//===- LoopPeel.cpp -------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Loop Peeling Utilities. //===----------------------------------------------------------------------===// #include "llvm/Transforms/Utils/LoopPeel.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/Analysis/ScalarEvolutionExpressions.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/ProfDataUtils.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/LoopSimplify.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/ValueMapper.h" #include #include #include #include using namespace llvm; using namespace llvm::PatternMatch; #define DEBUG_TYPE "loop-peel" STATISTIC(NumPeeled, "Number of loops peeled"); static cl::opt UnrollPeelCount( "unroll-peel-count", cl::Hidden, cl::desc("Set the unroll peeling count, for testing purposes")); static cl::opt UnrollAllowPeeling("unroll-allow-peeling", cl::init(true), cl::Hidden, cl::desc("Allows loops to be peeled when the dynamic " "trip count is known to be low.")); static cl::opt UnrollAllowLoopNestsPeeling("unroll-allow-loop-nests-peeling", cl::init(false), cl::Hidden, cl::desc("Allows loop nests to be peeled.")); static cl::opt UnrollPeelMaxCount( "unroll-peel-max-count", cl::init(7), cl::Hidden, cl::desc("Max average trip count which will cause loop peeling.")); static cl::opt UnrollForcePeelCount( "unroll-force-peel-count", cl::init(0), cl::Hidden, cl::desc("Force a peel count regardless of profiling information.")); static cl::opt DisableAdvancedPeeling( "disable-advanced-peeling", cl::init(false), cl::Hidden, cl::desc( "Disable advance peeling. Issues for convergent targets (D134803).")); static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; // Check whether we are capable of peeling this loop. bool llvm::canPeel(const Loop *L) { // Make sure the loop is in simplified form if (!L->isLoopSimplifyForm()) return false; if (!DisableAdvancedPeeling) return true; SmallVector Exits; L->getUniqueNonLatchExitBlocks(Exits); // The latch must either be the only exiting block or all non-latch exit // blocks have either a deopt or unreachable terminator or compose a chain of // blocks where the last one is either deopt or unreachable terminated. Both // deopt and unreachable terminators are a strong indication they are not // taken. Note that this is a profitability check, not a legality check. Also // note that LoopPeeling currently can only update the branch weights of latch // blocks and branch weights to blocks with deopt or unreachable do not need // updating. return llvm::all_of(Exits, IsBlockFollowedByDeoptOrUnreachable); } namespace { // As a loop is peeled, it may be the case that Phi nodes become // loop-invariant (ie, known because there is only one choice). // For example, consider the following function: // void g(int); // void binary() { // int x = 0; // int y = 0; // int a = 0; // for(int i = 0; i <100000; ++i) { // g(x); // x = y; // g(a); // y = a + 1; // a = 5; // } // } // Peeling 3 iterations is beneficial because the values for x, y and a // become known. The IR for this loop looks something like the following: // // %i = phi i32 [ 0, %entry ], [ %inc, %if.end ] // %a = phi i32 [ 0, %entry ], [ 5, %if.end ] // %y = phi i32 [ 0, %entry ], [ %add, %if.end ] // %x = phi i32 [ 0, %entry ], [ %y, %if.end ] // ... // tail call void @_Z1gi(i32 signext %x) // tail call void @_Z1gi(i32 signext %a) // %add = add nuw nsw i32 %a, 1 // %inc = add nuw nsw i32 %i, 1 // %exitcond = icmp eq i32 %inc, 100000 // br i1 %exitcond, label %for.cond.cleanup, label %for.body // // The arguments for the calls to g will become known after 3 iterations // of the loop, because the phi nodes values become known after 3 iterations // of the loop (ie, they are known on the 4th iteration, so peel 3 iterations). // The first iteration has g(0), g(0); the second has g(0), g(5); the // third has g(1), g(5) and the fourth (and all subsequent) have g(6), g(5). // Now consider the phi nodes: // %a is a phi with constants so it is determined after iteration 1. // %y is a phi based on a constant and %a so it is determined on // the iteration after %a is determined, so iteration 2. // %x is a phi based on a constant and %y so it is determined on // the iteration after %y, so iteration 3. // %i is based on itself (and is an induction variable) so it is // never determined. // This means that peeling off 3 iterations will result in being able to // remove the phi nodes for %a, %y, and %x. The arguments for the // corresponding calls to g are determined and the code for computing // x, y, and a can be removed. // // The PhiAnalyzer class calculates how many times a loop should be // peeled based on the above analysis of the phi nodes in the loop while // respecting the maximum specified. class PhiAnalyzer { public: PhiAnalyzer(const Loop &L, unsigned MaxIterations); // Calculate the sufficient minimum number of iterations of the loop to peel // such that phi instructions become determined (subject to allowable limits) std::optional calculateIterationsToPeel(); protected: using PeelCounter = std::optional; const PeelCounter Unknown = std::nullopt; // Add 1 respecting Unknown and return Unknown if result over MaxIterations PeelCounter addOne(PeelCounter PC) const { if (PC == Unknown) return Unknown; return (*PC + 1 <= MaxIterations) ? PeelCounter{*PC + 1} : Unknown; } // Calculate the number of iterations after which the given value // becomes an invariant. PeelCounter calculate(const Value &); const Loop &L; const unsigned MaxIterations; // Map of Values to number of iterations to invariance SmallDenseMap IterationsToInvariance; }; PhiAnalyzer::PhiAnalyzer(const Loop &L, unsigned MaxIterations) : L(L), MaxIterations(MaxIterations) { assert(canPeel(&L) && "loop is not suitable for peeling"); assert(MaxIterations > 0 && "no peeling is allowed?"); } // This function calculates the number of iterations after which the value // becomes an invariant. The pre-calculated values are memorized in a map. // N.B. This number will be Unknown or <= MaxIterations. // The function is calculated according to the following definition: // Given %x = phi , ..., [%y, %back.edge]. // F(%x) = G(%y) + 1 (N.B. [MaxIterations | Unknown] + 1 => Unknown) // G(%y) = 0 if %y is a loop invariant // G(%y) = G(%BackEdgeValue) if %y is a phi in the header block // G(%y) = TODO: if %y is an expression based on phis and loop invariants // The example looks like: // %x = phi(0, %a) <-- becomes invariant starting from 3rd iteration. // %y = phi(0, 5) // %a = %y + 1 // G(%y) = Unknown otherwise (including phi not in header block) PhiAnalyzer::PeelCounter PhiAnalyzer::calculate(const Value &V) { // If we already know the answer, take it from the map. auto I = IterationsToInvariance.find(&V); if (I != IterationsToInvariance.end()) return I->second; // Place Unknown to map to avoid infinite recursion. Such // cycles can never stop on an invariant. IterationsToInvariance[&V] = Unknown; if (L.isLoopInvariant(&V)) // Loop invariant so known at start. return (IterationsToInvariance[&V] = 0); if (const PHINode *Phi = dyn_cast(&V)) { if (Phi->getParent() != L.getHeader()) { // Phi is not in header block so Unknown. assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); return Unknown; } // We need to analyze the input from the back edge and add 1. Value *Input = Phi->getIncomingValueForBlock(L.getLoopLatch()); PeelCounter Iterations = calculate(*Input); assert(IterationsToInvariance[Input] == Iterations && "unexpected value saved"); return (IterationsToInvariance[Phi] = addOne(Iterations)); } if (const Instruction *I = dyn_cast(&V)) { if (isa(I) || I->isBinaryOp()) { // Binary instructions get the max of the operands. PeelCounter LHS = calculate(*I->getOperand(0)); if (LHS == Unknown) return Unknown; PeelCounter RHS = calculate(*I->getOperand(1)); if (RHS == Unknown) return Unknown; return (IterationsToInvariance[I] = {std::max(*LHS, *RHS)}); } if (I->isCast()) // Cast instructions get the value of the operand. return (IterationsToInvariance[I] = calculate(*I->getOperand(0))); } // TODO: handle more expressions // Everything else is Unknown. assert(IterationsToInvariance[&V] == Unknown && "unexpected value saved"); return Unknown; } std::optional PhiAnalyzer::calculateIterationsToPeel() { unsigned Iterations = 0; for (auto &PHI : L.getHeader()->phis()) { PeelCounter ToInvariance = calculate(PHI); if (ToInvariance != Unknown) { assert(*ToInvariance <= MaxIterations && "bad result in phi analysis"); Iterations = std::max(Iterations, *ToInvariance); if (Iterations == MaxIterations) break; } } assert((Iterations <= MaxIterations) && "bad result in phi analysis"); return Iterations ? std::optional(Iterations) : std::nullopt; } } // unnamed namespace // Try to find any invariant memory reads that will become dereferenceable in // the remainder loop after peeling. The load must also be used (transitively) // by an exit condition. Returns the number of iterations to peel off (at the // moment either 0 or 1). static unsigned peelToTurnInvariantLoadsDerefencebale(Loop &L, DominatorTree &DT, AssumptionCache *AC) { // Skip loops with a single exiting block, because there should be no benefit // for the heuristic below. if (L.getExitingBlock()) return 0; // All non-latch exit blocks must have an UnreachableInst terminator. // Otherwise the heuristic below may not be profitable. SmallVector Exits; L.getUniqueNonLatchExitBlocks(Exits); if (any_of(Exits, [](const BasicBlock *BB) { return !isa(BB->getTerminator()); })) return 0; // Now look for invariant loads that dominate the latch and are not known to // be dereferenceable. If there are such loads and no writes, they will become // dereferenceable in the loop if the first iteration is peeled off. Also // collect the set of instructions controlled by such loads. Only peel if an // exit condition uses (transitively) such a load. BasicBlock *Header = L.getHeader(); BasicBlock *Latch = L.getLoopLatch(); SmallPtrSet LoadUsers; const DataLayout &DL = L.getHeader()->getDataLayout(); for (BasicBlock *BB : L.blocks()) { for (Instruction &I : *BB) { if (I.mayWriteToMemory()) return 0; auto Iter = LoadUsers.find(&I); if (Iter != LoadUsers.end()) { for (Value *U : I.users()) LoadUsers.insert(U); } // Do not look for reads in the header; they can already be hoisted // without peeling. if (BB == Header) continue; if (auto *LI = dyn_cast(&I)) { Value *Ptr = LI->getPointerOperand(); if (DT.dominates(BB, Latch) && L.isLoopInvariant(Ptr) && !isDereferenceablePointer(Ptr, LI->getType(), DL, LI, AC, &DT)) for (Value *U : I.users()) LoadUsers.insert(U); } } } SmallVector ExitingBlocks; L.getExitingBlocks(ExitingBlocks); if (any_of(ExitingBlocks, [&LoadUsers](BasicBlock *Exiting) { return LoadUsers.contains(Exiting->getTerminator()); })) return 1; return 0; } // Return the number of iterations to peel off that make conditions in the // body true/false. For example, if we peel 2 iterations off the loop below, // the condition i < 2 can be evaluated at compile time. // for (i = 0; i < n; i++) // if (i < 2) // .. // else // .. // } static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, ScalarEvolution &SE) { assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); unsigned DesiredPeelCount = 0; // Do not peel the entire loop. const SCEV *BE = SE.getConstantMaxBackedgeTakenCount(&L); if (const SCEVConstant *SC = dyn_cast(BE)) MaxPeelCount = std::min((unsigned)SC->getAPInt().getLimitedValue() - 1, MaxPeelCount); // Increase PeelCount while (IterVal Pred BoundSCEV) condition is satisfied; // return true if inversed condition become known before reaching the // MaxPeelCount limit. auto PeelWhilePredicateIsKnown = [&](unsigned &PeelCount, const SCEV *&IterVal, const SCEV *BoundSCEV, const SCEV *Step, ICmpInst::Predicate Pred) { while (PeelCount < MaxPeelCount && SE.isKnownPredicate(Pred, IterVal, BoundSCEV)) { IterVal = SE.getAddExpr(IterVal, Step); ++PeelCount; } return SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, BoundSCEV); }; const unsigned MaxDepth = 4; std::function ComputePeelCount = [&](Value *Condition, unsigned Depth) -> void { if (!Condition->getType()->isIntegerTy() || Depth >= MaxDepth) return; Value *LeftVal, *RightVal; if (match(Condition, m_And(m_Value(LeftVal), m_Value(RightVal))) || match(Condition, m_Or(m_Value(LeftVal), m_Value(RightVal)))) { ComputePeelCount(LeftVal, Depth + 1); ComputePeelCount(RightVal, Depth + 1); return; } CmpInst::Predicate Pred; if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) return; const SCEV *LeftSCEV = SE.getSCEV(LeftVal); const SCEV *RightSCEV = SE.getSCEV(RightVal); // Do not consider predicates that are known to be true or false // independently of the loop iteration. if (SE.evaluatePredicate(Pred, LeftSCEV, RightSCEV)) return; // Check if we have a condition with one AddRec and one non AddRec // expression. Normalize LeftSCEV to be the AddRec. if (!isa(LeftSCEV)) { if (isa(RightSCEV)) { std::swap(LeftSCEV, RightSCEV); Pred = ICmpInst::getSwappedPredicate(Pred); } else return; } const SCEVAddRecExpr *LeftAR = cast(LeftSCEV); // Avoid huge SCEV computations in the loop below, make sure we only // consider AddRecs of the loop we are trying to peel. if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) return; if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && !SE.getMonotonicPredicateType(LeftAR, Pred)) return; // Check if extending the current DesiredPeelCount lets us evaluate Pred // or !Pred in the loop body statically. unsigned NewPeelCount = DesiredPeelCount; const SCEV *IterVal = LeftAR->evaluateAtIteration( SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); // If the original condition is not known, get the negated predicate // (which holds on the else branch) and check if it is known. This allows // us to peel of iterations that make the original condition false. if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) Pred = ICmpInst::getInversePredicate(Pred); const SCEV *Step = LeftAR->getStepRecurrence(SE); if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, RightSCEV, Step, Pred)) return; // However, for equality comparisons, that isn't always sufficient to // eliminate the comparsion in loop body, we may need to peel one more // iteration. See if that makes !Pred become unknown again. const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); if (ICmpInst::isEquality(Pred) && !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, RightSCEV) && !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { if (NewPeelCount >= MaxPeelCount) return; // Need to peel one more iteration, but can't. Give up. ++NewPeelCount; // Great! } DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); }; auto ComputePeelCountMinMax = [&](MinMaxIntrinsic *MinMax) { if (!MinMax->getType()->isIntegerTy()) return; Value *LHS = MinMax->getLHS(), *RHS = MinMax->getRHS(); const SCEV *BoundSCEV, *IterSCEV; if (L.isLoopInvariant(LHS)) { BoundSCEV = SE.getSCEV(LHS); IterSCEV = SE.getSCEV(RHS); } else if (L.isLoopInvariant(RHS)) { BoundSCEV = SE.getSCEV(RHS); IterSCEV = SE.getSCEV(LHS); } else return; const auto *AddRec = dyn_cast(IterSCEV); // For simplicity, we support only affine recurrences. if (!AddRec || !AddRec->isAffine() || AddRec->getLoop() != &L) return; const SCEV *Step = AddRec->getStepRecurrence(SE); bool IsSigned = MinMax->isSigned(); // To minimize number of peeled iterations, we use strict relational // predicates here. ICmpInst::Predicate Pred; if (SE.isKnownPositive(Step)) Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; else if (SE.isKnownNegative(Step)) Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; else return; // Check that AddRec is not wrapping. if (!(IsSigned ? AddRec->hasNoSignedWrap() : AddRec->hasNoUnsignedWrap())) return; unsigned NewPeelCount = DesiredPeelCount; const SCEV *IterVal = AddRec->evaluateAtIteration( SE.getConstant(AddRec->getType(), NewPeelCount), SE); if (!PeelWhilePredicateIsKnown(NewPeelCount, IterVal, BoundSCEV, Step, Pred)) return; DesiredPeelCount = NewPeelCount; }; for (BasicBlock *BB : L.blocks()) { for (Instruction &I : *BB) { if (SelectInst *SI = dyn_cast(&I)) ComputePeelCount(SI->getCondition(), 0); if (MinMaxIntrinsic *MinMax = dyn_cast(&I)) ComputePeelCountMinMax(MinMax); } auto *BI = dyn_cast(BB->getTerminator()); if (!BI || BI->isUnconditional()) continue; // Ignore loop exit condition. if (L.getLoopLatch() == BB) continue; ComputePeelCount(BI->getCondition(), 0); } return DesiredPeelCount; } /// This "heuristic" exactly matches implicit behavior which used to exist /// inside getLoopEstimatedTripCount. It was added here to keep an /// improvement inside that API from causing peeling to become more aggressive. /// This should probably be removed. static bool violatesLegacyMultiExitLoopCheck(Loop *L) { BasicBlock *Latch = L->getLoopLatch(); if (!Latch) return true; BranchInst *LatchBR = dyn_cast(Latch->getTerminator()); if (!LatchBR || LatchBR->getNumSuccessors() != 2 || !L->isLoopExiting(Latch)) return true; assert((LatchBR->getSuccessor(0) == L->getHeader() || LatchBR->getSuccessor(1) == L->getHeader()) && "At least one edge out of the latch must go to the header"); SmallVector ExitBlocks; L->getUniqueNonLatchExitBlocks(ExitBlocks); return any_of(ExitBlocks, [](const BasicBlock *EB) { return !EB->getTerminatingDeoptimizeCall(); }); } // Return the number of iterations we want to peel off. void llvm::computePeelCount(Loop *L, unsigned LoopSize, TargetTransformInfo::PeelingPreferences &PP, unsigned TripCount, DominatorTree &DT, ScalarEvolution &SE, AssumptionCache *AC, unsigned Threshold) { assert(LoopSize > 0 && "Zero loop size is not allowed!"); // Save the PP.PeelCount value set by the target in // TTI.getPeelingPreferences or by the flag -unroll-peel-count. unsigned TargetPeelCount = PP.PeelCount; PP.PeelCount = 0; if (!canPeel(L)) return; // Only try to peel innermost loops by default. // The constraint can be relaxed by the target in TTI.getPeelingPreferences // or by the flag -unroll-allow-loop-nests-peeling. if (!PP.AllowLoopNestsPeeling && !L->isInnermost()) return; // If the user provided a peel count, use that. bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; if (UserPeelCount) { LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount << " iterations.\n"); PP.PeelCount = UnrollForcePeelCount; PP.PeelProfiledIterations = true; return; } // Skip peeling if it's disabled. if (!PP.AllowPeeling) return; // Check that we can peel at least one iteration. if (2 * LoopSize > Threshold) return; unsigned AlreadyPeeled = 0; if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) AlreadyPeeled = *Peeled; // Stop if we already peeled off the maximum number of iterations. if (AlreadyPeeled >= UnrollPeelMaxCount) return; // Pay respect to limitations implied by loop size and the max peel count. unsigned MaxPeelCount = UnrollPeelMaxCount; MaxPeelCount = std::min(MaxPeelCount, Threshold / LoopSize - 1); // Start the max computation with the PP.PeelCount value set by the target // in TTI.getPeelingPreferences or by the flag -unroll-peel-count. unsigned DesiredPeelCount = TargetPeelCount; // Here we try to get rid of Phis which become invariants after 1, 2, ..., N // iterations of the loop. For this we compute the number for iterations after // which every Phi is guaranteed to become an invariant, and try to peel the // maximum number of iterations among these values, thus turning all those // Phis into invariants. if (MaxPeelCount > DesiredPeelCount) { // Check how many iterations are useful for resolving Phis auto NumPeels = PhiAnalyzer(*L, MaxPeelCount).calculateIterationsToPeel(); if (NumPeels) DesiredPeelCount = std::max(DesiredPeelCount, *NumPeels); } DesiredPeelCount = std::max(DesiredPeelCount, countToEliminateCompares(*L, MaxPeelCount, SE)); if (DesiredPeelCount == 0) DesiredPeelCount = peelToTurnInvariantLoadsDerefencebale(*L, DT, AC); if (DesiredPeelCount > 0) { DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); // Consider max peel count limitation. assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount << " iteration(s) to turn" << " some Phis into invariants.\n"); PP.PeelCount = DesiredPeelCount; PP.PeelProfiledIterations = false; return; } } // Bail if we know the statically calculated trip count. // In this case we rather prefer partial unrolling. if (TripCount) return; // Do not apply profile base peeling if it is disabled. if (!PP.PeelProfiledIterations) return; // If we don't know the trip count, but have reason to believe the average // trip count is low, peeling should be beneficial, since we will usually // hit the peeled section. // We only do this in the presence of profile information, since otherwise // our estimates of the trip count are not reliable enough. if (L->getHeader()->getParent()->hasProfileData()) { if (violatesLegacyMultiExitLoopCheck(L)) return; std::optional EstimatedTripCount = getLoopEstimatedTripCount(L); if (!EstimatedTripCount) return; LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *EstimatedTripCount << "\n"); if (*EstimatedTripCount) { if (*EstimatedTripCount + AlreadyPeeled <= MaxPeelCount) { unsigned PeelCount = *EstimatedTripCount; LLVM_DEBUG(dbgs() << "Peeling first " << PeelCount << " iterations.\n"); PP.PeelCount = PeelCount; return; } LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); LLVM_DEBUG(dbgs() << "Loop cost: " << LoopSize << "\n"); LLVM_DEBUG(dbgs() << "Max peel cost: " << Threshold << "\n"); LLVM_DEBUG(dbgs() << "Max peel count by cost: " << (Threshold / LoopSize - 1) << "\n"); } } } struct WeightInfo { // Weights for current iteration. SmallVector Weights; // Weights to subtract after each iteration. const SmallVector SubWeights; }; /// Update the branch weights of an exiting block of a peeled-off loop /// iteration. /// Let F is a weight of the edge to continue (fallthrough) into the loop. /// Let E is a weight of the edge to an exit. /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to /// go to exit. /// Then, Estimated ExitCount = F / E. /// For I-th (counting from 0) peeled off iteration we set the weights for /// the peeled exit as (EC - I, 1). It gives us reasonable distribution, /// The probability to go to exit 1/(EC-I) increases. At the same time /// the estimated exit count in the remainder loop reduces by I. /// To avoid dealing with division rounding we can just multiple both part /// of weights to E and use weight as (F - I * E, E). static void updateBranchWeights(Instruction *Term, WeightInfo &Info) { setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false); for (auto [Idx, SubWeight] : enumerate(Info.SubWeights)) if (SubWeight != 0) // Don't set the probability of taking the edge from latch to loop header // to less than 1:1 ratio (meaning Weight should not be lower than // SubWeight), as this could significantly reduce the loop's hotness, // which would be incorrect in the case of underestimating the trip count. Info.Weights[Idx] = Info.Weights[Idx] > SubWeight ? std::max(Info.Weights[Idx] - SubWeight, SubWeight) : SubWeight; } /// Initialize the weights for all exiting blocks. static void initBranchWeights(DenseMap &WeightInfos, Loop *L) { SmallVector ExitingBlocks; L->getExitingBlocks(ExitingBlocks); for (BasicBlock *ExitingBlock : ExitingBlocks) { Instruction *Term = ExitingBlock->getTerminator(); SmallVector Weights; if (!extractBranchWeights(*Term, Weights)) continue; // See the comment on updateBranchWeights() for an explanation of what we // do here. uint32_t FallThroughWeights = 0; uint32_t ExitWeights = 0; for (auto [Succ, Weight] : zip(successors(Term), Weights)) { if (L->contains(Succ)) FallThroughWeights += Weight; else ExitWeights += Weight; } // Don't try to update weights for degenerate case. if (FallThroughWeights == 0) continue; SmallVector SubWeights; for (auto [Succ, Weight] : zip(successors(Term), Weights)) { if (!L->contains(Succ)) { // Exit weights stay the same. SubWeights.push_back(0); continue; } // Subtract exit weights on each iteration, distributed across all // fallthrough edges. double W = (double)Weight / (double)FallThroughWeights; SubWeights.push_back((uint32_t)(ExitWeights * W)); } WeightInfos.insert({Term, {std::move(Weights), std::move(SubWeights)}}); } } /// Clones the body of the loop L, putting it between \p InsertTop and \p /// InsertBot. /// \param IterNumber The serial number of the iteration currently being /// peeled off. /// \param ExitEdges The exit edges of the original loop. /// \param[out] NewBlocks A list of the blocks in the newly created clone /// \param[out] VMap The value map between the loop and the new clone. /// \param LoopBlocks A helper for DFS-traversal of the loop. /// \param LVMap A value-map that maps instructions from the original loop to /// instructions in the last peeled-off iteration. static void cloneLoopBlocks( Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, SmallVectorImpl> &ExitEdges, SmallVectorImpl &NewBlocks, LoopBlocksDFS &LoopBlocks, ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, LoopInfo *LI, ArrayRef LoopLocalNoAliasDeclScopes, ScalarEvolution &SE) { BasicBlock *Header = L->getHeader(); BasicBlock *Latch = L->getLoopLatch(); BasicBlock *PreHeader = L->getLoopPreheader(); Function *F = Header->getParent(); LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); Loop *ParentLoop = L->getParentLoop(); // For each block in the original loop, create a new copy, // and update the value map with the newly created values. for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); NewBlocks.push_back(NewBB); // If an original block is an immediate child of the loop L, its copy // is a child of a ParentLoop after peeling. If a block is a child of // a nested loop, it is handled in the cloneLoop() call below. if (ParentLoop && LI->getLoopFor(*BB) == L) ParentLoop->addBasicBlockToLoop(NewBB, *LI); VMap[*BB] = NewBB; // If dominator tree is available, insert nodes to represent cloned blocks. if (DT) { if (Header == *BB) DT->addNewBlock(NewBB, InsertTop); else { DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); // VMap must contain entry for IDom, as the iteration order is RPO. DT->addNewBlock(NewBB, cast(VMap[IDom->getBlock()])); } } } { // Identify what other metadata depends on the cloned version. After // cloning, replace the metadata with the corrected version for both // memory instructions and noalias intrinsics. std::string Ext = (Twine("Peel") + Twine(IterNumber)).str(); cloneAndAdaptNoAliasScopes(LoopLocalNoAliasDeclScopes, NewBlocks, Header->getContext(), Ext); } // Recursively create the new Loop objects for nested loops, if any, // to preserve LoopInfo. for (Loop *ChildLoop : *L) { cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); } // Hook-up the control flow for the newly inserted blocks. // The new header is hooked up directly to the "top", which is either // the original loop preheader (for the first iteration) or the previous // iteration's exiting block (for every other iteration) InsertTop->getTerminator()->setSuccessor(0, cast(VMap[Header])); // Similarly, for the latch: // The original exiting edge is still hooked up to the loop exit. // The backedge now goes to the "bottom", which is either the loop's real // header (for the last peeled iteration) or the copied header of the next // iteration (for every other iteration) BasicBlock *NewLatch = cast(VMap[Latch]); auto *LatchTerm = cast(NewLatch->getTerminator()); for (unsigned idx = 0, e = LatchTerm->getNumSuccessors(); idx < e; ++idx) if (LatchTerm->getSuccessor(idx) == Header) { LatchTerm->setSuccessor(idx, InsertBot); break; } if (DT) DT->changeImmediateDominator(InsertBot, NewLatch); // The new copy of the loop body starts with a bunch of PHI nodes // that pick an incoming value from either the preheader, or the previous // loop iteration. Since this copy is no longer part of the loop, we // resolve this statically: // For the first iteration, we use the value from the preheader directly. // For any other iteration, we replace the phi with the value generated by // the immediately preceding clone of the loop body (which represents // the previous iteration). for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *NewPHI = cast(VMap[&*I]); if (IterNumber == 0) { VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); } else { Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); Instruction *LatchInst = dyn_cast(LatchVal); if (LatchInst && L->contains(LatchInst)) VMap[&*I] = LVMap[LatchInst]; else VMap[&*I] = LatchVal; } NewPHI->eraseFromParent(); } // Fix up the outgoing values - we need to add a value for the iteration // we've just created. Note that this must happen *after* the incoming // values are adjusted, since the value going out of the latch may also be // a value coming into the header. for (auto Edge : ExitEdges) for (PHINode &PHI : Edge.second->phis()) { Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); Instruction *LatchInst = dyn_cast(LatchVal); if (LatchInst && L->contains(LatchInst)) LatchVal = VMap[LatchVal]; PHI.addIncoming(LatchVal, cast(VMap[Edge.first])); SE.forgetLcssaPhiWithNewPredecessor(L, &PHI); } // LastValueMap is updated with the values for the current loop // which are used the next time this function is called. for (auto KV : VMap) LVMap[KV.first] = KV.second; } TargetTransformInfo::PeelingPreferences llvm::gatherPeelingPreferences(Loop *L, ScalarEvolution &SE, const TargetTransformInfo &TTI, std::optional UserAllowPeeling, std::optional UserAllowProfileBasedPeeling, bool UnrollingSpecficValues) { TargetTransformInfo::PeelingPreferences PP; // Set the default values. PP.PeelCount = 0; PP.AllowPeeling = true; PP.AllowLoopNestsPeeling = false; PP.PeelProfiledIterations = true; // Get the target specifc values. TTI.getPeelingPreferences(L, SE, PP); // User specified values using cl::opt. if (UnrollingSpecficValues) { if (UnrollPeelCount.getNumOccurrences() > 0) PP.PeelCount = UnrollPeelCount; if (UnrollAllowPeeling.getNumOccurrences() > 0) PP.AllowPeeling = UnrollAllowPeeling; if (UnrollAllowLoopNestsPeeling.getNumOccurrences() > 0) PP.AllowLoopNestsPeeling = UnrollAllowLoopNestsPeeling; } // User specifed values provided by argument. if (UserAllowPeeling) PP.AllowPeeling = *UserAllowPeeling; if (UserAllowProfileBasedPeeling) PP.PeelProfiledIterations = *UserAllowProfileBasedPeeling; return PP; } /// Peel off the first \p PeelCount iterations of loop \p L. /// /// Note that this does not peel them off as a single straight-line block. /// Rather, each iteration is peeled off separately, and needs to check the /// exit condition. /// For loops that dynamically execute \p PeelCount iterations or less /// this provides a benefit, since the peeled off iterations, which account /// for the bulk of dynamic execution, can be further simplified by scalar /// optimizations. bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, ScalarEvolution *SE, DominatorTree &DT, AssumptionCache *AC, bool PreserveLCSSA, ValueToValueMapTy &LVMap) { assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); LoopBlocksDFS LoopBlocks(L); LoopBlocks.perform(LI); BasicBlock *Header = L->getHeader(); BasicBlock *PreHeader = L->getLoopPreheader(); BasicBlock *Latch = L->getLoopLatch(); SmallVector, 4> ExitEdges; L->getExitEdges(ExitEdges); // Remember dominators of blocks we might reach through exits to change them // later. Immediate dominator of such block might change, because we add more // routes which can lead to the exit: we can reach it from the peeled // iterations too. DenseMap NonLoopBlocksIDom; for (auto *BB : L->blocks()) { auto *BBDomNode = DT.getNode(BB); SmallVector ChildrenToUpdate; for (auto *ChildDomNode : BBDomNode->children()) { auto *ChildBB = ChildDomNode->getBlock(); if (!L->contains(ChildBB)) ChildrenToUpdate.push_back(ChildBB); } // The new idom of the block will be the nearest common dominator // of all copies of the previous idom. This is equivalent to the // nearest common dominator of the previous idom and the first latch, // which dominates all copies of the previous idom. BasicBlock *NewIDom = DT.findNearestCommonDominator(BB, Latch); for (auto *ChildBB : ChildrenToUpdate) NonLoopBlocksIDom[ChildBB] = NewIDom; } Function *F = Header->getParent(); // Set up all the necessary basic blocks. It is convenient to split the // preheader into 3 parts - two blocks to anchor the peeled copy of the loop // body, and a new preheader for the "real" loop. // Peeling the first iteration transforms. // // PreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: // // into // // InsertTop: // LoopBody // If (!cond) goto Exit // InsertBot: // NewPreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: // // Each following iteration will split the current bottom anchor in two, // and put the new copy of the loop body between these two blocks. That is, // after peeling another iteration from the example above, we'll split // InsertBot, and get: // // InsertTop: // LoopBody // If (!cond) goto Exit // InsertBot: // LoopBody // If (!cond) goto Exit // InsertBot.next: // NewPreHeader: // ... // Header: // LoopBody // If (cond) goto Header // Exit: BasicBlock *InsertTop = SplitEdge(PreHeader, Header, &DT, LI); BasicBlock *InsertBot = SplitBlock(InsertTop, InsertTop->getTerminator(), &DT, LI); BasicBlock *NewPreHeader = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); InsertTop->setName(Header->getName() + ".peel.begin"); InsertBot->setName(Header->getName() + ".peel.next"); NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); Instruction *LatchTerm = cast(cast(Latch)->getTerminator()); // If we have branch weight information, we'll want to update it for the // newly created branches. DenseMap Weights; initBranchWeights(Weights, L); // Identify what noalias metadata is inside the loop: if it is inside the // loop, the associated metadata must be cloned for each iteration. SmallVector LoopLocalNoAliasDeclScopes; identifyNoAliasScopesToClone(L->getBlocks(), LoopLocalNoAliasDeclScopes); // For each peeled-off iteration, make a copy of the loop. for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { SmallVector NewBlocks; ValueToValueMapTy VMap; cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, LoopBlocks, VMap, LVMap, &DT, LI, LoopLocalNoAliasDeclScopes, *SE); // Remap to use values from the current iteration instead of the // previous one. remapInstructionsInBlocks(NewBlocks, VMap); // Update IDoms of the blocks reachable through exits. if (Iter == 0) for (auto BBIDom : NonLoopBlocksIDom) DT.changeImmediateDominator(BBIDom.first, cast(LVMap[BBIDom.second])); #ifdef EXPENSIVE_CHECKS assert(DT.verify(DominatorTree::VerificationLevel::Fast)); #endif for (auto &[Term, Info] : Weights) { auto *TermCopy = cast(VMap[Term]); updateBranchWeights(TermCopy, Info); } // Remove Loop metadata from the latch branch instruction // because it is not the Loop's latch branch anymore. auto *LatchTermCopy = cast(VMap[LatchTerm]); LatchTermCopy->setMetadata(LLVMContext::MD_loop, nullptr); InsertTop = InsertBot; InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), &DT, LI); InsertBot->setName(Header->getName() + ".peel.next"); F->splice(InsertTop->getIterator(), F, NewBlocks[0]->getIterator(), F->end()); } // Now adjust the phi nodes in the loop header to get their initial values // from the last peeled-off iteration instead of the preheader. for (BasicBlock::iterator I = Header->begin(); isa(I); ++I) { PHINode *PHI = cast(I); Value *NewVal = PHI->getIncomingValueForBlock(Latch); Instruction *LatchInst = dyn_cast(NewVal); if (LatchInst && L->contains(LatchInst)) NewVal = LVMap[LatchInst]; PHI->setIncomingValueForBlock(NewPreHeader, NewVal); } for (const auto &[Term, Info] : Weights) { setBranchWeights(*Term, Info.Weights, /*IsExpected=*/false); } // Update Metadata for count of peeled off iterations. unsigned AlreadyPeeled = 0; if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) AlreadyPeeled = *Peeled; addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); if (Loop *ParentLoop = L->getParentLoop()) L = ParentLoop; // We modified the loop, update SE. SE->forgetTopmostLoop(L); SE->forgetBlockAndLoopDispositions(); #ifdef EXPENSIVE_CHECKS // Finally DomtTree must be correct. assert(DT.verify(DominatorTree::VerificationLevel::Fast)); #endif // FIXME: Incrementally update loop-simplify simplifyLoop(L, &DT, LI, SE, AC, nullptr, PreserveLCSSA); NumPeeled++; return true; }