//===- IntrinsicEmitter.cpp - Generate intrinsic information --------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This tablegen backend emits information about intrinsic functions. // //===----------------------------------------------------------------------===// #include "Basic/CodeGenIntrinsics.h" #include "Basic/SequenceToOffsetTable.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/ModRef.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/StringToOffsetTable.h" #include "llvm/TableGen/TableGenBackend.h" #include #include #include #include #include #include #include #include using namespace llvm; cl::OptionCategory GenIntrinsicCat("Options for -gen-intrinsic-enums"); cl::opt IntrinsicPrefix("intrinsic-prefix", cl::desc("Generate intrinsics with this target prefix"), cl::value_desc("target prefix"), cl::cat(GenIntrinsicCat)); namespace { class IntrinsicEmitter { RecordKeeper &Records; public: IntrinsicEmitter(RecordKeeper &R) : Records(R) {} void run(raw_ostream &OS, bool Enums); void EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitArgKind(raw_ostream &OS); void EmitIITInfo(raw_ostream &OS); void EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToNameTable(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToOverloadTable(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS); void EmitIntrinsicToBuiltinMap(const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS); }; } // End anonymous namespace //===----------------------------------------------------------------------===// // IntrinsicEmitter Implementation //===----------------------------------------------------------------------===// void IntrinsicEmitter::run(raw_ostream &OS, bool Enums) { emitSourceFileHeader("Intrinsic Function Source Fragment", OS); CodeGenIntrinsicTable Ints(Records); if (Enums) { // Emit the enum information. EmitEnumInfo(Ints, OS); // Emit ArgKind for Intrinsics.h. EmitArgKind(OS); } else { // Emit IIT_Info constants. EmitIITInfo(OS); // Emit the target metadata. EmitTargetInfo(Ints, OS); // Emit the intrinsic ID -> name table. EmitIntrinsicToNameTable(Ints, OS); // Emit the intrinsic ID -> overload table. EmitIntrinsicToOverloadTable(Ints, OS); // Emit the intrinsic declaration generator. EmitGenerator(Ints, OS); // Emit the intrinsic parameter attributes. EmitAttributes(Ints, OS); // Emit code to translate GCC builtins into LLVM intrinsics. EmitIntrinsicToBuiltinMap(Ints, true, OS); // Emit code to translate MS builtins into LLVM intrinsics. EmitIntrinsicToBuiltinMap(Ints, false, OS); } } void IntrinsicEmitter::EmitEnumInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { // Find the TargetSet for which to generate enums. There will be an initial // set with an empty target prefix which will include target independent // intrinsics like dbg.value. const CodeGenIntrinsicTable::TargetSet *Set = nullptr; for (const auto &Target : Ints.Targets) { if (Target.Name == IntrinsicPrefix) { Set = &Target; break; } } if (!Set) { std::vector KnownTargets; for (const auto &Target : Ints.Targets) if (!Target.Name.empty()) KnownTargets.push_back(Target.Name); PrintFatalError("tried to generate intrinsics for unknown target " + IntrinsicPrefix + "\nKnown targets are: " + join(KnownTargets, ", ") + "\n"); } // Generate a complete header for target specific intrinsics. if (IntrinsicPrefix.empty()) { OS << "#ifdef GET_INTRINSIC_ENUM_VALUES\n"; } else { std::string UpperPrefix = StringRef(IntrinsicPrefix).upper(); OS << "#ifndef LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n"; OS << "#define LLVM_IR_INTRINSIC_" << UpperPrefix << "_ENUMS_H\n\n"; OS << "namespace llvm {\n"; OS << "namespace Intrinsic {\n"; OS << "enum " << UpperPrefix << "Intrinsics : unsigned {\n"; } OS << "// Enum values for intrinsics\n"; for (unsigned i = Set->Offset, e = Set->Offset + Set->Count; i != e; ++i) { OS << " " << Ints[i].EnumName; // Assign a value to the first intrinsic in this target set so that all // intrinsic ids are distinct. if (i == Set->Offset) OS << " = " << (Set->Offset + 1); OS << ", "; if (Ints[i].EnumName.size() < 40) OS.indent(40 - Ints[i].EnumName.size()); OS << " // " << Ints[i].Name << "\n"; } // Emit num_intrinsics into the target neutral enum. if (IntrinsicPrefix.empty()) { OS << " num_intrinsics = " << (Ints.size() + 1) << "\n"; OS << "#endif\n\n"; } else { OS << "}; // enum\n"; OS << "} // namespace Intrinsic\n"; OS << "} // namespace llvm\n\n"; OS << "#endif\n"; } } void IntrinsicEmitter::EmitArgKind(raw_ostream &OS) { if (!IntrinsicPrefix.empty()) return; OS << "// llvm::Intrinsic::IITDescriptor::ArgKind\n"; OS << "#ifdef GET_INTRINSIC_ARGKIND\n"; if (auto RecArgKind = Records.getDef("ArgKind")) { for (auto &RV : RecArgKind->getValues()) OS << " AK_" << RV.getName() << " = " << *RV.getValue() << ",\n"; } else { OS << "#error \"ArgKind is not defined\"\n"; } OS << "#endif\n\n"; } void IntrinsicEmitter::EmitIITInfo(raw_ostream &OS) { OS << "#ifdef GET_INTRINSIC_IITINFO\n"; std::array RecsByNumber; auto IIT_Base = Records.getAllDerivedDefinitionsIfDefined("IIT_Base"); for (auto Rec : IIT_Base) { auto Number = Rec->getValueAsInt("Number"); assert(0 <= Number && Number < (int)RecsByNumber.size() && "IIT_Info.Number should be uint8_t"); assert(RecsByNumber[Number].empty() && "Duplicate IIT_Info.Number"); RecsByNumber[Number] = Rec->getName(); } if (IIT_Base.size() > 0) { for (unsigned I = 0, E = RecsByNumber.size(); I < E; ++I) if (!RecsByNumber[I].empty()) OS << " " << RecsByNumber[I] << " = " << I << ",\n"; } else { OS << "#error \"class IIT_Base is not defined\"\n"; } OS << "#endif\n\n"; } void IntrinsicEmitter::EmitTargetInfo(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Target mapping\n"; OS << "#ifdef GET_INTRINSIC_TARGET_DATA\n"; OS << "struct IntrinsicTargetInfo {\n" << " llvm::StringLiteral Name;\n" << " size_t Offset;\n" << " size_t Count;\n" << "};\n"; OS << "static constexpr IntrinsicTargetInfo TargetInfos[] = {\n"; for (const auto &Target : Ints.Targets) OS << " {llvm::StringLiteral(\"" << Target.Name << "\"), " << Target.Offset << ", " << Target.Count << "},\n"; OS << "};\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitIntrinsicToNameTable( const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to name table\n"; OS << "#ifdef GET_INTRINSIC_NAME_TABLE\n"; OS << " // Note that entry #0 is the invalid intrinsic!\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) OS << " \"" << Ints[i].Name << "\",\n"; OS << "#endif\n\n"; } void IntrinsicEmitter::EmitIntrinsicToOverloadTable( const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Intrinsic ID to overload bitset\n"; OS << "#ifdef GET_INTRINSIC_OVERLOAD_TABLE\n"; OS << "static const uint8_t OTable[] = {\n"; OS << " 0"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Add one to the index so we emit a null bit for the invalid #0 intrinsic. if ((i + 1) % 8 == 0) OS << ",\n 0"; if (Ints[i].isOverloaded) OS << " | (1<<" << (i + 1) % 8 << ')'; } OS << "\n};\n\n"; // OTable contains a true bit at the position if the intrinsic is overloaded. OS << "return (OTable[id/8] & (1 << (id%8))) != 0;\n"; OS << "#endif\n\n"; } /// ComputeFixedEncoding - If we can encode the type signature for this /// intrinsic into 32 bits, return it. If not, return ~0U. static void ComputeFixedEncoding(const CodeGenIntrinsic &Int, std::vector &TypeSig) { if (auto *R = Int.TheDef->getValue("TypeSig")) { for (auto &a : cast(R->getValue())->getValues()) { for (auto &b : cast(a)->getValues()) TypeSig.push_back(cast(b)->getValue()); } } } static void printIITEntry(raw_ostream &OS, unsigned char X) { OS << (unsigned)X; } void IntrinsicEmitter::EmitGenerator(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { // If we can compute a 32-bit fixed encoding for this intrinsic, do so and // capture it in this vector, otherwise store a ~0U. std::vector FixedEncodings; SequenceToOffsetTable> LongEncodingTable; std::vector TypeSig; // Compute the unique argument type info. for (unsigned i = 0, e = Ints.size(); i != e; ++i) { // Get the signature for the intrinsic. TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Check to see if we can encode it into a 32-bit word. We can only encode // 8 nibbles into a 32-bit word. if (TypeSig.size() <= 8) { bool Failed = false; unsigned Result = 0; for (unsigned i = 0, e = TypeSig.size(); i != e; ++i) { // If we had an unencodable argument, bail out. if (TypeSig[i] > 15) { Failed = true; break; } Result = (Result << 4) | TypeSig[e - i - 1]; } // If this could be encoded into a 31-bit word, return it. if (!Failed && (Result >> 31) == 0) { FixedEncodings.push_back(Result); continue; } } // Otherwise, we're going to unique the sequence into the // LongEncodingTable, and use its offset in the 32-bit table instead. LongEncodingTable.add(TypeSig); // This is a placehold that we'll replace after the table is laid out. FixedEncodings.push_back(~0U); } LongEncodingTable.layout(); OS << "// Global intrinsic function declaration type table.\n"; OS << "#ifdef GET_INTRINSIC_GENERATOR_GLOBAL\n"; OS << "static const unsigned IIT_Table[] = {\n "; for (unsigned i = 0, e = FixedEncodings.size(); i != e; ++i) { if ((i & 7) == 7) OS << "\n "; // If the entry fit in the table, just emit it. if (FixedEncodings[i] != ~0U) { OS << "0x" << Twine::utohexstr(FixedEncodings[i]) << ", "; continue; } TypeSig.clear(); ComputeFixedEncoding(Ints[i], TypeSig); // Otherwise, emit the offset into the long encoding table. We emit it this // way so that it is easier to read the offset in the .def file. OS << "(1U<<31) | " << LongEncodingTable.get(TypeSig) << ", "; } OS << "0\n};\n\n"; // Emit the shared table of register lists. OS << "static const unsigned char IIT_LongEncodingTable[] = {\n"; if (!LongEncodingTable.empty()) LongEncodingTable.emit(OS, printIITEntry); OS << " 255\n};\n\n"; OS << "#endif\n\n"; // End of GET_INTRINSIC_GENERATOR_GLOBAL } namespace { std::optional compareFnAttributes(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) { // Sort throwing intrinsics after non-throwing intrinsics. if (L->canThrow != R->canThrow) return R->canThrow; if (L->isNoDuplicate != R->isNoDuplicate) return R->isNoDuplicate; if (L->isNoMerge != R->isNoMerge) return R->isNoMerge; if (L->isNoReturn != R->isNoReturn) return R->isNoReturn; if (L->isNoCallback != R->isNoCallback) return R->isNoCallback; if (L->isNoSync != R->isNoSync) return R->isNoSync; if (L->isNoFree != R->isNoFree) return R->isNoFree; if (L->isWillReturn != R->isWillReturn) return R->isWillReturn; if (L->isCold != R->isCold) return R->isCold; if (L->isConvergent != R->isConvergent) return R->isConvergent; if (L->isSpeculatable != R->isSpeculatable) return R->isSpeculatable; if (L->hasSideEffects != R->hasSideEffects) return R->hasSideEffects; if (L->isStrictFP != R->isStrictFP) return R->isStrictFP; // Try to order by readonly/readnone attribute. uint32_t LK = L->ME.toIntValue(); uint32_t RK = R->ME.toIntValue(); if (LK != RK) return (LK > RK); return std::nullopt; } struct FnAttributeComparator { bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { return compareFnAttributes(L, R).value_or(false); } }; struct AttributeComparator { bool operator()(const CodeGenIntrinsic *L, const CodeGenIntrinsic *R) const { if (std::optional Res = compareFnAttributes(L, R)) return *Res; // Order by argument attributes. // This is reliable because each side is already sorted internally. return (L->ArgumentAttributes < R->ArgumentAttributes); } }; } // End anonymous namespace /// EmitAttributes - This emits the Intrinsic::getAttributes method. void IntrinsicEmitter::EmitAttributes(const CodeGenIntrinsicTable &Ints, raw_ostream &OS) { OS << "// Add parameter attributes that are not common to all intrinsics.\n"; OS << "#ifdef GET_INTRINSIC_ATTRIBUTES\n"; // Compute unique argument attribute sets. std::map, unsigned> UniqArgAttributes; OS << "static AttributeSet getIntrinsicArgAttributeSet(" << "LLVMContext &C, unsigned ID) {\n" << " switch (ID) {\n" << " default: llvm_unreachable(\"Invalid attribute set number\");\n"; for (const CodeGenIntrinsic &Int : Ints) { for (auto &Attrs : Int.ArgumentAttributes) { if (Attrs.empty()) continue; unsigned ID = UniqArgAttributes.size(); if (!UniqArgAttributes.try_emplace(Attrs, ID).second) continue; assert(is_sorted(Attrs) && "Argument attributes are not sorted"); OS << " case " << ID << ":\n"; OS << " return AttributeSet::get(C, {\n"; for (const CodeGenIntrinsic::ArgAttribute &Attr : Attrs) { switch (Attr.Kind) { case CodeGenIntrinsic::NoCapture: OS << " Attribute::get(C, Attribute::NoCapture),\n"; break; case CodeGenIntrinsic::NoAlias: OS << " Attribute::get(C, Attribute::NoAlias),\n"; break; case CodeGenIntrinsic::NoUndef: OS << " Attribute::get(C, Attribute::NoUndef),\n"; break; case CodeGenIntrinsic::NonNull: OS << " Attribute::get(C, Attribute::NonNull),\n"; break; case CodeGenIntrinsic::Returned: OS << " Attribute::get(C, Attribute::Returned),\n"; break; case CodeGenIntrinsic::ReadOnly: OS << " Attribute::get(C, Attribute::ReadOnly),\n"; break; case CodeGenIntrinsic::WriteOnly: OS << " Attribute::get(C, Attribute::WriteOnly),\n"; break; case CodeGenIntrinsic::ReadNone: OS << " Attribute::get(C, Attribute::ReadNone),\n"; break; case CodeGenIntrinsic::ImmArg: OS << " Attribute::get(C, Attribute::ImmArg),\n"; break; case CodeGenIntrinsic::Alignment: OS << " Attribute::get(C, Attribute::Alignment, " << Attr.Value << "),\n"; break; case CodeGenIntrinsic::Dereferenceable: OS << " Attribute::get(C, Attribute::Dereferenceable, " << Attr.Value << "),\n"; break; } } OS << " });\n"; } } OS << " }\n"; OS << "}\n\n"; // Compute unique function attribute sets. std::map UniqFnAttributes; OS << "static AttributeSet getIntrinsicFnAttributeSet(" << "LLVMContext &C, unsigned ID) {\n" << " switch (ID) {\n" << " default: llvm_unreachable(\"Invalid attribute set number\");\n"; for (const CodeGenIntrinsic &Intrinsic : Ints) { unsigned ID = UniqFnAttributes.size(); if (!UniqFnAttributes.try_emplace(&Intrinsic, ID).second) continue; OS << " case " << ID << ":\n" << " return AttributeSet::get(C, {\n"; if (!Intrinsic.canThrow) OS << " Attribute::get(C, Attribute::NoUnwind),\n"; if (Intrinsic.isNoReturn) OS << " Attribute::get(C, Attribute::NoReturn),\n"; if (Intrinsic.isNoCallback) OS << " Attribute::get(C, Attribute::NoCallback),\n"; if (Intrinsic.isNoSync) OS << " Attribute::get(C, Attribute::NoSync),\n"; if (Intrinsic.isNoFree) OS << " Attribute::get(C, Attribute::NoFree),\n"; if (Intrinsic.isWillReturn) OS << " Attribute::get(C, Attribute::WillReturn),\n"; if (Intrinsic.isCold) OS << " Attribute::get(C, Attribute::Cold),\n"; if (Intrinsic.isNoDuplicate) OS << " Attribute::get(C, Attribute::NoDuplicate),\n"; if (Intrinsic.isNoMerge) OS << " Attribute::get(C, Attribute::NoMerge),\n"; if (Intrinsic.isConvergent) OS << " Attribute::get(C, Attribute::Convergent),\n"; if (Intrinsic.isSpeculatable) OS << " Attribute::get(C, Attribute::Speculatable),\n"; if (Intrinsic.isStrictFP) OS << " Attribute::get(C, Attribute::StrictFP),\n"; MemoryEffects ME = Intrinsic.ME; // TODO: IntrHasSideEffects should affect not only readnone intrinsics. if (ME.doesNotAccessMemory() && Intrinsic.hasSideEffects) ME = MemoryEffects::unknown(); if (ME != MemoryEffects::unknown()) { OS << " Attribute::getWithMemoryEffects(C, " << "MemoryEffects::createFromIntValue(" << ME.toIntValue() << ")),\n"; } OS << " });\n"; } OS << " }\n"; OS << "}\n\n"; OS << "AttributeList Intrinsic::getAttributes(LLVMContext &C, ID id) {\n"; // Compute the maximum number of attribute arguments and the map typedef std::map UniqAttrMapTy; UniqAttrMapTy UniqAttributes; unsigned maxArgAttrs = 0; unsigned AttrNum = 0; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; maxArgAttrs = std::max(maxArgAttrs, unsigned(intrinsic.ArgumentAttributes.size())); unsigned &N = UniqAttributes[&intrinsic]; if (N) continue; N = ++AttrNum; assert(N < 65536 && "Too many unique attributes for table!"); } // Emit an array of AttributeList. Most intrinsics will have at least one // entry, for the function itself (index ~1), which is usually nounwind. OS << " static const uint16_t IntrinsicsToAttributesMap[] = {\n"; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const CodeGenIntrinsic &intrinsic = Ints[i]; OS << " " << UniqAttributes[&intrinsic] << ", // " << intrinsic.Name << "\n"; } OS << " };\n\n"; OS << " std::pair AS[" << maxArgAttrs + 1 << "];\n"; OS << " unsigned NumAttrs = 0;\n"; OS << " if (id != 0) {\n"; OS << " switch(IntrinsicsToAttributesMap[id - 1]) {\n"; OS << " default: llvm_unreachable(\"Invalid attribute number\");\n"; for (auto UniqAttribute : UniqAttributes) { OS << " case " << UniqAttribute.second << ": {\n"; const CodeGenIntrinsic &Intrinsic = *(UniqAttribute.first); // Keep track of the number of attributes we're writing out. unsigned numAttrs = 0; for (const auto &[AttrIdx, Attrs] : enumerate(Intrinsic.ArgumentAttributes)) { if (Attrs.empty()) continue; unsigned ID = UniqArgAttributes.find(Attrs)->second; OS << " AS[" << numAttrs++ << "] = {" << AttrIdx << ", getIntrinsicArgAttributeSet(C, " << ID << ")};\n"; } if (!Intrinsic.canThrow || (Intrinsic.ME != MemoryEffects::unknown() && !Intrinsic.hasSideEffects) || Intrinsic.isNoReturn || Intrinsic.isNoCallback || Intrinsic.isNoSync || Intrinsic.isNoFree || Intrinsic.isWillReturn || Intrinsic.isCold || Intrinsic.isNoDuplicate || Intrinsic.isNoMerge || Intrinsic.isConvergent || Intrinsic.isSpeculatable || Intrinsic.isStrictFP) { unsigned ID = UniqFnAttributes.find(&Intrinsic)->second; OS << " AS[" << numAttrs++ << "] = {AttributeList::FunctionIndex, " << "getIntrinsicFnAttributeSet(C, " << ID << ")};\n"; } if (numAttrs) { OS << " NumAttrs = " << numAttrs << ";\n"; OS << " break;\n"; OS << " }\n"; } else { OS << " return AttributeList();\n"; OS << " }\n"; } } OS << " }\n"; OS << " }\n"; OS << " return AttributeList::get(C, ArrayRef(AS, NumAttrs));\n"; OS << "}\n"; OS << "#endif // GET_INTRINSIC_ATTRIBUTES\n\n"; } void IntrinsicEmitter::EmitIntrinsicToBuiltinMap( const CodeGenIntrinsicTable &Ints, bool IsClang, raw_ostream &OS) { StringRef CompilerName = (IsClang ? "Clang" : "MS"); StringRef UpperCompilerName = (IsClang ? "CLANG" : "MS"); typedef std::map> BIMTy; BIMTy BuiltinMap; StringToOffsetTable Table; for (unsigned i = 0, e = Ints.size(); i != e; ++i) { const std::string &BuiltinName = IsClang ? Ints[i].ClangBuiltinName : Ints[i].MSBuiltinName; if (!BuiltinName.empty()) { // Get the map for this target prefix. std::map &BIM = BuiltinMap[Ints[i].TargetPrefix]; if (!BIM.insert(std::pair(BuiltinName, Ints[i].EnumName)).second) PrintFatalError(Ints[i].TheDef->getLoc(), "Intrinsic '" + Ints[i].TheDef->getName() + "': duplicate " + CompilerName + " builtin name!"); Table.GetOrAddStringOffset(BuiltinName); } } OS << "// Get the LLVM intrinsic that corresponds to a builtin.\n"; OS << "// This is used by the C front-end. The builtin name is passed\n"; OS << "// in as BuiltinName, and a target prefix (e.g. 'ppc') is passed\n"; OS << "// in as TargetPrefix. The result is assigned to 'IntrinsicID'.\n"; OS << "#ifdef GET_LLVM_INTRINSIC_FOR_" << UpperCompilerName << "_BUILTIN\n"; OS << "Intrinsic::ID Intrinsic::getIntrinsicFor" << CompilerName << "Builtin(const char " << "*TargetPrefixStr, StringRef BuiltinNameStr) {\n"; if (Table.Empty()) { OS << " return Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; return; } OS << " static const char BuiltinNames[] = {\n"; Table.EmitCharArray(OS); OS << " };\n\n"; OS << " struct BuiltinEntry {\n"; OS << " Intrinsic::ID IntrinID;\n"; OS << " unsigned StrTabOffset;\n"; OS << " const char *getName() const {\n"; OS << " return &BuiltinNames[StrTabOffset];\n"; OS << " }\n"; OS << " bool operator<(StringRef RHS) const {\n"; OS << " return strncmp(getName(), RHS.data(), RHS.size()) < 0;\n"; OS << " }\n"; OS << " };\n"; OS << " StringRef TargetPrefix(TargetPrefixStr);\n\n"; // Note: this could emit significantly better code if we cared. for (auto &I : BuiltinMap) { OS << " "; if (!I.first.empty()) OS << "if (TargetPrefix == \"" << I.first << "\") "; else OS << "/* Target Independent Builtins */ "; OS << "{\n"; // Emit the comparisons for this target prefix. OS << " static const BuiltinEntry " << I.first << "Names[] = {\n"; for (const auto &P : I.second) { OS << " {Intrinsic::" << P.second << ", " << Table.GetOrAddStringOffset(P.first) << "}, // " << P.first << "\n"; } OS << " };\n"; OS << " auto I = std::lower_bound(std::begin(" << I.first << "Names),\n"; OS << " std::end(" << I.first << "Names),\n"; OS << " BuiltinNameStr);\n"; OS << " if (I != std::end(" << I.first << "Names) &&\n"; OS << " I->getName() == BuiltinNameStr)\n"; OS << " return I->IntrinID;\n"; OS << " }\n"; } OS << " return "; OS << "Intrinsic::not_intrinsic;\n"; OS << "}\n"; OS << "#endif\n\n"; } static void EmitIntrinsicEnums(RecordKeeper &RK, raw_ostream &OS) { IntrinsicEmitter(RK).run(OS, /*Enums=*/true); } static TableGen::Emitter::Opt X("gen-intrinsic-enums", EmitIntrinsicEnums, "Generate intrinsic enums"); static void EmitIntrinsicImpl(RecordKeeper &RK, raw_ostream &OS) { IntrinsicEmitter(RK).run(OS, /*Enums=*/false); } static TableGen::Emitter::Opt Y("gen-intrinsic-impl", EmitIntrinsicImpl, "Generate intrinsic information");