true if the given Reg instruction // matches the Mem instruction of this object. class IsMatch { const CodeGenInstruction *MemInst; const X86Disassembler::RecognizableInstrBase MemRI; bool IsBroadcast; const unsigned Variant; public: IsMatch(const CodeGenInstruction *Inst, bool IsBroadcast, unsigned V) : MemInst(Inst), MemRI(*MemInst), IsBroadcast(IsBroadcast), Variant(V) {} bool operator()(const CodeGenInstruction *RegInst) { X86Disassembler::RecognizableInstrBase RegRI(*RegInst); const Record *RegRec = RegInst->TheDef; const Record *MemRec = MemInst->TheDef; // EVEX_B means different things for memory and register forms. // register form: rounding control or SAE // memory form: broadcast if (IsBroadcast && (RegRI.HasEVEX_B || !MemRI.HasEVEX_B)) return false; // EVEX_B indicates NDD for MAP4 instructions if (!IsBroadcast && (RegRI.HasEVEX_B || MemRI.HasEVEX_B) && RegRI.OpMap != X86Local::T_MAP4) return false; if (!mayFoldFromLeftToRight(RegRI.Form, MemRI.Form)) return false; // X86 encoding is crazy, e.g // // f3 0f c7 30 vmxon (%rax) // f3 0f c7 f0 senduipi %rax // // This two instruction have similiar encoding fields but are unrelated if (X86Disassembler::getMnemonic(MemInst, Variant) != X86Disassembler::getMnemonic(RegInst, Variant)) return false; // Return false if any of the following fields of does not match. if (std::tuple(RegRI.Encoding, RegRI.Opcode, RegRI.OpPrefix, RegRI.OpMap, RegRI.OpSize, RegRI.AdSize, RegRI.HasREX_W, RegRI.HasVEX_4V, RegRI.HasVEX_L, RegRI.IgnoresVEX_L, RegRI.IgnoresW, RegRI.HasEVEX_K, RegRI.HasEVEX_KZ, RegRI.HasEVEX_L2, RegRI.HasEVEX_NF, RegRec->getValueAsBit("hasEVEX_RC"), RegRec->getValueAsBit("hasLockPrefix"), RegRec->getValueAsBit("hasNoTrackPrefix")) != std::tuple(MemRI.Encoding, MemRI.Opcode, MemRI.OpPrefix, MemRI.OpMap, MemRI.OpSize, MemRI.AdSize, MemRI.HasREX_W, MemRI.HasVEX_4V, MemRI.HasVEX_L, MemRI.IgnoresVEX_L, MemRI.IgnoresW, MemRI.HasEVEX_K, MemRI.HasEVEX_KZ, MemRI.HasEVEX_L2, MemRI.HasEVEX_NF, MemRec->getValueAsBit("hasEVEX_RC"), MemRec->getValueAsBit("hasLockPrefix"), MemRec->getValueAsBit("hasNoTrackPrefix"))) return false; // Make sure the sizes of the operands of both instructions suit each other. // This is needed for instructions with intrinsic version (_Int). // Where the only difference is the size of the operands. // For example: VUCOMISDZrm and VUCOMISDrm_Int // Also for instructions that their EVEX version was upgraded to work with // k-registers. For example VPCMPEQBrm (xmm output register) and // VPCMPEQBZ128rm (k register output register). unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); // Instructions with one output in their memory form use the memory folded // operand as source and destination (Read-Modify-Write). unsigned RegStartIdx = (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; bool FoundFoldedOp = false; for (unsigned I = 0, E = MemInst->Operands.size(); I != E; I++) { Record *MemOpRec = MemInst->Operands[I].Rec; Record *RegOpRec = RegInst->Operands[I + RegStartIdx].Rec; if (MemOpRec == RegOpRec) continue; if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec) && ((getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec)) || (isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)))) return false; if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec) && (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))) return false; if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec) && (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))) return false; // Only one operand can be folded. if (FoundFoldedOp) return false; assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); FoundFoldedOp = true; } return FoundFoldedOp; } }; } // end anonymous namespace void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst, uint16_t S, unsigned FoldedIdx, bool IsManual) { assert((IsManual || Table.find(RegInst) == Table.end()) && "Override entry unexpectedly"); X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst); Record *RegRec = RegInst->TheDef; Result.NoReverse = S & TB_NO_REVERSE; Result.NoForward = S & TB_NO_FORWARD; Result.FoldLoad = S & TB_FOLDED_LOAD; Result.FoldStore = S & TB_FOLDED_STORE; Result.Alignment = Align(1ULL << ((S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT)); if (IsManual) { Table[RegInst] = Result; return; } Record *RegOpRec = RegInst->Operands[FoldedIdx].Rec; Record *MemOpRec = MemInst->Operands[FoldedIdx].Rec; // Unfolding code generates a load/store instruction according to the size of // the register in the register form instruction. // If the register's size is greater than the memory's operand size, do not // allow unfolding. // the unfolded load size will be based on the register size. If that’s bigger // than the memory operand size, the unfolded load will load more memory and // potentially cause a memory fault. if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) Result.NoReverse = true; // Check no-kz version's isMoveReg StringRef RegInstName = RegRec->getName(); unsigned DropLen = RegInstName.ends_with("rkz") ? 2 : (RegInstName.ends_with("rk") ? 1 : 0); Record *BaseDef = DropLen ? Records.getDef(RegInstName.drop_back(DropLen)) : nullptr; bool IsMoveReg = BaseDef ? Target.getInstruction(BaseDef).isMoveReg : RegInst->isMoveReg; // A masked load can not be unfolded to a full load, otherwise it would access // unexpected memory. A simple store can not be unfolded. if (IsMoveReg && (BaseDef || Result.FoldStore)) Result.NoReverse = true; uint8_t Enc = byteFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); if (isExplicitAlign(RegInst)) { // The instruction require explicitly aligned memory. BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); Result.Alignment = Align(byteFromBitsInit(VectSize)); } else if (!Enc && !isExplicitUnalign(RegInst) && getMemOperandSize(MemOpRec) > 64) { // Instructions with XOP/VEX/EVEX encoding do not require alignment while // SSE packed vector instructions require a 16 byte alignment. Result.Alignment = Align(16); } // Expand is only ever created as a masked instruction. It is not safe to // unfold a masked expand because we don't know if it came from an expand load // intrinsic or folding a plain load. If it is from a expand load intrinsic, // Unfolding to plain load would read more elements and could trigger a fault. if (RegRec->getName().contains("EXPAND")) Result.NoReverse = true; Table[RegInst] = Result; } void X86FoldTablesEmitter::addBroadcastEntry( FoldTable &Table, const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst) { assert(Table.find(RegInst) == Table.end() && "Override entry unexpectedly"); X86FoldTableEntry Result = X86FoldTableEntry(RegInst, MemInst); DagInit *In = MemInst->TheDef->getValueAsDag("InOperandList"); for (unsigned I = 0, E = In->getNumArgs(); I != E; ++I) { Result.BroadcastKind = StringSwitch(In->getArg(I)->getAsString()) .Case("i16mem", X86FoldTableEntry::BCAST_W) .Case("i32mem", X86FoldTableEntry::BCAST_D) .Case("i64mem", X86FoldTableEntry::BCAST_Q) .Case("f16mem", X86FoldTableEntry::BCAST_SH) .Case("f32mem", X86FoldTableEntry::BCAST_SS) .Case("f64mem", X86FoldTableEntry::BCAST_SD) .Default(X86FoldTableEntry::BCAST_NONE); if (Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE) break; } assert(Result.BroadcastKind != X86FoldTableEntry::BCAST_NONE && "Unknown memory operand for broadcast"); Table[RegInst] = Result; } void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInst, const CodeGenInstruction *MemInst, uint16_t S, bool IsManual, bool IsBroadcast) { Record *RegRec = RegInst->TheDef; Record *MemRec = MemInst->TheDef; unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); // Instructions which Read-Modify-Write should be added to Table2Addr. if (!MemOutSize && RegOutSize == 1 && MemInSize == RegInSize) { assert(!IsBroadcast && "Read-Modify-Write can not be broadcast"); // X86 would not unfold Read-Modify-Write instructions so add TB_NO_REVERSE. addEntryWithFlags(Table2Addr, RegInst, MemInst, S | TB_NO_REVERSE, 0, IsManual); return; } // Only table0 entries should explicitly specify a load or store flag. // If the instruction writes to the folded operand, it will appear as // an output in the register form instruction and as an input in the // memory form instruction. If the instruction reads from the folded // operand, it will appear as in input in both forms. if (MemInSize == RegInSize && MemOutSize == RegOutSize) { // Load-Folding cases. // If the i'th register form operand is a register and the i'th memory form // operand is a memory operand, add instructions to Table#i. for (unsigned I = RegOutSize, E = RegInst->Operands.size(); I < E; I++) { Record *RegOpRec = RegInst->Operands[I].Rec; Record *MemOpRec = MemInst->Operands[I].Rec; // PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64, // TAILJMPr64_REX if ((isRegisterOperand(RegOpRec) || RegOpRec->isSubClassOf("PointerLikeRegClass")) && isMemoryOperand(MemOpRec)) { switch (I) { case 0: assert(!IsBroadcast && "BroadcastTable0 needs to be added"); addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_LOAD, 0, IsManual); return; case 1: IsBroadcast ? addBroadcastEntry(BroadcastTable1, RegInst, MemInst) : addEntryWithFlags(Table1, RegInst, MemInst, S, 1, IsManual); return; case 2: IsBroadcast ? addBroadcastEntry(BroadcastTable2, RegInst, MemInst) : addEntryWithFlags(Table2, RegInst, MemInst, S, 2, IsManual); return; case 3: IsBroadcast ? addBroadcastEntry(BroadcastTable3, RegInst, MemInst) : addEntryWithFlags(Table3, RegInst, MemInst, S, 3, IsManual); return; case 4: IsBroadcast ? addBroadcastEntry(BroadcastTable4, RegInst, MemInst) : addEntryWithFlags(Table4, RegInst, MemInst, S, 4, IsManual); return; } } } } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { // Store-Folding cases. // If the memory form instruction performs a store, the *output* // register of the register form instructions disappear and instead a // memory *input* operand appears in the memory form instruction. // For example: // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) Record *RegOpRec = RegInst->Operands[RegOutSize - 1].Rec; Record *MemOpRec = MemInst->Operands[RegOutSize - 1].Rec; if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) { assert(!IsBroadcast && "Store can not be broadcast"); addEntryWithFlags(Table0, RegInst, MemInst, S | TB_FOLDED_STORE, 0, IsManual); } } } void X86FoldTablesEmitter::run(raw_ostream &OS) { // Holds all memory instructions std::vector MemInsts; // Holds all register instructions - divided according to opcode. std::map> RegInsts; ArrayRef NumberedInstructions = Target.getInstructionsByEnumValue(); for (const CodeGenInstruction *Inst : NumberedInstructions) { const Record *Rec = Inst->TheDef; if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly")) continue; if (NoFoldSet.find(Rec->getName()) != NoFoldSet.end()) continue; // Promoted legacy instruction is in EVEX space, and has REX2-encoding // alternative. It's added due to HW design and never emitted by compiler. if (byteFromBitsInit(Rec->getValueAsBitsInit("OpMapBits")) == X86Local::T_MAP4 && byteFromBitsInit(Rec->getValueAsBitsInit("explicitOpPrefixBits")) == X86Local::ExplicitEVEX) continue; // - Instructions including RST register class operands are not relevant // for memory folding (for further details check the explanation in // lib/Target/X86/X86InstrFPStack.td file). // - Some instructions (listed in the manual map above) use the register // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure // safe mapping of these instruction we manually map them and exclude // them from the automation. if (hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) continue; // Add all the memory form instructions to MemInsts, and all the register // form instructions to RegInsts[Opc], where Opc is the opcode of each // instructions. this helps reducing the runtime of the backend. const BitsInit *FormBits = Rec->getValueAsBitsInit("FormBits"); uint8_t Form = byteFromBitsInit(FormBits); if (mayFoldToForm(Form)) MemInsts.push_back(Inst); else if (mayFoldFromForm(Form)) { uint8_t Opc = byteFromBitsInit(Rec->getValueAsBitsInit("Opcode")); RegInsts[Opc].push_back(Inst); } } // Create a copy b/c the register instruction will removed when a new entry is // added into memory fold tables. auto RegInstsForBroadcast = RegInsts; Record *AsmWriter = Target.getAsmWriter(); unsigned Variant = AsmWriter->getValueAsInt("Variant"); auto FixUp = [&](const CodeGenInstruction *RegInst) { StringRef RegInstName = RegInst->TheDef->getName(); if (RegInstName.ends_with("_REV") || RegInstName.ends_with("_alt")) if (auto *RegAltRec = Records.getDef(RegInstName.drop_back(4))) RegInst = &Target.getInstruction(RegAltRec); return RegInst; }; // For each memory form instruction, try to find its register form // instruction. for (const CodeGenInstruction *MemInst : MemInsts) { uint8_t Opc = byteFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); auto RegInstsIt = RegInsts.find(Opc); if (RegInstsIt == RegInsts.end()) continue; // Two forms (memory & register) of the same instruction must have the same // opcode. std::vector &OpcRegInsts = RegInstsIt->second; // Memory fold tables auto Match = find_if(OpcRegInsts, IsMatch(MemInst, /*IsBroadcast=*/false, Variant)); if (Match != OpcRegInsts.end()) { updateTables(FixUp(*Match), MemInst); OpcRegInsts.erase(Match); } // Broadcast tables StringRef MemInstName = MemInst->TheDef->getName(); if (!MemInstName.contains("mb") && !MemInstName.contains("mib")) continue; RegInstsIt = RegInstsForBroadcast.find(Opc); assert(RegInstsIt != RegInstsForBroadcast.end() && "Unexpected control flow"); std::vector &OpcRegInstsForBroadcast = RegInstsIt->second; Match = find_if(OpcRegInstsForBroadcast, IsMatch(MemInst, /*IsBroadcast=*/true, Variant)); if (Match != OpcRegInstsForBroadcast.end()) { updateTables(FixUp(*Match), MemInst, 0, /*IsManual=*/false, /*IsBroadcast=*/true); OpcRegInstsForBroadcast.erase(Match); } } // Add the manually mapped instructions listed above. for (const ManualMapEntry &Entry : ManualMapSet) { Record *RegInstIter = Records.getDef(Entry.RegInstStr); Record *MemInstIter = Records.getDef(Entry.MemInstStr); updateTables(&(Target.getInstruction(RegInstIter)), &(Target.getInstruction(MemInstIter)), Entry.Strategy, true); } #ifndef NDEBUG auto CheckMemFoldTable = [](const FoldTable &Table) -> void { for (const auto &Record : Table) { auto &FoldEntry = Record.second; FoldEntry.checkCorrectness(); } }; CheckMemFoldTable(Table2Addr); CheckMemFoldTable(Table0); CheckMemFoldTable(Table1); CheckMemFoldTable(Table2); CheckMemFoldTable(Table3); CheckMemFoldTable(Table4); CheckMemFoldTable(BroadcastTable1); CheckMemFoldTable(BroadcastTable2); CheckMemFoldTable(BroadcastTable3); CheckMemFoldTable(BroadcastTable4); #endif #define PRINT_TABLE(TABLE) printTable(TABLE, #TABLE, OS); // Print all tables. PRINT_TABLE(Table2Addr) PRINT_TABLE(Table0) PRINT_TABLE(Table1) PRINT_TABLE(Table2) PRINT_TABLE(Table3) PRINT_TABLE(Table4) PRINT_TABLE(BroadcastTable1) PRINT_TABLE(BroadcastTable2) PRINT_TABLE(BroadcastTable3) PRINT_TABLE(BroadcastTable4) } static TableGen::Emitter::OptClass X("gen-x86-fold-tables", "Generate X86 fold tables");