//===- DemoteRegToStack.cpp - Move a virtual register to the stack --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/DenseMap.h" #include "llvm/Analysis/CFG.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; /// DemoteRegToStack - This function takes a virtual register computed by an /// Instruction and replaces it with a slot in the stack frame, allocated via /// alloca. This allows the CFG to be changed around without fear of /// invalidating the SSA information for the value. It returns the pointer to /// the alloca inserted to create a stack slot for I. AllocaInst *llvm::DemoteRegToStack(Instruction &I, bool VolatileLoads, std::optional AllocaPoint) { if (I.use_empty()) { I.eraseFromParent(); return nullptr; } Function *F = I.getParent()->getParent(); const DataLayout &DL = F->getDataLayout(); // Create a stack slot to hold the value. AllocaInst *Slot; if (AllocaPoint) { Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, I.getName()+".reg2mem", *AllocaPoint); } else { Slot = new AllocaInst(I.getType(), DL.getAllocaAddrSpace(), nullptr, I.getName() + ".reg2mem", F->getEntryBlock().begin()); } // We cannot demote invoke instructions to the stack if their normal edge // is critical. Therefore, split the critical edge and create a basic block // into which the store can be inserted. if (InvokeInst *II = dyn_cast(&I)) { if (!II->getNormalDest()->getSinglePredecessor()) { unsigned SuccNum = GetSuccessorNumber(II->getParent(), II->getNormalDest()); assert(isCriticalEdge(II, SuccNum) && "Expected a critical edge!"); BasicBlock *BB = SplitCriticalEdge(II, SuccNum); assert(BB && "Unable to split critical edge."); (void)BB; } } else if (CallBrInst *CBI = dyn_cast(&I)) { for (unsigned i = 0; i < CBI->getNumSuccessors(); i++) { auto *Succ = CBI->getSuccessor(i); if (!Succ->getSinglePredecessor()) { assert(isCriticalEdge(II, i) && "Expected a critical edge!"); [[maybe_unused]] BasicBlock *BB = SplitCriticalEdge(II, i); assert(BB && "Unable to split critical edge."); } } } // Change all of the users of the instruction to read from the stack slot. while (!I.use_empty()) { Instruction *U = cast(I.user_back()); if (PHINode *PN = dyn_cast(U)) { // If this is a PHI node, we can't insert a load of the value before the // use. Instead insert the load in the predecessor block corresponding // to the incoming value. // // Note that if there are multiple edges from a basic block to this PHI // node that we cannot have multiple loads. The problem is that the // resulting PHI node will have multiple values (from each load) coming in // from the same block, which is illegal SSA form. For this reason, we // keep track of and reuse loads we insert. DenseMap Loads; for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == &I) { Value *&V = Loads[PN->getIncomingBlock(i)]; if (!V) { // Insert the load into the predecessor block V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", VolatileLoads, PN->getIncomingBlock(i)->getTerminator()->getIterator()); Loads[PN->getIncomingBlock(i)] = V; } PN->setIncomingValue(i, V); } } else { // If this is a normal instruction, just insert a load. Value *V = new LoadInst(I.getType(), Slot, I.getName() + ".reload", VolatileLoads, U->getIterator()); U->replaceUsesOfWith(&I, V); } } // Insert stores of the computed value into the stack slot. We have to be // careful if I is an invoke instruction, because we can't insert the store // AFTER the terminator instruction. BasicBlock::iterator InsertPt; if (!I.isTerminator()) { InsertPt = ++I.getIterator(); // Don't insert before PHI nodes or landingpad instrs. for (; isa(InsertPt) || InsertPt->isEHPad(); ++InsertPt) if (isa(InsertPt)) break; if (isa(InsertPt)) { for (BasicBlock *Handler : successors(&*InsertPt)) new StoreInst(&I, Slot, Handler->getFirstInsertionPt()); return Slot; } } else if (InvokeInst *II = dyn_cast(&I)) { InsertPt = II->getNormalDest()->getFirstInsertionPt(); } else if (CallBrInst *CBI = dyn_cast(&I)) { for (BasicBlock *Succ : successors(CBI)) new StoreInst(CBI, Slot, Succ->getFirstInsertionPt()); return Slot; } else { llvm_unreachable("Unsupported terminator for Reg2Mem"); } new StoreInst(&I, Slot, InsertPt); return Slot; } /// DemotePHIToStack - This function takes a virtual register computed by a PHI /// node and replaces it with a slot in the stack frame allocated via alloca. /// The PHI node is deleted. It returns the pointer to the alloca inserted. AllocaInst *llvm::DemotePHIToStack(PHINode *P, std::optional AllocaPoint) { if (P->use_empty()) { P->eraseFromParent(); return nullptr; } const DataLayout &DL = P->getDataLayout(); // Create a stack slot to hold the value. AllocaInst *Slot; if (AllocaPoint) { Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, P->getName()+".reg2mem", *AllocaPoint); } else { Function *F = P->getParent()->getParent(); Slot = new AllocaInst(P->getType(), DL.getAllocaAddrSpace(), nullptr, P->getName() + ".reg2mem", F->getEntryBlock().begin()); } // Iterate over each operand inserting a store in each predecessor. for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { if (InvokeInst *II = dyn_cast(P->getIncomingValue(i))) { assert(II->getParent() != P->getIncomingBlock(i) && "Invoke edge not supported yet"); (void)II; } new StoreInst(P->getIncomingValue(i), Slot, P->getIncomingBlock(i)->getTerminator()->getIterator()); } // Insert a load in place of the PHI and replace all uses. BasicBlock::iterator InsertPt = P->getIterator(); // Don't insert before PHI nodes or landingpad instrs. for (; isa(InsertPt) || InsertPt->isEHPad(); ++InsertPt) if (isa(InsertPt)) break; if (isa(InsertPt)) { // We need a separate load before each actual use of the PHI SmallVector Users; for (User *U : P->users()) { Instruction *User = cast(U); Users.push_back(User); } for (Instruction *User : Users) { Value *V = new LoadInst(P->getType(), Slot, P->getName() + ".reload", User->getIterator()); User->replaceUsesOfWith(P, V); } } else { Value *V = new LoadInst(P->getType(), Slot, P->getName() + ".reload", InsertPt); P->replaceAllUsesWith(V); } // Delete PHI. P->eraseFromParent(); return Slot; }