//===- RewriteStatepointsForGC.cpp - Make GC relocations explicit ---------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Rewrite call/invoke instructions so as to make potential relocations // performed by the garbage collector explicit in the IR. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/RewriteStatepointsForGC.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/TargetTransformInfo.h" #include "llvm/IR/Argument.h" #include "llvm/IR/AttributeMask.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Function.h" #include "llvm/IR/GCStrategy.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstIterator.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/IR/Statepoint.h" #include "llvm/IR/Type.h" #include "llvm/IR/User.h" #include "llvm/IR/Value.h" #include "llvm/IR/ValueHandle.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/PromoteMemToReg.h" #include #include #include #include #include #include #include #include #include #include #define DEBUG_TYPE "rewrite-statepoints-for-gc" using namespace llvm; // Print the liveset found at the insert location static cl::opt PrintLiveSet("spp-print-liveset", cl::Hidden, cl::init(false)); static cl::opt PrintLiveSetSize("spp-print-liveset-size", cl::Hidden, cl::init(false)); // Print out the base pointers for debugging static cl::opt PrintBasePointers("spp-print-base-pointers", cl::Hidden, cl::init(false)); // Cost threshold measuring when it is profitable to rematerialize value instead // of relocating it static cl::opt RematerializationThreshold("spp-rematerialization-threshold", cl::Hidden, cl::init(6)); #ifdef EXPENSIVE_CHECKS static bool ClobberNonLive = true; #else static bool ClobberNonLive = false; #endif static cl::opt ClobberNonLiveOverride("rs4gc-clobber-non-live", cl::location(ClobberNonLive), cl::Hidden); static cl::opt AllowStatepointWithNoDeoptInfo("rs4gc-allow-statepoint-with-no-deopt-info", cl::Hidden, cl::init(true)); static cl::opt RematDerivedAtUses("rs4gc-remat-derived-at-uses", cl::Hidden, cl::init(true)); /// The IR fed into RewriteStatepointsForGC may have had attributes and /// metadata implying dereferenceability that are no longer valid/correct after /// RewriteStatepointsForGC has run. This is because semantically, after /// RewriteStatepointsForGC runs, all calls to gc.statepoint "free" the entire /// heap. stripNonValidData (conservatively) restores /// correctness by erasing all attributes in the module that externally imply /// dereferenceability. Similar reasoning also applies to the noalias /// attributes and metadata. gc.statepoint can touch the entire heap including /// noalias objects. /// Apart from attributes and metadata, we also remove instructions that imply /// constant physical memory: llvm.invariant.start. static void stripNonValidData(Module &M); // Find the GC strategy for a function, or null if it doesn't have one. static std::unique_ptr findGCStrategy(Function &F); static bool shouldRewriteStatepointsIn(Function &F); PreservedAnalyses RewriteStatepointsForGC::run(Module &M, ModuleAnalysisManager &AM) { bool Changed = false; auto &FAM = AM.getResult(M).getManager(); for (Function &F : M) { // Nothing to do for declarations. if (F.isDeclaration() || F.empty()) continue; // Policy choice says not to rewrite - the most common reason is that we're // compiling code without a GCStrategy. if (!shouldRewriteStatepointsIn(F)) continue; auto &DT = FAM.getResult(F); auto &TTI = FAM.getResult(F); auto &TLI = FAM.getResult(F); Changed |= runOnFunction(F, DT, TTI, TLI); } if (!Changed) return PreservedAnalyses::all(); // stripNonValidData asserts that shouldRewriteStatepointsIn // returns true for at least one function in the module. Since at least // one function changed, we know that the precondition is satisfied. stripNonValidData(M); PreservedAnalyses PA; PA.preserve(); PA.preserve(); return PA; } namespace { struct GCPtrLivenessData { /// Values defined in this block. MapVector> KillSet; /// Values used in this block (and thus live); does not included values /// killed within this block. MapVector> LiveSet; /// Values live into this basic block (i.e. used by any /// instruction in this basic block or ones reachable from here) MapVector> LiveIn; /// Values live out of this basic block (i.e. live into /// any successor block) MapVector> LiveOut; }; // The type of the internal cache used inside the findBasePointers family // of functions. From the callers perspective, this is an opaque type and // should not be inspected. // // In the actual implementation this caches two relations: // - The base relation itself (i.e. this pointer is based on that one) // - The base defining value relation (i.e. before base_phi insertion) // Generally, after the execution of a full findBasePointer call, only the // base relation will remain. Internally, we add a mixture of the two // types, then update all the second type to the first type using DefiningValueMapTy = MapVector; using IsKnownBaseMapTy = MapVector; using PointerToBaseTy = MapVector; using StatepointLiveSetTy = SetVector; using RematerializedValueMapTy = MapVector, AssertingVH>; struct PartiallyConstructedSafepointRecord { /// The set of values known to be live across this safepoint StatepointLiveSetTy LiveSet; /// The *new* gc.statepoint instruction itself. This produces the token /// that normal path gc.relocates and the gc.result are tied to. GCStatepointInst *StatepointToken; /// Instruction to which exceptional gc relocates are attached /// Makes it easier to iterate through them during relocationViaAlloca. Instruction *UnwindToken; /// Record live values we are rematerialized instead of relocating. /// They are not included into 'LiveSet' field. /// Maps rematerialized copy to it's original value. RematerializedValueMapTy RematerializedValues; }; struct RematerizlizationCandidateRecord { // Chain from derived pointer to base. SmallVector ChainToBase; // Original base. Value *RootOfChain; // Cost of chain. InstructionCost Cost; }; using RematCandTy = MapVector; } // end anonymous namespace static ArrayRef GetDeoptBundleOperands(const CallBase *Call) { std::optional DeoptBundle = Call->getOperandBundle(LLVMContext::OB_deopt); if (!DeoptBundle) { assert(AllowStatepointWithNoDeoptInfo && "Found non-leaf call without deopt info!"); return std::nullopt; } return DeoptBundle->Inputs; } /// Compute the live-in set for every basic block in the function static void computeLiveInValues(DominatorTree &DT, Function &F, GCPtrLivenessData &Data, GCStrategy *GC); /// Given results from the dataflow liveness computation, find the set of live /// Values at a particular instruction. static void findLiveSetAtInst(Instruction *inst, GCPtrLivenessData &Data, StatepointLiveSetTy &out, GCStrategy *GC); static bool isGCPointerType(Type *T, GCStrategy *GC) { assert(GC && "GC Strategy for isGCPointerType cannot be null"); if (!isa(T)) return false; // conservative - same as StatepointLowering return GC->isGCManagedPointer(T).value_or(true); } // Return true if this type is one which a) is a gc pointer or contains a GC // pointer and b) is of a type this code expects to encounter as a live value. // (The insertion code will assert that a type which matches (a) and not (b) // is not encountered.) static bool isHandledGCPointerType(Type *T, GCStrategy *GC) { // We fully support gc pointers if (isGCPointerType(T, GC)) return true; // We partially support vectors of gc pointers. The code will assert if it // can't handle something. if (auto VT = dyn_cast(T)) if (isGCPointerType(VT->getElementType(), GC)) return true; return false; } #ifndef NDEBUG /// Returns true if this type contains a gc pointer whether we know how to /// handle that type or not. static bool containsGCPtrType(Type *Ty, GCStrategy *GC) { if (isGCPointerType(Ty, GC)) return true; if (VectorType *VT = dyn_cast(Ty)) return isGCPointerType(VT->getScalarType(), GC); if (ArrayType *AT = dyn_cast(Ty)) return containsGCPtrType(AT->getElementType(), GC); if (StructType *ST = dyn_cast(Ty)) return llvm::any_of(ST->elements(), [GC](Type *Ty) { return containsGCPtrType(Ty, GC); }); return false; } // Returns true if this is a type which a) is a gc pointer or contains a GC // pointer and b) is of a type which the code doesn't expect (i.e. first class // aggregates). Used to trip assertions. static bool isUnhandledGCPointerType(Type *Ty, GCStrategy *GC) { return containsGCPtrType(Ty, GC) && !isHandledGCPointerType(Ty, GC); } #endif // Return the name of the value suffixed with the provided value, or if the // value didn't have a name, the default value specified. static std::string suffixed_name_or(Value *V, StringRef Suffix, StringRef DefaultName) { return V->hasName() ? (V->getName() + Suffix).str() : DefaultName.str(); } // Conservatively identifies any definitions which might be live at the // given instruction. The analysis is performed immediately before the // given instruction. Values defined by that instruction are not considered // live. Values used by that instruction are considered live. static void analyzeParsePointLiveness( DominatorTree &DT, GCPtrLivenessData &OriginalLivenessData, CallBase *Call, PartiallyConstructedSafepointRecord &Result, GCStrategy *GC) { StatepointLiveSetTy LiveSet; findLiveSetAtInst(Call, OriginalLivenessData, LiveSet, GC); if (PrintLiveSet) { dbgs() << "Live Variables:\n"; for (Value *V : LiveSet) dbgs() << " " << V->getName() << " " << *V << "\n"; } if (PrintLiveSetSize) { dbgs() << "Safepoint For: " << Call->getCalledOperand()->getName() << "\n"; dbgs() << "Number live values: " << LiveSet.size() << "\n"; } Result.LiveSet = LiveSet; } /// Returns true if V is a known base. static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases); /// Caches the IsKnownBase flag for a value and asserts that it wasn't present /// in the cache before. static void setKnownBase(Value *V, bool IsKnownBase, IsKnownBaseMapTy &KnownBases); static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases); /// Return a base defining value for the 'Index' element of the given vector /// instruction 'I'. If Index is null, returns a BDV for the entire vector /// 'I'. As an optimization, this method will try to determine when the /// element is known to already be a base pointer. If this can be established, /// the second value in the returned pair will be true. Note that either a /// vector or a pointer typed value can be returned. For the former, the /// vector returned is a BDV (and possibly a base) of the entire vector 'I'. /// If the later, the return pointer is a BDV (or possibly a base) for the /// particular element in 'I'. static Value *findBaseDefiningValueOfVector(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases) { // Each case parallels findBaseDefiningValue below, see that code for // detailed motivation. auto Cached = Cache.find(I); if (Cached != Cache.end()) return Cached->second; if (isa(I)) { // An incoming argument to the function is a base pointer Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } if (isa(I)) { // Base of constant vector consists only of constant null pointers. // For reasoning see similar case inside 'findBaseDefiningValue' function. auto *CAZ = ConstantAggregateZero::get(I->getType()); Cache[I] = CAZ; setKnownBase(CAZ, /* IsKnownBase */true, KnownBases); return CAZ; } if (isa(I)) { Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } if (isa(I)) { // We don't know whether this vector contains entirely base pointers or // not. To be conservatively correct, we treat it as a BDV and will // duplicate code as needed to construct a parallel vector of bases. Cache[I] = I; setKnownBase(I, /* IsKnownBase */false, KnownBases); return I; } if (isa(I)) { // We don't know whether this vector contains entirely base pointers or // not. To be conservatively correct, we treat it as a BDV and will // duplicate code as needed to construct a parallel vector of bases. // TODO: There a number of local optimizations which could be applied here // for particular sufflevector patterns. Cache[I] = I; setKnownBase(I, /* IsKnownBase */false, KnownBases); return I; } // The behavior of getelementptr instructions is the same for vector and // non-vector data types. if (auto *GEP = dyn_cast(I)) { auto *BDV = findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); Cache[GEP] = BDV; return BDV; } // The behavior of freeze instructions is the same for vector and // non-vector data types. if (auto *Freeze = dyn_cast(I)) { auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); Cache[Freeze] = BDV; return BDV; } // If the pointer comes through a bitcast of a vector of pointers to // a vector of another type of pointer, then look through the bitcast if (auto *BC = dyn_cast(I)) { auto *BDV = findBaseDefiningValue(BC->getOperand(0), Cache, KnownBases); Cache[BC] = BDV; return BDV; } // We assume that functions in the source language only return base // pointers. This should probably be generalized via attributes to support // both source language and internal functions. if (isa(I) || isa(I)) { Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } // A PHI or Select is a base defining value. The outer findBasePointer // algorithm is responsible for constructing a base value for this BDV. assert((isa(I) || isa(I)) && "unknown vector instruction - no base found for vector element"); Cache[I] = I; setKnownBase(I, /* IsKnownBase */false, KnownBases); return I; } /// Helper function for findBasePointer - Will return a value which either a) /// defines the base pointer for the input, b) blocks the simple search /// (i.e. a PHI or Select of two derived pointers), or c) involves a change /// from pointer to vector type or back. static Value *findBaseDefiningValue(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases) { assert(I->getType()->isPtrOrPtrVectorTy() && "Illegal to ask for the base pointer of a non-pointer type"); auto Cached = Cache.find(I); if (Cached != Cache.end()) return Cached->second; if (I->getType()->isVectorTy()) return findBaseDefiningValueOfVector(I, Cache, KnownBases); if (isa(I)) { // An incoming argument to the function is a base pointer // We should have never reached here if this argument isn't an gc value Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } if (isa(I)) { // We assume that objects with a constant base (e.g. a global) can't move // and don't need to be reported to the collector because they are always // live. Besides global references, all kinds of constants (e.g. undef, // constant expressions, null pointers) can be introduced by the inliner or // the optimizer, especially on dynamically dead paths. // Here we treat all of them as having single null base. By doing this we // trying to avoid problems reporting various conflicts in a form of // "phi (const1, const2)" or "phi (const, regular gc ptr)". // See constant.ll file for relevant test cases. auto *CPN = ConstantPointerNull::get(cast(I->getType())); Cache[I] = CPN; setKnownBase(CPN, /* IsKnownBase */true, KnownBases); return CPN; } // inttoptrs in an integral address space are currently ill-defined. We // treat them as defining base pointers here for consistency with the // constant rule above and because we don't really have a better semantic // to give them. Note that the optimizer is always free to insert undefined // behavior on dynamically dead paths as well. if (isa(I)) { Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } if (CastInst *CI = dyn_cast(I)) { Value *Def = CI->stripPointerCasts(); // If stripping pointer casts changes the address space there is an // addrspacecast in between. assert(cast(Def->getType())->getAddressSpace() == cast(CI->getType())->getAddressSpace() && "unsupported addrspacecast"); // If we find a cast instruction here, it means we've found a cast which is // not simply a pointer cast (i.e. an inttoptr). We don't know how to // handle int->ptr conversion. assert(!isa(Def) && "shouldn't find another cast here"); auto *BDV = findBaseDefiningValue(Def, Cache, KnownBases); Cache[CI] = BDV; return BDV; } if (isa(I)) { // The value loaded is an gc base itself Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } if (GetElementPtrInst *GEP = dyn_cast(I)) { // The base of this GEP is the base auto *BDV = findBaseDefiningValue(GEP->getPointerOperand(), Cache, KnownBases); Cache[GEP] = BDV; return BDV; } if (auto *Freeze = dyn_cast(I)) { auto *BDV = findBaseDefiningValue(Freeze->getOperand(0), Cache, KnownBases); Cache[Freeze] = BDV; return BDV; } if (IntrinsicInst *II = dyn_cast(I)) { switch (II->getIntrinsicID()) { default: // fall through to general call handling break; case Intrinsic::experimental_gc_statepoint: llvm_unreachable("statepoints don't produce pointers"); case Intrinsic::experimental_gc_relocate: // Rerunning safepoint insertion after safepoints are already // inserted is not supported. It could probably be made to work, // but why are you doing this? There's no good reason. llvm_unreachable("repeat safepoint insertion is not supported"); case Intrinsic::gcroot: // Currently, this mechanism hasn't been extended to work with gcroot. // There's no reason it couldn't be, but I haven't thought about the // implications much. llvm_unreachable( "interaction with the gcroot mechanism is not supported"); case Intrinsic::experimental_gc_get_pointer_base: auto *BDV = findBaseDefiningValue(II->getOperand(0), Cache, KnownBases); Cache[II] = BDV; return BDV; } } // We assume that functions in the source language only return base // pointers. This should probably be generalized via attributes to support // both source language and internal functions. if (isa(I) || isa(I)) { Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } // TODO: I have absolutely no idea how to implement this part yet. It's not // necessarily hard, I just haven't really looked at it yet. assert(!isa(I) && "Landing Pad is unimplemented"); if (isa(I)) { // A CAS is effectively a atomic store and load combined under a // predicate. From the perspective of base pointers, we just treat it // like a load. Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } assert(!isa(I) && "Xchg handled above, all others are " "binary ops which don't apply to pointers"); // The aggregate ops. Aggregates can either be in the heap or on the // stack, but in either case, this is simply a field load. As a result, // this is a defining definition of the base just like a load is. if (isa(I)) { Cache[I] = I; setKnownBase(I, /* IsKnownBase */true, KnownBases); return I; } // We should never see an insert vector since that would require we be // tracing back a struct value not a pointer value. assert(!isa(I) && "Base pointer for a struct is meaningless"); // This value might have been generated by findBasePointer() called when // substituting gc.get.pointer.base() intrinsic. bool IsKnownBase = isa(I) && cast(I)->getMetadata("is_base_value"); setKnownBase(I, /* IsKnownBase */IsKnownBase, KnownBases); Cache[I] = I; // An extractelement produces a base result exactly when it's input does. // We may need to insert a parallel instruction to extract the appropriate // element out of the base vector corresponding to the input. Given this, // it's analogous to the phi and select case even though it's not a merge. if (isa(I)) // Note: There a lot of obvious peephole cases here. This are deliberately // handled after the main base pointer inference algorithm to make writing // test cases to exercise that code easier. return I; // The last two cases here don't return a base pointer. Instead, they // return a value which dynamically selects from among several base // derived pointers (each with it's own base potentially). It's the job of // the caller to resolve these. assert((isa(I) || isa(I)) && "missing instruction case in findBaseDefiningValue"); return I; } /// Returns the base defining value for this value. static Value *findBaseDefiningValueCached(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases) { if (!Cache.contains(I)) { auto *BDV = findBaseDefiningValue(I, Cache, KnownBases); Cache[I] = BDV; LLVM_DEBUG(dbgs() << "fBDV-cached: " << I->getName() << " -> " << Cache[I]->getName() << ", is known base = " << KnownBases[I] << "\n"); } assert(Cache[I] != nullptr); assert(KnownBases.contains(Cache[I]) && "Cached value must be present in known bases map"); return Cache[I]; } /// Return a base pointer for this value if known. Otherwise, return it's /// base defining value. static Value *findBaseOrBDV(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases) { Value *Def = findBaseDefiningValueCached(I, Cache, KnownBases); auto Found = Cache.find(Def); if (Found != Cache.end()) { // Either a base-of relation, or a self reference. Caller must check. return Found->second; } // Only a BDV available return Def; } #ifndef NDEBUG /// This value is a base pointer that is not generated by RS4GC, i.e. it already /// exists in the code. static bool isOriginalBaseResult(Value *V) { // no recursion possible return !isa(V) && !isa(V) && !isa(V) && !isa(V) && !isa(V); } #endif static bool isKnownBase(Value *V, const IsKnownBaseMapTy &KnownBases) { auto It = KnownBases.find(V); assert(It != KnownBases.end() && "Value not present in the map"); return It->second; } static void setKnownBase(Value *V, bool IsKnownBase, IsKnownBaseMapTy &KnownBases) { #ifndef NDEBUG auto It = KnownBases.find(V); if (It != KnownBases.end()) assert(It->second == IsKnownBase && "Changing already present value"); #endif KnownBases[V] = IsKnownBase; } // Returns true if First and Second values are both scalar or both vector. static bool areBothVectorOrScalar(Value *First, Value *Second) { return isa(First->getType()) == isa(Second->getType()); } namespace { /// Models the state of a single base defining value in the findBasePointer /// algorithm for determining where a new instruction is needed to propagate /// the base of this BDV. class BDVState { public: enum StatusTy { // Starting state of lattice Unknown, // Some specific base value -- does *not* mean that instruction // propagates the base of the object // ex: gep %arg, 16 -> %arg is the base value Base, // Need to insert a node to represent a merge. Conflict }; BDVState() { llvm_unreachable("missing state in map"); } explicit BDVState(Value *OriginalValue) : OriginalValue(OriginalValue) {} explicit BDVState(Value *OriginalValue, StatusTy Status, Value *BaseValue = nullptr) : OriginalValue(OriginalValue), Status(Status), BaseValue(BaseValue) { assert(Status != Base || BaseValue); } StatusTy getStatus() const { return Status; } Value *getOriginalValue() const { return OriginalValue; } Value *getBaseValue() const { return BaseValue; } bool isBase() const { return getStatus() == Base; } bool isUnknown() const { return getStatus() == Unknown; } bool isConflict() const { return getStatus() == Conflict; } // Values of type BDVState form a lattice, and this function implements the // meet // operation. void meet(const BDVState &Other) { auto markConflict = [&]() { Status = BDVState::Conflict; BaseValue = nullptr; }; // Conflict is a final state. if (isConflict()) return; // if we are not known - just take other state. if (isUnknown()) { Status = Other.getStatus(); BaseValue = Other.getBaseValue(); return; } // We are base. assert(isBase() && "Unknown state"); // If other is unknown - just keep our state. if (Other.isUnknown()) return; // If other is conflict - it is a final state. if (Other.isConflict()) return markConflict(); // Other is base as well. assert(Other.isBase() && "Unknown state"); // If bases are different - Conflict. if (getBaseValue() != Other.getBaseValue()) return markConflict(); // We are identical, do nothing. } bool operator==(const BDVState &Other) const { return OriginalValue == Other.OriginalValue && BaseValue == Other.BaseValue && Status == Other.Status; } bool operator!=(const BDVState &other) const { return !(*this == other); } LLVM_DUMP_METHOD void dump() const { print(dbgs()); dbgs() << '\n'; } void print(raw_ostream &OS) const { switch (getStatus()) { case Unknown: OS << "U"; break; case Base: OS << "B"; break; case Conflict: OS << "C"; break; } OS << " (base " << getBaseValue() << " - " << (getBaseValue() ? getBaseValue()->getName() : "nullptr") << ")" << " for " << OriginalValue->getName() << ":"; } private: AssertingVH OriginalValue; // instruction this state corresponds to StatusTy Status = Unknown; AssertingVH BaseValue = nullptr; // Non-null only if Status == Base. }; } // end anonymous namespace #ifndef NDEBUG static raw_ostream &operator<<(raw_ostream &OS, const BDVState &State) { State.print(OS); return OS; } #endif /// For a given value or instruction, figure out what base ptr its derived from. /// For gc objects, this is simply itself. On success, returns a value which is /// the base pointer. (This is reliable and can be used for relocation.) On /// failure, returns nullptr. static Value *findBasePointer(Value *I, DefiningValueMapTy &Cache, IsKnownBaseMapTy &KnownBases) { Value *Def = findBaseOrBDV(I, Cache, KnownBases); if (isKnownBase(Def, KnownBases) && areBothVectorOrScalar(Def, I)) return Def; // Here's the rough algorithm: // - For every SSA value, construct a mapping to either an actual base // pointer or a PHI which obscures the base pointer. // - Construct a mapping from PHI to unknown TOP state. Use an // optimistic algorithm to propagate base pointer information. Lattice // looks like: // UNKNOWN // b1 b2 b3 b4 // CONFLICT // When algorithm terminates, all PHIs will either have a single concrete // base or be in a conflict state. // - For every conflict, insert a dummy PHI node without arguments. Add // these to the base[Instruction] = BasePtr mapping. For every // non-conflict, add the actual base. // - For every conflict, add arguments for the base[a] of each input // arguments. // // Note: A simpler form of this would be to add the conflict form of all // PHIs without running the optimistic algorithm. This would be // analogous to pessimistic data flow and would likely lead to an // overall worse solution. #ifndef NDEBUG auto isExpectedBDVType = [](Value *BDV) { return isa(BDV) || isa(BDV) || isa(BDV) || isa(BDV) || isa(BDV); }; #endif // Once populated, will contain a mapping from each potentially non-base BDV // to a lattice value (described above) which corresponds to that BDV. // We use the order of insertion (DFS over the def/use graph) to provide a // stable deterministic ordering for visiting DenseMaps (which are unordered) // below. This is important for deterministic compilation. MapVector States; #ifndef NDEBUG auto VerifyStates = [&]() { for (auto &Entry : States) { assert(Entry.first == Entry.second.getOriginalValue()); } }; #endif auto visitBDVOperands = [](Value *BDV, std::function F) { if (PHINode *PN = dyn_cast(BDV)) { for (Value *InVal : PN->incoming_values()) F(InVal); } else if (SelectInst *SI = dyn_cast(BDV)) { F(SI->getTrueValue()); F(SI->getFalseValue()); } else if (auto *EE = dyn_cast(BDV)) { F(EE->getVectorOperand()); } else if (auto *IE = dyn_cast(BDV)) { F(IE->getOperand(0)); F(IE->getOperand(1)); } else if (auto *SV = dyn_cast(BDV)) { // For a canonical broadcast, ignore the undef argument // (without this, we insert a parallel base shuffle for every broadcast) F(SV->getOperand(0)); if (!SV->isZeroEltSplat()) F(SV->getOperand(1)); } else { llvm_unreachable("unexpected BDV type"); } }; // Recursively fill in all base defining values reachable from the initial // one for which we don't already know a definite base value for /* scope */ { SmallVector Worklist; Worklist.push_back(Def); States.insert({Def, BDVState(Def)}); while (!Worklist.empty()) { Value *Current = Worklist.pop_back_val(); assert(!isOriginalBaseResult(Current) && "why did it get added?"); auto visitIncomingValue = [&](Value *InVal) { Value *Base = findBaseOrBDV(InVal, Cache, KnownBases); if (isKnownBase(Base, KnownBases) && areBothVectorOrScalar(Base, InVal)) // Known bases won't need new instructions introduced and can be // ignored safely. However, this can only be done when InVal and Base // are both scalar or both vector. Otherwise, we need to find a // correct BDV for InVal, by creating an entry in the lattice // (States). return; assert(isExpectedBDVType(Base) && "the only non-base values " "we see should be base defining values"); if (States.insert(std::make_pair(Base, BDVState(Base))).second) Worklist.push_back(Base); }; visitBDVOperands(Current, visitIncomingValue); } } #ifndef NDEBUG VerifyStates(); LLVM_DEBUG(dbgs() << "States after initialization:\n"); for (const auto &Pair : States) { LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); } #endif // Iterate forward through the value graph pruning any node from the state // list where all of the inputs are base pointers. The purpose of this is to // reuse existing values when the derived pointer we were asked to materialize // a base pointer for happens to be a base pointer itself. (Or a sub-graph // feeding it does.) SmallVector ToRemove; do { ToRemove.clear(); for (auto Pair : States) { Value *BDV = Pair.first; auto canPruneInput = [&](Value *V) { // If the input of the BDV is the BDV itself we can prune it. This is // only possible if the BDV is a PHI node. if (V->stripPointerCasts() == BDV) return true; Value *VBDV = findBaseOrBDV(V, Cache, KnownBases); if (V->stripPointerCasts() != VBDV) return false; // The assumption is that anything not in the state list is // propagates a base pointer. return States.count(VBDV) == 0; }; bool CanPrune = true; visitBDVOperands(BDV, [&](Value *Op) { CanPrune = CanPrune && canPruneInput(Op); }); if (CanPrune) ToRemove.push_back(BDV); } for (Value *V : ToRemove) { States.erase(V); // Cache the fact V is it's own base for later usage. Cache[V] = V; } } while (!ToRemove.empty()); // Did we manage to prove that Def itself must be a base pointer? if (!States.count(Def)) return Def; // Return a phi state for a base defining value. We'll generate a new // base state for known bases and expect to find a cached state otherwise. auto GetStateForBDV = [&](Value *BaseValue, Value *Input) { auto I = States.find(BaseValue); if (I != States.end()) return I->second; assert(areBothVectorOrScalar(BaseValue, Input)); return BDVState(BaseValue, BDVState::Base, BaseValue); }; // Even though we have identified a concrete base (or a conflict) for all live // pointers at this point, there are cases where the base is of an // incompatible type compared to the original instruction. We conservatively // mark those as conflicts to ensure that corresponding BDVs will be generated // in the next steps. // this is a rather explicit check for all cases where we should mark the // state as a conflict to force the latter stages of the algorithm to emit // the BDVs. // TODO: in many cases the instructions emited for the conflicting states // will be identical to the I itself (if the I's operate on their BDVs // themselves). We should exploit this, but can't do it here since it would // break the invariant about the BDVs not being known to be a base. // TODO: the code also does not handle constants at all - the algorithm relies // on all constants having the same BDV and therefore constant-only insns // will never be in conflict, but this check is ignored here. If the // constant conflicts will be to BDVs themselves, they will be identical // instructions and will get optimized away (as in the above TODO) auto MarkConflict = [&](Instruction *I, Value *BaseValue) { // II and EE mixes vector & scalar so is always a conflict if (isa(I) || isa(I)) return true; // Shuffle vector is always a conflict as it creates new vector from // existing ones. if (isa(I)) return true; // Any instructions where the computed base type differs from the // instruction type. An example is where an extract instruction is used by a // select. Here the select's BDV is a vector (because of extract's BDV), // while the select itself is a scalar type. Note that the IE and EE // instruction check is not fully subsumed by the vector<->scalar check at // the end, this is due to the BDV algorithm being ignorant of BDV types at // this junction. if (!areBothVectorOrScalar(BaseValue, I)) return true; return false; }; bool Progress = true; while (Progress) { #ifndef NDEBUG const size_t OldSize = States.size(); #endif Progress = false; // We're only changing values in this loop, thus safe to keep iterators. // Since this is computing a fixed point, the order of visit does not // effect the result. TODO: We could use a worklist here and make this run // much faster. for (auto Pair : States) { Value *BDV = Pair.first; // Only values that do not have known bases or those that have differing // type (scalar versus vector) from a possible known base should be in the // lattice. assert((!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Pair.second.getBaseValue())) && "why did it get added?"); BDVState NewState(BDV); visitBDVOperands(BDV, [&](Value *Op) { Value *BDV = findBaseOrBDV(Op, Cache, KnownBases); auto OpState = GetStateForBDV(BDV, Op); NewState.meet(OpState); }); // if the instruction has known base, but should in fact be marked as // conflict because of incompatible in/out types, we mark it as such // ensuring that it will propagate through the fixpoint iteration auto I = cast(BDV); auto BV = NewState.getBaseValue(); if (BV && MarkConflict(I, BV)) NewState = BDVState(I, BDVState::Conflict); BDVState OldState = Pair.second; if (OldState != NewState) { Progress = true; States[BDV] = NewState; } } assert(OldSize == States.size() && "fixed point shouldn't be adding any new nodes to state"); } #ifndef NDEBUG VerifyStates(); LLVM_DEBUG(dbgs() << "States after meet iteration:\n"); for (const auto &Pair : States) { LLVM_DEBUG(dbgs() << " " << Pair.second << " for " << *Pair.first << "\n"); } // since we do the conflict marking as part of the fixpoint iteration this // loop only asserts that invariants are met for (auto Pair : States) { Instruction *I = cast(Pair.first); BDVState State = Pair.second; auto *BaseValue = State.getBaseValue(); // Only values that do not have known bases or those that have differing // type (scalar versus vector) from a possible known base should be in the // lattice. assert( (!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, BaseValue)) && "why did it get added?"); assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); } #endif // Insert Phis for all conflicts // TODO: adjust naming patterns to avoid this order of iteration dependency for (auto Pair : States) { Instruction *I = cast(Pair.first); BDVState State = Pair.second; // Only values that do not have known bases or those that have differing // type (scalar versus vector) from a possible known base should be in the // lattice. assert((!isKnownBase(I, KnownBases) || !areBothVectorOrScalar(I, State.getBaseValue())) && "why did it get added?"); assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); // Since we're joining a vector and scalar base, they can never be the // same. As a result, we should always see insert element having reached // the conflict state. assert(!isa(I) || State.isConflict()); if (!State.isConflict()) continue; auto getMangledName = [](Instruction *I) -> std::string { if (isa(I)) { return suffixed_name_or(I, ".base", "base_phi"); } else if (isa(I)) { return suffixed_name_or(I, ".base", "base_select"); } else if (isa(I)) { return suffixed_name_or(I, ".base", "base_ee"); } else if (isa(I)) { return suffixed_name_or(I, ".base", "base_ie"); } else { return suffixed_name_or(I, ".base", "base_sv"); } }; Instruction *BaseInst = I->clone(); BaseInst->insertBefore(I); BaseInst->setName(getMangledName(I)); // Add metadata marking this as a base value BaseInst->setMetadata("is_base_value", MDNode::get(I->getContext(), {})); States[I] = BDVState(I, BDVState::Conflict, BaseInst); setKnownBase(BaseInst, /* IsKnownBase */true, KnownBases); } #ifndef NDEBUG VerifyStates(); #endif // Returns a instruction which produces the base pointer for a given // instruction. The instruction is assumed to be an input to one of the BDVs // seen in the inference algorithm above. As such, we must either already // know it's base defining value is a base, or have inserted a new // instruction to propagate the base of it's BDV and have entered that newly // introduced instruction into the state table. In either case, we are // assured to be able to determine an instruction which produces it's base // pointer. auto getBaseForInput = [&](Value *Input, Instruction *InsertPt) { Value *BDV = findBaseOrBDV(Input, Cache, KnownBases); Value *Base = nullptr; if (!States.count(BDV)) { assert(areBothVectorOrScalar(BDV, Input)); Base = BDV; } else { // Either conflict or base. assert(States.count(BDV)); Base = States[BDV].getBaseValue(); } assert(Base && "Can't be null"); // The cast is needed since base traversal may strip away bitcasts if (Base->getType() != Input->getType() && InsertPt) Base = new BitCastInst(Base, Input->getType(), "cast", InsertPt->getIterator()); return Base; }; // Fixup all the inputs of the new PHIs. Visit order needs to be // deterministic and predictable because we're naming newly created // instructions. for (auto Pair : States) { Instruction *BDV = cast(Pair.first); BDVState State = Pair.second; // Only values that do not have known bases or those that have differing // type (scalar versus vector) from a possible known base should be in the // lattice. assert((!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, State.getBaseValue())) && "why did it get added?"); assert(!State.isUnknown() && "Optimistic algorithm didn't complete!"); if (!State.isConflict()) continue; if (PHINode *BasePHI = dyn_cast(State.getBaseValue())) { PHINode *PN = cast(BDV); const unsigned NumPHIValues = PN->getNumIncomingValues(); // The IR verifier requires phi nodes with multiple entries from the // same basic block to have the same incoming value for each of those // entries. Since we're inserting bitcasts in the loop, make sure we // do so at least once per incoming block. DenseMap BlockToValue; for (unsigned i = 0; i < NumPHIValues; i++) { Value *InVal = PN->getIncomingValue(i); BasicBlock *InBB = PN->getIncomingBlock(i); if (!BlockToValue.count(InBB)) BlockToValue[InBB] = getBaseForInput(InVal, InBB->getTerminator()); else { #ifndef NDEBUG Value *OldBase = BlockToValue[InBB]; Value *Base = getBaseForInput(InVal, nullptr); // We can't use `stripPointerCasts` instead of this function because // `stripPointerCasts` doesn't handle vectors of pointers. auto StripBitCasts = [](Value *V) -> Value * { while (auto *BC = dyn_cast(V)) V = BC->getOperand(0); return V; }; // In essence this assert states: the only way two values // incoming from the same basic block may be different is by // being different bitcasts of the same value. A cleanup // that remains TODO is changing findBaseOrBDV to return an // llvm::Value of the correct type (and still remain pure). // This will remove the need to add bitcasts. assert(StripBitCasts(Base) == StripBitCasts(OldBase) && "findBaseOrBDV should be pure!"); #endif } Value *Base = BlockToValue[InBB]; BasePHI->setIncomingValue(i, Base); } } else if (SelectInst *BaseSI = dyn_cast(State.getBaseValue())) { SelectInst *SI = cast(BDV); // Find the instruction which produces the base for each input. // We may need to insert a bitcast. BaseSI->setTrueValue(getBaseForInput(SI->getTrueValue(), BaseSI)); BaseSI->setFalseValue(getBaseForInput(SI->getFalseValue(), BaseSI)); } else if (auto *BaseEE = dyn_cast(State.getBaseValue())) { Value *InVal = cast(BDV)->getVectorOperand(); // Find the instruction which produces the base for each input. We may // need to insert a bitcast. BaseEE->setOperand(0, getBaseForInput(InVal, BaseEE)); } else if (auto *BaseIE = dyn_cast(State.getBaseValue())){ auto *BdvIE = cast(BDV); auto UpdateOperand = [&](int OperandIdx) { Value *InVal = BdvIE->getOperand(OperandIdx); Value *Base = getBaseForInput(InVal, BaseIE); BaseIE->setOperand(OperandIdx, Base); }; UpdateOperand(0); // vector operand UpdateOperand(1); // scalar operand } else { auto *BaseSV = cast(State.getBaseValue()); auto *BdvSV = cast(BDV); auto UpdateOperand = [&](int OperandIdx) { Value *InVal = BdvSV->getOperand(OperandIdx); Value *Base = getBaseForInput(InVal, BaseSV); BaseSV->setOperand(OperandIdx, Base); }; UpdateOperand(0); // vector operand if (!BdvSV->isZeroEltSplat()) UpdateOperand(1); // vector operand else { // Never read, so just use poison Value *InVal = BdvSV->getOperand(1); BaseSV->setOperand(1, PoisonValue::get(InVal->getType())); } } } #ifndef NDEBUG VerifyStates(); #endif // get the data layout to compare the sizes of base/derived pointer values [[maybe_unused]] auto &DL = cast(Def)->getDataLayout(); // Cache all of our results so we can cheaply reuse them // NOTE: This is actually two caches: one of the base defining value // relation and one of the base pointer relation! FIXME for (auto Pair : States) { auto *BDV = Pair.first; Value *Base = Pair.second.getBaseValue(); assert(BDV && Base); // Whenever we have a derived ptr(s), their base // ptr(s) must be of the same size, not necessarily the same type assert(DL.getTypeAllocSize(BDV->getType()) == DL.getTypeAllocSize(Base->getType()) && "Derived and base values should have same size"); // Only values that do not have known bases or those that have differing // type (scalar versus vector) from a possible known base should be in the // lattice. assert( (!isKnownBase(BDV, KnownBases) || !areBothVectorOrScalar(BDV, Base)) && "why did it get added?"); LLVM_DEBUG( dbgs() << "Updating base value cache" << " for: " << BDV->getName() << " from: " << (Cache.count(BDV) ? Cache[BDV]->getName().str() : "none") << " to: " << Base->getName() << "\n"); Cache[BDV] = Base; } assert(Cache.count(Def)); return Cache[Def]; } // For a set of live pointers (base and/or derived), identify the base // pointer of the object which they are derived from. This routine will // mutate the IR graph as needed to make the 'base' pointer live at the // definition site of 'derived'. This ensures that any use of 'derived' can // also use 'base'. This may involve the insertion of a number of // additional PHI nodes. // // preconditions: live is a set of pointer type Values // // side effects: may insert PHI nodes into the existing CFG, will preserve // CFG, will not remove or mutate any existing nodes // // post condition: PointerToBase contains one (derived, base) pair for every // pointer in live. Note that derived can be equal to base if the original // pointer was a base pointer. static void findBasePointers(const StatepointLiveSetTy &live, PointerToBaseTy &PointerToBase, DominatorTree *DT, DefiningValueMapTy &DVCache, IsKnownBaseMapTy &KnownBases) { for (Value *ptr : live) { Value *base = findBasePointer(ptr, DVCache, KnownBases); assert(base && "failed to find base pointer"); PointerToBase[ptr] = base; assert((!isa(base) || !isa(ptr) || DT->dominates(cast(base)->getParent(), cast(ptr)->getParent())) && "The base we found better dominate the derived pointer"); } } /// Find the required based pointers (and adjust the live set) for the given /// parse point. static void findBasePointers(DominatorTree &DT, DefiningValueMapTy &DVCache, CallBase *Call, PartiallyConstructedSafepointRecord &result, PointerToBaseTy &PointerToBase, IsKnownBaseMapTy &KnownBases) { StatepointLiveSetTy PotentiallyDerivedPointers = result.LiveSet; // We assume that all pointers passed to deopt are base pointers; as an // optimization, we can use this to avoid separately materializing the base // pointer graph. This is only relevant since we're very conservative about // generating new conflict nodes during base pointer insertion. If we were // smarter there, this would be irrelevant. if (auto Opt = Call->getOperandBundle(LLVMContext::OB_deopt)) for (Value *V : Opt->Inputs) { if (!PotentiallyDerivedPointers.count(V)) continue; PotentiallyDerivedPointers.remove(V); PointerToBase[V] = V; } findBasePointers(PotentiallyDerivedPointers, PointerToBase, &DT, DVCache, KnownBases); } /// Given an updated version of the dataflow liveness results, update the /// liveset and base pointer maps for the call site CS. static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, CallBase *Call, PartiallyConstructedSafepointRecord &result, PointerToBaseTy &PointerToBase, GCStrategy *GC); static void recomputeLiveInValues( Function &F, DominatorTree &DT, ArrayRef toUpdate, MutableArrayRef records, PointerToBaseTy &PointerToBase, GCStrategy *GC) { // TODO-PERF: reuse the original liveness, then simply run the dataflow // again. The old values are still live and will help it stabilize quickly. GCPtrLivenessData RevisedLivenessData; computeLiveInValues(DT, F, RevisedLivenessData, GC); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; recomputeLiveInValues(RevisedLivenessData, toUpdate[i], info, PointerToBase, GC); } } // Utility function which clones all instructions from "ChainToBase" // and inserts them before "InsertBefore". Returns rematerialized value // which should be used after statepoint. static Instruction *rematerializeChain(ArrayRef ChainToBase, Instruction *InsertBefore, Value *RootOfChain, Value *AlternateLiveBase) { Instruction *LastClonedValue = nullptr; Instruction *LastValue = nullptr; // Walk backwards to visit top-most instructions first. for (Instruction *Instr : make_range(ChainToBase.rbegin(), ChainToBase.rend())) { // Only GEP's and casts are supported as we need to be careful to not // introduce any new uses of pointers not in the liveset. // Note that it's fine to introduce new uses of pointers which were // otherwise not used after this statepoint. assert(isa(Instr) || isa(Instr)); Instruction *ClonedValue = Instr->clone(); ClonedValue->insertBefore(InsertBefore); ClonedValue->setName(Instr->getName() + ".remat"); // If it is not first instruction in the chain then it uses previously // cloned value. We should update it to use cloned value. if (LastClonedValue) { assert(LastValue); ClonedValue->replaceUsesOfWith(LastValue, LastClonedValue); #ifndef NDEBUG for (auto *OpValue : ClonedValue->operand_values()) { // Assert that cloned instruction does not use any instructions from // this chain other than LastClonedValue assert(!is_contained(ChainToBase, OpValue) && "incorrect use in rematerialization chain"); // Assert that the cloned instruction does not use the RootOfChain // or the AlternateLiveBase. assert(OpValue != RootOfChain && OpValue != AlternateLiveBase); } #endif } else { // For the first instruction, replace the use of unrelocated base i.e. // RootOfChain/OrigRootPhi, with the corresponding PHI present in the // live set. They have been proved to be the same PHI nodes. Note // that the *only* use of the RootOfChain in the ChainToBase list is // the first Value in the list. if (RootOfChain != AlternateLiveBase) ClonedValue->replaceUsesOfWith(RootOfChain, AlternateLiveBase); } LastClonedValue = ClonedValue; LastValue = Instr; } assert(LastClonedValue); return LastClonedValue; } // When inserting gc.relocate and gc.result calls, we need to ensure there are // no uses of the original value / return value between the gc.statepoint and // the gc.relocate / gc.result call. One case which can arise is a phi node // starting one of the successor blocks. We also need to be able to insert the // gc.relocates only on the path which goes through the statepoint. We might // need to split an edge to make this possible. static BasicBlock * normalizeForInvokeSafepoint(BasicBlock *BB, BasicBlock *InvokeParent, DominatorTree &DT) { BasicBlock *Ret = BB; if (!BB->getUniquePredecessor()) Ret = SplitBlockPredecessors(BB, InvokeParent, "", &DT); // Now that 'Ret' has unique predecessor we can safely remove all phi nodes // from it FoldSingleEntryPHINodes(Ret); assert(!isa(Ret->begin()) && "All PHI nodes should have been removed!"); // At this point, we can safely insert a gc.relocate or gc.result as the first // instruction in Ret if needed. return Ret; } // List of all function attributes which must be stripped when lowering from // abstract machine model to physical machine model. Essentially, these are // all the effects a safepoint might have which we ignored in the abstract // machine model for purposes of optimization. We have to strip these on // both function declarations and call sites. static constexpr Attribute::AttrKind FnAttrsToStrip[] = {Attribute::Memory, Attribute::NoSync, Attribute::NoFree}; // Create new attribute set containing only attributes which can be transferred // from the original call to the safepoint. static AttributeList legalizeCallAttributes(CallBase *Call, bool IsMemIntrinsic, AttributeList StatepointAL) { AttributeList OrigAL = Call->getAttributes(); if (OrigAL.isEmpty()) return StatepointAL; // Remove the readonly, readnone, and statepoint function attributes. LLVMContext &Ctx = Call->getContext(); AttrBuilder FnAttrs(Ctx, OrigAL.getFnAttrs()); for (auto Attr : FnAttrsToStrip) FnAttrs.removeAttribute(Attr); for (Attribute A : OrigAL.getFnAttrs()) { if (isStatepointDirectiveAttr(A)) FnAttrs.removeAttribute(A); } StatepointAL = StatepointAL.addFnAttributes(Ctx, FnAttrs); // The memory intrinsics do not have a 1:1 correspondence of the original // call arguments to the produced statepoint. Do not transfer the argument // attributes to avoid putting them on incorrect arguments. if (IsMemIntrinsic) return StatepointAL; // Attach the argument attributes from the original call at the corresponding // arguments in the statepoint. Note that any argument attributes that are // invalid after lowering are stripped in stripNonValidDataFromBody. for (unsigned I : llvm::seq(Call->arg_size())) StatepointAL = StatepointAL.addParamAttributes( Ctx, GCStatepointInst::CallArgsBeginPos + I, AttrBuilder(Ctx, OrigAL.getParamAttrs(I))); // Return attributes are later attached to the gc.result intrinsic. return StatepointAL; } /// Helper function to place all gc relocates necessary for the given /// statepoint. /// Inputs: /// liveVariables - list of variables to be relocated. /// basePtrs - base pointers. /// statepointToken - statepoint instruction to which relocates should be /// bound. /// Builder - Llvm IR builder to be used to construct new calls. static void CreateGCRelocates(ArrayRef LiveVariables, ArrayRef BasePtrs, Instruction *StatepointToken, IRBuilder<> &Builder, GCStrategy *GC) { if (LiveVariables.empty()) return; auto FindIndex = [](ArrayRef LiveVec, Value *Val) { auto ValIt = llvm::find(LiveVec, Val); assert(ValIt != LiveVec.end() && "Val not found in LiveVec!"); size_t Index = std::distance(LiveVec.begin(), ValIt); assert(Index < LiveVec.size() && "Bug in std::find?"); return Index; }; Module *M = StatepointToken->getModule(); // All gc_relocate are generated as i8 addrspace(1)* (or a vector type whose // element type is i8 addrspace(1)*). We originally generated unique // declarations for each pointer type, but this proved problematic because // the intrinsic mangling code is incomplete and fragile. Since we're moving // towards a single unified pointer type anyways, we can just cast everything // to an i8* of the right address space. A bitcast is added later to convert // gc_relocate to the actual value's type. auto getGCRelocateDecl = [&](Type *Ty) { assert(isHandledGCPointerType(Ty, GC)); auto AS = Ty->getScalarType()->getPointerAddressSpace(); Type *NewTy = PointerType::get(M->getContext(), AS); if (auto *VT = dyn_cast(Ty)) NewTy = FixedVectorType::get(NewTy, cast(VT)->getNumElements()); return Intrinsic::getDeclaration(M, Intrinsic::experimental_gc_relocate, {NewTy}); }; // Lazily populated map from input types to the canonicalized form mentioned // in the comment above. This should probably be cached somewhere more // broadly. DenseMap TypeToDeclMap; for (unsigned i = 0; i < LiveVariables.size(); i++) { // Generate the gc.relocate call and save the result Value *BaseIdx = Builder.getInt32(FindIndex(LiveVariables, BasePtrs[i])); Value *LiveIdx = Builder.getInt32(i); Type *Ty = LiveVariables[i]->getType(); if (!TypeToDeclMap.count(Ty)) TypeToDeclMap[Ty] = getGCRelocateDecl(Ty); Function *GCRelocateDecl = TypeToDeclMap[Ty]; // only specify a debug name if we can give a useful one CallInst *Reloc = Builder.CreateCall( GCRelocateDecl, {StatepointToken, BaseIdx, LiveIdx}, suffixed_name_or(LiveVariables[i], ".relocated", "")); // Trick CodeGen into thinking there are lots of free registers at this // fake call. Reloc->setCallingConv(CallingConv::Cold); } } namespace { /// This struct is used to defer RAUWs and `eraseFromParent` s. Using this /// avoids having to worry about keeping around dangling pointers to Values. class DeferredReplacement { AssertingVH Old; AssertingVH New; bool IsDeoptimize = false; DeferredReplacement() = default; public: static DeferredReplacement createRAUW(Instruction *Old, Instruction *New) { assert(Old != New && Old && New && "Cannot RAUW equal values or to / from null!"); DeferredReplacement D; D.Old = Old; D.New = New; return D; } static DeferredReplacement createDelete(Instruction *ToErase) { DeferredReplacement D; D.Old = ToErase; return D; } static DeferredReplacement createDeoptimizeReplacement(Instruction *Old) { #ifndef NDEBUG auto *F = cast(Old)->getCalledFunction(); assert(F && F->getIntrinsicID() == Intrinsic::experimental_deoptimize && "Only way to construct a deoptimize deferred replacement"); #endif DeferredReplacement D; D.Old = Old; D.IsDeoptimize = true; return D; } /// Does the task represented by this instance. void doReplacement() { Instruction *OldI = Old; Instruction *NewI = New; assert(OldI != NewI && "Disallowed at construction?!"); assert((!IsDeoptimize || !New) && "Deoptimize intrinsics are not replaced!"); Old = nullptr; New = nullptr; if (NewI) OldI->replaceAllUsesWith(NewI); if (IsDeoptimize) { // Note: we've inserted instructions, so the call to llvm.deoptimize may // not necessarily be followed by the matching return. auto *RI = cast(OldI->getParent()->getTerminator()); new UnreachableInst(RI->getContext(), RI->getIterator()); RI->eraseFromParent(); } OldI->eraseFromParent(); } }; } // end anonymous namespace static StringRef getDeoptLowering(CallBase *Call) { const char *DeoptLowering = "deopt-lowering"; if (Call->hasFnAttr(DeoptLowering)) { // FIXME: Calls have a *really* confusing interface around attributes // with values. const AttributeList &CSAS = Call->getAttributes(); if (CSAS.hasFnAttr(DeoptLowering)) return CSAS.getFnAttr(DeoptLowering).getValueAsString(); Function *F = Call->getCalledFunction(); assert(F && F->hasFnAttribute(DeoptLowering)); return F->getFnAttribute(DeoptLowering).getValueAsString(); } return "live-through"; } static void makeStatepointExplicitImpl(CallBase *Call, /* to replace */ const SmallVectorImpl &BasePtrs, const SmallVectorImpl &LiveVariables, PartiallyConstructedSafepointRecord &Result, std::vector &Replacements, const PointerToBaseTy &PointerToBase, GCStrategy *GC) { assert(BasePtrs.size() == LiveVariables.size()); // Then go ahead and use the builder do actually do the inserts. We insert // immediately before the previous instruction under the assumption that all // arguments will be available here. We can't insert afterwards since we may // be replacing a terminator. IRBuilder<> Builder(Call); ArrayRef GCArgs(LiveVariables); uint64_t StatepointID = StatepointDirectives::DefaultStatepointID; uint32_t NumPatchBytes = 0; uint32_t Flags = uint32_t(StatepointFlags::None); SmallVector CallArgs(Call->args()); std::optional> DeoptArgs; if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_deopt)) DeoptArgs = Bundle->Inputs; std::optional> TransitionArgs; if (auto Bundle = Call->getOperandBundle(LLVMContext::OB_gc_transition)) { TransitionArgs = Bundle->Inputs; // TODO: This flag no longer serves a purpose and can be removed later Flags |= uint32_t(StatepointFlags::GCTransition); } // Instead of lowering calls to @llvm.experimental.deoptimize as normal calls // with a return value, we lower then as never returning calls to // __llvm_deoptimize that are followed by unreachable to get better codegen. bool IsDeoptimize = false; bool IsMemIntrinsic = false; StatepointDirectives SD = parseStatepointDirectivesFromAttrs(Call->getAttributes()); if (SD.NumPatchBytes) NumPatchBytes = *SD.NumPatchBytes; if (SD.StatepointID) StatepointID = *SD.StatepointID; // Pass through the requested lowering if any. The default is live-through. StringRef DeoptLowering = getDeoptLowering(Call); if (DeoptLowering == "live-in") Flags |= uint32_t(StatepointFlags::DeoptLiveIn); else { assert(DeoptLowering == "live-through" && "Unsupported value!"); } FunctionCallee CallTarget(Call->getFunctionType(), Call->getCalledOperand()); if (Function *F = dyn_cast(CallTarget.getCallee())) { auto IID = F->getIntrinsicID(); if (IID == Intrinsic::experimental_deoptimize) { // Calls to llvm.experimental.deoptimize are lowered to calls to the // __llvm_deoptimize symbol. We want to resolve this now, since the // verifier does not allow taking the address of an intrinsic function. SmallVector DomainTy; for (Value *Arg : CallArgs) DomainTy.push_back(Arg->getType()); auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, /* isVarArg = */ false); // Note: CallTarget can be a bitcast instruction of a symbol if there are // calls to @llvm.experimental.deoptimize with different argument types in // the same module. This is fine -- we assume the frontend knew what it // was doing when generating this kind of IR. CallTarget = F->getParent() ->getOrInsertFunction("__llvm_deoptimize", FTy); IsDeoptimize = true; } else if (IID == Intrinsic::memcpy_element_unordered_atomic || IID == Intrinsic::memmove_element_unordered_atomic) { IsMemIntrinsic = true; // Unordered atomic memcpy and memmove intrinsics which are not explicitly // marked as "gc-leaf-function" should be lowered in a GC parseable way. // Specifically, these calls should be lowered to the // __llvm_{memcpy|memmove}_element_unordered_atomic_safepoint symbols. // Similarly to __llvm_deoptimize we want to resolve this now, since the // verifier does not allow taking the address of an intrinsic function. // // Moreover we need to shuffle the arguments for the call in order to // accommodate GC. The underlying source and destination objects might be // relocated during copy operation should the GC occur. To relocate the // derived source and destination pointers the implementation of the // intrinsic should know the corresponding base pointers. // // To make the base pointers available pass them explicitly as arguments: // memcpy(dest_derived, source_derived, ...) => // memcpy(dest_base, dest_offset, source_base, source_offset, ...) auto &Context = Call->getContext(); auto &DL = Call->getDataLayout(); auto GetBaseAndOffset = [&](Value *Derived) { Value *Base = nullptr; // Optimizations in unreachable code might substitute the real pointer // with undef, poison or null-derived constant. Return null base for // them to be consistent with the handling in the main algorithm in // findBaseDefiningValue. if (isa(Derived)) Base = ConstantPointerNull::get(cast(Derived->getType())); else { assert(PointerToBase.count(Derived)); Base = PointerToBase.find(Derived)->second; } unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); Value *Base_int = Builder.CreatePtrToInt( Base, Type::getIntNTy(Context, IntPtrSize)); Value *Derived_int = Builder.CreatePtrToInt( Derived, Type::getIntNTy(Context, IntPtrSize)); return std::make_pair(Base, Builder.CreateSub(Derived_int, Base_int)); }; auto *Dest = CallArgs[0]; Value *DestBase, *DestOffset; std::tie(DestBase, DestOffset) = GetBaseAndOffset(Dest); auto *Source = CallArgs[1]; Value *SourceBase, *SourceOffset; std::tie(SourceBase, SourceOffset) = GetBaseAndOffset(Source); auto *LengthInBytes = CallArgs[2]; auto *ElementSizeCI = cast(CallArgs[3]); CallArgs.clear(); CallArgs.push_back(DestBase); CallArgs.push_back(DestOffset); CallArgs.push_back(SourceBase); CallArgs.push_back(SourceOffset); CallArgs.push_back(LengthInBytes); SmallVector DomainTy; for (Value *Arg : CallArgs) DomainTy.push_back(Arg->getType()); auto *FTy = FunctionType::get(Type::getVoidTy(F->getContext()), DomainTy, /* isVarArg = */ false); auto GetFunctionName = [](Intrinsic::ID IID, ConstantInt *ElementSizeCI) { uint64_t ElementSize = ElementSizeCI->getZExtValue(); if (IID == Intrinsic::memcpy_element_unordered_atomic) { switch (ElementSize) { case 1: return "__llvm_memcpy_element_unordered_atomic_safepoint_1"; case 2: return "__llvm_memcpy_element_unordered_atomic_safepoint_2"; case 4: return "__llvm_memcpy_element_unordered_atomic_safepoint_4"; case 8: return "__llvm_memcpy_element_unordered_atomic_safepoint_8"; case 16: return "__llvm_memcpy_element_unordered_atomic_safepoint_16"; default: llvm_unreachable("unexpected element size!"); } } assert(IID == Intrinsic::memmove_element_unordered_atomic); switch (ElementSize) { case 1: return "__llvm_memmove_element_unordered_atomic_safepoint_1"; case 2: return "__llvm_memmove_element_unordered_atomic_safepoint_2"; case 4: return "__llvm_memmove_element_unordered_atomic_safepoint_4"; case 8: return "__llvm_memmove_element_unordered_atomic_safepoint_8"; case 16: return "__llvm_memmove_element_unordered_atomic_safepoint_16"; default: llvm_unreachable("unexpected element size!"); } }; CallTarget = F->getParent() ->getOrInsertFunction(GetFunctionName(IID, ElementSizeCI), FTy); } } // Create the statepoint given all the arguments GCStatepointInst *Token = nullptr; if (auto *CI = dyn_cast(Call)) { CallInst *SPCall = Builder.CreateGCStatepointCall( StatepointID, NumPatchBytes, CallTarget, Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, "safepoint_token"); SPCall->setTailCallKind(CI->getTailCallKind()); SPCall->setCallingConv(CI->getCallingConv()); // Set up function attrs directly on statepoint and return attrs later for // gc_result intrinsic. SPCall->setAttributes( legalizeCallAttributes(CI, IsMemIntrinsic, SPCall->getAttributes())); Token = cast(SPCall); // Put the following gc_result and gc_relocate calls immediately after the // the old call (which we're about to delete) assert(CI->getNextNode() && "Not a terminator, must have next!"); Builder.SetInsertPoint(CI->getNextNode()); Builder.SetCurrentDebugLocation(CI->getNextNode()->getDebugLoc()); } else { auto *II = cast(Call); // Insert the new invoke into the old block. We'll remove the old one in a // moment at which point this will become the new terminator for the // original block. InvokeInst *SPInvoke = Builder.CreateGCStatepointInvoke( StatepointID, NumPatchBytes, CallTarget, II->getNormalDest(), II->getUnwindDest(), Flags, CallArgs, TransitionArgs, DeoptArgs, GCArgs, "statepoint_token"); SPInvoke->setCallingConv(II->getCallingConv()); // Set up function attrs directly on statepoint and return attrs later for // gc_result intrinsic. SPInvoke->setAttributes( legalizeCallAttributes(II, IsMemIntrinsic, SPInvoke->getAttributes())); Token = cast(SPInvoke); // Generate gc relocates in exceptional path BasicBlock *UnwindBlock = II->getUnwindDest(); assert(!isa(UnwindBlock->begin()) && UnwindBlock->getUniquePredecessor() && "can't safely insert in this block!"); Builder.SetInsertPoint(UnwindBlock, UnwindBlock->getFirstInsertionPt()); Builder.SetCurrentDebugLocation(II->getDebugLoc()); // Attach exceptional gc relocates to the landingpad. Instruction *ExceptionalToken = UnwindBlock->getLandingPadInst(); Result.UnwindToken = ExceptionalToken; CreateGCRelocates(LiveVariables, BasePtrs, ExceptionalToken, Builder, GC); // Generate gc relocates and returns for normal block BasicBlock *NormalDest = II->getNormalDest(); assert(!isa(NormalDest->begin()) && NormalDest->getUniquePredecessor() && "can't safely insert in this block!"); Builder.SetInsertPoint(NormalDest, NormalDest->getFirstInsertionPt()); // gc relocates will be generated later as if it were regular call // statepoint } assert(Token && "Should be set in one of the above branches!"); if (IsDeoptimize) { // If we're wrapping an @llvm.experimental.deoptimize in a statepoint, we // transform the tail-call like structure to a call to a void function // followed by unreachable to get better codegen. Replacements.push_back( DeferredReplacement::createDeoptimizeReplacement(Call)); } else { Token->setName("statepoint_token"); if (!Call->getType()->isVoidTy() && !Call->use_empty()) { StringRef Name = Call->hasName() ? Call->getName() : ""; CallInst *GCResult = Builder.CreateGCResult(Token, Call->getType(), Name); GCResult->setAttributes( AttributeList::get(GCResult->getContext(), AttributeList::ReturnIndex, Call->getAttributes().getRetAttrs())); // We cannot RAUW or delete CS.getInstruction() because it could be in the // live set of some other safepoint, in which case that safepoint's // PartiallyConstructedSafepointRecord will hold a raw pointer to this // llvm::Instruction. Instead, we defer the replacement and deletion to // after the live sets have been made explicit in the IR, and we no longer // have raw pointers to worry about. Replacements.emplace_back( DeferredReplacement::createRAUW(Call, GCResult)); } else { Replacements.emplace_back(DeferredReplacement::createDelete(Call)); } } Result.StatepointToken = Token; // Second, create a gc.relocate for every live variable CreateGCRelocates(LiveVariables, BasePtrs, Token, Builder, GC); } // Replace an existing gc.statepoint with a new one and a set of gc.relocates // which make the relocations happening at this safepoint explicit. // // WARNING: Does not do any fixup to adjust users of the original live // values. That's the callers responsibility. static void makeStatepointExplicit(DominatorTree &DT, CallBase *Call, PartiallyConstructedSafepointRecord &Result, std::vector &Replacements, const PointerToBaseTy &PointerToBase, GCStrategy *GC) { const auto &LiveSet = Result.LiveSet; // Convert to vector for efficient cross referencing. SmallVector BaseVec, LiveVec; LiveVec.reserve(LiveSet.size()); BaseVec.reserve(LiveSet.size()); for (Value *L : LiveSet) { LiveVec.push_back(L); assert(PointerToBase.count(L)); Value *Base = PointerToBase.find(L)->second; BaseVec.push_back(Base); } assert(LiveVec.size() == BaseVec.size()); // Do the actual rewriting and delete the old statepoint makeStatepointExplicitImpl(Call, BaseVec, LiveVec, Result, Replacements, PointerToBase, GC); } // Helper function for the relocationViaAlloca. // // It receives iterator to the statepoint gc relocates and emits a store to the // assigned location (via allocaMap) for the each one of them. It adds the // visited values into the visitedLiveValues set, which we will later use them // for validation checking. static void insertRelocationStores(iterator_range GCRelocs, DenseMap &AllocaMap, DenseSet &VisitedLiveValues) { for (User *U : GCRelocs) { GCRelocateInst *Relocate = dyn_cast(U); if (!Relocate) continue; Value *OriginalValue = Relocate->getDerivedPtr(); assert(AllocaMap.count(OriginalValue)); Value *Alloca = AllocaMap[OriginalValue]; // Emit store into the related alloca. assert(Relocate->getNextNode() && "Should always have one since it's not a terminator"); new StoreInst(Relocate, Alloca, std::next(Relocate->getIterator())); #ifndef NDEBUG VisitedLiveValues.insert(OriginalValue); #endif } } // Helper function for the "relocationViaAlloca". Similar to the // "insertRelocationStores" but works for rematerialized values. static void insertRematerializationStores( const RematerializedValueMapTy &RematerializedValues, DenseMap &AllocaMap, DenseSet &VisitedLiveValues) { for (auto RematerializedValuePair: RematerializedValues) { Instruction *RematerializedValue = RematerializedValuePair.first; Value *OriginalValue = RematerializedValuePair.second; assert(AllocaMap.count(OriginalValue) && "Can not find alloca for rematerialized value"); Value *Alloca = AllocaMap[OriginalValue]; new StoreInst(RematerializedValue, Alloca, std::next(RematerializedValue->getIterator())); #ifndef NDEBUG VisitedLiveValues.insert(OriginalValue); #endif } } /// Do all the relocation update via allocas and mem2reg static void relocationViaAlloca( Function &F, DominatorTree &DT, ArrayRef Live, ArrayRef Records) { #ifndef NDEBUG // record initial number of (static) allocas; we'll check we have the same // number when we get done. int InitialAllocaNum = 0; for (Instruction &I : F.getEntryBlock()) if (isa(I)) InitialAllocaNum++; #endif // TODO-PERF: change data structures, reserve DenseMap AllocaMap; SmallVector PromotableAllocas; // Used later to chack that we have enough allocas to store all values std::size_t NumRematerializedValues = 0; PromotableAllocas.reserve(Live.size()); // Emit alloca for "LiveValue" and record it in "allocaMap" and // "PromotableAllocas" const DataLayout &DL = F.getDataLayout(); auto emitAllocaFor = [&](Value *LiveValue) { AllocaInst *Alloca = new AllocaInst(LiveValue->getType(), DL.getAllocaAddrSpace(), "", F.getEntryBlock().getFirstNonPHIIt()); AllocaMap[LiveValue] = Alloca; PromotableAllocas.push_back(Alloca); }; // Emit alloca for each live gc pointer for (Value *V : Live) emitAllocaFor(V); // Emit allocas for rematerialized values for (const auto &Info : Records) for (auto RematerializedValuePair : Info.RematerializedValues) { Value *OriginalValue = RematerializedValuePair.second; if (AllocaMap.contains(OriginalValue)) continue; emitAllocaFor(OriginalValue); ++NumRematerializedValues; } // The next two loops are part of the same conceptual operation. We need to // insert a store to the alloca after the original def and at each // redefinition. We need to insert a load before each use. These are split // into distinct loops for performance reasons. // Update gc pointer after each statepoint: either store a relocated value or // null (if no relocated value was found for this gc pointer and it is not a // gc_result). This must happen before we update the statepoint with load of // alloca otherwise we lose the link between statepoint and old def. for (const auto &Info : Records) { Value *Statepoint = Info.StatepointToken; // This will be used for consistency check DenseSet VisitedLiveValues; // Insert stores for normal statepoint gc relocates insertRelocationStores(Statepoint->users(), AllocaMap, VisitedLiveValues); // In case if it was invoke statepoint // we will insert stores for exceptional path gc relocates. if (isa(Statepoint)) { insertRelocationStores(Info.UnwindToken->users(), AllocaMap, VisitedLiveValues); } // Do similar thing with rematerialized values insertRematerializationStores(Info.RematerializedValues, AllocaMap, VisitedLiveValues); if (ClobberNonLive) { // As a debugging aid, pretend that an unrelocated pointer becomes null at // the gc.statepoint. This will turn some subtle GC problems into // slightly easier to debug SEGVs. Note that on large IR files with // lots of gc.statepoints this is extremely costly both memory and time // wise. SmallVector ToClobber; for (auto Pair : AllocaMap) { Value *Def = Pair.first; AllocaInst *Alloca = Pair.second; // This value was relocated if (VisitedLiveValues.count(Def)) { continue; } ToClobber.push_back(Alloca); } auto InsertClobbersAt = [&](BasicBlock::iterator IP) { for (auto *AI : ToClobber) { auto AT = AI->getAllocatedType(); Constant *CPN; if (AT->isVectorTy()) CPN = ConstantAggregateZero::get(AT); else CPN = ConstantPointerNull::get(cast(AT)); new StoreInst(CPN, AI, IP); } }; // Insert the clobbering stores. These may get intermixed with the // gc.results and gc.relocates, but that's fine. if (auto II = dyn_cast(Statepoint)) { InsertClobbersAt(II->getNormalDest()->getFirstInsertionPt()); InsertClobbersAt(II->getUnwindDest()->getFirstInsertionPt()); } else { InsertClobbersAt( std::next(cast(Statepoint)->getIterator())); } } } // Update use with load allocas and add store for gc_relocated. for (auto Pair : AllocaMap) { Value *Def = Pair.first; AllocaInst *Alloca = Pair.second; // We pre-record the uses of allocas so that we dont have to worry about // later update that changes the user information.. SmallVector Uses; // PERF: trade a linear scan for repeated reallocation Uses.reserve(Def->getNumUses()); for (User *U : Def->users()) { if (!isa(U)) { // If the def has a ConstantExpr use, then the def is either a // ConstantExpr use itself or null. In either case // (recursively in the first, directly in the second), the oop // it is ultimately dependent on is null and this particular // use does not need to be fixed up. Uses.push_back(cast(U)); } } llvm::sort(Uses); auto Last = llvm::unique(Uses); Uses.erase(Last, Uses.end()); for (Instruction *Use : Uses) { if (isa(Use)) { PHINode *Phi = cast(Use); for (unsigned i = 0; i < Phi->getNumIncomingValues(); i++) { if (Def == Phi->getIncomingValue(i)) { LoadInst *Load = new LoadInst( Alloca->getAllocatedType(), Alloca, "", Phi->getIncomingBlock(i)->getTerminator()->getIterator()); Phi->setIncomingValue(i, Load); } } } else { LoadInst *Load = new LoadInst(Alloca->getAllocatedType(), Alloca, "", Use->getIterator()); Use->replaceUsesOfWith(Def, Load); } } // Emit store for the initial gc value. Store must be inserted after load, // otherwise store will be in alloca's use list and an extra load will be // inserted before it. StoreInst *Store = new StoreInst(Def, Alloca, /*volatile*/ false, DL.getABITypeAlign(Def->getType())); if (Instruction *Inst = dyn_cast(Def)) { if (InvokeInst *Invoke = dyn_cast(Inst)) { // InvokeInst is a terminator so the store need to be inserted into its // normal destination block. BasicBlock *NormalDest = Invoke->getNormalDest(); Store->insertBefore(NormalDest->getFirstNonPHI()); } else { assert(!Inst->isTerminator() && "The only terminator that can produce a value is " "InvokeInst which is handled above."); Store->insertAfter(Inst); } } else { assert(isa(Def)); Store->insertAfter(cast(Alloca)); } } assert(PromotableAllocas.size() == Live.size() + NumRematerializedValues && "we must have the same allocas with lives"); (void) NumRematerializedValues; if (!PromotableAllocas.empty()) { // Apply mem2reg to promote alloca to SSA PromoteMemToReg(PromotableAllocas, DT); } #ifndef NDEBUG for (auto &I : F.getEntryBlock()) if (isa(I)) InitialAllocaNum--; assert(InitialAllocaNum == 0 && "We must not introduce any extra allocas"); #endif } /// Implement a unique function which doesn't require we sort the input /// vector. Doing so has the effect of changing the output of a couple of /// tests in ways which make them less useful in testing fused safepoints. template static void unique_unsorted(SmallVectorImpl &Vec) { SmallSet Seen; erase_if(Vec, [&](const T &V) { return !Seen.insert(V).second; }); } /// Insert holders so that each Value is obviously live through the entire /// lifetime of the call. static void insertUseHolderAfter(CallBase *Call, const ArrayRef Values, SmallVectorImpl &Holders) { if (Values.empty()) // No values to hold live, might as well not insert the empty holder return; Module *M = Call->getModule(); // Use a dummy vararg function to actually hold the values live FunctionCallee Func = M->getOrInsertFunction( "__tmp_use", FunctionType::get(Type::getVoidTy(M->getContext()), true)); if (isa(Call)) { // For call safepoints insert dummy calls right after safepoint Holders.push_back( CallInst::Create(Func, Values, "", std::next(Call->getIterator()))); return; } // For invoke safepooints insert dummy calls both in normal and // exceptional destination blocks auto *II = cast(Call); Holders.push_back(CallInst::Create( Func, Values, "", II->getNormalDest()->getFirstInsertionPt())); Holders.push_back(CallInst::Create( Func, Values, "", II->getUnwindDest()->getFirstInsertionPt())); } static void findLiveReferences( Function &F, DominatorTree &DT, ArrayRef toUpdate, MutableArrayRef records, GCStrategy *GC) { GCPtrLivenessData OriginalLivenessData; computeLiveInValues(DT, F, OriginalLivenessData, GC); for (size_t i = 0; i < records.size(); i++) { struct PartiallyConstructedSafepointRecord &info = records[i]; analyzeParsePointLiveness(DT, OriginalLivenessData, toUpdate[i], info, GC); } } // Helper function for the "rematerializeLiveValues". It walks use chain // starting from the "CurrentValue" until it reaches the root of the chain, i.e. // the base or a value it cannot process. Only "simple" values are processed // (currently it is GEP's and casts). The returned root is examined by the // callers of findRematerializableChainToBasePointer. Fills "ChainToBase" array // with all visited values. static Value* findRematerializableChainToBasePointer( SmallVectorImpl &ChainToBase, Value *CurrentValue) { if (GetElementPtrInst *GEP = dyn_cast(CurrentValue)) { ChainToBase.push_back(GEP); return findRematerializableChainToBasePointer(ChainToBase, GEP->getPointerOperand()); } if (CastInst *CI = dyn_cast(CurrentValue)) { if (!CI->isNoopCast(CI->getDataLayout())) return CI; ChainToBase.push_back(CI); return findRematerializableChainToBasePointer(ChainToBase, CI->getOperand(0)); } // We have reached the root of the chain, which is either equal to the base or // is the first unsupported value along the use chain. return CurrentValue; } // Helper function for the "rematerializeLiveValues". Compute cost of the use // chain we are going to rematerialize. static InstructionCost chainToBasePointerCost(SmallVectorImpl &Chain, TargetTransformInfo &TTI) { InstructionCost Cost = 0; for (Instruction *Instr : Chain) { if (CastInst *CI = dyn_cast(Instr)) { assert(CI->isNoopCast(CI->getDataLayout()) && "non noop cast is found during rematerialization"); Type *SrcTy = CI->getOperand(0)->getType(); Cost += TTI.getCastInstrCost(CI->getOpcode(), CI->getType(), SrcTy, TTI::getCastContextHint(CI), TargetTransformInfo::TCK_SizeAndLatency, CI); } else if (GetElementPtrInst *GEP = dyn_cast(Instr)) { // Cost of the address calculation Type *ValTy = GEP->getSourceElementType(); Cost += TTI.getAddressComputationCost(ValTy); // And cost of the GEP itself // TODO: Use TTI->getGEPCost here (it exists, but appears to be not // allowed for the external usage) if (!GEP->hasAllConstantIndices()) Cost += 2; } else { llvm_unreachable("unsupported instruction type during rematerialization"); } } return Cost; } static bool AreEquivalentPhiNodes(PHINode &OrigRootPhi, PHINode &AlternateRootPhi) { unsigned PhiNum = OrigRootPhi.getNumIncomingValues(); if (PhiNum != AlternateRootPhi.getNumIncomingValues() || OrigRootPhi.getParent() != AlternateRootPhi.getParent()) return false; // Map of incoming values and their corresponding basic blocks of // OrigRootPhi. SmallDenseMap CurrentIncomingValues; for (unsigned i = 0; i < PhiNum; i++) CurrentIncomingValues[OrigRootPhi.getIncomingValue(i)] = OrigRootPhi.getIncomingBlock(i); // Both current and base PHIs should have same incoming values and // the same basic blocks corresponding to the incoming values. for (unsigned i = 0; i < PhiNum; i++) { auto CIVI = CurrentIncomingValues.find(AlternateRootPhi.getIncomingValue(i)); if (CIVI == CurrentIncomingValues.end()) return false; BasicBlock *CurrentIncomingBB = CIVI->second; if (CurrentIncomingBB != AlternateRootPhi.getIncomingBlock(i)) return false; } return true; } // Find derived pointers that can be recomputed cheap enough and fill // RematerizationCandidates with such candidates. static void findRematerializationCandidates(PointerToBaseTy PointerToBase, RematCandTy &RematerizationCandidates, TargetTransformInfo &TTI) { const unsigned int ChainLengthThreshold = 10; for (auto P2B : PointerToBase) { auto *Derived = P2B.first; auto *Base = P2B.second; // Consider only derived pointers. if (Derived == Base) continue; // For each live pointer find its defining chain. SmallVector ChainToBase; Value *RootOfChain = findRematerializableChainToBasePointer(ChainToBase, Derived); // Nothing to do, or chain is too long if ( ChainToBase.size() == 0 || ChainToBase.size() > ChainLengthThreshold) continue; // Handle the scenario where the RootOfChain is not equal to the // Base Value, but they are essentially the same phi values. if (RootOfChain != PointerToBase[Derived]) { PHINode *OrigRootPhi = dyn_cast(RootOfChain); PHINode *AlternateRootPhi = dyn_cast(PointerToBase[Derived]); if (!OrigRootPhi || !AlternateRootPhi) continue; // PHI nodes that have the same incoming values, and belonging to the same // basic blocks are essentially the same SSA value. When the original phi // has incoming values with different base pointers, the original phi is // marked as conflict, and an additional `AlternateRootPhi` with the same // incoming values get generated by the findBasePointer function. We need // to identify the newly generated AlternateRootPhi (.base version of phi) // and RootOfChain (the original phi node itself) are the same, so that we // can rematerialize the gep and casts. This is a workaround for the // deficiency in the findBasePointer algorithm. if (!AreEquivalentPhiNodes(*OrigRootPhi, *AlternateRootPhi)) continue; } // Compute cost of this chain. InstructionCost Cost = chainToBasePointerCost(ChainToBase, TTI); // TODO: We can also account for cases when we will be able to remove some // of the rematerialized values by later optimization passes. I.e if // we rematerialized several intersecting chains. Or if original values // don't have any uses besides this statepoint. // Ok, there is a candidate. RematerizlizationCandidateRecord Record; Record.ChainToBase = ChainToBase; Record.RootOfChain = RootOfChain; Record.Cost = Cost; RematerizationCandidates.insert({ Derived, Record }); } } // Try to rematerialize derived pointers immediately before their uses // (instead of rematerializing after every statepoint it is live through). // This can be beneficial when derived pointer is live across many // statepoints, but uses are rare. static void rematerializeLiveValuesAtUses( RematCandTy &RematerizationCandidates, MutableArrayRef Records, PointerToBaseTy &PointerToBase) { if (!RematDerivedAtUses) return; SmallVector LiveValuesToBeDeleted; LLVM_DEBUG(dbgs() << "Rematerialize derived pointers at uses, " << "Num statepoints: " << Records.size() << '\n'); for (auto &It : RematerizationCandidates) { Instruction *Cand = cast(It.first); auto &Record = It.second; if (Record.Cost >= RematerializationThreshold) continue; if (Cand->user_empty()) continue; if (Cand->hasOneUse()) if (auto *U = dyn_cast(Cand->getUniqueUndroppableUser())) if (U->getParent() == Cand->getParent()) continue; // Rematerialization before PHI nodes is not implemented. if (llvm::any_of(Cand->users(), [](const auto *U) { return isa(U); })) continue; LLVM_DEBUG(dbgs() << "Trying cand " << *Cand << " ... "); // Count of rematerialization instructions we introduce is equal to number // of candidate uses. // Count of rematerialization instructions we eliminate is equal to number // of statepoints it is live through. // Consider transformation profitable if latter is greater than former // (in other words, we create less than eliminate). unsigned NumLiveStatepoints = llvm::count_if( Records, [Cand](const auto &R) { return R.LiveSet.contains(Cand); }); unsigned NumUses = Cand->getNumUses(); LLVM_DEBUG(dbgs() << "Num uses: " << NumUses << " Num live statepoints: " << NumLiveStatepoints << " "); if (NumLiveStatepoints < NumUses) { LLVM_DEBUG(dbgs() << "not profitable\n"); continue; } // If rematerialization is 'free', then favor rematerialization at // uses as it generally shortens live ranges. // TODO: Short (size ==1) chains only? if (NumLiveStatepoints == NumUses && Record.Cost > 0) { LLVM_DEBUG(dbgs() << "not profitable\n"); continue; } LLVM_DEBUG(dbgs() << "looks profitable\n"); // ChainToBase may contain another remat candidate (as a sub chain) which // has been rewritten by now. Need to recollect chain to have up to date // value. // TODO: sort records in findRematerializationCandidates() in // decreasing chain size order? if (Record.ChainToBase.size() > 1) { Record.ChainToBase.clear(); findRematerializableChainToBasePointer(Record.ChainToBase, Cand); } // Current rematerialization algorithm is very simple: we rematerialize // immediately before EVERY use, even if there are several uses in same // block or if use is local to Cand Def. The reason is that this allows // us to avoid recomputing liveness without complicated analysis: // - If we did not eliminate all uses of original Candidate, we do not // know exaclty in what BBs it is still live. // - If we rematerialize once per BB, we need to find proper insertion // place (first use in block, but after Def) and analyze if there is // statepoint between uses in the block. while (!Cand->user_empty()) { Instruction *UserI = cast(*Cand->user_begin()); Instruction *RematChain = rematerializeChain( Record.ChainToBase, UserI, Record.RootOfChain, PointerToBase[Cand]); UserI->replaceUsesOfWith(Cand, RematChain); PointerToBase[RematChain] = PointerToBase[Cand]; } LiveValuesToBeDeleted.push_back(Cand); } LLVM_DEBUG(dbgs() << "Rematerialized " << LiveValuesToBeDeleted.size() << " derived pointers\n"); for (auto *Cand : LiveValuesToBeDeleted) { assert(Cand->use_empty() && "Unexpected user remain"); RematerizationCandidates.erase(Cand); for (auto &R : Records) { assert(!R.LiveSet.contains(Cand) || R.LiveSet.contains(PointerToBase[Cand])); R.LiveSet.remove(Cand); } } // Recollect not rematerialized chains - we might have rewritten // their sub-chains. if (!LiveValuesToBeDeleted.empty()) { for (auto &P : RematerizationCandidates) { auto &R = P.second; if (R.ChainToBase.size() > 1) { R.ChainToBase.clear(); findRematerializableChainToBasePointer(R.ChainToBase, P.first); } } } } // From the statepoint live set pick values that are cheaper to recompute then // to relocate. Remove this values from the live set, rematerialize them after // statepoint and record them in "Info" structure. Note that similar to // relocated values we don't do any user adjustments here. static void rematerializeLiveValues(CallBase *Call, PartiallyConstructedSafepointRecord &Info, PointerToBaseTy &PointerToBase, RematCandTy &RematerizationCandidates, TargetTransformInfo &TTI) { // Record values we are going to delete from this statepoint live set. // We can not di this in following loop due to iterator invalidation. SmallVector LiveValuesToBeDeleted; for (Value *LiveValue : Info.LiveSet) { auto It = RematerizationCandidates.find(LiveValue); if (It == RematerizationCandidates.end()) continue; RematerizlizationCandidateRecord &Record = It->second; InstructionCost Cost = Record.Cost; // For invokes we need to rematerialize each chain twice - for normal and // for unwind basic blocks. Model this by multiplying cost by two. if (isa(Call)) Cost *= 2; // If it's too expensive - skip it. if (Cost >= RematerializationThreshold) continue; // Remove value from the live set LiveValuesToBeDeleted.push_back(LiveValue); // Clone instructions and record them inside "Info" structure. // Different cases for calls and invokes. For invokes we need to clone // instructions both on normal and unwind path. if (isa(Call)) { Instruction *InsertBefore = Call->getNextNode(); assert(InsertBefore); Instruction *RematerializedValue = rematerializeChain(Record.ChainToBase, InsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); Info.RematerializedValues[RematerializedValue] = LiveValue; } else { auto *Invoke = cast(Call); Instruction *NormalInsertBefore = &*Invoke->getNormalDest()->getFirstInsertionPt(); Instruction *UnwindInsertBefore = &*Invoke->getUnwindDest()->getFirstInsertionPt(); Instruction *NormalRematerializedValue = rematerializeChain(Record.ChainToBase, NormalInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); Instruction *UnwindRematerializedValue = rematerializeChain(Record.ChainToBase, UnwindInsertBefore, Record.RootOfChain, PointerToBase[LiveValue]); Info.RematerializedValues[NormalRematerializedValue] = LiveValue; Info.RematerializedValues[UnwindRematerializedValue] = LiveValue; } } // Remove rematerialized values from the live set. for (auto *LiveValue: LiveValuesToBeDeleted) { Info.LiveSet.remove(LiveValue); } } static bool inlineGetBaseAndOffset(Function &F, SmallVectorImpl &Intrinsics, DefiningValueMapTy &DVCache, IsKnownBaseMapTy &KnownBases) { auto &Context = F.getContext(); auto &DL = F.getDataLayout(); bool Changed = false; for (auto *Callsite : Intrinsics) switch (Callsite->getIntrinsicID()) { case Intrinsic::experimental_gc_get_pointer_base: { Changed = true; Value *Base = findBasePointer(Callsite->getOperand(0), DVCache, KnownBases); assert(!DVCache.count(Callsite)); Callsite->replaceAllUsesWith(Base); if (!Base->hasName()) Base->takeName(Callsite); Callsite->eraseFromParent(); break; } case Intrinsic::experimental_gc_get_pointer_offset: { Changed = true; Value *Derived = Callsite->getOperand(0); Value *Base = findBasePointer(Derived, DVCache, KnownBases); assert(!DVCache.count(Callsite)); unsigned AddressSpace = Derived->getType()->getPointerAddressSpace(); unsigned IntPtrSize = DL.getPointerSizeInBits(AddressSpace); IRBuilder<> Builder(Callsite); Value *BaseInt = Builder.CreatePtrToInt(Base, Type::getIntNTy(Context, IntPtrSize), suffixed_name_or(Base, ".int", "")); Value *DerivedInt = Builder.CreatePtrToInt(Derived, Type::getIntNTy(Context, IntPtrSize), suffixed_name_or(Derived, ".int", "")); Value *Offset = Builder.CreateSub(DerivedInt, BaseInt); Callsite->replaceAllUsesWith(Offset); Offset->takeName(Callsite); Callsite->eraseFromParent(); break; } default: llvm_unreachable("Unknown intrinsic"); } return Changed; } static bool insertParsePoints(Function &F, DominatorTree &DT, TargetTransformInfo &TTI, SmallVectorImpl &ToUpdate, DefiningValueMapTy &DVCache, IsKnownBaseMapTy &KnownBases) { std::unique_ptr GC = findGCStrategy(F); #ifndef NDEBUG // Validate the input std::set Uniqued; Uniqued.insert(ToUpdate.begin(), ToUpdate.end()); assert(Uniqued.size() == ToUpdate.size() && "no duplicates please!"); for (CallBase *Call : ToUpdate) assert(Call->getFunction() == &F); #endif // When inserting gc.relocates for invokes, we need to be able to insert at // the top of the successor blocks. See the comment on // normalForInvokeSafepoint on exactly what is needed. Note that this step // may restructure the CFG. for (CallBase *Call : ToUpdate) { auto *II = dyn_cast(Call); if (!II) continue; normalizeForInvokeSafepoint(II->getNormalDest(), II->getParent(), DT); normalizeForInvokeSafepoint(II->getUnwindDest(), II->getParent(), DT); } // A list of dummy calls added to the IR to keep various values obviously // live in the IR. We'll remove all of these when done. SmallVector Holders; // Insert a dummy call with all of the deopt operands we'll need for the // actual safepoint insertion as arguments. This ensures reference operands // in the deopt argument list are considered live through the safepoint (and // thus makes sure they get relocated.) for (CallBase *Call : ToUpdate) { SmallVector DeoptValues; for (Value *Arg : GetDeoptBundleOperands(Call)) { assert(!isUnhandledGCPointerType(Arg->getType(), GC.get()) && "support for FCA unimplemented"); if (isHandledGCPointerType(Arg->getType(), GC.get())) DeoptValues.push_back(Arg); } insertUseHolderAfter(Call, DeoptValues, Holders); } SmallVector Records(ToUpdate.size()); // A) Identify all gc pointers which are statically live at the given call // site. findLiveReferences(F, DT, ToUpdate, Records, GC.get()); /// Global mapping from live pointers to a base-defining-value. PointerToBaseTy PointerToBase; // B) Find the base pointers for each live pointer for (size_t i = 0; i < Records.size(); i++) { PartiallyConstructedSafepointRecord &info = Records[i]; findBasePointers(DT, DVCache, ToUpdate[i], info, PointerToBase, KnownBases); } if (PrintBasePointers) { errs() << "Base Pairs (w/o Relocation):\n"; for (auto &Pair : PointerToBase) { errs() << " derived "; Pair.first->printAsOperand(errs(), false); errs() << " base "; Pair.second->printAsOperand(errs(), false); errs() << "\n"; ; } } // The base phi insertion logic (for any safepoint) may have inserted new // instructions which are now live at some safepoint. The simplest such // example is: // loop: // phi a <-- will be a new base_phi here // safepoint 1 <-- that needs to be live here // gep a + 1 // safepoint 2 // br loop // We insert some dummy calls after each safepoint to definitely hold live // the base pointers which were identified for that safepoint. We'll then // ask liveness for _every_ base inserted to see what is now live. Then we // remove the dummy calls. Holders.reserve(Holders.size() + Records.size()); for (size_t i = 0; i < Records.size(); i++) { PartiallyConstructedSafepointRecord &Info = Records[i]; SmallVector Bases; for (auto *Derived : Info.LiveSet) { assert(PointerToBase.count(Derived) && "Missed base for derived pointer"); Bases.push_back(PointerToBase[Derived]); } insertUseHolderAfter(ToUpdate[i], Bases, Holders); } // By selecting base pointers, we've effectively inserted new uses. Thus, we // need to rerun liveness. We may *also* have inserted new defs, but that's // not the key issue. recomputeLiveInValues(F, DT, ToUpdate, Records, PointerToBase, GC.get()); if (PrintBasePointers) { errs() << "Base Pairs: (w/Relocation)\n"; for (auto Pair : PointerToBase) { errs() << " derived "; Pair.first->printAsOperand(errs(), false); errs() << " base "; Pair.second->printAsOperand(errs(), false); errs() << "\n"; } } // It is possible that non-constant live variables have a constant base. For // example, a GEP with a variable offset from a global. In this case we can // remove it from the liveset. We already don't add constants to the liveset // because we assume they won't move at runtime and the GC doesn't need to be // informed about them. The same reasoning applies if the base is constant. // Note that the relocation placement code relies on this filtering for // correctness as it expects the base to be in the liveset, which isn't true // if the base is constant. for (auto &Info : Records) { Info.LiveSet.remove_if([&](Value *LiveV) { assert(PointerToBase.count(LiveV) && "Missed base for derived pointer"); return isa(PointerToBase[LiveV]); }); } for (CallInst *CI : Holders) CI->eraseFromParent(); Holders.clear(); // Compute the cost of possible re-materialization of derived pointers. RematCandTy RematerizationCandidates; findRematerializationCandidates(PointerToBase, RematerizationCandidates, TTI); // In order to reduce live set of statepoint we might choose to rematerialize // some values instead of relocating them. This is purely an optimization and // does not influence correctness. // First try rematerialization at uses, then after statepoints. rematerializeLiveValuesAtUses(RematerizationCandidates, Records, PointerToBase); for (size_t i = 0; i < Records.size(); i++) rematerializeLiveValues(ToUpdate[i], Records[i], PointerToBase, RematerizationCandidates, TTI); // We need this to safely RAUW and delete call or invoke return values that // may themselves be live over a statepoint. For details, please see usage in // makeStatepointExplicitImpl. std::vector Replacements; // Now run through and replace the existing statepoints with new ones with // the live variables listed. We do not yet update uses of the values being // relocated. We have references to live variables that need to // survive to the last iteration of this loop. (By construction, the // previous statepoint can not be a live variable, thus we can and remove // the old statepoint calls as we go.) for (size_t i = 0; i < Records.size(); i++) makeStatepointExplicit(DT, ToUpdate[i], Records[i], Replacements, PointerToBase, GC.get()); ToUpdate.clear(); // prevent accident use of invalid calls. for (auto &PR : Replacements) PR.doReplacement(); Replacements.clear(); for (auto &Info : Records) { // These live sets may contain state Value pointers, since we replaced calls // with operand bundles with calls wrapped in gc.statepoint, and some of // those calls may have been def'ing live gc pointers. Clear these out to // avoid accidentally using them. // // TODO: We should create a separate data structure that does not contain // these live sets, and migrate to using that data structure from this point // onward. Info.LiveSet.clear(); } PointerToBase.clear(); // Do all the fixups of the original live variables to their relocated selves SmallVector Live; for (const PartiallyConstructedSafepointRecord &Info : Records) { // We can't simply save the live set from the original insertion. One of // the live values might be the result of a call which needs a safepoint. // That Value* no longer exists and we need to use the new gc_result. // Thankfully, the live set is embedded in the statepoint (and updated), so // we just grab that. llvm::append_range(Live, Info.StatepointToken->gc_args()); #ifndef NDEBUG // Do some basic validation checking on our liveness results before // performing relocation. Relocation can and will turn mistakes in liveness // results into non-sensical code which is must harder to debug. // TODO: It would be nice to test consistency as well assert(DT.isReachableFromEntry(Info.StatepointToken->getParent()) && "statepoint must be reachable or liveness is meaningless"); for (Value *V : Info.StatepointToken->gc_args()) { if (!isa(V)) // Non-instruction values trivial dominate all possible uses continue; auto *LiveInst = cast(V); assert(DT.isReachableFromEntry(LiveInst->getParent()) && "unreachable values should never be live"); assert(DT.dominates(LiveInst, Info.StatepointToken) && "basic SSA liveness expectation violated by liveness analysis"); } #endif } unique_unsorted(Live); #ifndef NDEBUG // Validation check for (auto *Ptr : Live) assert(isHandledGCPointerType(Ptr->getType(), GC.get()) && "must be a gc pointer type"); #endif relocationViaAlloca(F, DT, Live, Records); return !Records.empty(); } // List of all parameter and return attributes which must be stripped when // lowering from the abstract machine model. Note that we list attributes // here which aren't valid as return attributes, that is okay. static AttributeMask getParamAndReturnAttributesToRemove() { AttributeMask R; R.addAttribute(Attribute::Dereferenceable); R.addAttribute(Attribute::DereferenceableOrNull); R.addAttribute(Attribute::ReadNone); R.addAttribute(Attribute::ReadOnly); R.addAttribute(Attribute::WriteOnly); R.addAttribute(Attribute::NoAlias); R.addAttribute(Attribute::NoFree); return R; } static void stripNonValidAttributesFromPrototype(Function &F) { LLVMContext &Ctx = F.getContext(); // Intrinsics are very delicate. Lowering sometimes depends the presence // of certain attributes for correctness, but we may have also inferred // additional ones in the abstract machine model which need stripped. This // assumes that the attributes defined in Intrinsic.td are conservatively // correct for both physical and abstract model. if (Intrinsic::ID id = F.getIntrinsicID()) { F.setAttributes(Intrinsic::getAttributes(Ctx, id)); return; } AttributeMask R = getParamAndReturnAttributesToRemove(); for (Argument &A : F.args()) if (isa(A.getType())) F.removeParamAttrs(A.getArgNo(), R); if (isa(F.getReturnType())) F.removeRetAttrs(R); for (auto Attr : FnAttrsToStrip) F.removeFnAttr(Attr); } /// Certain metadata on instructions are invalid after running RS4GC. /// Optimizations that run after RS4GC can incorrectly use this metadata to /// optimize functions. We drop such metadata on the instruction. static void stripInvalidMetadataFromInstruction(Instruction &I) { if (!isa(I) && !isa(I)) return; // These are the attributes that are still valid on loads and stores after // RS4GC. // The metadata implying dereferenceability and noalias are (conservatively) // dropped. This is because semantically, after RewriteStatepointsForGC runs, // all calls to gc.statepoint "free" the entire heap. Also, gc.statepoint can // touch the entire heap including noalias objects. Note: The reasoning is // same as stripping the dereferenceability and noalias attributes that are // analogous to the metadata counterparts. // We also drop the invariant.load metadata on the load because that metadata // implies the address operand to the load points to memory that is never // changed once it became dereferenceable. This is no longer true after RS4GC. // Similar reasoning applies to invariant.group metadata, which applies to // loads within a group. unsigned ValidMetadataAfterRS4GC[] = {LLVMContext::MD_tbaa, LLVMContext::MD_range, LLVMContext::MD_alias_scope, LLVMContext::MD_nontemporal, LLVMContext::MD_nonnull, LLVMContext::MD_align, LLVMContext::MD_type}; // Drops all metadata on the instruction other than ValidMetadataAfterRS4GC. I.dropUnknownNonDebugMetadata(ValidMetadataAfterRS4GC); } static void stripNonValidDataFromBody(Function &F) { if (F.empty()) return; LLVMContext &Ctx = F.getContext(); MDBuilder Builder(Ctx); // Set of invariantstart instructions that we need to remove. // Use this to avoid invalidating the instruction iterator. SmallVector InvariantStartInstructions; for (Instruction &I : instructions(F)) { // invariant.start on memory location implies that the referenced memory // location is constant and unchanging. This is no longer true after // RewriteStatepointsForGC runs because there can be calls to gc.statepoint // which frees the entire heap and the presence of invariant.start allows // the optimizer to sink the load of a memory location past a statepoint, // which is incorrect. if (auto *II = dyn_cast(&I)) if (II->getIntrinsicID() == Intrinsic::invariant_start) { InvariantStartInstructions.push_back(II); continue; } if (MDNode *Tag = I.getMetadata(LLVMContext::MD_tbaa)) { MDNode *MutableTBAA = Builder.createMutableTBAAAccessTag(Tag); I.setMetadata(LLVMContext::MD_tbaa, MutableTBAA); } stripInvalidMetadataFromInstruction(I); AttributeMask R = getParamAndReturnAttributesToRemove(); if (auto *Call = dyn_cast(&I)) { for (int i = 0, e = Call->arg_size(); i != e; i++) if (isa(Call->getArgOperand(i)->getType())) Call->removeParamAttrs(i, R); if (isa(Call->getType())) Call->removeRetAttrs(R); } } // Delete the invariant.start instructions and RAUW poison. for (auto *II : InvariantStartInstructions) { II->replaceAllUsesWith(PoisonValue::get(II->getType())); II->eraseFromParent(); } } /// Looks up the GC strategy for a given function, returning null if the /// function doesn't have a GC tag. The strategy is stored in the cache. static std::unique_ptr findGCStrategy(Function &F) { if (!F.hasGC()) return nullptr; return getGCStrategy(F.getGC()); } /// Returns true if this function should be rewritten by this pass. The main /// point of this function is as an extension point for custom logic. static bool shouldRewriteStatepointsIn(Function &F) { if (!F.hasGC()) return false; std::unique_ptr Strategy = findGCStrategy(F); assert(Strategy && "GC strategy is required by function, but was not found"); return Strategy->useRS4GC(); } static void stripNonValidData(Module &M) { #ifndef NDEBUG assert(llvm::any_of(M, shouldRewriteStatepointsIn) && "precondition!"); #endif for (Function &F : M) stripNonValidAttributesFromPrototype(F); for (Function &F : M) stripNonValidDataFromBody(F); } bool RewriteStatepointsForGC::runOnFunction(Function &F, DominatorTree &DT, TargetTransformInfo &TTI, const TargetLibraryInfo &TLI) { assert(!F.isDeclaration() && !F.empty() && "need function body to rewrite statepoints in"); assert(shouldRewriteStatepointsIn(F) && "mismatch in rewrite decision"); auto NeedsRewrite = [&TLI](Instruction &I) { if (const auto *Call = dyn_cast(&I)) { if (isa(Call)) return false; if (callsGCLeafFunction(Call, TLI)) return false; // Normally it's up to the frontend to make sure that non-leaf calls also // have proper deopt state if it is required. We make an exception for // element atomic memcpy/memmove intrinsics here. Unlike other intrinsics // these are non-leaf by default. They might be generated by the optimizer // which doesn't know how to produce a proper deopt state. So if we see a // non-leaf memcpy/memmove without deopt state just treat it as a leaf // copy and don't produce a statepoint. if (!AllowStatepointWithNoDeoptInfo && !Call->hasDeoptState()) { assert((isa(Call) || isa(Call)) && "Don't expect any other calls here!"); return false; } return true; } return false; }; // Delete any unreachable statepoints so that we don't have unrewritten // statepoints surviving this pass. This makes testing easier and the // resulting IR less confusing to human readers. DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy); bool MadeChange = removeUnreachableBlocks(F, &DTU); // Flush the Dominator Tree. DTU.getDomTree(); // Gather all the statepoints which need rewritten. Be careful to only // consider those in reachable code since we need to ask dominance queries // when rewriting. We'll delete the unreachable ones in a moment. SmallVector ParsePointNeeded; SmallVector Intrinsics; for (Instruction &I : instructions(F)) { // TODO: only the ones with the flag set! if (NeedsRewrite(I)) { // NOTE removeUnreachableBlocks() is stronger than // DominatorTree::isReachableFromEntry(). In other words // removeUnreachableBlocks can remove some blocks for which // isReachableFromEntry() returns true. assert(DT.isReachableFromEntry(I.getParent()) && "no unreachable blocks expected"); ParsePointNeeded.push_back(cast(&I)); } if (auto *CI = dyn_cast(&I)) if (CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_base || CI->getIntrinsicID() == Intrinsic::experimental_gc_get_pointer_offset) Intrinsics.emplace_back(CI); } // Return early if no work to do. if (ParsePointNeeded.empty() && Intrinsics.empty()) return MadeChange; // As a prepass, go ahead and aggressively destroy single entry phi nodes. // These are created by LCSSA. They have the effect of increasing the size // of liveness sets for no good reason. It may be harder to do this post // insertion since relocations and base phis can confuse things. for (BasicBlock &BB : F) if (BB.getUniquePredecessor()) MadeChange |= FoldSingleEntryPHINodes(&BB); // Before we start introducing relocations, we want to tweak the IR a bit to // avoid unfortunate code generation effects. The main example is that we // want to try to make sure the comparison feeding a branch is after any // safepoints. Otherwise, we end up with a comparison of pre-relocation // values feeding a branch after relocation. This is semantically correct, // but results in extra register pressure since both the pre-relocation and // post-relocation copies must be available in registers. For code without // relocations this is handled elsewhere, but teaching the scheduler to // reverse the transform we're about to do would be slightly complex. // Note: This may extend the live range of the inputs to the icmp and thus // increase the liveset of any statepoint we move over. This is profitable // as long as all statepoints are in rare blocks. If we had in-register // lowering for live values this would be a much safer transform. auto getConditionInst = [](Instruction *TI) -> Instruction * { if (auto *BI = dyn_cast(TI)) if (BI->isConditional()) return dyn_cast(BI->getCondition()); // TODO: Extend this to handle switches return nullptr; }; for (BasicBlock &BB : F) { Instruction *TI = BB.getTerminator(); if (auto *Cond = getConditionInst(TI)) // TODO: Handle more than just ICmps here. We should be able to move // most instructions without side effects or memory access. if (isa(Cond) && Cond->hasOneUse()) { MadeChange = true; Cond->moveBefore(TI); } } // Nasty workaround - The base computation code in the main algorithm doesn't // consider the fact that a GEP can be used to convert a scalar to a vector. // The right fix for this is to integrate GEPs into the base rewriting // algorithm properly, this is just a short term workaround to prevent // crashes by canonicalizing such GEPs into fully vector GEPs. for (Instruction &I : instructions(F)) { if (!isa(I)) continue; unsigned VF = 0; for (unsigned i = 0; i < I.getNumOperands(); i++) if (auto *OpndVTy = dyn_cast(I.getOperand(i)->getType())) { assert(VF == 0 || VF == cast(OpndVTy)->getNumElements()); VF = cast(OpndVTy)->getNumElements(); } // It's the vector to scalar traversal through the pointer operand which // confuses base pointer rewriting, so limit ourselves to that case. if (!I.getOperand(0)->getType()->isVectorTy() && VF != 0) { IRBuilder<> B(&I); auto *Splat = B.CreateVectorSplat(VF, I.getOperand(0)); I.setOperand(0, Splat); MadeChange = true; } } // Cache the 'defining value' relation used in the computation and // insertion of base phis and selects. This ensures that we don't insert // large numbers of duplicate base_phis. Use one cache for both // inlineGetBaseAndOffset() and insertParsePoints(). DefiningValueMapTy DVCache; // Mapping between a base values and a flag indicating whether it's a known // base or not. IsKnownBaseMapTy KnownBases; if (!Intrinsics.empty()) // Inline @gc.get.pointer.base() and @gc.get.pointer.offset() before finding // live references. MadeChange |= inlineGetBaseAndOffset(F, Intrinsics, DVCache, KnownBases); if (!ParsePointNeeded.empty()) MadeChange |= insertParsePoints(F, DT, TTI, ParsePointNeeded, DVCache, KnownBases); return MadeChange; } // liveness computation via standard dataflow // ------------------------------------------------------------------- // TODO: Consider using bitvectors for liveness, the set of potentially // interesting values should be small and easy to pre-compute. /// Compute the live-in set for the location rbegin starting from /// the live-out set of the basic block static void computeLiveInValues(BasicBlock::reverse_iterator Begin, BasicBlock::reverse_iterator End, SetVector &LiveTmp, GCStrategy *GC) { for (auto &I : make_range(Begin, End)) { // KILL/Def - Remove this definition from LiveIn LiveTmp.remove(&I); // Don't consider *uses* in PHI nodes, we handle their contribution to // predecessor blocks when we seed the LiveOut sets if (isa(I)) continue; // USE - Add to the LiveIn set for this instruction for (Value *V : I.operands()) { assert(!isUnhandledGCPointerType(V->getType(), GC) && "support for FCA unimplemented"); if (isHandledGCPointerType(V->getType(), GC) && !isa(V)) { // The choice to exclude all things constant here is slightly subtle. // There are two independent reasons: // - We assume that things which are constant (from LLVM's definition) // do not move at runtime. For example, the address of a global // variable is fixed, even though it's contents may not be. // - Second, we can't disallow arbitrary inttoptr constants even // if the language frontend does. Optimization passes are free to // locally exploit facts without respect to global reachability. This // can create sections of code which are dynamically unreachable and // contain just about anything. (see constants.ll in tests) LiveTmp.insert(V); } } } } static void computeLiveOutSeed(BasicBlock *BB, SetVector &LiveTmp, GCStrategy *GC) { for (BasicBlock *Succ : successors(BB)) { for (auto &I : *Succ) { PHINode *PN = dyn_cast(&I); if (!PN) break; Value *V = PN->getIncomingValueForBlock(BB); assert(!isUnhandledGCPointerType(V->getType(), GC) && "support for FCA unimplemented"); if (isHandledGCPointerType(V->getType(), GC) && !isa(V)) LiveTmp.insert(V); } } } static SetVector computeKillSet(BasicBlock *BB, GCStrategy *GC) { SetVector KillSet; for (Instruction &I : *BB) if (isHandledGCPointerType(I.getType(), GC)) KillSet.insert(&I); return KillSet; } #ifndef NDEBUG /// Check that the items in 'Live' dominate 'TI'. This is used as a basic /// validation check for the liveness computation. static void checkBasicSSA(DominatorTree &DT, SetVector &Live, Instruction *TI, bool TermOkay = false) { for (Value *V : Live) { if (auto *I = dyn_cast(V)) { // The terminator can be a member of the LiveOut set. LLVM's definition // of instruction dominance states that V does not dominate itself. As // such, we need to special case this to allow it. if (TermOkay && TI == I) continue; assert(DT.dominates(I, TI) && "basic SSA liveness expectation violated by liveness analysis"); } } } /// Check that all the liveness sets used during the computation of liveness /// obey basic SSA properties. This is useful for finding cases where we miss /// a def. static void checkBasicSSA(DominatorTree &DT, GCPtrLivenessData &Data, BasicBlock &BB) { checkBasicSSA(DT, Data.LiveSet[&BB], BB.getTerminator()); checkBasicSSA(DT, Data.LiveOut[&BB], BB.getTerminator(), true); checkBasicSSA(DT, Data.LiveIn[&BB], BB.getTerminator()); } #endif static void computeLiveInValues(DominatorTree &DT, Function &F, GCPtrLivenessData &Data, GCStrategy *GC) { SmallSetVector Worklist; // Seed the liveness for each individual block for (BasicBlock &BB : F) { Data.KillSet[&BB] = computeKillSet(&BB, GC); Data.LiveSet[&BB].clear(); computeLiveInValues(BB.rbegin(), BB.rend(), Data.LiveSet[&BB], GC); #ifndef NDEBUG for (Value *Kill : Data.KillSet[&BB]) assert(!Data.LiveSet[&BB].count(Kill) && "live set contains kill"); #endif Data.LiveOut[&BB] = SetVector(); computeLiveOutSeed(&BB, Data.LiveOut[&BB], GC); Data.LiveIn[&BB] = Data.LiveSet[&BB]; Data.LiveIn[&BB].set_union(Data.LiveOut[&BB]); Data.LiveIn[&BB].set_subtract(Data.KillSet[&BB]); if (!Data.LiveIn[&BB].empty()) Worklist.insert(pred_begin(&BB), pred_end(&BB)); } // Propagate that liveness until stable while (!Worklist.empty()) { BasicBlock *BB = Worklist.pop_back_val(); // Compute our new liveout set, then exit early if it hasn't changed despite // the contribution of our successor. SetVector LiveOut = Data.LiveOut[BB]; const auto OldLiveOutSize = LiveOut.size(); for (BasicBlock *Succ : successors(BB)) { assert(Data.LiveIn.count(Succ)); LiveOut.set_union(Data.LiveIn[Succ]); } // assert OutLiveOut is a subset of LiveOut if (OldLiveOutSize == LiveOut.size()) { // If the sets are the same size, then we didn't actually add anything // when unioning our successors LiveIn. Thus, the LiveIn of this block // hasn't changed. continue; } Data.LiveOut[BB] = LiveOut; // Apply the effects of this basic block SetVector LiveTmp = LiveOut; LiveTmp.set_union(Data.LiveSet[BB]); LiveTmp.set_subtract(Data.KillSet[BB]); assert(Data.LiveIn.count(BB)); const SetVector &OldLiveIn = Data.LiveIn[BB]; // assert: OldLiveIn is a subset of LiveTmp if (OldLiveIn.size() != LiveTmp.size()) { Data.LiveIn[BB] = LiveTmp; Worklist.insert(pred_begin(BB), pred_end(BB)); } } // while (!Worklist.empty()) #ifndef NDEBUG // Verify our output against SSA properties. This helps catch any // missing kills during the above iteration. for (BasicBlock &BB : F) checkBasicSSA(DT, Data, BB); #endif } static void findLiveSetAtInst(Instruction *Inst, GCPtrLivenessData &Data, StatepointLiveSetTy &Out, GCStrategy *GC) { BasicBlock *BB = Inst->getParent(); // Note: The copy is intentional and required assert(Data.LiveOut.count(BB)); SetVector LiveOut = Data.LiveOut[BB]; // We want to handle the statepoint itself oddly. It's // call result is not live (normal), nor are it's arguments // (unless they're used again later). This adjustment is // specifically what we need to relocate computeLiveInValues(BB->rbegin(), ++Inst->getIterator().getReverse(), LiveOut, GC); LiveOut.remove(Inst); Out.insert(LiveOut.begin(), LiveOut.end()); } static void recomputeLiveInValues(GCPtrLivenessData &RevisedLivenessData, CallBase *Call, PartiallyConstructedSafepointRecord &Info, PointerToBaseTy &PointerToBase, GCStrategy *GC) { StatepointLiveSetTy Updated; findLiveSetAtInst(Call, RevisedLivenessData, Updated, GC); // We may have base pointers which are now live that weren't before. We need // to update the PointerToBase structure to reflect this. for (auto *V : Updated) PointerToBase.insert({ V, V }); Info.LiveSet = Updated; }