//===- CorrelatedValuePropagation.cpp - Propagate CFG-derived info --------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the Correlated Value Propagation pass. // //===----------------------------------------------------------------------===// #include "llvm/Transforms/Scalar/CorrelatedValuePropagation.h" #include "llvm/ADT/DepthFirstIterator.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DomTreeUpdater.h" #include "llvm/Analysis/GlobalsModRef.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LazyValueInfo.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constant.h" #include "llvm/IR/ConstantRange.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instruction.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/IR/PatternMatch.h" #include "llvm/IR/PassManager.h" #include "llvm/IR/Type.h" #include "llvm/IR/Value.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Transforms/Utils/Local.h" #include #include #include using namespace llvm; #define DEBUG_TYPE "correlated-value-propagation" STATISTIC(NumPhis, "Number of phis propagated"); STATISTIC(NumPhiCommon, "Number of phis deleted via common incoming value"); STATISTIC(NumSelects, "Number of selects propagated"); STATISTIC(NumCmps, "Number of comparisons propagated"); STATISTIC(NumReturns, "Number of return values propagated"); STATISTIC(NumDeadCases, "Number of switch cases removed"); STATISTIC(NumSDivSRemsNarrowed, "Number of sdivs/srems whose width was decreased"); STATISTIC(NumSDivs, "Number of sdiv converted to udiv"); STATISTIC(NumUDivURemsNarrowed, "Number of udivs/urems whose width was decreased"); STATISTIC(NumAShrsConverted, "Number of ashr converted to lshr"); STATISTIC(NumAShrsRemoved, "Number of ashr removed"); STATISTIC(NumSRems, "Number of srem converted to urem"); STATISTIC(NumSExt, "Number of sext converted to zext"); STATISTIC(NumSIToFP, "Number of sitofp converted to uitofp"); STATISTIC(NumSICmps, "Number of signed icmp preds simplified to unsigned"); STATISTIC(NumAnd, "Number of ands removed"); STATISTIC(NumNW, "Number of no-wrap deductions"); STATISTIC(NumNSW, "Number of no-signed-wrap deductions"); STATISTIC(NumNUW, "Number of no-unsigned-wrap deductions"); STATISTIC(NumAddNW, "Number of no-wrap deductions for add"); STATISTIC(NumAddNSW, "Number of no-signed-wrap deductions for add"); STATISTIC(NumAddNUW, "Number of no-unsigned-wrap deductions for add"); STATISTIC(NumSubNW, "Number of no-wrap deductions for sub"); STATISTIC(NumSubNSW, "Number of no-signed-wrap deductions for sub"); STATISTIC(NumSubNUW, "Number of no-unsigned-wrap deductions for sub"); STATISTIC(NumMulNW, "Number of no-wrap deductions for mul"); STATISTIC(NumMulNSW, "Number of no-signed-wrap deductions for mul"); STATISTIC(NumMulNUW, "Number of no-unsigned-wrap deductions for mul"); STATISTIC(NumShlNW, "Number of no-wrap deductions for shl"); STATISTIC(NumShlNSW, "Number of no-signed-wrap deductions for shl"); STATISTIC(NumShlNUW, "Number of no-unsigned-wrap deductions for shl"); STATISTIC(NumAbs, "Number of llvm.abs intrinsics removed"); STATISTIC(NumOverflows, "Number of overflow checks removed"); STATISTIC(NumSaturating, "Number of saturating arithmetics converted to normal arithmetics"); STATISTIC(NumNonNull, "Number of function pointer arguments marked non-null"); STATISTIC(NumCmpIntr, "Number of llvm.[us]cmp intrinsics removed"); STATISTIC(NumMinMax, "Number of llvm.[us]{min,max} intrinsics removed"); STATISTIC(NumSMinMax, "Number of llvm.s{min,max} intrinsics simplified to unsigned"); STATISTIC(NumUDivURemsNarrowedExpanded, "Number of bound udiv's/urem's expanded"); STATISTIC(NumNNeg, "Number of zext/uitofp non-negative deductions"); static Constant *getConstantAt(Value *V, Instruction *At, LazyValueInfo *LVI) { if (Constant *C = LVI->getConstant(V, At)) return C; // TODO: The following really should be sunk inside LVI's core algorithm, or // at least the outer shims around such. auto *C = dyn_cast(V); if (!C) return nullptr; Value *Op0 = C->getOperand(0); Constant *Op1 = dyn_cast(C->getOperand(1)); if (!Op1) return nullptr; return LVI->getPredicateAt(C->getPredicate(), Op0, Op1, At, /*UseBlockValue=*/false); } static bool processSelect(SelectInst *S, LazyValueInfo *LVI) { if (S->getType()->isVectorTy() || isa(S->getCondition())) return false; bool Changed = false; for (Use &U : make_early_inc_range(S->uses())) { auto *I = cast(U.getUser()); Constant *C; if (auto *PN = dyn_cast(I)) C = LVI->getConstantOnEdge(S->getCondition(), PN->getIncomingBlock(U), I->getParent(), I); else C = getConstantAt(S->getCondition(), I, LVI); auto *CI = dyn_cast_or_null(C); if (!CI) continue; U.set(CI->isOne() ? S->getTrueValue() : S->getFalseValue()); Changed = true; ++NumSelects; } if (Changed && S->use_empty()) S->eraseFromParent(); return Changed; } /// Try to simplify a phi with constant incoming values that match the edge /// values of a non-constant value on all other edges: /// bb0: /// %isnull = icmp eq i8* %x, null /// br i1 %isnull, label %bb2, label %bb1 /// bb1: /// br label %bb2 /// bb2: /// %r = phi i8* [ %x, %bb1 ], [ null, %bb0 ] /// --> /// %r = %x static bool simplifyCommonValuePhi(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT) { // Collect incoming constants and initialize possible common value. SmallVector, 4> IncomingConstants; Value *CommonValue = nullptr; for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) { Value *Incoming = P->getIncomingValue(i); if (auto *IncomingConstant = dyn_cast(Incoming)) { IncomingConstants.push_back(std::make_pair(IncomingConstant, i)); } else if (!CommonValue) { // The potential common value is initialized to the first non-constant. CommonValue = Incoming; } else if (Incoming != CommonValue) { // There can be only one non-constant common value. return false; } } if (!CommonValue || IncomingConstants.empty()) return false; // The common value must be valid in all incoming blocks. BasicBlock *ToBB = P->getParent(); if (auto *CommonInst = dyn_cast(CommonValue)) if (!DT->dominates(CommonInst, ToBB)) return false; // We have a phi with exactly 1 variable incoming value and 1 or more constant // incoming values. See if all constant incoming values can be mapped back to // the same incoming variable value. for (auto &IncomingConstant : IncomingConstants) { Constant *C = IncomingConstant.first; BasicBlock *IncomingBB = P->getIncomingBlock(IncomingConstant.second); if (C != LVI->getConstantOnEdge(CommonValue, IncomingBB, ToBB, P)) return false; } // LVI only guarantees that the value matches a certain constant if the value // is not poison. Make sure we don't replace a well-defined value with poison. // This is usually satisfied due to a prior branch on the value. if (!isGuaranteedNotToBePoison(CommonValue, nullptr, P, DT)) return false; // All constant incoming values map to the same variable along the incoming // edges of the phi. The phi is unnecessary. P->replaceAllUsesWith(CommonValue); P->eraseFromParent(); ++NumPhiCommon; return true; } static Value *getValueOnEdge(LazyValueInfo *LVI, Value *Incoming, BasicBlock *From, BasicBlock *To, Instruction *CxtI) { if (Constant *C = LVI->getConstantOnEdge(Incoming, From, To, CxtI)) return C; // Look if the incoming value is a select with a scalar condition for which // LVI can tells us the value. In that case replace the incoming value with // the appropriate value of the select. This often allows us to remove the // select later. auto *SI = dyn_cast(Incoming); if (!SI) return nullptr; // Once LVI learns to handle vector types, we could also add support // for vector type constants that are not all zeroes or all ones. Value *Condition = SI->getCondition(); if (!Condition->getType()->isVectorTy()) { if (Constant *C = LVI->getConstantOnEdge(Condition, From, To, CxtI)) { if (C->isOneValue()) return SI->getTrueValue(); if (C->isZeroValue()) return SI->getFalseValue(); } } // Look if the select has a constant but LVI tells us that the incoming // value can never be that constant. In that case replace the incoming // value with the other value of the select. This often allows us to // remove the select later. // The "false" case if (auto *C = dyn_cast(SI->getFalseValue())) if (auto *Res = dyn_cast_or_null( LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI)); Res && Res->isZero()) return SI->getTrueValue(); // The "true" case, // similar to the select "false" case, but try the select "true" value if (auto *C = dyn_cast(SI->getTrueValue())) if (auto *Res = dyn_cast_or_null( LVI->getPredicateOnEdge(ICmpInst::ICMP_EQ, SI, C, From, To, CxtI)); Res && Res->isZero()) return SI->getFalseValue(); return nullptr; } static bool processPHI(PHINode *P, LazyValueInfo *LVI, DominatorTree *DT, const SimplifyQuery &SQ) { bool Changed = false; BasicBlock *BB = P->getParent(); for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) { Value *Incoming = P->getIncomingValue(i); if (isa(Incoming)) continue; Value *V = getValueOnEdge(LVI, Incoming, P->getIncomingBlock(i), BB, P); if (V) { P->setIncomingValue(i, V); Changed = true; } } if (Value *V = simplifyInstruction(P, SQ)) { P->replaceAllUsesWith(V); P->eraseFromParent(); Changed = true; } if (!Changed) Changed = simplifyCommonValuePhi(P, LVI, DT); if (Changed) ++NumPhis; return Changed; } static bool processICmp(ICmpInst *Cmp, LazyValueInfo *LVI) { // Only for signed relational comparisons of integers. if (!Cmp->getOperand(0)->getType()->isIntOrIntVectorTy()) return false; if (!Cmp->isSigned()) return false; ICmpInst::Predicate UnsignedPred = ConstantRange::getEquivalentPredWithFlippedSignedness( Cmp->getPredicate(), LVI->getConstantRangeAtUse(Cmp->getOperandUse(0), /*UndefAllowed*/ true), LVI->getConstantRangeAtUse(Cmp->getOperandUse(1), /*UndefAllowed*/ true)); if (UnsignedPred == ICmpInst::Predicate::BAD_ICMP_PREDICATE) return false; ++NumSICmps; Cmp->setPredicate(UnsignedPred); return true; } /// See if LazyValueInfo's ability to exploit edge conditions or range /// information is sufficient to prove this comparison. Even for local /// conditions, this can sometimes prove conditions instcombine can't by /// exploiting range information. static bool constantFoldCmp(CmpInst *Cmp, LazyValueInfo *LVI) { Value *Op0 = Cmp->getOperand(0); Value *Op1 = Cmp->getOperand(1); Constant *Res = LVI->getPredicateAt(Cmp->getPredicate(), Op0, Op1, Cmp, /*UseBlockValue=*/true); if (!Res) return false; ++NumCmps; Cmp->replaceAllUsesWith(Res); Cmp->eraseFromParent(); return true; } static bool processCmp(CmpInst *Cmp, LazyValueInfo *LVI) { if (constantFoldCmp(Cmp, LVI)) return true; if (auto *ICmp = dyn_cast(Cmp)) if (processICmp(ICmp, LVI)) return true; return false; } /// Simplify a switch instruction by removing cases which can never fire. If the /// uselessness of a case could be determined locally then constant propagation /// would already have figured it out. Instead, walk the predecessors and /// statically evaluate cases based on information available on that edge. Cases /// that cannot fire no matter what the incoming edge can safely be removed. If /// a case fires on every incoming edge then the entire switch can be removed /// and replaced with a branch to the case destination. static bool processSwitch(SwitchInst *I, LazyValueInfo *LVI, DominatorTree *DT) { DomTreeUpdater DTU(*DT, DomTreeUpdater::UpdateStrategy::Lazy); Value *Cond = I->getCondition(); BasicBlock *BB = I->getParent(); // Analyse each switch case in turn. bool Changed = false; DenseMap SuccessorsCount; for (auto *Succ : successors(BB)) SuccessorsCount[Succ]++; { // Scope for SwitchInstProfUpdateWrapper. It must not live during // ConstantFoldTerminator() as the underlying SwitchInst can be changed. SwitchInstProfUpdateWrapper SI(*I); unsigned ReachableCaseCount = 0; for (auto CI = SI->case_begin(), CE = SI->case_end(); CI != CE;) { ConstantInt *Case = CI->getCaseValue(); auto *Res = dyn_cast_or_null( LVI->getPredicateAt(CmpInst::ICMP_EQ, Cond, Case, I, /* UseBlockValue */ true)); if (Res && Res->isZero()) { // This case never fires - remove it. BasicBlock *Succ = CI->getCaseSuccessor(); Succ->removePredecessor(BB); CI = SI.removeCase(CI); CE = SI->case_end(); // The condition can be modified by removePredecessor's PHI simplification // logic. Cond = SI->getCondition(); ++NumDeadCases; Changed = true; if (--SuccessorsCount[Succ] == 0) DTU.applyUpdatesPermissive({{DominatorTree::Delete, BB, Succ}}); continue; } if (Res && Res->isOne()) { // This case always fires. Arrange for the switch to be turned into an // unconditional branch by replacing the switch condition with the case // value. SI->setCondition(Case); NumDeadCases += SI->getNumCases(); Changed = true; break; } // Increment the case iterator since we didn't delete it. ++CI; ++ReachableCaseCount; } BasicBlock *DefaultDest = SI->getDefaultDest(); if (ReachableCaseCount > 1 && !isa(DefaultDest->getFirstNonPHIOrDbg())) { ConstantRange CR = LVI->getConstantRangeAtUse(I->getOperandUse(0), /*UndefAllowed*/ false); // The default dest is unreachable if all cases are covered. if (!CR.isSizeLargerThan(ReachableCaseCount)) { BasicBlock *NewUnreachableBB = BasicBlock::Create(BB->getContext(), "default.unreachable", BB->getParent(), DefaultDest); new UnreachableInst(BB->getContext(), NewUnreachableBB); DefaultDest->removePredecessor(BB); SI->setDefaultDest(NewUnreachableBB); if (SuccessorsCount[DefaultDest] == 1) DTU.applyUpdates({{DominatorTree::Delete, BB, DefaultDest}}); DTU.applyUpdates({{DominatorTree::Insert, BB, NewUnreachableBB}}); ++NumDeadCases; Changed = true; } } } if (Changed) // If the switch has been simplified to the point where it can be replaced // by a branch then do so now. ConstantFoldTerminator(BB, /*DeleteDeadConditions = */ false, /*TLI = */ nullptr, &DTU); return Changed; } // See if we can prove that the given binary op intrinsic will not overflow. static bool willNotOverflow(BinaryOpIntrinsic *BO, LazyValueInfo *LVI) { ConstantRange LRange = LVI->getConstantRangeAtUse(BO->getOperandUse(0), /*UndefAllowed*/ false); ConstantRange RRange = LVI->getConstantRangeAtUse(BO->getOperandUse(1), /*UndefAllowed*/ false); ConstantRange NWRegion = ConstantRange::makeGuaranteedNoWrapRegion( BO->getBinaryOp(), RRange, BO->getNoWrapKind()); return NWRegion.contains(LRange); } static void setDeducedOverflowingFlags(Value *V, Instruction::BinaryOps Opcode, bool NewNSW, bool NewNUW) { Statistic *OpcNW, *OpcNSW, *OpcNUW; switch (Opcode) { case Instruction::Add: OpcNW = &NumAddNW; OpcNSW = &NumAddNSW; OpcNUW = &NumAddNUW; break; case Instruction::Sub: OpcNW = &NumSubNW; OpcNSW = &NumSubNSW; OpcNUW = &NumSubNUW; break; case Instruction::Mul: OpcNW = &NumMulNW; OpcNSW = &NumMulNSW; OpcNUW = &NumMulNUW; break; case Instruction::Shl: OpcNW = &NumShlNW; OpcNSW = &NumShlNSW; OpcNUW = &NumShlNUW; break; default: llvm_unreachable("Will not be called with other binops"); } auto *Inst = dyn_cast(V); if (NewNSW) { ++NumNW; ++*OpcNW; ++NumNSW; ++*OpcNSW; if (Inst) Inst->setHasNoSignedWrap(); } if (NewNUW) { ++NumNW; ++*OpcNW; ++NumNUW; ++*OpcNUW; if (Inst) Inst->setHasNoUnsignedWrap(); } } static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI); // See if @llvm.abs argument is alays positive/negative, and simplify. // Notably, INT_MIN can belong to either range, regardless of the NSW, // because it is negation-invariant. static bool processAbsIntrinsic(IntrinsicInst *II, LazyValueInfo *LVI) { Value *X = II->getArgOperand(0); bool IsIntMinPoison = cast(II->getArgOperand(1))->isOne(); APInt IntMin = APInt::getSignedMinValue(X->getType()->getScalarSizeInBits()); ConstantRange Range = LVI->getConstantRangeAtUse( II->getOperandUse(0), /*UndefAllowed*/ IsIntMinPoison); // Is X in [0, IntMin]? NOTE: INT_MIN is fine! if (Range.icmp(CmpInst::ICMP_ULE, IntMin)) { ++NumAbs; II->replaceAllUsesWith(X); II->eraseFromParent(); return true; } // Is X in [IntMin, 0]? NOTE: INT_MIN is fine! if (Range.getSignedMax().isNonPositive()) { IRBuilder<> B(II); Value *NegX = B.CreateNeg(X, II->getName(), /*HasNSW=*/IsIntMinPoison); ++NumAbs; II->replaceAllUsesWith(NegX); II->eraseFromParent(); // See if we can infer some no-wrap flags. if (auto *BO = dyn_cast(NegX)) processBinOp(BO, LVI); return true; } // Argument's range crosses zero. // Can we at least tell that the argument is never INT_MIN? if (!IsIntMinPoison && !Range.contains(IntMin)) { ++NumNSW; ++NumSubNSW; II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); return true; } return false; } static bool processCmpIntrinsic(CmpIntrinsic *CI, LazyValueInfo *LVI) { ConstantRange LHS_CR = LVI->getConstantRangeAtUse(CI->getOperandUse(0), /*UndefAllowed*/ false); ConstantRange RHS_CR = LVI->getConstantRangeAtUse(CI->getOperandUse(1), /*UndefAllowed*/ false); if (LHS_CR.icmp(CI->getGTPredicate(), RHS_CR)) { ++NumCmpIntr; CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 1)); CI->eraseFromParent(); return true; } if (LHS_CR.icmp(CI->getLTPredicate(), RHS_CR)) { ++NumCmpIntr; CI->replaceAllUsesWith(ConstantInt::getSigned(CI->getType(), -1)); CI->eraseFromParent(); return true; } if (LHS_CR.icmp(ICmpInst::ICMP_EQ, RHS_CR)) { ++NumCmpIntr; CI->replaceAllUsesWith(ConstantInt::get(CI->getType(), 0)); CI->eraseFromParent(); return true; } return false; } // See if this min/max intrinsic always picks it's one specific operand. // If not, check whether we can canonicalize signed minmax into unsigned version static bool processMinMaxIntrinsic(MinMaxIntrinsic *MM, LazyValueInfo *LVI) { CmpInst::Predicate Pred = CmpInst::getNonStrictPredicate(MM->getPredicate()); ConstantRange LHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(0), /*UndefAllowed*/ false); ConstantRange RHS_CR = LVI->getConstantRangeAtUse(MM->getOperandUse(1), /*UndefAllowed*/ false); if (LHS_CR.icmp(Pred, RHS_CR)) { ++NumMinMax; MM->replaceAllUsesWith(MM->getLHS()); MM->eraseFromParent(); return true; } if (RHS_CR.icmp(Pred, LHS_CR)) { ++NumMinMax; MM->replaceAllUsesWith(MM->getRHS()); MM->eraseFromParent(); return true; } if (MM->isSigned() && ConstantRange::areInsensitiveToSignednessOfICmpPredicate(LHS_CR, RHS_CR)) { ++NumSMinMax; IRBuilder<> B(MM); MM->replaceAllUsesWith(B.CreateBinaryIntrinsic( MM->getIntrinsicID() == Intrinsic::smin ? Intrinsic::umin : Intrinsic::umax, MM->getLHS(), MM->getRHS())); MM->eraseFromParent(); return true; } return false; } // Rewrite this with.overflow intrinsic as non-overflowing. static bool processOverflowIntrinsic(WithOverflowInst *WO, LazyValueInfo *LVI) { IRBuilder<> B(WO); Instruction::BinaryOps Opcode = WO->getBinaryOp(); bool NSW = WO->isSigned(); bool NUW = !WO->isSigned(); Value *NewOp = B.CreateBinOp(Opcode, WO->getLHS(), WO->getRHS(), WO->getName()); setDeducedOverflowingFlags(NewOp, Opcode, NSW, NUW); StructType *ST = cast(WO->getType()); Constant *Struct = ConstantStruct::get(ST, { PoisonValue::get(ST->getElementType(0)), ConstantInt::getFalse(ST->getElementType(1)) }); Value *NewI = B.CreateInsertValue(Struct, NewOp, 0); WO->replaceAllUsesWith(NewI); WO->eraseFromParent(); ++NumOverflows; // See if we can infer the other no-wrap too. if (auto *BO = dyn_cast(NewOp)) processBinOp(BO, LVI); return true; } static bool processSaturatingInst(SaturatingInst *SI, LazyValueInfo *LVI) { Instruction::BinaryOps Opcode = SI->getBinaryOp(); bool NSW = SI->isSigned(); bool NUW = !SI->isSigned(); BinaryOperator *BinOp = BinaryOperator::Create( Opcode, SI->getLHS(), SI->getRHS(), SI->getName(), SI->getIterator()); BinOp->setDebugLoc(SI->getDebugLoc()); setDeducedOverflowingFlags(BinOp, Opcode, NSW, NUW); SI->replaceAllUsesWith(BinOp); SI->eraseFromParent(); ++NumSaturating; // See if we can infer the other no-wrap too. if (auto *BO = dyn_cast(BinOp)) processBinOp(BO, LVI); return true; } /// Infer nonnull attributes for the arguments at the specified callsite. static bool processCallSite(CallBase &CB, LazyValueInfo *LVI) { if (CB.getIntrinsicID() == Intrinsic::abs) { return processAbsIntrinsic(&cast(CB), LVI); } if (auto *CI = dyn_cast(&CB)) { return processCmpIntrinsic(CI, LVI); } if (auto *MM = dyn_cast(&CB)) { return processMinMaxIntrinsic(MM, LVI); } if (auto *WO = dyn_cast(&CB)) { if (willNotOverflow(WO, LVI)) return processOverflowIntrinsic(WO, LVI); } if (auto *SI = dyn_cast(&CB)) { if (willNotOverflow(SI, LVI)) return processSaturatingInst(SI, LVI); } bool Changed = false; // Deopt bundle operands are intended to capture state with minimal // perturbance of the code otherwise. If we can find a constant value for // any such operand and remove a use of the original value, that's // desireable since it may allow further optimization of that value (e.g. via // single use rules in instcombine). Since deopt uses tend to, // idiomatically, appear along rare conditional paths, it's reasonable likely // we may have a conditional fact with which LVI can fold. if (auto DeoptBundle = CB.getOperandBundle(LLVMContext::OB_deopt)) { for (const Use &ConstU : DeoptBundle->Inputs) { Use &U = const_cast(ConstU); Value *V = U.get(); if (V->getType()->isVectorTy()) continue; if (isa(V)) continue; Constant *C = LVI->getConstant(V, &CB); if (!C) continue; U.set(C); Changed = true; } } SmallVector ArgNos; unsigned ArgNo = 0; for (Value *V : CB.args()) { PointerType *Type = dyn_cast(V->getType()); // Try to mark pointer typed parameters as non-null. We skip the // relatively expensive analysis for constants which are obviously either // null or non-null to start with. if (Type && !CB.paramHasAttr(ArgNo, Attribute::NonNull) && !isa(V)) if (auto *Res = dyn_cast_or_null(LVI->getPredicateAt( ICmpInst::ICMP_EQ, V, ConstantPointerNull::get(Type), &CB, /*UseBlockValue=*/false)); Res && Res->isZero()) ArgNos.push_back(ArgNo); ArgNo++; } assert(ArgNo == CB.arg_size() && "Call arguments not processed correctly."); if (ArgNos.empty()) return Changed; NumNonNull += ArgNos.size(); AttributeList AS = CB.getAttributes(); LLVMContext &Ctx = CB.getContext(); AS = AS.addParamAttribute(Ctx, ArgNos, Attribute::get(Ctx, Attribute::NonNull)); CB.setAttributes(AS); return true; } enum class Domain { NonNegative, NonPositive, Unknown }; static Domain getDomain(const ConstantRange &CR) { if (CR.isAllNonNegative()) return Domain::NonNegative; if (CR.icmp(ICmpInst::ICMP_SLE, APInt::getZero(CR.getBitWidth()))) return Domain::NonPositive; return Domain::Unknown; } /// Try to shrink a sdiv/srem's width down to the smallest power of two that's /// sufficient to contain its operands. static bool narrowSDivOrSRem(BinaryOperator *Instr, const ConstantRange &LCR, const ConstantRange &RCR) { assert(Instr->getOpcode() == Instruction::SDiv || Instr->getOpcode() == Instruction::SRem); // Find the smallest power of two bitwidth that's sufficient to hold Instr's // operands. unsigned OrigWidth = Instr->getType()->getScalarSizeInBits(); // What is the smallest bit width that can accommodate the entire value ranges // of both of the operands? unsigned MinSignedBits = std::max(LCR.getMinSignedBits(), RCR.getMinSignedBits()); // sdiv/srem is UB if divisor is -1 and divident is INT_MIN, so unless we can // prove that such a combination is impossible, we need to bump the bitwidth. if (RCR.contains(APInt::getAllOnes(OrigWidth)) && LCR.contains(APInt::getSignedMinValue(MinSignedBits).sext(OrigWidth))) ++MinSignedBits; // Don't shrink below 8 bits wide. unsigned NewWidth = std::max(PowerOf2Ceil(MinSignedBits), 8); // NewWidth might be greater than OrigWidth if OrigWidth is not a power of // two. if (NewWidth >= OrigWidth) return false; ++NumSDivSRemsNarrowed; IRBuilder<> B{Instr}; auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth); auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy, Instr->getName() + ".lhs.trunc"); auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy, Instr->getName() + ".rhs.trunc"); auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName()); auto *Sext = B.CreateSExt(BO, Instr->getType(), Instr->getName() + ".sext"); if (auto *BinOp = dyn_cast(BO)) if (BinOp->getOpcode() == Instruction::SDiv) BinOp->setIsExact(Instr->isExact()); Instr->replaceAllUsesWith(Sext); Instr->eraseFromParent(); return true; } static bool expandUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR, const ConstantRange &YCR) { Type *Ty = Instr->getType(); assert(Instr->getOpcode() == Instruction::UDiv || Instr->getOpcode() == Instruction::URem); bool IsRem = Instr->getOpcode() == Instruction::URem; Value *X = Instr->getOperand(0); Value *Y = Instr->getOperand(1); // X u/ Y -> 0 iff X u< Y // X u% Y -> X iff X u< Y if (XCR.icmp(ICmpInst::ICMP_ULT, YCR)) { Instr->replaceAllUsesWith(IsRem ? X : Constant::getNullValue(Ty)); Instr->eraseFromParent(); ++NumUDivURemsNarrowedExpanded; return true; } // Given // R = X u% Y // We can represent the modulo operation as a loop/self-recursion: // urem_rec(X, Y): // Z = X - Y // if X u< Y // ret X // else // ret urem_rec(Z, Y) // which isn't better, but if we only need a single iteration // to compute the answer, this becomes quite good: // R = X < Y ? X : X - Y iff X u< 2*Y (w/ unsigned saturation) // Now, we do not care about all full multiples of Y in X, they do not change // the answer, thus we could rewrite the expression as: // X* = X - (Y * |_ X / Y _|) // R = X* % Y // so we don't need the *first* iteration to return, we just need to // know *which* iteration will always return, so we could also rewrite it as: // X* = X - (Y * |_ X / Y _|) // R = X* % Y iff X* u< 2*Y (w/ unsigned saturation) // but that does not seem profitable here. // Even if we don't know X's range, the divisor may be so large, X can't ever // be 2x larger than that. I.e. if divisor is always negative. if (!XCR.icmp(ICmpInst::ICMP_ULT, YCR.umul_sat(APInt(YCR.getBitWidth(), 2))) && !YCR.isAllNegative()) return false; IRBuilder<> B(Instr); Value *ExpandedOp; if (XCR.icmp(ICmpInst::ICMP_UGE, YCR)) { // If X is between Y and 2*Y the result is known. if (IsRem) ExpandedOp = B.CreateNUWSub(X, Y); else ExpandedOp = ConstantInt::get(Instr->getType(), 1); } else if (IsRem) { // NOTE: this transformation introduces two uses of X, // but it may be undef so we must freeze it first. Value *FrozenX = X; if (!isGuaranteedNotToBeUndef(X)) FrozenX = B.CreateFreeze(X, X->getName() + ".frozen"); Value *FrozenY = Y; if (!isGuaranteedNotToBeUndef(Y)) FrozenY = B.CreateFreeze(Y, Y->getName() + ".frozen"); auto *AdjX = B.CreateNUWSub(FrozenX, FrozenY, Instr->getName() + ".urem"); auto *Cmp = B.CreateICmp(ICmpInst::ICMP_ULT, FrozenX, FrozenY, Instr->getName() + ".cmp"); ExpandedOp = B.CreateSelect(Cmp, FrozenX, AdjX); } else { auto *Cmp = B.CreateICmp(ICmpInst::ICMP_UGE, X, Y, Instr->getName() + ".cmp"); ExpandedOp = B.CreateZExt(Cmp, Ty, Instr->getName() + ".udiv"); } ExpandedOp->takeName(Instr); Instr->replaceAllUsesWith(ExpandedOp); Instr->eraseFromParent(); ++NumUDivURemsNarrowedExpanded; return true; } /// Try to shrink a udiv/urem's width down to the smallest power of two that's /// sufficient to contain its operands. static bool narrowUDivOrURem(BinaryOperator *Instr, const ConstantRange &XCR, const ConstantRange &YCR) { assert(Instr->getOpcode() == Instruction::UDiv || Instr->getOpcode() == Instruction::URem); // Find the smallest power of two bitwidth that's sufficient to hold Instr's // operands. // What is the smallest bit width that can accommodate the entire value ranges // of both of the operands? unsigned MaxActiveBits = std::max(XCR.getActiveBits(), YCR.getActiveBits()); // Don't shrink below 8 bits wide. unsigned NewWidth = std::max(PowerOf2Ceil(MaxActiveBits), 8); // NewWidth might be greater than OrigWidth if OrigWidth is not a power of // two. if (NewWidth >= Instr->getType()->getScalarSizeInBits()) return false; ++NumUDivURemsNarrowed; IRBuilder<> B{Instr}; auto *TruncTy = Instr->getType()->getWithNewBitWidth(NewWidth); auto *LHS = B.CreateTruncOrBitCast(Instr->getOperand(0), TruncTy, Instr->getName() + ".lhs.trunc"); auto *RHS = B.CreateTruncOrBitCast(Instr->getOperand(1), TruncTy, Instr->getName() + ".rhs.trunc"); auto *BO = B.CreateBinOp(Instr->getOpcode(), LHS, RHS, Instr->getName()); auto *Zext = B.CreateZExt(BO, Instr->getType(), Instr->getName() + ".zext"); if (auto *BinOp = dyn_cast(BO)) if (BinOp->getOpcode() == Instruction::UDiv) BinOp->setIsExact(Instr->isExact()); Instr->replaceAllUsesWith(Zext); Instr->eraseFromParent(); return true; } static bool processUDivOrURem(BinaryOperator *Instr, LazyValueInfo *LVI) { assert(Instr->getOpcode() == Instruction::UDiv || Instr->getOpcode() == Instruction::URem); ConstantRange XCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*UndefAllowed*/ false); // Allow undef for RHS, as we can assume it is division by zero UB. ConstantRange YCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*UndefAllowed*/ true); if (expandUDivOrURem(Instr, XCR, YCR)) return true; return narrowUDivOrURem(Instr, XCR, YCR); } static bool processSRem(BinaryOperator *SDI, const ConstantRange &LCR, const ConstantRange &RCR, LazyValueInfo *LVI) { assert(SDI->getOpcode() == Instruction::SRem); if (LCR.abs().icmp(CmpInst::ICMP_ULT, RCR.abs())) { SDI->replaceAllUsesWith(SDI->getOperand(0)); SDI->eraseFromParent(); return true; } struct Operand { Value *V; Domain D; }; std::array Ops = {{{SDI->getOperand(0), getDomain(LCR)}, {SDI->getOperand(1), getDomain(RCR)}}}; if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown) return false; // We know domains of both of the operands! ++NumSRems; // We need operands to be non-negative, so negate each one that isn't. for (Operand &Op : Ops) { if (Op.D == Domain::NonNegative) continue; auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI->getIterator()); BO->setDebugLoc(SDI->getDebugLoc()); Op.V = BO; } auto *URem = BinaryOperator::CreateURem(Ops[0].V, Ops[1].V, SDI->getName(), SDI->getIterator()); URem->setDebugLoc(SDI->getDebugLoc()); auto *Res = URem; // If the divident was non-positive, we need to negate the result. if (Ops[0].D == Domain::NonPositive) { Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI->getIterator()); Res->setDebugLoc(SDI->getDebugLoc()); } SDI->replaceAllUsesWith(Res); SDI->eraseFromParent(); // Try to simplify our new urem. processUDivOrURem(URem, LVI); return true; } /// See if LazyValueInfo's ability to exploit edge conditions or range /// information is sufficient to prove the signs of both operands of this SDiv. /// If this is the case, replace the SDiv with a UDiv. Even for local /// conditions, this can sometimes prove conditions instcombine can't by /// exploiting range information. static bool processSDiv(BinaryOperator *SDI, const ConstantRange &LCR, const ConstantRange &RCR, LazyValueInfo *LVI) { assert(SDI->getOpcode() == Instruction::SDiv); // Check whether the division folds to a constant. ConstantRange DivCR = LCR.sdiv(RCR); if (const APInt *Elem = DivCR.getSingleElement()) { SDI->replaceAllUsesWith(ConstantInt::get(SDI->getType(), *Elem)); SDI->eraseFromParent(); return true; } struct Operand { Value *V; Domain D; }; std::array Ops = {{{SDI->getOperand(0), getDomain(LCR)}, {SDI->getOperand(1), getDomain(RCR)}}}; if (Ops[0].D == Domain::Unknown || Ops[1].D == Domain::Unknown) return false; // We know domains of both of the operands! ++NumSDivs; // We need operands to be non-negative, so negate each one that isn't. for (Operand &Op : Ops) { if (Op.D == Domain::NonNegative) continue; auto *BO = BinaryOperator::CreateNeg(Op.V, Op.V->getName() + ".nonneg", SDI->getIterator()); BO->setDebugLoc(SDI->getDebugLoc()); Op.V = BO; } auto *UDiv = BinaryOperator::CreateUDiv(Ops[0].V, Ops[1].V, SDI->getName(), SDI->getIterator()); UDiv->setDebugLoc(SDI->getDebugLoc()); UDiv->setIsExact(SDI->isExact()); auto *Res = UDiv; // If the operands had two different domains, we need to negate the result. if (Ops[0].D != Ops[1].D) { Res = BinaryOperator::CreateNeg(Res, Res->getName() + ".neg", SDI->getIterator()); Res->setDebugLoc(SDI->getDebugLoc()); } SDI->replaceAllUsesWith(Res); SDI->eraseFromParent(); // Try to simplify our new udiv. processUDivOrURem(UDiv, LVI); return true; } static bool processSDivOrSRem(BinaryOperator *Instr, LazyValueInfo *LVI) { assert(Instr->getOpcode() == Instruction::SDiv || Instr->getOpcode() == Instruction::SRem); ConstantRange LCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(0), /*AllowUndef*/ false); // Allow undef for RHS, as we can assume it is division by zero UB. ConstantRange RCR = LVI->getConstantRangeAtUse(Instr->getOperandUse(1), /*AlloweUndef*/ true); if (Instr->getOpcode() == Instruction::SDiv) if (processSDiv(Instr, LCR, RCR, LVI)) return true; if (Instr->getOpcode() == Instruction::SRem) { if (processSRem(Instr, LCR, RCR, LVI)) return true; } return narrowSDivOrSRem(Instr, LCR, RCR); } static bool processAShr(BinaryOperator *SDI, LazyValueInfo *LVI) { ConstantRange LRange = LVI->getConstantRangeAtUse(SDI->getOperandUse(0), /*UndefAllowed*/ false); unsigned OrigWidth = SDI->getType()->getScalarSizeInBits(); ConstantRange NegOneOrZero = ConstantRange(APInt(OrigWidth, (uint64_t)-1, true), APInt(OrigWidth, 1)); if (NegOneOrZero.contains(LRange)) { // ashr of -1 or 0 never changes the value, so drop the whole instruction ++NumAShrsRemoved; SDI->replaceAllUsesWith(SDI->getOperand(0)); SDI->eraseFromParent(); return true; } if (!LRange.isAllNonNegative()) return false; ++NumAShrsConverted; auto *BO = BinaryOperator::CreateLShr(SDI->getOperand(0), SDI->getOperand(1), "", SDI->getIterator()); BO->takeName(SDI); BO->setDebugLoc(SDI->getDebugLoc()); BO->setIsExact(SDI->isExact()); SDI->replaceAllUsesWith(BO); SDI->eraseFromParent(); return true; } static bool processSExt(SExtInst *SDI, LazyValueInfo *LVI) { const Use &Base = SDI->getOperandUse(0); if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false) .isAllNonNegative()) return false; ++NumSExt; auto *ZExt = CastInst::CreateZExtOrBitCast(Base, SDI->getType(), "", SDI->getIterator()); ZExt->takeName(SDI); ZExt->setDebugLoc(SDI->getDebugLoc()); ZExt->setNonNeg(); SDI->replaceAllUsesWith(ZExt); SDI->eraseFromParent(); return true; } static bool processPossibleNonNeg(PossiblyNonNegInst *I, LazyValueInfo *LVI) { if (I->hasNonNeg()) return false; const Use &Base = I->getOperandUse(0); if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false) .isAllNonNegative()) return false; ++NumNNeg; I->setNonNeg(); return true; } static bool processZExt(ZExtInst *ZExt, LazyValueInfo *LVI) { return processPossibleNonNeg(cast(ZExt), LVI); } static bool processUIToFP(UIToFPInst *UIToFP, LazyValueInfo *LVI) { return processPossibleNonNeg(cast(UIToFP), LVI); } static bool processSIToFP(SIToFPInst *SIToFP, LazyValueInfo *LVI) { const Use &Base = SIToFP->getOperandUse(0); if (!LVI->getConstantRangeAtUse(Base, /*UndefAllowed*/ false) .isAllNonNegative()) return false; ++NumSIToFP; auto *UIToFP = CastInst::Create(Instruction::UIToFP, Base, SIToFP->getType(), "", SIToFP->getIterator()); UIToFP->takeName(SIToFP); UIToFP->setDebugLoc(SIToFP->getDebugLoc()); UIToFP->setNonNeg(); SIToFP->replaceAllUsesWith(UIToFP); SIToFP->eraseFromParent(); return true; } static bool processBinOp(BinaryOperator *BinOp, LazyValueInfo *LVI) { using OBO = OverflowingBinaryOperator; bool NSW = BinOp->hasNoSignedWrap(); bool NUW = BinOp->hasNoUnsignedWrap(); if (NSW && NUW) return false; Instruction::BinaryOps Opcode = BinOp->getOpcode(); ConstantRange LRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(0), /*UndefAllowed=*/false); ConstantRange RRange = LVI->getConstantRangeAtUse(BinOp->getOperandUse(1), /*UndefAllowed=*/false); bool Changed = false; bool NewNUW = false, NewNSW = false; if (!NUW) { ConstantRange NUWRange = ConstantRange::makeGuaranteedNoWrapRegion( Opcode, RRange, OBO::NoUnsignedWrap); NewNUW = NUWRange.contains(LRange); Changed |= NewNUW; } if (!NSW) { ConstantRange NSWRange = ConstantRange::makeGuaranteedNoWrapRegion( Opcode, RRange, OBO::NoSignedWrap); NewNSW = NSWRange.contains(LRange); Changed |= NewNSW; } setDeducedOverflowingFlags(BinOp, Opcode, NewNSW, NewNUW); return Changed; } static bool processAnd(BinaryOperator *BinOp, LazyValueInfo *LVI) { using namespace llvm::PatternMatch; // Pattern match (and lhs, C) where C includes a superset of bits which might // be set in lhs. This is a common truncation idiom created by instcombine. const Use &LHS = BinOp->getOperandUse(0); const APInt *RHS; if (!match(BinOp->getOperand(1), m_LowBitMask(RHS))) return false; // We can only replace the AND with LHS based on range info if the range does // not include undef. ConstantRange LRange = LVI->getConstantRangeAtUse(LHS, /*UndefAllowed=*/false); if (!LRange.getUnsignedMax().ule(*RHS)) return false; BinOp->replaceAllUsesWith(LHS); BinOp->eraseFromParent(); NumAnd++; return true; } static bool runImpl(Function &F, LazyValueInfo *LVI, DominatorTree *DT, const SimplifyQuery &SQ) { bool FnChanged = false; // Visiting in a pre-order depth-first traversal causes us to simplify early // blocks before querying later blocks (which require us to analyze early // blocks). Eagerly simplifying shallow blocks means there is strictly less // work to do for deep blocks. This also means we don't visit unreachable // blocks. for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { bool BBChanged = false; for (Instruction &II : llvm::make_early_inc_range(*BB)) { switch (II.getOpcode()) { case Instruction::Select: BBChanged |= processSelect(cast(&II), LVI); break; case Instruction::PHI: BBChanged |= processPHI(cast(&II), LVI, DT, SQ); break; case Instruction::ICmp: case Instruction::FCmp: BBChanged |= processCmp(cast(&II), LVI); break; case Instruction::Call: case Instruction::Invoke: BBChanged |= processCallSite(cast(II), LVI); break; case Instruction::SRem: case Instruction::SDiv: BBChanged |= processSDivOrSRem(cast(&II), LVI); break; case Instruction::UDiv: case Instruction::URem: BBChanged |= processUDivOrURem(cast(&II), LVI); break; case Instruction::AShr: BBChanged |= processAShr(cast(&II), LVI); break; case Instruction::SExt: BBChanged |= processSExt(cast(&II), LVI); break; case Instruction::ZExt: BBChanged |= processZExt(cast(&II), LVI); break; case Instruction::UIToFP: BBChanged |= processUIToFP(cast(&II), LVI); break; case Instruction::SIToFP: BBChanged |= processSIToFP(cast(&II), LVI); break; case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::Shl: BBChanged |= processBinOp(cast(&II), LVI); break; case Instruction::And: BBChanged |= processAnd(cast(&II), LVI); break; } } Instruction *Term = BB->getTerminator(); switch (Term->getOpcode()) { case Instruction::Switch: BBChanged |= processSwitch(cast(Term), LVI, DT); break; case Instruction::Ret: { auto *RI = cast(Term); // Try to determine the return value if we can. This is mainly here to // simplify the writing of unit tests, but also helps to enable IPO by // constant folding the return values of callees. auto *RetVal = RI->getReturnValue(); if (!RetVal) break; // handle "ret void" if (isa(RetVal)) break; // nothing to do if (auto *C = getConstantAt(RetVal, RI, LVI)) { ++NumReturns; RI->replaceUsesOfWith(RetVal, C); BBChanged = true; } } } FnChanged |= BBChanged; } return FnChanged; } PreservedAnalyses CorrelatedValuePropagationPass::run(Function &F, FunctionAnalysisManager &AM) { LazyValueInfo *LVI = &AM.getResult(F); DominatorTree *DT = &AM.getResult(F); bool Changed = runImpl(F, LVI, DT, getBestSimplifyQuery(AM, F)); PreservedAnalyses PA; if (!Changed) { PA = PreservedAnalyses::all(); } else { #if defined(EXPENSIVE_CHECKS) assert(DT->verify(DominatorTree::VerificationLevel::Full)); #else assert(DT->verify(DominatorTree::VerificationLevel::Fast)); #endif // EXPENSIVE_CHECKS PA.preserve(); PA.preserve(); } // Keeping LVI alive is expensive, both because it uses a lot of memory, and // because invalidating values in LVI is expensive. While CVP does preserve // LVI, we know that passes after JumpThreading+CVP will not need the result // of this analysis, so we forcefully discard it early. PA.abandon(); return PA; }