//===--------------------- InstructionInfoView.cpp --------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This file implements the InstructionInfoView API. /// //===----------------------------------------------------------------------===// #include "Views/InstructionInfoView.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/JSON.h" namespace llvm { namespace mca { void InstructionInfoView::printView(raw_ostream &OS) const { std::string Buffer; raw_string_ostream TempStream(Buffer); ArrayRef Source = getSource(); if (!Source.size()) return; IIVDVec IIVD(Source.size()); collectData(IIVD); TempStream << "\n\nInstruction Info:\n"; TempStream << "[1]: #uOps\n[2]: Latency\n[3]: RThroughput\n" << "[4]: MayLoad\n[5]: MayStore\n[6]: HasSideEffects (U)\n"; if (PrintBarriers) { TempStream << "[7]: LoadBarrier\n[8]: StoreBarrier\n"; } if (PrintEncodings) { if (PrintBarriers) { TempStream << "[9]: Encoding Size\n"; TempStream << "\n[1] [2] [3] [4] [5] [6] [7] [8] " << "[9] Encodings: Instructions:\n"; } else { TempStream << "[7]: Encoding Size\n"; TempStream << "\n[1] [2] [3] [4] [5] [6] [7] " << "Encodings: Instructions:\n"; } } else { if (PrintBarriers) { TempStream << "\n[1] [2] [3] [4] [5] [6] [7] [8] " << "Instructions:\n"; } else { TempStream << "\n[1] [2] [3] [4] [5] [6] " << "Instructions:\n"; } } for (const auto &[Index, IIVDEntry, Inst] : enumerate(IIVD, Source)) { TempStream << ' ' << IIVDEntry.NumMicroOpcodes << " "; if (IIVDEntry.NumMicroOpcodes < 10) TempStream << " "; else if (IIVDEntry.NumMicroOpcodes < 100) TempStream << ' '; TempStream << IIVDEntry.Latency << " "; if (IIVDEntry.Latency < 10) TempStream << " "; else if (IIVDEntry.Latency < 100) TempStream << ' '; if (IIVDEntry.RThroughput) { double RT = *IIVDEntry.RThroughput; TempStream << format("%.2f", RT) << ' '; if (RT < 10.0) TempStream << " "; else if (RT < 100.0) TempStream << ' '; } else { TempStream << " - "; } TempStream << (IIVDEntry.mayLoad ? " * " : " "); TempStream << (IIVDEntry.mayStore ? " * " : " "); TempStream << (IIVDEntry.hasUnmodeledSideEffects ? " U " : " "); if (PrintBarriers) { TempStream << (LoweredInsts[Index]->isALoadBarrier() ? " * " : " "); TempStream << (LoweredInsts[Index]->isAStoreBarrier() ? " * " : " "); } if (PrintEncodings) { StringRef Encoding(CE.getEncoding(Index)); unsigned EncodingSize = Encoding.size(); TempStream << " " << EncodingSize << (EncodingSize < 10 ? " " : " "); TempStream.flush(); formatted_raw_ostream FOS(TempStream); for (unsigned i = 0, e = Encoding.size(); i != e; ++i) FOS << format("%02x ", (uint8_t)Encoding[i]); FOS.PadToColumn(30); FOS.flush(); } TempStream << printInstructionString(Inst) << '\n'; } TempStream.flush(); OS << Buffer; } void InstructionInfoView::collectData( MutableArrayRef IIVD) const { const llvm::MCSubtargetInfo &STI = getSubTargetInfo(); const MCSchedModel &SM = STI.getSchedModel(); for (const auto I : zip(getSource(), IIVD)) { const MCInst &Inst = std::get<0>(I); InstructionInfoViewData &IIVDEntry = std::get<1>(I); const MCInstrDesc &MCDesc = MCII.get(Inst.getOpcode()); // Obtain the scheduling class information from the instruction // and instruments. auto IVecIt = InstToInstruments.find(&Inst); unsigned SchedClassID = IVecIt == InstToInstruments.end() ? MCDesc.getSchedClass() : IM.getSchedClassID(MCII, Inst, IVecIt->second); unsigned CPUID = SM.getProcessorID(); // Try to solve variant scheduling classes. while (SchedClassID && SM.getSchedClassDesc(SchedClassID)->isVariant()) SchedClassID = STI.resolveVariantSchedClass(SchedClassID, &Inst, &MCII, CPUID); const MCSchedClassDesc &SCDesc = *SM.getSchedClassDesc(SchedClassID); IIVDEntry.NumMicroOpcodes = SCDesc.NumMicroOps; IIVDEntry.Latency = MCSchedModel::computeInstrLatency(STI, SCDesc); // Add extra latency due to delays in the forwarding data paths. IIVDEntry.Latency += MCSchedModel::getForwardingDelayCycles( STI.getReadAdvanceEntries(SCDesc)); IIVDEntry.RThroughput = MCSchedModel::getReciprocalThroughput(STI, SCDesc); IIVDEntry.mayLoad = MCDesc.mayLoad(); IIVDEntry.mayStore = MCDesc.mayStore(); IIVDEntry.hasUnmodeledSideEffects = MCDesc.hasUnmodeledSideEffects(); } } // Construct a JSON object from a single InstructionInfoViewData object. json::Object InstructionInfoView::toJSON(const InstructionInfoViewData &IIVD) const { json::Object JO({{"NumMicroOpcodes", IIVD.NumMicroOpcodes}, {"Latency", IIVD.Latency}, {"mayLoad", IIVD.mayLoad}, {"mayStore", IIVD.mayStore}, {"hasUnmodeledSideEffects", IIVD.hasUnmodeledSideEffects}}); JO.try_emplace("RThroughput", IIVD.RThroughput.value_or(0.0)); return JO; } json::Value InstructionInfoView::toJSON() const { ArrayRef Source = getSource(); if (!Source.size()) return json::Value(0); IIVDVec IIVD(Source.size()); collectData(IIVD); json::Array InstInfo; for (const auto &I : enumerate(IIVD)) { const InstructionInfoViewData &IIVDEntry = I.value(); json::Object JO = toJSON(IIVDEntry); JO.try_emplace("Instruction", (unsigned)I.index()); InstInfo.push_back(std::move(JO)); } return json::Object({{"InstructionList", json::Value(std::move(InstInfo))}}); } } // namespace mca. } // namespace llvm