//===-- X86InstrInfo.cpp - X86 Instruction Information --------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the X86 implementation of the TargetInstrInfo class. // //===----------------------------------------------------------------------===// #include "X86InstrInfo.h" #include "X86.h" #include "X86InstrBuilder.h" #include "X86InstrFoldTables.h" #include "X86MachineFunctionInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/Sequence.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineCombinerPattern.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/StackMaps.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetOptions.h" #include using namespace llvm; #define DEBUG_TYPE "x86-instr-info" #define GET_INSTRINFO_CTOR_DTOR #include "X86GenInstrInfo.inc" static cl::opt NoFusing("disable-spill-fusing", cl::desc("Disable fusing of spill code into instructions"), cl::Hidden); static cl::opt PrintFailedFusing("print-failed-fuse-candidates", cl::desc("Print instructions that the allocator wants to" " fuse, but the X86 backend currently can't"), cl::Hidden); static cl::opt ReMatPICStubLoad("remat-pic-stub-load", cl::desc("Re-materialize load from stub in PIC mode"), cl::init(false), cl::Hidden); static cl::opt PartialRegUpdateClearance("partial-reg-update-clearance", cl::desc("Clearance between two register writes " "for inserting XOR to avoid partial " "register update"), cl::init(64), cl::Hidden); static cl::opt UndefRegClearance( "undef-reg-clearance", cl::desc("How many idle instructions we would like before " "certain undef register reads"), cl::init(128), cl::Hidden); // Pin the vtable to this file. void X86InstrInfo::anchor() {} X86InstrInfo::X86InstrInfo(X86Subtarget &STI) : X86GenInstrInfo((STI.isTarget64BitLP64() ? X86::ADJCALLSTACKDOWN64 : X86::ADJCALLSTACKDOWN32), (STI.isTarget64BitLP64() ? X86::ADJCALLSTACKUP64 : X86::ADJCALLSTACKUP32), X86::CATCHRET, (STI.is64Bit() ? X86::RET64 : X86::RET32)), Subtarget(STI), RI(STI.getTargetTriple()) {} const TargetRegisterClass * X86InstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum, const TargetRegisterInfo *TRI, const MachineFunction &MF) const { auto *RC = TargetInstrInfo::getRegClass(MCID, OpNum, TRI, MF); // If the target does not have egpr, then r16-r31 will be resereved for all // instructions. if (!RC || !Subtarget.hasEGPR()) return RC; if (X86II::canUseApxExtendedReg(MCID)) return RC; switch (RC->getID()) { default: return RC; case X86::GR8RegClassID: return &X86::GR8_NOREX2RegClass; case X86::GR16RegClassID: return &X86::GR16_NOREX2RegClass; case X86::GR32RegClassID: return &X86::GR32_NOREX2RegClass; case X86::GR64RegClassID: return &X86::GR64_NOREX2RegClass; case X86::GR32_NOSPRegClassID: return &X86::GR32_NOREX2_NOSPRegClass; case X86::GR64_NOSPRegClassID: return &X86::GR64_NOREX2_NOSPRegClass; } } bool X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI, Register &SrcReg, Register &DstReg, unsigned &SubIdx) const { switch (MI.getOpcode()) { default: break; case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: if (!Subtarget.is64Bit()) // It's not always legal to reference the low 8-bit of the larger // register in 32-bit mode. return false; [[fallthrough]]; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: case X86::MOVSX64rr32: { if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) // Be conservative. return false; SrcReg = MI.getOperand(1).getReg(); DstReg = MI.getOperand(0).getReg(); switch (MI.getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::MOVSX16rr8: case X86::MOVZX16rr8: case X86::MOVSX32rr8: case X86::MOVZX32rr8: case X86::MOVSX64rr8: SubIdx = X86::sub_8bit; break; case X86::MOVSX32rr16: case X86::MOVZX32rr16: case X86::MOVSX64rr16: SubIdx = X86::sub_16bit; break; case X86::MOVSX64rr32: SubIdx = X86::sub_32bit; break; } return true; } } return false; } bool X86InstrInfo::isDataInvariant(MachineInstr &MI) { if (MI.mayLoad() || MI.mayStore()) return false; // Some target-independent operations that trivially lower to data-invariant // instructions. if (MI.isCopyLike() || MI.isInsertSubreg()) return true; unsigned Opcode = MI.getOpcode(); using namespace X86; // On x86 it is believed that imul is constant time w.r.t. the loaded data. // However, they set flags and are perhaps the most surprisingly constant // time operations so we call them out here separately. if (isIMUL(Opcode)) return true; // Bit scanning and counting instructions that are somewhat surprisingly // constant time as they scan across bits and do other fairly complex // operations like popcnt, but are believed to be constant time on x86. // However, these set flags. if (isBSF(Opcode) || isBSR(Opcode) || isLZCNT(Opcode) || isPOPCNT(Opcode) || isTZCNT(Opcode)) return true; // Bit manipulation instructions are effectively combinations of basic // arithmetic ops, and should still execute in constant time. These also // set flags. if (isBLCFILL(Opcode) || isBLCI(Opcode) || isBLCIC(Opcode) || isBLCMSK(Opcode) || isBLCS(Opcode) || isBLSFILL(Opcode) || isBLSI(Opcode) || isBLSIC(Opcode) || isBLSMSK(Opcode) || isBLSR(Opcode) || isTZMSK(Opcode)) return true; // Bit extracting and clearing instructions should execute in constant time, // and set flags. if (isBEXTR(Opcode) || isBZHI(Opcode)) return true; // Shift and rotate. if (isROL(Opcode) || isROR(Opcode) || isSAR(Opcode) || isSHL(Opcode) || isSHR(Opcode) || isSHLD(Opcode) || isSHRD(Opcode)) return true; // Basic arithmetic is constant time on the input but does set flags. if (isADC(Opcode) || isADD(Opcode) || isAND(Opcode) || isOR(Opcode) || isSBB(Opcode) || isSUB(Opcode) || isXOR(Opcode)) return true; // Arithmetic with just 32-bit and 64-bit variants and no immediates. if (isANDN(Opcode)) return true; // Unary arithmetic operations. if (isDEC(Opcode) || isINC(Opcode) || isNEG(Opcode)) return true; // Unlike other arithmetic, NOT doesn't set EFLAGS. if (isNOT(Opcode)) return true; // Various move instructions used to zero or sign extend things. Note that we // intentionally don't support the _NOREX variants as we can't handle that // register constraint anyways. if (isMOVSX(Opcode) || isMOVZX(Opcode) || isMOVSXD(Opcode) || isMOV(Opcode)) return true; // Arithmetic instructions that are both constant time and don't set flags. if (isRORX(Opcode) || isSARX(Opcode) || isSHLX(Opcode) || isSHRX(Opcode)) return true; // LEA doesn't actually access memory, and its arithmetic is constant time. if (isLEA(Opcode)) return true; // By default, assume that the instruction is not data invariant. return false; } bool X86InstrInfo::isDataInvariantLoad(MachineInstr &MI) { switch (MI.getOpcode()) { default: // By default, assume that the load will immediately leak. return false; // On x86 it is believed that imul is constant time w.r.t. the loaded data. // However, they set flags and are perhaps the most surprisingly constant // time operations so we call them out here separately. case X86::IMUL16rm: case X86::IMUL16rmi: case X86::IMUL32rm: case X86::IMUL32rmi: case X86::IMUL64rm: case X86::IMUL64rmi32: // Bit scanning and counting instructions that are somewhat surprisingly // constant time as they scan across bits and do other fairly complex // operations like popcnt, but are believed to be constant time on x86. // However, these set flags. case X86::BSF16rm: case X86::BSF32rm: case X86::BSF64rm: case X86::BSR16rm: case X86::BSR32rm: case X86::BSR64rm: case X86::LZCNT16rm: case X86::LZCNT32rm: case X86::LZCNT64rm: case X86::POPCNT16rm: case X86::POPCNT32rm: case X86::POPCNT64rm: case X86::TZCNT16rm: case X86::TZCNT32rm: case X86::TZCNT64rm: // Bit manipulation instructions are effectively combinations of basic // arithmetic ops, and should still execute in constant time. These also // set flags. case X86::BLCFILL32rm: case X86::BLCFILL64rm: case X86::BLCI32rm: case X86::BLCI64rm: case X86::BLCIC32rm: case X86::BLCIC64rm: case X86::BLCMSK32rm: case X86::BLCMSK64rm: case X86::BLCS32rm: case X86::BLCS64rm: case X86::BLSFILL32rm: case X86::BLSFILL64rm: case X86::BLSI32rm: case X86::BLSI64rm: case X86::BLSIC32rm: case X86::BLSIC64rm: case X86::BLSMSK32rm: case X86::BLSMSK64rm: case X86::BLSR32rm: case X86::BLSR64rm: case X86::TZMSK32rm: case X86::TZMSK64rm: // Bit extracting and clearing instructions should execute in constant time, // and set flags. case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BEXTRI32mi: case X86::BEXTRI64mi: case X86::BZHI32rm: case X86::BZHI64rm: // Basic arithmetic is constant time on the input but does set flags. case X86::ADC8rm: case X86::ADC16rm: case X86::ADC32rm: case X86::ADC64rm: case X86::ADD8rm: case X86::ADD16rm: case X86::ADD32rm: case X86::ADD64rm: case X86::AND8rm: case X86::AND16rm: case X86::AND32rm: case X86::AND64rm: case X86::ANDN32rm: case X86::ANDN64rm: case X86::OR8rm: case X86::OR16rm: case X86::OR32rm: case X86::OR64rm: case X86::SBB8rm: case X86::SBB16rm: case X86::SBB32rm: case X86::SBB64rm: case X86::SUB8rm: case X86::SUB16rm: case X86::SUB32rm: case X86::SUB64rm: case X86::XOR8rm: case X86::XOR16rm: case X86::XOR32rm: case X86::XOR64rm: // Integer multiply w/o affecting flags is still believed to be constant // time on x86. Called out separately as this is among the most surprising // instructions to exhibit that behavior. case X86::MULX32rm: case X86::MULX64rm: // Arithmetic instructions that are both constant time and don't set flags. case X86::RORX32mi: case X86::RORX64mi: case X86::SARX32rm: case X86::SARX64rm: case X86::SHLX32rm: case X86::SHLX64rm: case X86::SHRX32rm: case X86::SHRX64rm: // Conversions are believed to be constant time and don't set flags. case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm: case X86::CVTTSD2SIrm: case X86::VCVTTSD2SIrm: case X86::VCVTTSD2SIZrm: case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm: case X86::CVTTSS2SIrm: case X86::VCVTTSS2SIrm: case X86::VCVTTSS2SIZrm: case X86::CVTSI2SDrm: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDZrm: case X86::CVTSI2SSrm: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSZrm: case X86::CVTSI642SDrm: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDZrm: case X86::CVTSI642SSrm: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSZrm: case X86::CVTSS2SDrm: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDZrm: case X86::CVTSD2SSrm: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSZrm: // AVX512 added unsigned integer conversions. case X86::VCVTTSD2USI64Zrm: case X86::VCVTTSD2USIZrm: case X86::VCVTTSS2USI64Zrm: case X86::VCVTTSS2USIZrm: case X86::VCVTUSI2SDZrm: case X86::VCVTUSI642SDZrm: case X86::VCVTUSI2SSZrm: case X86::VCVTUSI642SSZrm: // Loads to register don't set flags. case X86::MOV8rm: case X86::MOV8rm_NOREX: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::MOVSX16rm8: case X86::MOVSX32rm16: case X86::MOVSX32rm8: case X86::MOVSX32rm8_NOREX: case X86::MOVSX64rm16: case X86::MOVSX64rm32: case X86::MOVSX64rm8: case X86::MOVZX16rm8: case X86::MOVZX32rm16: case X86::MOVZX32rm8: case X86::MOVZX32rm8_NOREX: case X86::MOVZX64rm16: case X86::MOVZX64rm8: return true; } } int X86InstrInfo::getSPAdjust(const MachineInstr &MI) const { const MachineFunction *MF = MI.getParent()->getParent(); const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering(); if (isFrameInstr(MI)) { int SPAdj = alignTo(getFrameSize(MI), TFI->getStackAlign()); SPAdj -= getFrameAdjustment(MI); if (!isFrameSetup(MI)) SPAdj = -SPAdj; return SPAdj; } // To know whether a call adjusts the stack, we need information // that is bound to the following ADJCALLSTACKUP pseudo. // Look for the next ADJCALLSTACKUP that follows the call. if (MI.isCall()) { const MachineBasicBlock *MBB = MI.getParent(); auto I = ++MachineBasicBlock::const_iterator(MI); for (auto E = MBB->end(); I != E; ++I) { if (I->getOpcode() == getCallFrameDestroyOpcode() || I->isCall()) break; } // If we could not find a frame destroy opcode, then it has already // been simplified, so we don't care. if (I->getOpcode() != getCallFrameDestroyOpcode()) return 0; return -(I->getOperand(1).getImm()); } // Currently handle only PUSHes we can reasonably expect to see // in call sequences switch (MI.getOpcode()) { default: return 0; case X86::PUSH32r: case X86::PUSH32rmm: case X86::PUSH32rmr: case X86::PUSH32i: return 4; case X86::PUSH64r: case X86::PUSH64rmm: case X86::PUSH64rmr: case X86::PUSH64i32: return 8; } } /// Return true and the FrameIndex if the specified /// operand and follow operands form a reference to the stack frame. bool X86InstrInfo::isFrameOperand(const MachineInstr &MI, unsigned int Op, int &FrameIndex) const { if (MI.getOperand(Op + X86::AddrBaseReg).isFI() && MI.getOperand(Op + X86::AddrScaleAmt).isImm() && MI.getOperand(Op + X86::AddrIndexReg).isReg() && MI.getOperand(Op + X86::AddrDisp).isImm() && MI.getOperand(Op + X86::AddrScaleAmt).getImm() == 1 && MI.getOperand(Op + X86::AddrIndexReg).getReg() == 0 && MI.getOperand(Op + X86::AddrDisp).getImm() == 0) { FrameIndex = MI.getOperand(Op + X86::AddrBaseReg).getIndex(); return true; } return false; } static bool isFrameLoadOpcode(int Opcode, unsigned &MemBytes) { switch (Opcode) { default: return false; case X86::MOV8rm: case X86::KMOVBkm: case X86::KMOVBkm_EVEX: MemBytes = 1; return true; case X86::MOV16rm: case X86::KMOVWkm: case X86::KMOVWkm_EVEX: case X86::VMOVSHZrm: case X86::VMOVSHZrm_alt: MemBytes = 2; return true; case X86::MOV32rm: case X86::MOVSSrm: case X86::MOVSSrm_alt: case X86::VMOVSSrm: case X86::VMOVSSrm_alt: case X86::VMOVSSZrm: case X86::VMOVSSZrm_alt: case X86::KMOVDkm: case X86::KMOVDkm_EVEX: MemBytes = 4; return true; case X86::MOV64rm: case X86::LD_Fp64m: case X86::MOVSDrm: case X86::MOVSDrm_alt: case X86::VMOVSDrm: case X86::VMOVSDrm_alt: case X86::VMOVSDZrm: case X86::VMOVSDZrm_alt: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::KMOVQkm: case X86::KMOVQkm_EVEX: MemBytes = 8; return true; case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: MemBytes = 16; return true; case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: MemBytes = 32; return true; case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: MemBytes = 64; return true; } } static bool isFrameStoreOpcode(int Opcode, unsigned &MemBytes) { switch (Opcode) { default: return false; case X86::MOV8mr: case X86::KMOVBmk: case X86::KMOVBmk_EVEX: MemBytes = 1; return true; case X86::MOV16mr: case X86::KMOVWmk: case X86::KMOVWmk_EVEX: case X86::VMOVSHZmr: MemBytes = 2; return true; case X86::MOV32mr: case X86::MOVSSmr: case X86::VMOVSSmr: case X86::VMOVSSZmr: case X86::KMOVDmk: case X86::KMOVDmk_EVEX: MemBytes = 4; return true; case X86::MOV64mr: case X86::ST_FpP64m: case X86::MOVSDmr: case X86::VMOVSDmr: case X86::VMOVSDZmr: case X86::MMX_MOVD64mr: case X86::MMX_MOVQ64mr: case X86::MMX_MOVNTQmr: case X86::KMOVQmk: case X86::KMOVQmk_EVEX: MemBytes = 8; return true; case X86::MOVAPSmr: case X86::MOVUPSmr: case X86::MOVAPDmr: case X86::MOVUPDmr: case X86::MOVDQAmr: case X86::MOVDQUmr: case X86::VMOVAPSmr: case X86::VMOVUPSmr: case X86::VMOVAPDmr: case X86::VMOVUPDmr: case X86::VMOVDQAmr: case X86::VMOVDQUmr: case X86::VMOVUPSZ128mr: case X86::VMOVAPSZ128mr: case X86::VMOVUPSZ128mr_NOVLX: case X86::VMOVAPSZ128mr_NOVLX: case X86::VMOVUPDZ128mr: case X86::VMOVAPDZ128mr: case X86::VMOVDQA32Z128mr: case X86::VMOVDQU32Z128mr: case X86::VMOVDQA64Z128mr: case X86::VMOVDQU64Z128mr: case X86::VMOVDQU8Z128mr: case X86::VMOVDQU16Z128mr: MemBytes = 16; return true; case X86::VMOVUPSYmr: case X86::VMOVAPSYmr: case X86::VMOVUPDYmr: case X86::VMOVAPDYmr: case X86::VMOVDQUYmr: case X86::VMOVDQAYmr: case X86::VMOVUPSZ256mr: case X86::VMOVAPSZ256mr: case X86::VMOVUPSZ256mr_NOVLX: case X86::VMOVAPSZ256mr_NOVLX: case X86::VMOVUPDZ256mr: case X86::VMOVAPDZ256mr: case X86::VMOVDQU8Z256mr: case X86::VMOVDQU16Z256mr: case X86::VMOVDQA32Z256mr: case X86::VMOVDQU32Z256mr: case X86::VMOVDQA64Z256mr: case X86::VMOVDQU64Z256mr: MemBytes = 32; return true; case X86::VMOVUPSZmr: case X86::VMOVAPSZmr: case X86::VMOVUPDZmr: case X86::VMOVAPDZmr: case X86::VMOVDQU8Zmr: case X86::VMOVDQU16Zmr: case X86::VMOVDQA32Zmr: case X86::VMOVDQU32Zmr: case X86::VMOVDQA64Zmr: case X86::VMOVDQU64Zmr: MemBytes = 64; return true; } return false; } Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; return X86InstrInfo::isLoadFromStackSlot(MI, FrameIndex, Dummy); } Register X86InstrInfo::isLoadFromStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const { if (isFrameLoadOpcode(MI.getOpcode(), MemBytes)) if (MI.getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex)) return MI.getOperand(0).getReg(); return 0; } Register X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; if (isFrameLoadOpcode(MI.getOpcode(), Dummy)) { unsigned Reg; if ((Reg = isLoadFromStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations SmallVector Accesses; if (hasLoadFromStackSlot(MI, Accesses)) { FrameIndex = cast(Accesses.front()->getPseudoValue()) ->getFrameIndex(); return MI.getOperand(0).getReg(); } } return 0; } Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; return X86InstrInfo::isStoreToStackSlot(MI, FrameIndex, Dummy); } Register X86InstrInfo::isStoreToStackSlot(const MachineInstr &MI, int &FrameIndex, unsigned &MemBytes) const { if (isFrameStoreOpcode(MI.getOpcode(), MemBytes)) if (MI.getOperand(X86::AddrNumOperands).getSubReg() == 0 && isFrameOperand(MI, 0, FrameIndex)) return MI.getOperand(X86::AddrNumOperands).getReg(); return 0; } Register X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr &MI, int &FrameIndex) const { unsigned Dummy; if (isFrameStoreOpcode(MI.getOpcode(), Dummy)) { unsigned Reg; if ((Reg = isStoreToStackSlot(MI, FrameIndex))) return Reg; // Check for post-frame index elimination operations SmallVector Accesses; if (hasStoreToStackSlot(MI, Accesses)) { FrameIndex = cast(Accesses.front()->getPseudoValue()) ->getFrameIndex(); return MI.getOperand(X86::AddrNumOperands).getReg(); } } return 0; } /// Return true if register is PIC base; i.e.g defined by X86::MOVPC32r. static bool regIsPICBase(Register BaseReg, const MachineRegisterInfo &MRI) { // Don't waste compile time scanning use-def chains of physregs. if (!BaseReg.isVirtual()) return false; bool isPICBase = false; for (const MachineInstr &DefMI : MRI.def_instructions(BaseReg)) { if (DefMI.getOpcode() != X86::MOVPC32r) return false; assert(!isPICBase && "More than one PIC base?"); isPICBase = true; } return isPICBase; } bool X86InstrInfo::isReallyTriviallyReMaterializable( const MachineInstr &MI) const { switch (MI.getOpcode()) { default: // This function should only be called for opcodes with the ReMaterializable // flag set. llvm_unreachable("Unknown rematerializable operation!"); break; case X86::IMPLICIT_DEF: // Defer to generic logic. break; case X86::LOAD_STACK_GUARD: case X86::LD_Fp032: case X86::LD_Fp064: case X86::LD_Fp080: case X86::LD_Fp132: case X86::LD_Fp164: case X86::LD_Fp180: case X86::AVX1_SETALLONES: case X86::AVX2_SETALLONES: case X86::AVX512_128_SET0: case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: case X86::AVX512_FsFLD0SD: case X86::AVX512_FsFLD0SH: case X86::AVX512_FsFLD0SS: case X86::AVX512_FsFLD0F128: case X86::AVX_SET0: case X86::FsFLD0SD: case X86::FsFLD0SS: case X86::FsFLD0SH: case X86::FsFLD0F128: case X86::KSET0D: case X86::KSET0Q: case X86::KSET0W: case X86::KSET1D: case X86::KSET1Q: case X86::KSET1W: case X86::MMX_SET0: case X86::MOV32ImmSExti8: case X86::MOV32r0: case X86::MOV32r1: case X86::MOV32r_1: case X86::MOV32ri64: case X86::MOV64ImmSExti8: case X86::V_SET0: case X86::V_SETALLONES: case X86::MOV16ri: case X86::MOV32ri: case X86::MOV64ri: case X86::MOV64ri32: case X86::MOV8ri: case X86::PTILEZEROV: return true; case X86::MOV8rm: case X86::MOV8rm_NOREX: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::MOVSSrm: case X86::MOVSSrm_alt: case X86::MOVSDrm: case X86::MOVSDrm_alt: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: case X86::VMOVSSrm: case X86::VMOVSSrm_alt: case X86::VMOVSDrm: case X86::VMOVSDrm_alt: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::VBROADCASTSSrm: case X86::VBROADCASTSSYrm: case X86::VBROADCASTSDYrm: // AVX-512 case X86::VPBROADCASTBZ128rm: case X86::VPBROADCASTBZ256rm: case X86::VPBROADCASTBZrm: case X86::VBROADCASTF32X2Z256rm: case X86::VBROADCASTF32X2Zrm: case X86::VBROADCASTI32X2Z128rm: case X86::VBROADCASTI32X2Z256rm: case X86::VBROADCASTI32X2Zrm: case X86::VPBROADCASTWZ128rm: case X86::VPBROADCASTWZ256rm: case X86::VPBROADCASTWZrm: case X86::VPBROADCASTDZ128rm: case X86::VPBROADCASTDZ256rm: case X86::VPBROADCASTDZrm: case X86::VBROADCASTSSZ128rm: case X86::VBROADCASTSSZ256rm: case X86::VBROADCASTSSZrm: case X86::VPBROADCASTQZ128rm: case X86::VPBROADCASTQZ256rm: case X86::VPBROADCASTQZrm: case X86::VBROADCASTSDZ256rm: case X86::VBROADCASTSDZrm: case X86::VMOVSSZrm: case X86::VMOVSSZrm_alt: case X86::VMOVSDZrm: case X86::VMOVSDZrm_alt: case X86::VMOVSHZrm: case X86::VMOVSHZrm_alt: case X86::VMOVAPDZ128rm: case X86::VMOVAPDZ256rm: case X86::VMOVAPDZrm: case X86::VMOVAPSZ128rm: case X86::VMOVAPSZ256rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVAPSZrm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQA32Zrm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQU16Zrm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQU32Zrm: case X86::VMOVDQU64Z128rm: case X86::VMOVDQU64Z256rm: case X86::VMOVDQU64Zrm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU8Zrm: case X86::VMOVUPDZ128rm: case X86::VMOVUPDZ256rm: case X86::VMOVUPDZrm: case X86::VMOVUPSZ128rm: case X86::VMOVUPSZ256rm: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVUPSZrm: { // Loads from constant pools are trivially rematerializable. if (MI.getOperand(1 + X86::AddrBaseReg).isReg() && MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && MI.isDereferenceableInvariantLoad()) { Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0 || BaseReg == X86::RIP) return true; // Allow re-materialization of PIC load. if (!(!ReMatPICStubLoad && MI.getOperand(1 + X86::AddrDisp).isGlobal())) { const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); if (regIsPICBase(BaseReg, MRI)) return true; } } break; } case X86::LEA32r: case X86::LEA64r: { if (MI.getOperand(1 + X86::AddrScaleAmt).isImm() && MI.getOperand(1 + X86::AddrIndexReg).isReg() && MI.getOperand(1 + X86::AddrIndexReg).getReg() == 0 && !MI.getOperand(1 + X86::AddrDisp).isReg()) { // lea fi#, lea GV, etc. are all rematerializable. if (!MI.getOperand(1 + X86::AddrBaseReg).isReg()) return true; Register BaseReg = MI.getOperand(1 + X86::AddrBaseReg).getReg(); if (BaseReg == 0) return true; // Allow re-materialization of lea PICBase + x. const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); if (regIsPICBase(BaseReg, MRI)) return true; } break; } } return TargetInstrInfo::isReallyTriviallyReMaterializable(MI); } void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, Register DestReg, unsigned SubIdx, const MachineInstr &Orig, const TargetRegisterInfo &TRI) const { bool ClobbersEFLAGS = Orig.modifiesRegister(X86::EFLAGS, &TRI); if (ClobbersEFLAGS && MBB.computeRegisterLiveness(&TRI, X86::EFLAGS, I) != MachineBasicBlock::LQR_Dead) { // The instruction clobbers EFLAGS. Re-materialize as MOV32ri to avoid side // effects. int Value; switch (Orig.getOpcode()) { case X86::MOV32r0: Value = 0; break; case X86::MOV32r1: Value = 1; break; case X86::MOV32r_1: Value = -1; break; default: llvm_unreachable("Unexpected instruction!"); } const DebugLoc &DL = Orig.getDebugLoc(); BuildMI(MBB, I, DL, get(X86::MOV32ri)) .add(Orig.getOperand(0)) .addImm(Value); } else { MachineInstr *MI = MBB.getParent()->CloneMachineInstr(&Orig); MBB.insert(I, MI); } MachineInstr &NewMI = *std::prev(I); NewMI.substituteRegister(Orig.getOperand(0).getReg(), DestReg, SubIdx, TRI); } /// True if MI has a condition code def, e.g. EFLAGS, that is not marked dead. bool X86InstrInfo::hasLiveCondCodeDef(MachineInstr &MI) const { for (const MachineOperand &MO : MI.operands()) { if (MO.isReg() && MO.isDef() && MO.getReg() == X86::EFLAGS && !MO.isDead()) { return true; } } return false; } /// Check whether the shift count for a machine operand is non-zero. inline static unsigned getTruncatedShiftCount(const MachineInstr &MI, unsigned ShiftAmtOperandIdx) { // The shift count is six bits with the REX.W prefix and five bits without. unsigned ShiftCountMask = (MI.getDesc().TSFlags & X86II::REX_W) ? 63 : 31; unsigned Imm = MI.getOperand(ShiftAmtOperandIdx).getImm(); return Imm & ShiftCountMask; } /// Check whether the given shift count is appropriate /// can be represented by a LEA instruction. inline static bool isTruncatedShiftCountForLEA(unsigned ShAmt) { // Left shift instructions can be transformed into load-effective-address // instructions if we can encode them appropriately. // A LEA instruction utilizes a SIB byte to encode its scale factor. // The SIB.scale field is two bits wide which means that we can encode any // shift amount less than 4. return ShAmt < 4 && ShAmt > 0; } static bool findRedundantFlagInstr(MachineInstr &CmpInstr, MachineInstr &CmpValDefInstr, const MachineRegisterInfo *MRI, MachineInstr **AndInstr, const TargetRegisterInfo *TRI, bool &NoSignFlag, bool &ClearsOverflowFlag) { if (!(CmpValDefInstr.getOpcode() == X86::SUBREG_TO_REG && CmpInstr.getOpcode() == X86::TEST64rr) && !(CmpValDefInstr.getOpcode() == X86::COPY && CmpInstr.getOpcode() == X86::TEST16rr)) return false; // CmpInstr is a TEST16rr/TEST64rr instruction, and // `X86InstrInfo::analyzeCompare` guarantees that it's analyzable only if two // registers are identical. assert((CmpInstr.getOperand(0).getReg() == CmpInstr.getOperand(1).getReg()) && "CmpInstr is an analyzable TEST16rr/TEST64rr, and " "`X86InstrInfo::analyzeCompare` requires two reg operands are the" "same."); // Caller (`X86InstrInfo::optimizeCompareInstr`) guarantees that // `CmpValDefInstr` defines the value that's used by `CmpInstr`; in this case // if `CmpValDefInstr` sets the EFLAGS, it is likely that `CmpInstr` is // redundant. assert( (MRI->getVRegDef(CmpInstr.getOperand(0).getReg()) == &CmpValDefInstr) && "Caller guarantees that TEST64rr is a user of SUBREG_TO_REG or TEST16rr " "is a user of COPY sub16bit."); MachineInstr *VregDefInstr = nullptr; if (CmpInstr.getOpcode() == X86::TEST16rr) { if (!CmpValDefInstr.getOperand(1).getReg().isVirtual()) return false; VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(1).getReg()); if (!VregDefInstr) return false; // We can only remove test when AND32ri or AND64ri32 whose imm can fit 16bit // size, others 32/64 bit ops would test higher bits which test16rr don't // want to. if (!((VregDefInstr->getOpcode() == X86::AND32ri || VregDefInstr->getOpcode() == X86::AND64ri32) && isUInt<16>(VregDefInstr->getOperand(2).getImm()))) return false; } if (CmpInstr.getOpcode() == X86::TEST64rr) { // As seen in X86 td files, CmpValDefInstr.getOperand(1).getImm() is // typically 0. if (CmpValDefInstr.getOperand(1).getImm() != 0) return false; // As seen in X86 td files, CmpValDefInstr.getOperand(3) is typically // sub_32bit or sub_xmm. if (CmpValDefInstr.getOperand(3).getImm() != X86::sub_32bit) return false; VregDefInstr = MRI->getVRegDef(CmpValDefInstr.getOperand(2).getReg()); } assert(VregDefInstr && "Must have a definition (SSA)"); // Requires `CmpValDefInstr` and `VregDefInstr` are from the same MBB // to simplify the subsequent analysis. // // FIXME: If `VregDefInstr->getParent()` is the only predecessor of // `CmpValDefInstr.getParent()`, this could be handled. if (VregDefInstr->getParent() != CmpValDefInstr.getParent()) return false; if (X86::isAND(VregDefInstr->getOpcode())) { // Get a sequence of instructions like // %reg = and* ... // Set EFLAGS // ... // EFLAGS not changed // %extended_reg = subreg_to_reg 0, %reg, %subreg.sub_32bit // test64rr %extended_reg, %extended_reg, implicit-def $eflags // or // %reg = and32* ... // ... // EFLAGS not changed. // %src_reg = copy %reg.sub_16bit:gr32 // test16rr %src_reg, %src_reg, implicit-def $eflags // // If subsequent readers use a subset of bits that don't change // after `and*` instructions, it's likely that the test64rr could // be optimized away. for (const MachineInstr &Instr : make_range(std::next(MachineBasicBlock::iterator(VregDefInstr)), MachineBasicBlock::iterator(CmpValDefInstr))) { // There are instructions between 'VregDefInstr' and // 'CmpValDefInstr' that modifies EFLAGS. if (Instr.modifiesRegister(X86::EFLAGS, TRI)) return false; } *AndInstr = VregDefInstr; // AND instruction will essentially update SF and clear OF, so // NoSignFlag should be false in the sense that SF is modified by `AND`. // // However, the implementation artifically sets `NoSignFlag` to true // to poison the SF bit; that is to say, if SF is looked at later, the // optimization (to erase TEST64rr) will be disabled. // // The reason to poison SF bit is that SF bit value could be different // in the `AND` and `TEST` operation; signed bit is not known for `AND`, // and is known to be 0 as a result of `TEST64rr`. // // FIXME: As opposed to poisoning the SF bit directly, consider peeking into // the AND instruction and using the static information to guide peephole // optimization if possible. For example, it's possible to fold a // conditional move into a copy if the relevant EFLAG bits could be deduced // from an immediate operand of and operation. // NoSignFlag = true; // ClearsOverflowFlag is true for AND operation (no surprise). ClearsOverflowFlag = true; return true; } return false; } bool X86InstrInfo::classifyLEAReg(MachineInstr &MI, const MachineOperand &Src, unsigned Opc, bool AllowSP, Register &NewSrc, bool &isKill, MachineOperand &ImplicitOp, LiveVariables *LV, LiveIntervals *LIS) const { MachineFunction &MF = *MI.getParent()->getParent(); const TargetRegisterClass *RC; if (AllowSP) { RC = Opc != X86::LEA32r ? &X86::GR64RegClass : &X86::GR32RegClass; } else { RC = Opc != X86::LEA32r ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass; } Register SrcReg = Src.getReg(); isKill = MI.killsRegister(SrcReg, /*TRI=*/nullptr); // For both LEA64 and LEA32 the register already has essentially the right // type (32-bit or 64-bit) we may just need to forbid SP. if (Opc != X86::LEA64_32r) { NewSrc = SrcReg; assert(!Src.isUndef() && "Undef op doesn't need optimization"); if (NewSrc.isVirtual() && !MF.getRegInfo().constrainRegClass(NewSrc, RC)) return false; return true; } // This is for an LEA64_32r and incoming registers are 32-bit. One way or // another we need to add 64-bit registers to the final MI. if (SrcReg.isPhysical()) { ImplicitOp = Src; ImplicitOp.setImplicit(); NewSrc = getX86SubSuperRegister(SrcReg, 64); assert(NewSrc.isValid() && "Invalid Operand"); assert(!Src.isUndef() && "Undef op doesn't need optimization"); } else { // Virtual register of the wrong class, we have to create a temporary 64-bit // vreg to feed into the LEA. NewSrc = MF.getRegInfo().createVirtualRegister(RC); MachineInstr *Copy = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(NewSrc, RegState::Define | RegState::Undef, X86::sub_32bit) .addReg(SrcReg, getKillRegState(isKill)); // Which is obviously going to be dead after we're done with it. isKill = true; if (LV) LV->replaceKillInstruction(SrcReg, MI, *Copy); if (LIS) { SlotIndex CopyIdx = LIS->InsertMachineInstrInMaps(*Copy); SlotIndex Idx = LIS->getInstructionIndex(MI); LiveInterval &LI = LIS->getInterval(SrcReg); LiveRange::Segment *S = LI.getSegmentContaining(Idx); if (S->end.getBaseIndex() == Idx) S->end = CopyIdx.getRegSlot(); } } // We've set all the parameters without issue. return true; } MachineInstr *X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc, MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS, bool Is8BitOp) const { // We handle 8-bit adds and various 16-bit opcodes in the switch below. MachineBasicBlock &MBB = *MI.getParent(); MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); assert((Is8BitOp || RegInfo.getTargetRegisterInfo()->getRegSizeInBits( *RegInfo.getRegClass(MI.getOperand(0).getReg())) == 16) && "Unexpected type for LEA transform"); // TODO: For a 32-bit target, we need to adjust the LEA variables with // something like this: // Opcode = X86::LEA32r; // InRegLEA = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // OutRegLEA = // Is8BitOp ? RegInfo.createVirtualRegister(&X86::GR32ABCD_RegClass) // : RegInfo.createVirtualRegister(&X86::GR32RegClass); if (!Subtarget.is64Bit()) return nullptr; unsigned Opcode = X86::LEA64_32r; Register InRegLEA = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); Register OutRegLEA = RegInfo.createVirtualRegister(&X86::GR32RegClass); Register InRegLEA2; // Build and insert into an implicit UNDEF value. This is OK because // we will be shifting and then extracting the lower 8/16-bits. // This has the potential to cause partial register stall. e.g. // movw (%rbp,%rcx,2), %dx // leal -65(%rdx), %esi // But testing has shown this *does* help performance in 64-bit mode (at // least on modern x86 machines). MachineBasicBlock::iterator MBBI = MI.getIterator(); Register Dest = MI.getOperand(0).getReg(); Register Src = MI.getOperand(1).getReg(); Register Src2; bool IsDead = MI.getOperand(0).isDead(); bool IsKill = MI.getOperand(1).isKill(); unsigned SubReg = Is8BitOp ? X86::sub_8bit : X86::sub_16bit; assert(!MI.getOperand(1).isUndef() && "Undef op doesn't need optimization"); MachineInstr *ImpDef = BuildMI(MBB, MBBI, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA); MachineInstr *InsMI = BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(InRegLEA, RegState::Define, SubReg) .addReg(Src, getKillRegState(IsKill)); MachineInstr *ImpDef2 = nullptr; MachineInstr *InsMI2 = nullptr; MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), get(Opcode), OutRegLEA); switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::SHL8ri: case X86::SHL16ri: { unsigned ShAmt = MI.getOperand(2).getImm(); MIB.addReg(0) .addImm(1LL << ShAmt) .addReg(InRegLEA, RegState::Kill) .addImm(0) .addReg(0); break; } case X86::INC8r: case X86::INC16r: addRegOffset(MIB, InRegLEA, true, 1); break; case X86::DEC8r: case X86::DEC16r: addRegOffset(MIB, InRegLEA, true, -1); break; case X86::ADD8ri: case X86::ADD8ri_DB: case X86::ADD16ri: case X86::ADD16ri_DB: addRegOffset(MIB, InRegLEA, true, MI.getOperand(2).getImm()); break; case X86::ADD8rr: case X86::ADD8rr_DB: case X86::ADD16rr: case X86::ADD16rr_DB: { Src2 = MI.getOperand(2).getReg(); bool IsKill2 = MI.getOperand(2).isKill(); assert(!MI.getOperand(2).isUndef() && "Undef op doesn't need optimization"); if (Src == Src2) { // ADD8rr/ADD16rr killed %reg1028, %reg1028 // just a single insert_subreg. addRegReg(MIB, InRegLEA, true, InRegLEA, false); } else { if (Subtarget.is64Bit()) InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); else InRegLEA2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass); // Build and insert into an implicit UNDEF value. This is OK because // we will be shifting and then extracting the lower 8/16-bits. ImpDef2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(X86::IMPLICIT_DEF), InRegLEA2); InsMI2 = BuildMI(MBB, &*MIB, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(InRegLEA2, RegState::Define, SubReg) .addReg(Src2, getKillRegState(IsKill2)); addRegReg(MIB, InRegLEA, true, InRegLEA2, true); } if (LV && IsKill2 && InsMI2) LV->replaceKillInstruction(Src2, MI, *InsMI2); break; } } MachineInstr *NewMI = MIB; MachineInstr *ExtMI = BuildMI(MBB, MBBI, MI.getDebugLoc(), get(TargetOpcode::COPY)) .addReg(Dest, RegState::Define | getDeadRegState(IsDead)) .addReg(OutRegLEA, RegState::Kill, SubReg); if (LV) { // Update live variables. LV->getVarInfo(InRegLEA).Kills.push_back(NewMI); if (InRegLEA2) LV->getVarInfo(InRegLEA2).Kills.push_back(NewMI); LV->getVarInfo(OutRegLEA).Kills.push_back(ExtMI); if (IsKill) LV->replaceKillInstruction(Src, MI, *InsMI); if (IsDead) LV->replaceKillInstruction(Dest, MI, *ExtMI); } if (LIS) { LIS->InsertMachineInstrInMaps(*ImpDef); SlotIndex InsIdx = LIS->InsertMachineInstrInMaps(*InsMI); if (ImpDef2) LIS->InsertMachineInstrInMaps(*ImpDef2); SlotIndex Ins2Idx; if (InsMI2) Ins2Idx = LIS->InsertMachineInstrInMaps(*InsMI2); SlotIndex NewIdx = LIS->ReplaceMachineInstrInMaps(MI, *NewMI); SlotIndex ExtIdx = LIS->InsertMachineInstrInMaps(*ExtMI); LIS->getInterval(InRegLEA); LIS->getInterval(OutRegLEA); if (InRegLEA2) LIS->getInterval(InRegLEA2); // Move the use of Src up to InsMI. LiveInterval &SrcLI = LIS->getInterval(Src); LiveRange::Segment *SrcSeg = SrcLI.getSegmentContaining(NewIdx); if (SrcSeg->end == NewIdx.getRegSlot()) SrcSeg->end = InsIdx.getRegSlot(); if (InsMI2) { // Move the use of Src2 up to InsMI2. LiveInterval &Src2LI = LIS->getInterval(Src2); LiveRange::Segment *Src2Seg = Src2LI.getSegmentContaining(NewIdx); if (Src2Seg->end == NewIdx.getRegSlot()) Src2Seg->end = Ins2Idx.getRegSlot(); } // Move the definition of Dest down to ExtMI. LiveInterval &DestLI = LIS->getInterval(Dest); LiveRange::Segment *DestSeg = DestLI.getSegmentContaining(NewIdx.getRegSlot()); assert(DestSeg->start == NewIdx.getRegSlot() && DestSeg->valno->def == NewIdx.getRegSlot()); DestSeg->start = ExtIdx.getRegSlot(); DestSeg->valno->def = ExtIdx.getRegSlot(); } return ExtMI; } /// This method must be implemented by targets that /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target /// may be able to convert a two-address instruction into a true /// three-address instruction on demand. This allows the X86 target (for /// example) to convert ADD and SHL instructions into LEA instructions if they /// would require register copies due to two-addressness. /// /// This method returns a null pointer if the transformation cannot be /// performed, otherwise it returns the new instruction. /// MachineInstr *X86InstrInfo::convertToThreeAddress(MachineInstr &MI, LiveVariables *LV, LiveIntervals *LIS) const { // The following opcodes also sets the condition code register(s). Only // convert them to equivalent lea if the condition code register def's // are dead! if (hasLiveCondCodeDef(MI)) return nullptr; MachineFunction &MF = *MI.getParent()->getParent(); // All instructions input are two-addr instructions. Get the known operands. const MachineOperand &Dest = MI.getOperand(0); const MachineOperand &Src = MI.getOperand(1); // Ideally, operations with undef should be folded before we get here, but we // can't guarantee it. Bail out because optimizing undefs is a waste of time. // Without this, we have to forward undef state to new register operands to // avoid machine verifier errors. if (Src.isUndef()) return nullptr; if (MI.getNumOperands() > 2) if (MI.getOperand(2).isReg() && MI.getOperand(2).isUndef()) return nullptr; MachineInstr *NewMI = nullptr; Register SrcReg, SrcReg2; bool Is64Bit = Subtarget.is64Bit(); bool Is8BitOp = false; unsigned NumRegOperands = 2; unsigned MIOpc = MI.getOpcode(); switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::SHL64ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; // LEA can't handle RSP. if (Src.getReg().isVirtual() && !MF.getRegInfo().constrainRegClass( Src.getReg(), &X86::GR64_NOSPRegClass)) return nullptr; NewMI = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)) .add(Dest) .addReg(0) .addImm(1LL << ShAmt) .add(Src) .addImm(0) .addReg(0); break; } case X86::SHL32ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; // LEA can't handle ESP. bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(0) .addImm(1LL << ShAmt) .addReg(SrcReg, getKillRegState(isKill)) .addImm(0) .addReg(0); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = MIB; // Add kills if classifyLEAReg created a new register. if (LV && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); break; } case X86::SHL8ri: Is8BitOp = true; [[fallthrough]]; case X86::SHL16ri: { assert(MI.getNumOperands() >= 3 && "Unknown shift instruction!"); unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (!isTruncatedShiftCountForLEA(ShAmt)) return nullptr; return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); } case X86::INC64r: case X86::INC32r: { assert(MI.getNumOperands() >= 2 && "Unknown inc instruction!"); unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, 1); // Add kills if classifyLEAReg created a new register. if (LV && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); break; } case X86::DEC64r: case X86::DEC32r: { assert(MI.getNumOperands() >= 2 && "Unknown dec instruction!"); unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r : (Is64Bit ? X86::LEA64_32r : X86::LEA32r); bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/false, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, -1); // Add kills if classifyLEAReg created a new register. if (LV && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); break; } case X86::DEC8r: case X86::INC8r: Is8BitOp = true; [[fallthrough]]; case X86::DEC16r: case X86::INC16r: return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); case X86::ADD64rr: case X86::ADD64rr_DB: case X86::ADD32rr: case X86::ADD32rr_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc; if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) Opc = X86::LEA64r; else Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; const MachineOperand &Src2 = MI.getOperand(2); bool isKill2; MachineOperand ImplicitOp2 = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src2, Opc, /*AllowSP=*/false, SrcReg2, isKill2, ImplicitOp2, LV, LIS)) return nullptr; bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (Src.getReg() == Src2.getReg()) { // Don't call classify LEAReg a second time on the same register, in case // the first call inserted a COPY from Src2 and marked it as killed. isKill = isKill2; SrcReg = SrcReg2; } else { if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; } MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)).add(Dest); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); if (ImplicitOp2.getReg() != 0) MIB.add(ImplicitOp2); NewMI = addRegReg(MIB, SrcReg, isKill, SrcReg2, isKill2); // Add kills if classifyLEAReg created a new register. if (LV) { if (SrcReg2 != Src2.getReg()) LV->getVarInfo(SrcReg2).Kills.push_back(NewMI); if (SrcReg != SrcReg2 && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); } NumRegOperands = 3; break; } case X86::ADD8rr: case X86::ADD8rr_DB: Is8BitOp = true; [[fallthrough]]; case X86::ADD16rr: case X86::ADD16rr_DB: return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); case X86::ADD64ri32: case X86::ADD64ri32_DB: assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); NewMI = addOffset( BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src), MI.getOperand(2)); break; case X86::ADD32ri: case X86::ADD32ri_DB: { assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, MI.getOperand(2)); // Add kills if classifyLEAReg created a new register. if (LV && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); break; } case X86::ADD8ri: case X86::ADD8ri_DB: Is8BitOp = true; [[fallthrough]]; case X86::ADD16ri: case X86::ADD16ri_DB: return convertToThreeAddressWithLEA(MIOpc, MI, LV, LIS, Is8BitOp); case X86::SUB8ri: case X86::SUB16ri: /// FIXME: Support these similar to ADD8ri/ADD16ri*. return nullptr; case X86::SUB32ri: { if (!MI.getOperand(2).isImm()) return nullptr; int64_t Imm = MI.getOperand(2).getImm(); if (!isInt<32>(-Imm)) return nullptr; assert(MI.getNumOperands() >= 3 && "Unknown add instruction!"); unsigned Opc = Is64Bit ? X86::LEA64_32r : X86::LEA32r; bool isKill; MachineOperand ImplicitOp = MachineOperand::CreateReg(0, false); if (!classifyLEAReg(MI, Src, Opc, /*AllowSP=*/true, SrcReg, isKill, ImplicitOp, LV, LIS)) return nullptr; MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .addReg(SrcReg, getKillRegState(isKill)); if (ImplicitOp.getReg() != 0) MIB.add(ImplicitOp); NewMI = addOffset(MIB, -Imm); // Add kills if classifyLEAReg created a new register. if (LV && SrcReg != Src.getReg()) LV->getVarInfo(SrcReg).Kills.push_back(NewMI); break; } case X86::SUB64ri32: { if (!MI.getOperand(2).isImm()) return nullptr; int64_t Imm = MI.getOperand(2).getImm(); if (!isInt<32>(-Imm)) return nullptr; assert(MI.getNumOperands() >= 3 && "Unknown sub instruction!"); MachineInstrBuilder MIB = BuildMI(MF, MI.getDebugLoc(), get(X86::LEA64r)).add(Dest).add(Src); NewMI = addOffset(MIB, -Imm); break; } case X86::VMOVDQU8Z128rmk: case X86::VMOVDQU8Z256rmk: case X86::VMOVDQU8Zrmk: case X86::VMOVDQU16Z128rmk: case X86::VMOVDQU16Z256rmk: case X86::VMOVDQU16Zrmk: case X86::VMOVDQU32Z128rmk: case X86::VMOVDQA32Z128rmk: case X86::VMOVDQU32Z256rmk: case X86::VMOVDQA32Z256rmk: case X86::VMOVDQU32Zrmk: case X86::VMOVDQA32Zrmk: case X86::VMOVDQU64Z128rmk: case X86::VMOVDQA64Z128rmk: case X86::VMOVDQU64Z256rmk: case X86::VMOVDQA64Z256rmk: case X86::VMOVDQU64Zrmk: case X86::VMOVDQA64Zrmk: case X86::VMOVUPDZ128rmk: case X86::VMOVAPDZ128rmk: case X86::VMOVUPDZ256rmk: case X86::VMOVAPDZ256rmk: case X86::VMOVUPDZrmk: case X86::VMOVAPDZrmk: case X86::VMOVUPSZ128rmk: case X86::VMOVAPSZ128rmk: case X86::VMOVUPSZ256rmk: case X86::VMOVAPSZ256rmk: case X86::VMOVUPSZrmk: case X86::VMOVAPSZrmk: case X86::VBROADCASTSDZ256rmk: case X86::VBROADCASTSDZrmk: case X86::VBROADCASTSSZ128rmk: case X86::VBROADCASTSSZ256rmk: case X86::VBROADCASTSSZrmk: case X86::VPBROADCASTDZ128rmk: case X86::VPBROADCASTDZ256rmk: case X86::VPBROADCASTDZrmk: case X86::VPBROADCASTQZ128rmk: case X86::VPBROADCASTQZ256rmk: case X86::VPBROADCASTQZrmk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rmk: Opc = X86::VPBLENDMBZ128rmk; break; case X86::VMOVDQU8Z256rmk: Opc = X86::VPBLENDMBZ256rmk; break; case X86::VMOVDQU8Zrmk: Opc = X86::VPBLENDMBZrmk; break; case X86::VMOVDQU16Z128rmk: Opc = X86::VPBLENDMWZ128rmk; break; case X86::VMOVDQU16Z256rmk: Opc = X86::VPBLENDMWZ256rmk; break; case X86::VMOVDQU16Zrmk: Opc = X86::VPBLENDMWZrmk; break; case X86::VMOVDQU32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQU32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQU32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQU64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQU64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQU64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVUPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVUPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVUPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVUPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVUPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVUPSZrmk: Opc = X86::VBLENDMPSZrmk; break; case X86::VMOVDQA32Z128rmk: Opc = X86::VPBLENDMDZ128rmk; break; case X86::VMOVDQA32Z256rmk: Opc = X86::VPBLENDMDZ256rmk; break; case X86::VMOVDQA32Zrmk: Opc = X86::VPBLENDMDZrmk; break; case X86::VMOVDQA64Z128rmk: Opc = X86::VPBLENDMQZ128rmk; break; case X86::VMOVDQA64Z256rmk: Opc = X86::VPBLENDMQZ256rmk; break; case X86::VMOVDQA64Zrmk: Opc = X86::VPBLENDMQZrmk; break; case X86::VMOVAPDZ128rmk: Opc = X86::VBLENDMPDZ128rmk; break; case X86::VMOVAPDZ256rmk: Opc = X86::VBLENDMPDZ256rmk; break; case X86::VMOVAPDZrmk: Opc = X86::VBLENDMPDZrmk; break; case X86::VMOVAPSZ128rmk: Opc = X86::VBLENDMPSZ128rmk; break; case X86::VMOVAPSZ256rmk: Opc = X86::VBLENDMPSZ256rmk; break; case X86::VMOVAPSZrmk: Opc = X86::VBLENDMPSZrmk; break; case X86::VBROADCASTSDZ256rmk: Opc = X86::VBLENDMPDZ256rmbk; break; case X86::VBROADCASTSDZrmk: Opc = X86::VBLENDMPDZrmbk; break; case X86::VBROADCASTSSZ128rmk: Opc = X86::VBLENDMPSZ128rmbk; break; case X86::VBROADCASTSSZ256rmk: Opc = X86::VBLENDMPSZ256rmbk; break; case X86::VBROADCASTSSZrmk: Opc = X86::VBLENDMPSZrmbk; break; case X86::VPBROADCASTDZ128rmk: Opc = X86::VPBLENDMDZ128rmbk; break; case X86::VPBROADCASTDZ256rmk: Opc = X86::VPBLENDMDZ256rmbk; break; case X86::VPBROADCASTDZrmk: Opc = X86::VPBLENDMDZrmbk; break; case X86::VPBROADCASTQZ128rmk: Opc = X86::VPBLENDMQZ128rmbk; break; case X86::VPBROADCASTQZ256rmk: Opc = X86::VPBLENDMQZ256rmbk; break; case X86::VPBROADCASTQZrmk: Opc = X86::VPBLENDMQZrmbk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)) .add(MI.getOperand(4)) .add(MI.getOperand(5)) .add(MI.getOperand(6)) .add(MI.getOperand(7)); NumRegOperands = 4; break; } case X86::VMOVDQU8Z128rrk: case X86::VMOVDQU8Z256rrk: case X86::VMOVDQU8Zrrk: case X86::VMOVDQU16Z128rrk: case X86::VMOVDQU16Z256rrk: case X86::VMOVDQU16Zrrk: case X86::VMOVDQU32Z128rrk: case X86::VMOVDQA32Z128rrk: case X86::VMOVDQU32Z256rrk: case X86::VMOVDQA32Z256rrk: case X86::VMOVDQU32Zrrk: case X86::VMOVDQA32Zrrk: case X86::VMOVDQU64Z128rrk: case X86::VMOVDQA64Z128rrk: case X86::VMOVDQU64Z256rrk: case X86::VMOVDQA64Z256rrk: case X86::VMOVDQU64Zrrk: case X86::VMOVDQA64Zrrk: case X86::VMOVUPDZ128rrk: case X86::VMOVAPDZ128rrk: case X86::VMOVUPDZ256rrk: case X86::VMOVAPDZ256rrk: case X86::VMOVUPDZrrk: case X86::VMOVAPDZrrk: case X86::VMOVUPSZ128rrk: case X86::VMOVAPSZ128rrk: case X86::VMOVUPSZ256rrk: case X86::VMOVAPSZ256rrk: case X86::VMOVUPSZrrk: case X86::VMOVAPSZrrk: { unsigned Opc; switch (MIOpc) { default: llvm_unreachable("Unreachable!"); case X86::VMOVDQU8Z128rrk: Opc = X86::VPBLENDMBZ128rrk; break; case X86::VMOVDQU8Z256rrk: Opc = X86::VPBLENDMBZ256rrk; break; case X86::VMOVDQU8Zrrk: Opc = X86::VPBLENDMBZrrk; break; case X86::VMOVDQU16Z128rrk: Opc = X86::VPBLENDMWZ128rrk; break; case X86::VMOVDQU16Z256rrk: Opc = X86::VPBLENDMWZ256rrk; break; case X86::VMOVDQU16Zrrk: Opc = X86::VPBLENDMWZrrk; break; case X86::VMOVDQU32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQU32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQU32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQU64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQU64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQU64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVUPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVUPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVUPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVUPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVUPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVUPSZrrk: Opc = X86::VBLENDMPSZrrk; break; case X86::VMOVDQA32Z128rrk: Opc = X86::VPBLENDMDZ128rrk; break; case X86::VMOVDQA32Z256rrk: Opc = X86::VPBLENDMDZ256rrk; break; case X86::VMOVDQA32Zrrk: Opc = X86::VPBLENDMDZrrk; break; case X86::VMOVDQA64Z128rrk: Opc = X86::VPBLENDMQZ128rrk; break; case X86::VMOVDQA64Z256rrk: Opc = X86::VPBLENDMQZ256rrk; break; case X86::VMOVDQA64Zrrk: Opc = X86::VPBLENDMQZrrk; break; case X86::VMOVAPDZ128rrk: Opc = X86::VBLENDMPDZ128rrk; break; case X86::VMOVAPDZ256rrk: Opc = X86::VBLENDMPDZ256rrk; break; case X86::VMOVAPDZrrk: Opc = X86::VBLENDMPDZrrk; break; case X86::VMOVAPSZ128rrk: Opc = X86::VBLENDMPSZ128rrk; break; case X86::VMOVAPSZ256rrk: Opc = X86::VBLENDMPSZ256rrk; break; case X86::VMOVAPSZrrk: Opc = X86::VBLENDMPSZrrk; break; } NewMI = BuildMI(MF, MI.getDebugLoc(), get(Opc)) .add(Dest) .add(MI.getOperand(2)) .add(Src) .add(MI.getOperand(3)); NumRegOperands = 4; break; } } if (!NewMI) return nullptr; if (LV) { // Update live variables for (unsigned I = 0; I < NumRegOperands; ++I) { MachineOperand &Op = MI.getOperand(I); if (Op.isReg() && (Op.isDead() || Op.isKill())) LV->replaceKillInstruction(Op.getReg(), MI, *NewMI); } } MachineBasicBlock &MBB = *MI.getParent(); MBB.insert(MI.getIterator(), NewMI); // Insert the new inst if (LIS) { LIS->ReplaceMachineInstrInMaps(MI, *NewMI); if (SrcReg) LIS->getInterval(SrcReg); if (SrcReg2) LIS->getInterval(SrcReg2); } return NewMI; } /// This determines which of three possible cases of a three source commute /// the source indexes correspond to taking into account any mask operands. /// All prevents commuting a passthru operand. Returns -1 if the commute isn't /// possible. /// Case 0 - Possible to commute the first and second operands. /// Case 1 - Possible to commute the first and third operands. /// Case 2 - Possible to commute the second and third operands. static unsigned getThreeSrcCommuteCase(uint64_t TSFlags, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { // Put the lowest index to SrcOpIdx1 to simplify the checks below. if (SrcOpIdx1 > SrcOpIdx2) std::swap(SrcOpIdx1, SrcOpIdx2); unsigned Op1 = 1, Op2 = 2, Op3 = 3; if (X86II::isKMasked(TSFlags)) { Op2++; Op3++; } if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op2) return 0; if (SrcOpIdx1 == Op1 && SrcOpIdx2 == Op3) return 1; if (SrcOpIdx1 == Op2 && SrcOpIdx2 == Op3) return 2; llvm_unreachable("Unknown three src commute case."); } unsigned X86InstrInfo::getFMA3OpcodeToCommuteOperands( const MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2, const X86InstrFMA3Group &FMA3Group) const { unsigned Opc = MI.getOpcode(); // TODO: Commuting the 1st operand of FMA*_Int requires some additional // analysis. The commute optimization is legal only if all users of FMA*_Int // use only the lowest element of the FMA*_Int instruction. Such analysis are // not implemented yet. So, just return 0 in that case. // When such analysis are available this place will be the right place for // calling it. assert(!(FMA3Group.isIntrinsic() && (SrcOpIdx1 == 1 || SrcOpIdx2 == 1)) && "Intrinsic instructions can't commute operand 1"); // Determine which case this commute is or if it can't be done. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); assert(Case < 3 && "Unexpected case number!"); // Define the FMA forms mapping array that helps to map input FMA form // to output FMA form to preserve the operation semantics after // commuting the operands. const unsigned Form132Index = 0; const unsigned Form213Index = 1; const unsigned Form231Index = 2; static const unsigned FormMapping[][3] = { // 0: SrcOpIdx1 == 1 && SrcOpIdx2 == 2; // FMA132 A, C, b; ==> FMA231 C, A, b; // FMA213 B, A, c; ==> FMA213 A, B, c; // FMA231 C, A, b; ==> FMA132 A, C, b; {Form231Index, Form213Index, Form132Index}, // 1: SrcOpIdx1 == 1 && SrcOpIdx2 == 3; // FMA132 A, c, B; ==> FMA132 B, c, A; // FMA213 B, a, C; ==> FMA231 C, a, B; // FMA231 C, a, B; ==> FMA213 B, a, C; {Form132Index, Form231Index, Form213Index}, // 2: SrcOpIdx1 == 2 && SrcOpIdx2 == 3; // FMA132 a, C, B; ==> FMA213 a, B, C; // FMA213 b, A, C; ==> FMA132 b, C, A; // FMA231 c, A, B; ==> FMA231 c, B, A; {Form213Index, Form132Index, Form231Index}}; unsigned FMAForms[3]; FMAForms[0] = FMA3Group.get132Opcode(); FMAForms[1] = FMA3Group.get213Opcode(); FMAForms[2] = FMA3Group.get231Opcode(); // Everything is ready, just adjust the FMA opcode and return it. for (unsigned FormIndex = 0; FormIndex < 3; FormIndex++) if (Opc == FMAForms[FormIndex]) return FMAForms[FormMapping[Case][FormIndex]]; llvm_unreachable("Illegal FMA3 format"); } static void commuteVPTERNLOG(MachineInstr &MI, unsigned SrcOpIdx1, unsigned SrcOpIdx2) { // Determine which case this commute is or if it can't be done. unsigned Case = getThreeSrcCommuteCase(MI.getDesc().TSFlags, SrcOpIdx1, SrcOpIdx2); assert(Case < 3 && "Unexpected case value!"); // For each case we need to swap two pairs of bits in the final immediate. static const uint8_t SwapMasks[3][4] = { {0x04, 0x10, 0x08, 0x20}, // Swap bits 2/4 and 3/5. {0x02, 0x10, 0x08, 0x40}, // Swap bits 1/4 and 3/6. {0x02, 0x04, 0x20, 0x40}, // Swap bits 1/2 and 5/6. }; uint8_t Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); // Clear out the bits we are swapping. uint8_t NewImm = Imm & ~(SwapMasks[Case][0] | SwapMasks[Case][1] | SwapMasks[Case][2] | SwapMasks[Case][3]); // If the immediate had a bit of the pair set, then set the opposite bit. if (Imm & SwapMasks[Case][0]) NewImm |= SwapMasks[Case][1]; if (Imm & SwapMasks[Case][1]) NewImm |= SwapMasks[Case][0]; if (Imm & SwapMasks[Case][2]) NewImm |= SwapMasks[Case][3]; if (Imm & SwapMasks[Case][3]) NewImm |= SwapMasks[Case][2]; MI.getOperand(MI.getNumOperands() - 1).setImm(NewImm); } // Returns true if this is a VPERMI2 or VPERMT2 instruction that can be // commuted. static bool isCommutableVPERMV3Instruction(unsigned Opcode) { #define VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##Z128rr: \ case X86::VPERMT2##Suffix##Z128rr: \ case X86::VPERMI2##Suffix##Z256rr: \ case X86::VPERMT2##Suffix##Z256rr: \ case X86::VPERMI2##Suffix##Zrr: \ case X86::VPERMT2##Suffix##Zrr: \ case X86::VPERMI2##Suffix##Z128rm: \ case X86::VPERMT2##Suffix##Z128rm: \ case X86::VPERMI2##Suffix##Z256rm: \ case X86::VPERMT2##Suffix##Z256rm: \ case X86::VPERMI2##Suffix##Zrm: \ case X86::VPERMT2##Suffix##Zrm: \ case X86::VPERMI2##Suffix##Z128rrkz: \ case X86::VPERMT2##Suffix##Z128rrkz: \ case X86::VPERMI2##Suffix##Z256rrkz: \ case X86::VPERMT2##Suffix##Z256rrkz: \ case X86::VPERMI2##Suffix##Zrrkz: \ case X86::VPERMT2##Suffix##Zrrkz: \ case X86::VPERMI2##Suffix##Z128rmkz: \ case X86::VPERMT2##Suffix##Z128rmkz: \ case X86::VPERMI2##Suffix##Z256rmkz: \ case X86::VPERMT2##Suffix##Z256rmkz: \ case X86::VPERMI2##Suffix##Zrmkz: \ case X86::VPERMT2##Suffix##Zrmkz: #define VPERM_CASES_BROADCAST(Suffix) \ VPERM_CASES(Suffix) \ case X86::VPERMI2##Suffix##Z128rmb: \ case X86::VPERMT2##Suffix##Z128rmb: \ case X86::VPERMI2##Suffix##Z256rmb: \ case X86::VPERMT2##Suffix##Z256rmb: \ case X86::VPERMI2##Suffix##Zrmb: \ case X86::VPERMT2##Suffix##Zrmb: \ case X86::VPERMI2##Suffix##Z128rmbkz: \ case X86::VPERMT2##Suffix##Z128rmbkz: \ case X86::VPERMI2##Suffix##Z256rmbkz: \ case X86::VPERMT2##Suffix##Z256rmbkz: \ case X86::VPERMI2##Suffix##Zrmbkz: \ case X86::VPERMT2##Suffix##Zrmbkz: switch (Opcode) { default: return false; VPERM_CASES(B) VPERM_CASES_BROADCAST(D) VPERM_CASES_BROADCAST(PD) VPERM_CASES_BROADCAST(PS) VPERM_CASES_BROADCAST(Q) VPERM_CASES(W) return true; } #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } // Returns commuted opcode for VPERMI2 and VPERMT2 instructions by switching // from the I opcode to the T opcode and vice versa. static unsigned getCommutedVPERMV3Opcode(unsigned Opcode) { #define VPERM_CASES(Orig, New) \ case X86::Orig##Z128rr: \ return X86::New##Z128rr; \ case X86::Orig##Z128rrkz: \ return X86::New##Z128rrkz; \ case X86::Orig##Z128rm: \ return X86::New##Z128rm; \ case X86::Orig##Z128rmkz: \ return X86::New##Z128rmkz; \ case X86::Orig##Z256rr: \ return X86::New##Z256rr; \ case X86::Orig##Z256rrkz: \ return X86::New##Z256rrkz; \ case X86::Orig##Z256rm: \ return X86::New##Z256rm; \ case X86::Orig##Z256rmkz: \ return X86::New##Z256rmkz; \ case X86::Orig##Zrr: \ return X86::New##Zrr; \ case X86::Orig##Zrrkz: \ return X86::New##Zrrkz; \ case X86::Orig##Zrm: \ return X86::New##Zrm; \ case X86::Orig##Zrmkz: \ return X86::New##Zrmkz; #define VPERM_CASES_BROADCAST(Orig, New) \ VPERM_CASES(Orig, New) \ case X86::Orig##Z128rmb: \ return X86::New##Z128rmb; \ case X86::Orig##Z128rmbkz: \ return X86::New##Z128rmbkz; \ case X86::Orig##Z256rmb: \ return X86::New##Z256rmb; \ case X86::Orig##Z256rmbkz: \ return X86::New##Z256rmbkz; \ case X86::Orig##Zrmb: \ return X86::New##Zrmb; \ case X86::Orig##Zrmbkz: \ return X86::New##Zrmbkz; switch (Opcode) { VPERM_CASES(VPERMI2B, VPERMT2B) VPERM_CASES_BROADCAST(VPERMI2D, VPERMT2D) VPERM_CASES_BROADCAST(VPERMI2PD, VPERMT2PD) VPERM_CASES_BROADCAST(VPERMI2PS, VPERMT2PS) VPERM_CASES_BROADCAST(VPERMI2Q, VPERMT2Q) VPERM_CASES(VPERMI2W, VPERMT2W) VPERM_CASES(VPERMT2B, VPERMI2B) VPERM_CASES_BROADCAST(VPERMT2D, VPERMI2D) VPERM_CASES_BROADCAST(VPERMT2PD, VPERMI2PD) VPERM_CASES_BROADCAST(VPERMT2PS, VPERMI2PS) VPERM_CASES_BROADCAST(VPERMT2Q, VPERMI2Q) VPERM_CASES(VPERMT2W, VPERMI2W) } llvm_unreachable("Unreachable!"); #undef VPERM_CASES_BROADCAST #undef VPERM_CASES } MachineInstr *X86InstrInfo::commuteInstructionImpl(MachineInstr &MI, bool NewMI, unsigned OpIdx1, unsigned OpIdx2) const { auto CloneIfNew = [&](MachineInstr &MI) { return std::exchange(NewMI, false) ? MI.getParent()->getParent()->CloneMachineInstr(&MI) : &MI; }; MachineInstr *WorkingMI = nullptr; unsigned Opc = MI.getOpcode(); #define CASE_ND(OP) \ case X86::OP: \ case X86::OP##_ND: switch (Opc) { // SHLD B, C, I <-> SHRD C, B, (BitWidth - I) CASE_ND(SHRD16rri8) CASE_ND(SHLD16rri8) CASE_ND(SHRD32rri8) CASE_ND(SHLD32rri8) CASE_ND(SHRD64rri8) CASE_ND(SHLD64rri8) { unsigned Size; switch (Opc) { default: llvm_unreachable("Unreachable!"); #define FROM_TO_SIZE(A, B, S) \ case X86::A: \ Opc = X86::B; \ Size = S; \ break; \ case X86::A##_ND: \ Opc = X86::B##_ND; \ Size = S; \ break; \ case X86::B: \ Opc = X86::A; \ Size = S; \ break; \ case X86::B##_ND: \ Opc = X86::A##_ND; \ Size = S; \ break; FROM_TO_SIZE(SHRD16rri8, SHLD16rri8, 16) FROM_TO_SIZE(SHRD32rri8, SHLD32rri8, 32) FROM_TO_SIZE(SHRD64rri8, SHLD64rri8, 64) #undef FROM_TO_SIZE } WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(Opc)); WorkingMI->getOperand(3).setImm(Size - MI.getOperand(3).getImm()); break; } case X86::PFSUBrr: case X86::PFSUBRrr: // PFSUB x, y: x = x - y // PFSUBR x, y: x = y - x WorkingMI = CloneIfNew(MI); WorkingMI->setDesc( get(X86::PFSUBRrr == Opc ? X86::PFSUBrr : X86::PFSUBRrr)); break; case X86::BLENDPDrri: case X86::BLENDPSrri: case X86::VBLENDPDrri: case X86::VBLENDPSrri: // If we're optimizing for size, try to use MOVSD/MOVSS. if (MI.getParent()->getParent()->getFunction().hasOptSize()) { unsigned Mask = (Opc == X86::BLENDPDrri || Opc == X86::VBLENDPDrri) ? 0x03: 0x0F; if ((MI.getOperand(3).getImm() ^ Mask) == 1) { #define FROM_TO(FROM, TO) \ case X86::FROM: \ Opc = X86::TO; \ break; switch (Opc) { default: llvm_unreachable("Unreachable!"); FROM_TO(BLENDPDrri, MOVSDrr) FROM_TO(BLENDPSrri, MOVSSrr) FROM_TO(VBLENDPDrri, VMOVSDrr) FROM_TO(VBLENDPSrri, VMOVSSrr) } WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(Opc)); WorkingMI->removeOperand(3); break; } #undef FROM_TO } [[fallthrough]]; case X86::PBLENDWrri: case X86::VBLENDPDYrri: case X86::VBLENDPSYrri: case X86::VPBLENDDrri: case X86::VPBLENDWrri: case X86::VPBLENDDYrri: case X86::VPBLENDWYrri: { int8_t Mask; switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::BLENDPDrri: Mask = (int8_t)0x03; break; case X86::BLENDPSrri: Mask = (int8_t)0x0F; break; case X86::PBLENDWrri: Mask = (int8_t)0xFF; break; case X86::VBLENDPDrri: Mask = (int8_t)0x03; break; case X86::VBLENDPSrri: Mask = (int8_t)0x0F; break; case X86::VBLENDPDYrri: Mask = (int8_t)0x0F; break; case X86::VBLENDPSYrri: Mask = (int8_t)0xFF; break; case X86::VPBLENDDrri: Mask = (int8_t)0x0F; break; case X86::VPBLENDWrri: Mask = (int8_t)0xFF; break; case X86::VPBLENDDYrri: Mask = (int8_t)0xFF; break; case X86::VPBLENDWYrri: Mask = (int8_t)0xFF; break; } // Only the least significant bits of Imm are used. // Using int8_t to ensure it will be sign extended to the int64_t that // setImm takes in order to match isel behavior. int8_t Imm = MI.getOperand(3).getImm() & Mask; WorkingMI = CloneIfNew(MI); WorkingMI->getOperand(3).setImm(Mask ^ Imm); break; } case X86::INSERTPSrr: case X86::VINSERTPSrr: case X86::VINSERTPSZrr: { unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); unsigned ZMask = Imm & 15; unsigned DstIdx = (Imm >> 4) & 3; unsigned SrcIdx = (Imm >> 6) & 3; // We can commute insertps if we zero 2 of the elements, the insertion is // "inline" and we don't override the insertion with a zero. if (DstIdx == SrcIdx && (ZMask & (1 << DstIdx)) == 0 && llvm::popcount(ZMask) == 2) { unsigned AltIdx = llvm::countr_zero((ZMask | (1 << DstIdx)) ^ 15); assert(AltIdx < 4 && "Illegal insertion index"); unsigned AltImm = (AltIdx << 6) | (AltIdx << 4) | ZMask; WorkingMI = CloneIfNew(MI); WorkingMI->getOperand(MI.getNumOperands() - 1).setImm(AltImm); break; } return nullptr; } case X86::MOVSDrr: case X86::MOVSSrr: case X86::VMOVSDrr: case X86::VMOVSSrr: { // On SSE41 or later we can commute a MOVSS/MOVSD to a BLENDPS/BLENDPD. if (Subtarget.hasSSE41()) { unsigned Mask; switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::MOVSDrr: Opc = X86::BLENDPDrri; Mask = 0x02; break; case X86::MOVSSrr: Opc = X86::BLENDPSrri; Mask = 0x0E; break; case X86::VMOVSDrr: Opc = X86::VBLENDPDrri; Mask = 0x02; break; case X86::VMOVSSrr: Opc = X86::VBLENDPSrri; Mask = 0x0E; break; } WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(Opc)); WorkingMI->addOperand(MachineOperand::CreateImm(Mask)); break; } WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(X86::SHUFPDrri)); WorkingMI->addOperand(MachineOperand::CreateImm(0x02)); break; } case X86::SHUFPDrri: { // Commute to MOVSD. assert(MI.getOperand(3).getImm() == 0x02 && "Unexpected immediate!"); WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(X86::MOVSDrr)); WorkingMI->removeOperand(3); break; } case X86::PCLMULQDQrri: case X86::VPCLMULQDQrri: case X86::VPCLMULQDQYrri: case X86::VPCLMULQDQZrri: case X86::VPCLMULQDQZ128rri: case X86::VPCLMULQDQZ256rri: { // SRC1 64bits = Imm[0] ? SRC1[127:64] : SRC1[63:0] // SRC2 64bits = Imm[4] ? SRC2[127:64] : SRC2[63:0] unsigned Imm = MI.getOperand(3).getImm(); unsigned Src1Hi = Imm & 0x01; unsigned Src2Hi = Imm & 0x10; WorkingMI = CloneIfNew(MI); WorkingMI->getOperand(3).setImm((Src1Hi << 4) | (Src2Hi >> 4)); break; } case X86::VPCMPBZ128rri: case X86::VPCMPUBZ128rri: case X86::VPCMPBZ256rri: case X86::VPCMPUBZ256rri: case X86::VPCMPBZrri: case X86::VPCMPUBZrri: case X86::VPCMPDZ128rri: case X86::VPCMPUDZ128rri: case X86::VPCMPDZ256rri: case X86::VPCMPUDZ256rri: case X86::VPCMPDZrri: case X86::VPCMPUDZrri: case X86::VPCMPQZ128rri: case X86::VPCMPUQZ128rri: case X86::VPCMPQZ256rri: case X86::VPCMPUQZ256rri: case X86::VPCMPQZrri: case X86::VPCMPUQZrri: case X86::VPCMPWZ128rri: case X86::VPCMPUWZ128rri: case X86::VPCMPWZ256rri: case X86::VPCMPUWZ256rri: case X86::VPCMPWZrri: case X86::VPCMPUWZrri: case X86::VPCMPBZ128rrik: case X86::VPCMPUBZ128rrik: case X86::VPCMPBZ256rrik: case X86::VPCMPUBZ256rrik: case X86::VPCMPBZrrik: case X86::VPCMPUBZrrik: case X86::VPCMPDZ128rrik: case X86::VPCMPUDZ128rrik: case X86::VPCMPDZ256rrik: case X86::VPCMPUDZ256rrik: case X86::VPCMPDZrrik: case X86::VPCMPUDZrrik: case X86::VPCMPQZ128rrik: case X86::VPCMPUQZ128rrik: case X86::VPCMPQZ256rrik: case X86::VPCMPUQZ256rrik: case X86::VPCMPQZrrik: case X86::VPCMPUQZrrik: case X86::VPCMPWZ128rrik: case X86::VPCMPUWZ128rrik: case X86::VPCMPWZ256rrik: case X86::VPCMPUWZ256rrik: case X86::VPCMPWZrrik: case X86::VPCMPUWZrrik: WorkingMI = CloneIfNew(MI); // Flip comparison mode immediate (if necessary). WorkingMI->getOperand(MI.getNumOperands() - 1) .setImm(X86::getSwappedVPCMPImm( MI.getOperand(MI.getNumOperands() - 1).getImm() & 0x7)); break; case X86::VPCOMBri: case X86::VPCOMUBri: case X86::VPCOMDri: case X86::VPCOMUDri: case X86::VPCOMQri: case X86::VPCOMUQri: case X86::VPCOMWri: case X86::VPCOMUWri: WorkingMI = CloneIfNew(MI); // Flip comparison mode immediate (if necessary). WorkingMI->getOperand(3).setImm( X86::getSwappedVPCOMImm(MI.getOperand(3).getImm() & 0x7)); break; case X86::VCMPSDZrri: case X86::VCMPSSZrri: case X86::VCMPPDZrri: case X86::VCMPPSZrri: case X86::VCMPSHZrri: case X86::VCMPPHZrri: case X86::VCMPPHZ128rri: case X86::VCMPPHZ256rri: case X86::VCMPPDZ128rri: case X86::VCMPPSZ128rri: case X86::VCMPPDZ256rri: case X86::VCMPPSZ256rri: case X86::VCMPPDZrrik: case X86::VCMPPSZrrik: case X86::VCMPPDZ128rrik: case X86::VCMPPSZ128rrik: case X86::VCMPPDZ256rrik: case X86::VCMPPSZ256rrik: WorkingMI = CloneIfNew(MI); WorkingMI->getOperand(MI.getNumExplicitOperands() - 1) .setImm(X86::getSwappedVCMPImm( MI.getOperand(MI.getNumExplicitOperands() - 1).getImm() & 0x1f)); break; case X86::VPERM2F128rr: case X86::VPERM2I128rr: // Flip permute source immediate. // Imm & 0x02: lo = if set, select Op1.lo/hi else Op0.lo/hi. // Imm & 0x20: hi = if set, select Op1.lo/hi else Op0.lo/hi. WorkingMI = CloneIfNew(MI); WorkingMI->getOperand(3).setImm((MI.getOperand(3).getImm() & 0xFF) ^ 0x22); break; case X86::MOVHLPSrr: case X86::UNPCKHPDrr: case X86::VMOVHLPSrr: case X86::VUNPCKHPDrr: case X86::VMOVHLPSZrr: case X86::VUNPCKHPDZ128rr: assert(Subtarget.hasSSE2() && "Commuting MOVHLP/UNPCKHPD requires SSE2!"); switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::MOVHLPSrr: Opc = X86::UNPCKHPDrr; break; case X86::UNPCKHPDrr: Opc = X86::MOVHLPSrr; break; case X86::VMOVHLPSrr: Opc = X86::VUNPCKHPDrr; break; case X86::VUNPCKHPDrr: Opc = X86::VMOVHLPSrr; break; case X86::VMOVHLPSZrr: Opc = X86::VUNPCKHPDZ128rr; break; case X86::VUNPCKHPDZ128rr: Opc = X86::VMOVHLPSZrr; break; } WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(Opc)); break; CASE_ND(CMOV16rr) CASE_ND(CMOV32rr) CASE_ND(CMOV64rr) { WorkingMI = CloneIfNew(MI); unsigned OpNo = MI.getDesc().getNumOperands() - 1; X86::CondCode CC = static_cast(MI.getOperand(OpNo).getImm()); WorkingMI->getOperand(OpNo).setImm(X86::GetOppositeBranchCondition(CC)); break; } case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: { WorkingMI = CloneIfNew(MI); commuteVPTERNLOG(*WorkingMI, OpIdx1, OpIdx2); break; } default: if (isCommutableVPERMV3Instruction(Opc)) { WorkingMI = CloneIfNew(MI); WorkingMI->setDesc(get(getCommutedVPERMV3Opcode(Opc))); break; } if (auto *FMA3Group = getFMA3Group(Opc, MI.getDesc().TSFlags)) { WorkingMI = CloneIfNew(MI); WorkingMI->setDesc( get(getFMA3OpcodeToCommuteOperands(MI, OpIdx1, OpIdx2, *FMA3Group))); break; } } return TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2); } bool X86InstrInfo::findThreeSrcCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2, bool IsIntrinsic) const { uint64_t TSFlags = MI.getDesc().TSFlags; unsigned FirstCommutableVecOp = 1; unsigned LastCommutableVecOp = 3; unsigned KMaskOp = -1U; if (X86II::isKMasked(TSFlags)) { // For k-zero-masked operations it is Ok to commute the first vector // operand. Unless this is an intrinsic instruction. // For regular k-masked operations a conservative choice is done as the // elements of the first vector operand, for which the corresponding bit // in the k-mask operand is set to 0, are copied to the result of the // instruction. // TODO/FIXME: The commute still may be legal if it is known that the // k-mask operand is set to either all ones or all zeroes. // It is also Ok to commute the 1st operand if all users of MI use only // the elements enabled by the k-mask operand. For example, // v4 = VFMADD213PSZrk v1, k, v2, v3; // v1[i] = k[i] ? v2[i]*v1[i]+v3[i] // : v1[i]; // VMOVAPSZmrk , k, v4; // this is the ONLY user of v4 -> // // Ok, to commute v1 in FMADD213PSZrk. // The k-mask operand has index = 2 for masked and zero-masked operations. KMaskOp = 2; // The operand with index = 1 is used as a source for those elements for // which the corresponding bit in the k-mask is set to 0. if (X86II::isKMergeMasked(TSFlags) || IsIntrinsic) FirstCommutableVecOp = 3; LastCommutableVecOp++; } else if (IsIntrinsic) { // Commuting the first operand of an intrinsic instruction isn't possible // unless we can prove that only the lowest element of the result is used. FirstCommutableVecOp = 2; } if (isMem(MI, LastCommutableVecOp)) LastCommutableVecOp--; // Only the first RegOpsNum operands are commutable. // Also, the value 'CommuteAnyOperandIndex' is valid here as it means // that the operand is not specified/fixed. if (SrcOpIdx1 != CommuteAnyOperandIndex && (SrcOpIdx1 < FirstCommutableVecOp || SrcOpIdx1 > LastCommutableVecOp || SrcOpIdx1 == KMaskOp)) return false; if (SrcOpIdx2 != CommuteAnyOperandIndex && (SrcOpIdx2 < FirstCommutableVecOp || SrcOpIdx2 > LastCommutableVecOp || SrcOpIdx2 == KMaskOp)) return false; // Look for two different register operands assumed to be commutable // regardless of the FMA opcode. The FMA opcode is adjusted later. if (SrcOpIdx1 == CommuteAnyOperandIndex || SrcOpIdx2 == CommuteAnyOperandIndex) { unsigned CommutableOpIdx2 = SrcOpIdx2; // At least one of operands to be commuted is not specified and // this method is free to choose appropriate commutable operands. if (SrcOpIdx1 == SrcOpIdx2) // Both of operands are not fixed. By default set one of commutable // operands to the last register operand of the instruction. CommutableOpIdx2 = LastCommutableVecOp; else if (SrcOpIdx2 == CommuteAnyOperandIndex) // Only one of operands is not fixed. CommutableOpIdx2 = SrcOpIdx1; // CommutableOpIdx2 is well defined now. Let's choose another commutable // operand and assign its index to CommutableOpIdx1. Register Op2Reg = MI.getOperand(CommutableOpIdx2).getReg(); unsigned CommutableOpIdx1; for (CommutableOpIdx1 = LastCommutableVecOp; CommutableOpIdx1 >= FirstCommutableVecOp; CommutableOpIdx1--) { // Just ignore and skip the k-mask operand. if (CommutableOpIdx1 == KMaskOp) continue; // The commuted operands must have different registers. // Otherwise, the commute transformation does not change anything and // is useless then. if (Op2Reg != MI.getOperand(CommutableOpIdx1).getReg()) break; } // No appropriate commutable operands were found. if (CommutableOpIdx1 < FirstCommutableVecOp) return false; // Assign the found pair of commutable indices to SrcOpIdx1 and SrcOpidx2 // to return those values. if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; } return true; } bool X86InstrInfo::findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1, unsigned &SrcOpIdx2) const { const MCInstrDesc &Desc = MI.getDesc(); if (!Desc.isCommutable()) return false; switch (MI.getOpcode()) { case X86::CMPSDrri: case X86::CMPSSrri: case X86::CMPPDrri: case X86::CMPPSrri: case X86::VCMPSDrri: case X86::VCMPSSrri: case X86::VCMPPDrri: case X86::VCMPPSrri: case X86::VCMPPDYrri: case X86::VCMPPSYrri: case X86::VCMPSDZrri: case X86::VCMPSSZrri: case X86::VCMPPDZrri: case X86::VCMPPSZrri: case X86::VCMPSHZrri: case X86::VCMPPHZrri: case X86::VCMPPHZ128rri: case X86::VCMPPHZ256rri: case X86::VCMPPDZ128rri: case X86::VCMPPSZ128rri: case X86::VCMPPDZ256rri: case X86::VCMPPSZ256rri: case X86::VCMPPDZrrik: case X86::VCMPPSZrrik: case X86::VCMPPDZ128rrik: case X86::VCMPPSZ128rrik: case X86::VCMPPDZ256rrik: case X86::VCMPPSZ256rrik: { unsigned OpOffset = X86II::isKMasked(Desc.TSFlags) ? 1 : 0; // Float comparison can be safely commuted for // Ordered/Unordered/Equal/NotEqual tests unsigned Imm = MI.getOperand(3 + OpOffset).getImm() & 0x7; switch (Imm) { default: // EVEX versions can be commuted. if ((Desc.TSFlags & X86II::EncodingMask) == X86II::EVEX) break; return false; case 0x00: // EQUAL case 0x03: // UNORDERED case 0x04: // NOT EQUAL case 0x07: // ORDERED break; } // The indices of the commutable operands are 1 and 2 (or 2 and 3 // when masked). // Assign them to the returned operand indices here. return fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, 1 + OpOffset, 2 + OpOffset); } case X86::MOVSSrr: // X86::MOVSDrr is always commutable. MOVSS is only commutable if we can // form sse4.1 blend. We assume VMOVSSrr/VMOVSDrr is always commutable since // AVX implies sse4.1. if (Subtarget.hasSSE41()) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; case X86::SHUFPDrri: // We can commute this to MOVSD. if (MI.getOperand(3).getImm() == 0x02) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; case X86::MOVHLPSrr: case X86::UNPCKHPDrr: case X86::VMOVHLPSrr: case X86::VUNPCKHPDrr: case X86::VMOVHLPSZrr: case X86::VUNPCKHPDZ128rr: if (Subtarget.hasSSE2()) return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); return false; case X86::VPTERNLOGDZrri: case X86::VPTERNLOGDZrmi: case X86::VPTERNLOGDZ128rri: case X86::VPTERNLOGDZ128rmi: case X86::VPTERNLOGDZ256rri: case X86::VPTERNLOGDZ256rmi: case X86::VPTERNLOGQZrri: case X86::VPTERNLOGQZrmi: case X86::VPTERNLOGQZ128rri: case X86::VPTERNLOGQZ128rmi: case X86::VPTERNLOGQZ256rri: case X86::VPTERNLOGQZ256rmi: case X86::VPTERNLOGDZrrik: case X86::VPTERNLOGDZ128rrik: case X86::VPTERNLOGDZ256rrik: case X86::VPTERNLOGQZrrik: case X86::VPTERNLOGQZ128rrik: case X86::VPTERNLOGQZ256rrik: case X86::VPTERNLOGDZrrikz: case X86::VPTERNLOGDZrmikz: case X86::VPTERNLOGDZ128rrikz: case X86::VPTERNLOGDZ128rmikz: case X86::VPTERNLOGDZ256rrikz: case X86::VPTERNLOGDZ256rmikz: case X86::VPTERNLOGQZrrikz: case X86::VPTERNLOGQZrmikz: case X86::VPTERNLOGQZ128rrikz: case X86::VPTERNLOGQZ128rmikz: case X86::VPTERNLOGQZ256rrikz: case X86::VPTERNLOGQZ256rmikz: case X86::VPTERNLOGDZ128rmbi: case X86::VPTERNLOGDZ256rmbi: case X86::VPTERNLOGDZrmbi: case X86::VPTERNLOGQZ128rmbi: case X86::VPTERNLOGQZ256rmbi: case X86::VPTERNLOGQZrmbi: case X86::VPTERNLOGDZ128rmbikz: case X86::VPTERNLOGDZ256rmbikz: case X86::VPTERNLOGDZrmbikz: case X86::VPTERNLOGQZ128rmbikz: case X86::VPTERNLOGQZ256rmbikz: case X86::VPTERNLOGQZrmbikz: return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); case X86::VPDPWSSDYrr: case X86::VPDPWSSDrr: case X86::VPDPWSSDSYrr: case X86::VPDPWSSDSrr: case X86::VPDPWUUDrr: case X86::VPDPWUUDYrr: case X86::VPDPWUUDSrr: case X86::VPDPWUUDSYrr: case X86::VPDPBSSDSrr: case X86::VPDPBSSDSYrr: case X86::VPDPBSSDrr: case X86::VPDPBSSDYrr: case X86::VPDPBUUDSrr: case X86::VPDPBUUDSYrr: case X86::VPDPBUUDrr: case X86::VPDPBUUDYrr: case X86::VPDPWSSDZ128r: case X86::VPDPWSSDZ128rk: case X86::VPDPWSSDZ128rkz: case X86::VPDPWSSDZ256r: case X86::VPDPWSSDZ256rk: case X86::VPDPWSSDZ256rkz: case X86::VPDPWSSDZr: case X86::VPDPWSSDZrk: case X86::VPDPWSSDZrkz: case X86::VPDPWSSDSZ128r: case X86::VPDPWSSDSZ128rk: case X86::VPDPWSSDSZ128rkz: case X86::VPDPWSSDSZ256r: case X86::VPDPWSSDSZ256rk: case X86::VPDPWSSDSZ256rkz: case X86::VPDPWSSDSZr: case X86::VPDPWSSDSZrk: case X86::VPDPWSSDSZrkz: case X86::VPMADD52HUQrr: case X86::VPMADD52HUQYrr: case X86::VPMADD52HUQZ128r: case X86::VPMADD52HUQZ128rk: case X86::VPMADD52HUQZ128rkz: case X86::VPMADD52HUQZ256r: case X86::VPMADD52HUQZ256rk: case X86::VPMADD52HUQZ256rkz: case X86::VPMADD52HUQZr: case X86::VPMADD52HUQZrk: case X86::VPMADD52HUQZrkz: case X86::VPMADD52LUQrr: case X86::VPMADD52LUQYrr: case X86::VPMADD52LUQZ128r: case X86::VPMADD52LUQZ128rk: case X86::VPMADD52LUQZ128rkz: case X86::VPMADD52LUQZ256r: case X86::VPMADD52LUQZ256rk: case X86::VPMADD52LUQZ256rkz: case X86::VPMADD52LUQZr: case X86::VPMADD52LUQZrk: case X86::VPMADD52LUQZrkz: case X86::VFMADDCPHZr: case X86::VFMADDCPHZrk: case X86::VFMADDCPHZrkz: case X86::VFMADDCPHZ128r: case X86::VFMADDCPHZ128rk: case X86::VFMADDCPHZ128rkz: case X86::VFMADDCPHZ256r: case X86::VFMADDCPHZ256rk: case X86::VFMADDCPHZ256rkz: case X86::VFMADDCSHZr: case X86::VFMADDCSHZrk: case X86::VFMADDCSHZrkz: { unsigned CommutableOpIdx1 = 2; unsigned CommutableOpIdx2 = 3; if (X86II::isKMasked(Desc.TSFlags)) { // Skip the mask register. ++CommutableOpIdx1; ++CommutableOpIdx2; } if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } default: const X86InstrFMA3Group *FMA3Group = getFMA3Group(MI.getOpcode(), MI.getDesc().TSFlags); if (FMA3Group) return findThreeSrcCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2, FMA3Group->isIntrinsic()); // Handled masked instructions since we need to skip over the mask input // and the preserved input. if (X86II::isKMasked(Desc.TSFlags)) { // First assume that the first input is the mask operand and skip past it. unsigned CommutableOpIdx1 = Desc.getNumDefs() + 1; unsigned CommutableOpIdx2 = Desc.getNumDefs() + 2; // Check if the first input is tied. If there isn't one then we only // need to skip the mask operand which we did above. if ((MI.getDesc().getOperandConstraint(Desc.getNumDefs(), MCOI::TIED_TO) != -1)) { // If this is zero masking instruction with a tied operand, we need to // move the first index back to the first input since this must // be a 3 input instruction and we want the first two non-mask inputs. // Otherwise this is a 2 input instruction with a preserved input and // mask, so we need to move the indices to skip one more input. if (X86II::isKMergeMasked(Desc.TSFlags)) { ++CommutableOpIdx1; ++CommutableOpIdx2; } else { --CommutableOpIdx1; } } if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2, CommutableOpIdx1, CommutableOpIdx2)) return false; if (!MI.getOperand(SrcOpIdx1).isReg() || !MI.getOperand(SrcOpIdx2).isReg()) // No idea. return false; return true; } return TargetInstrInfo::findCommutedOpIndices(MI, SrcOpIdx1, SrcOpIdx2); } return false; } static bool isConvertibleLEA(MachineInstr *MI) { unsigned Opcode = MI->getOpcode(); if (Opcode != X86::LEA32r && Opcode != X86::LEA64r && Opcode != X86::LEA64_32r) return false; const MachineOperand &Scale = MI->getOperand(1 + X86::AddrScaleAmt); const MachineOperand &Disp = MI->getOperand(1 + X86::AddrDisp); const MachineOperand &Segment = MI->getOperand(1 + X86::AddrSegmentReg); if (Segment.getReg() != 0 || !Disp.isImm() || Disp.getImm() != 0 || Scale.getImm() > 1) return false; return true; } bool X86InstrInfo::hasCommutePreference(MachineInstr &MI, bool &Commute) const { // Currently we're interested in following sequence only. // r3 = lea r1, r2 // r5 = add r3, r4 // Both r3 and r4 are killed in add, we hope the add instruction has the // operand order // r5 = add r4, r3 // So later in X86FixupLEAs the lea instruction can be rewritten as add. unsigned Opcode = MI.getOpcode(); if (Opcode != X86::ADD32rr && Opcode != X86::ADD64rr) return false; const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); Register Reg1 = MI.getOperand(1).getReg(); Register Reg2 = MI.getOperand(2).getReg(); // Check if Reg1 comes from LEA in the same MBB. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg1)) { if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { Commute = true; return true; } } // Check if Reg2 comes from LEA in the same MBB. if (MachineInstr *Inst = MRI.getUniqueVRegDef(Reg2)) { if (isConvertibleLEA(Inst) && Inst->getParent() == MI.getParent()) { Commute = false; return true; } } return false; } int X86::getCondSrcNoFromDesc(const MCInstrDesc &MCID) { unsigned Opcode = MCID.getOpcode(); if (!(X86::isJCC(Opcode) || X86::isSETCC(Opcode) || X86::isCMOVCC(Opcode) || X86::isCFCMOVCC(Opcode) || X86::isCCMPCC(Opcode) || X86::isCTESTCC(Opcode))) return -1; // Assume that condition code is always the last use operand. unsigned NumUses = MCID.getNumOperands() - MCID.getNumDefs(); return NumUses - 1; } X86::CondCode X86::getCondFromMI(const MachineInstr &MI) { const MCInstrDesc &MCID = MI.getDesc(); int CondNo = getCondSrcNoFromDesc(MCID); if (CondNo < 0) return X86::COND_INVALID; CondNo += MCID.getNumDefs(); return static_cast(MI.getOperand(CondNo).getImm()); } X86::CondCode X86::getCondFromBranch(const MachineInstr &MI) { return X86::isJCC(MI.getOpcode()) ? X86::getCondFromMI(MI) : X86::COND_INVALID; } X86::CondCode X86::getCondFromSETCC(const MachineInstr &MI) { return X86::isSETCC(MI.getOpcode()) ? X86::getCondFromMI(MI) : X86::COND_INVALID; } X86::CondCode X86::getCondFromCMov(const MachineInstr &MI) { return X86::isCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) : X86::COND_INVALID; } X86::CondCode X86::getCondFromCFCMov(const MachineInstr &MI) { return X86::isCFCMOVCC(MI.getOpcode()) ? X86::getCondFromMI(MI) : X86::COND_INVALID; } X86::CondCode X86::getCondFromCCMP(const MachineInstr &MI) { return X86::isCCMPCC(MI.getOpcode()) || X86::isCTESTCC(MI.getOpcode()) ? X86::getCondFromMI(MI) : X86::COND_INVALID; } int X86::getCCMPCondFlagsFromCondCode(X86::CondCode CC) { // CCMP/CTEST has two conditional operands: // - SCC: source conditonal code (same as CMOV) // - DCF: destination conditional flags, which has 4 valid bits // // +----+----+----+----+ // | OF | SF | ZF | CF | // +----+----+----+----+ // // If SCC(source conditional code) evaluates to false, CCMP/CTEST will updates // the conditional flags by as follows: // // OF = DCF.OF // SF = DCF.SF // ZF = DCF.ZF // CF = DCF.CF // PF = DCF.CF // AF = 0 (Auxiliary Carry Flag) // // Otherwise, the CMP or TEST is executed and it updates the // CSPAZO flags normally. // // NOTE: // If SCC = P, then SCC evaluates to true regardless of the CSPAZO value. // If SCC = NP, then SCC evaluates to false regardless of the CSPAZO value. enum { CF = 1, ZF = 2, SF = 4, OF = 8, PF = CF }; switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_NO: case X86::COND_NE: case X86::COND_GE: case X86::COND_G: case X86::COND_AE: case X86::COND_A: case X86::COND_NS: case X86::COND_NP: return 0; case X86::COND_O: return OF; case X86::COND_B: case X86::COND_BE: return CF; break; case X86::COND_E: case X86::COND_LE: return ZF; case X86::COND_S: case X86::COND_L: return SF; case X86::COND_P: return PF; } } #define GET_X86_NF_TRANSFORM_TABLE #define GET_X86_ND2NONND_TABLE #include "X86GenInstrMapping.inc" static unsigned getNewOpcFromTable(ArrayRef Table, unsigned Opc) { const auto I = llvm::lower_bound(Table, Opc); return (I == Table.end() || I->OldOpc != Opc) ? 0U : I->NewOpc; } unsigned X86::getNFVariant(unsigned Opc) { return getNewOpcFromTable(X86NFTransformTable, Opc); } unsigned X86::getNonNDVariant(unsigned Opc) { return getNewOpcFromTable(X86ND2NonNDTable, Opc); } /// Return the inverse of the specified condition, /// e.g. turning COND_E to COND_NE. X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) { switch (CC) { default: llvm_unreachable("Illegal condition code!"); case X86::COND_E: return X86::COND_NE; case X86::COND_NE: return X86::COND_E; case X86::COND_L: return X86::COND_GE; case X86::COND_LE: return X86::COND_G; case X86::COND_G: return X86::COND_LE; case X86::COND_GE: return X86::COND_L; case X86::COND_B: return X86::COND_AE; case X86::COND_BE: return X86::COND_A; case X86::COND_A: return X86::COND_BE; case X86::COND_AE: return X86::COND_B; case X86::COND_S: return X86::COND_NS; case X86::COND_NS: return X86::COND_S; case X86::COND_P: return X86::COND_NP; case X86::COND_NP: return X86::COND_P; case X86::COND_O: return X86::COND_NO; case X86::COND_NO: return X86::COND_O; case X86::COND_NE_OR_P: return X86::COND_E_AND_NP; case X86::COND_E_AND_NP: return X86::COND_NE_OR_P; } } /// Assuming the flags are set by MI(a,b), return the condition code if we /// modify the instructions such that flags are set by MI(b,a). static X86::CondCode getSwappedCondition(X86::CondCode CC) { switch (CC) { default: return X86::COND_INVALID; case X86::COND_E: return X86::COND_E; case X86::COND_NE: return X86::COND_NE; case X86::COND_L: return X86::COND_G; case X86::COND_LE: return X86::COND_GE; case X86::COND_G: return X86::COND_L; case X86::COND_GE: return X86::COND_LE; case X86::COND_B: return X86::COND_A; case X86::COND_BE: return X86::COND_AE; case X86::COND_A: return X86::COND_B; case X86::COND_AE: return X86::COND_BE; } } std::pair X86::getX86ConditionCode(CmpInst::Predicate Predicate) { X86::CondCode CC = X86::COND_INVALID; bool NeedSwap = false; switch (Predicate) { default: break; // Floating-point Predicates case CmpInst::FCMP_UEQ: CC = X86::COND_E; break; case CmpInst::FCMP_OLT: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_OGT: CC = X86::COND_A; break; case CmpInst::FCMP_OLE: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_OGE: CC = X86::COND_AE; break; case CmpInst::FCMP_UGT: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_ULT: CC = X86::COND_B; break; case CmpInst::FCMP_UGE: NeedSwap = true; [[fallthrough]]; case CmpInst::FCMP_ULE: CC = X86::COND_BE; break; case CmpInst::FCMP_ONE: CC = X86::COND_NE; break; case CmpInst::FCMP_UNO: CC = X86::COND_P; break; case CmpInst::FCMP_ORD: CC = X86::COND_NP; break; case CmpInst::FCMP_OEQ: [[fallthrough]]; case CmpInst::FCMP_UNE: CC = X86::COND_INVALID; break; // Integer Predicates case CmpInst::ICMP_EQ: CC = X86::COND_E; break; case CmpInst::ICMP_NE: CC = X86::COND_NE; break; case CmpInst::ICMP_UGT: CC = X86::COND_A; break; case CmpInst::ICMP_UGE: CC = X86::COND_AE; break; case CmpInst::ICMP_ULT: CC = X86::COND_B; break; case CmpInst::ICMP_ULE: CC = X86::COND_BE; break; case CmpInst::ICMP_SGT: CC = X86::COND_G; break; case CmpInst::ICMP_SGE: CC = X86::COND_GE; break; case CmpInst::ICMP_SLT: CC = X86::COND_L; break; case CmpInst::ICMP_SLE: CC = X86::COND_LE; break; } return std::make_pair(CC, NeedSwap); } /// Return a cmov opcode for the given register size in bytes, and operand type. unsigned X86::getCMovOpcode(unsigned RegBytes, bool HasMemoryOperand, bool HasNDD) { switch (RegBytes) { default: llvm_unreachable("Illegal register size!"); #define GET_ND_IF_ENABLED(OPC) (HasNDD ? OPC##_ND : OPC) case 2: return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV16rm) : GET_ND_IF_ENABLED(X86::CMOV16rr); case 4: return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV32rm) : GET_ND_IF_ENABLED(X86::CMOV32rr); case 8: return HasMemoryOperand ? GET_ND_IF_ENABLED(X86::CMOV64rm) : GET_ND_IF_ENABLED(X86::CMOV64rr); } } /// Get the VPCMP immediate for the given condition. unsigned X86::getVPCMPImmForCond(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unexpected SETCC condition"); case ISD::SETNE: return 4; case ISD::SETEQ: return 0; case ISD::SETULT: case ISD::SETLT: return 1; case ISD::SETUGT: case ISD::SETGT: return 6; case ISD::SETUGE: case ISD::SETGE: return 5; case ISD::SETULE: case ISD::SETLE: return 2; } } /// Get the VPCMP immediate if the operands are swapped. unsigned X86::getSwappedVPCMPImm(unsigned Imm) { switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x01: Imm = 0x06; break; // LT -> NLE case 0x02: Imm = 0x05; break; // LE -> NLT case 0x05: Imm = 0x02; break; // NLT -> LE case 0x06: Imm = 0x01; break; // NLE -> LT case 0x00: // EQ case 0x03: // FALSE case 0x04: // NE case 0x07: // TRUE break; } return Imm; } /// Get the VPCOM immediate if the operands are swapped. unsigned X86::getSwappedVPCOMImm(unsigned Imm) { switch (Imm) { default: llvm_unreachable("Unreachable!"); case 0x00: Imm = 0x02; break; // LT -> GT case 0x01: Imm = 0x03; break; // LE -> GE case 0x02: Imm = 0x00; break; // GT -> LT case 0x03: Imm = 0x01; break; // GE -> LE case 0x04: // EQ case 0x05: // NE case 0x06: // FALSE case 0x07: // TRUE break; } return Imm; } /// Get the VCMP immediate if the operands are swapped. unsigned X86::getSwappedVCMPImm(unsigned Imm) { // Only need the lower 2 bits to distinquish. switch (Imm & 0x3) { default: llvm_unreachable("Unreachable!"); case 0x00: case 0x03: // EQ/NE/TRUE/FALSE/ORD/UNORD don't change immediate when commuted. break; case 0x01: case 0x02: // Need to toggle bits 3:0. Bit 4 stays the same. Imm ^= 0xf; break; } return Imm; } unsigned X86::getVectorRegisterWidth(const MCOperandInfo &Info) { if (Info.RegClass == X86::VR128RegClassID || Info.RegClass == X86::VR128XRegClassID) return 128; if (Info.RegClass == X86::VR256RegClassID || Info.RegClass == X86::VR256XRegClassID) return 256; if (Info.RegClass == X86::VR512RegClassID) return 512; llvm_unreachable("Unknown register class!"); } /// Return true if the Reg is X87 register. static bool isX87Reg(unsigned Reg) { return (Reg == X86::FPCW || Reg == X86::FPSW || (Reg >= X86::ST0 && Reg <= X86::ST7)); } /// check if the instruction is X87 instruction bool X86::isX87Instruction(MachineInstr &MI) { // Call defs X87 register, so we special case it here because // otherwise calls are incorrectly flagged as x87 instructions // as a result. if (MI.isCall()) return false; for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg()) continue; if (isX87Reg(MO.getReg())) return true; } return false; } int X86::getFirstAddrOperandIdx(const MachineInstr &MI) { auto IsMemOp = [](const MCOperandInfo &OpInfo) { return OpInfo.OperandType == MCOI::OPERAND_MEMORY; }; const MCInstrDesc &Desc = MI.getDesc(); // Directly invoke the MC-layer routine for real (i.e., non-pseudo) // instructions (fast case). if (!X86II::isPseudo(Desc.TSFlags)) { int MemRefIdx = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefIdx >= 0) return MemRefIdx + X86II::getOperandBias(Desc); #ifdef EXPENSIVE_CHECKS assert(none_of(Desc.operands(), IsMemOp) && "Got false negative from X86II::getMemoryOperandNo()!"); #endif return -1; } // Otherwise, handle pseudo instructions by examining the type of their // operands (slow case). An instruction cannot have a memory reference if it // has fewer than AddrNumOperands (= 5) explicit operands. unsigned NumOps = Desc.getNumOperands(); if (NumOps < X86::AddrNumOperands) { #ifdef EXPENSIVE_CHECKS assert(none_of(Desc.operands(), IsMemOp) && "Expected no operands to have OPERAND_MEMORY type!"); #endif return -1; } // The first operand with type OPERAND_MEMORY indicates the start of a memory // reference. We expect the following AddrNumOperand-1 operands to also have // OPERAND_MEMORY type. for (unsigned I = 0, E = NumOps - X86::AddrNumOperands; I != E; ++I) { if (IsMemOp(Desc.operands()[I])) { #ifdef EXPENSIVE_CHECKS assert(std::all_of(Desc.operands().begin() + I, Desc.operands().begin() + I + X86::AddrNumOperands, IsMemOp) && "Expected all five operands in the memory reference to have " "OPERAND_MEMORY type!"); #endif return I; } } return -1; } const Constant *X86::getConstantFromPool(const MachineInstr &MI, unsigned OpNo) { assert(MI.getNumOperands() >= (OpNo + X86::AddrNumOperands) && "Unexpected number of operands!"); const MachineOperand &Index = MI.getOperand(OpNo + X86::AddrIndexReg); if (!Index.isReg() || Index.getReg() != X86::NoRegister) return nullptr; const MachineOperand &Disp = MI.getOperand(OpNo + X86::AddrDisp); if (!Disp.isCPI() || Disp.getOffset() != 0) return nullptr; ArrayRef Constants = MI.getParent()->getParent()->getConstantPool()->getConstants(); const MachineConstantPoolEntry &ConstantEntry = Constants[Disp.getIndex()]; // Bail if this is a machine constant pool entry, we won't be able to dig out // anything useful. if (ConstantEntry.isMachineConstantPoolEntry()) return nullptr; return ConstantEntry.Val.ConstVal; } bool X86InstrInfo::isUnconditionalTailCall(const MachineInstr &MI) const { switch (MI.getOpcode()) { case X86::TCRETURNdi: case X86::TCRETURNri: case X86::TCRETURNmi: case X86::TCRETURNdi64: case X86::TCRETURNri64: case X86::TCRETURNmi64: return true; default: return false; } } bool X86InstrInfo::canMakeTailCallConditional( SmallVectorImpl &BranchCond, const MachineInstr &TailCall) const { const MachineFunction *MF = TailCall.getMF(); if (MF->getTarget().getCodeModel() == CodeModel::Kernel) { // Kernel patches thunk calls in runtime, these should never be conditional. const MachineOperand &Target = TailCall.getOperand(0); if (Target.isSymbol()) { StringRef Symbol(Target.getSymbolName()); // this is currently only relevant to r11/kernel indirect thunk. if (Symbol == "__x86_indirect_thunk_r11") return false; } } if (TailCall.getOpcode() != X86::TCRETURNdi && TailCall.getOpcode() != X86::TCRETURNdi64) { // Only direct calls can be done with a conditional branch. return false; } if (Subtarget.isTargetWin64() && MF->hasWinCFI()) { // Conditional tail calls confuse the Win64 unwinder. return false; } assert(BranchCond.size() == 1); if (BranchCond[0].getImm() > X86::LAST_VALID_COND) { // Can't make a conditional tail call with this condition. return false; } const X86MachineFunctionInfo *X86FI = MF->getInfo(); if (X86FI->getTCReturnAddrDelta() != 0 || TailCall.getOperand(1).getImm() != 0) { // A conditional tail call cannot do any stack adjustment. return false; } return true; } void X86InstrInfo::replaceBranchWithTailCall( MachineBasicBlock &MBB, SmallVectorImpl &BranchCond, const MachineInstr &TailCall) const { assert(canMakeTailCallConditional(BranchCond, TailCall)); MachineBasicBlock::iterator I = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; if (!I->isBranch()) assert(0 && "Can't find the branch to replace!"); X86::CondCode CC = X86::getCondFromBranch(*I); assert(BranchCond.size() == 1); if (CC != BranchCond[0].getImm()) continue; break; } unsigned Opc = TailCall.getOpcode() == X86::TCRETURNdi ? X86::TCRETURNdicc : X86::TCRETURNdi64cc; auto MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opc)); MIB->addOperand(TailCall.getOperand(0)); // Destination. MIB.addImm(0); // Stack offset (not used). MIB->addOperand(BranchCond[0]); // Condition. MIB.copyImplicitOps(TailCall); // Regmask and (imp-used) parameters. // Add implicit uses and defs of all live regs potentially clobbered by the // call. This way they still appear live across the call. LivePhysRegs LiveRegs(getRegisterInfo()); LiveRegs.addLiveOuts(MBB); SmallVector, 8> Clobbers; LiveRegs.stepForward(*MIB, Clobbers); for (const auto &C : Clobbers) { MIB.addReg(C.first, RegState::Implicit); MIB.addReg(C.first, RegState::Implicit | RegState::Define); } I->eraseFromParent(); } // Given a MBB and its TBB, find the FBB which was a fallthrough MBB (it may // not be a fallthrough MBB now due to layout changes). Return nullptr if the // fallthrough MBB cannot be identified. static MachineBasicBlock *getFallThroughMBB(MachineBasicBlock *MBB, MachineBasicBlock *TBB) { // Look for non-EHPad successors other than TBB. If we find exactly one, it // is the fallthrough MBB. If we find zero, then TBB is both the target MBB // and fallthrough MBB. If we find more than one, we cannot identify the // fallthrough MBB and should return nullptr. MachineBasicBlock *FallthroughBB = nullptr; for (MachineBasicBlock *Succ : MBB->successors()) { if (Succ->isEHPad() || (Succ == TBB && FallthroughBB)) continue; // Return a nullptr if we found more than one fallthrough successor. if (FallthroughBB && FallthroughBB != TBB) return nullptr; FallthroughBB = Succ; } return FallthroughBB; } bool X86InstrInfo::analyzeBranchImpl( MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, SmallVectorImpl &CondBranches, bool AllowModify) const { // Start from the bottom of the block and work up, examining the // terminator instructions. MachineBasicBlock::iterator I = MBB.end(); MachineBasicBlock::iterator UnCondBrIter = MBB.end(); while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; // Working from the bottom, when we see a non-terminator instruction, we're // done. if (!isUnpredicatedTerminator(*I)) break; // A terminator that isn't a branch can't easily be handled by this // analysis. if (!I->isBranch()) return true; // Handle unconditional branches. if (I->getOpcode() == X86::JMP_1) { UnCondBrIter = I; if (!AllowModify) { TBB = I->getOperand(0).getMBB(); continue; } // If the block has any instructions after a JMP, delete them. MBB.erase(std::next(I), MBB.end()); Cond.clear(); FBB = nullptr; // Delete the JMP if it's equivalent to a fall-through. if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) { TBB = nullptr; I->eraseFromParent(); I = MBB.end(); UnCondBrIter = MBB.end(); continue; } // TBB is used to indicate the unconditional destination. TBB = I->getOperand(0).getMBB(); continue; } // Handle conditional branches. X86::CondCode BranchCode = X86::getCondFromBranch(*I); if (BranchCode == X86::COND_INVALID) return true; // Can't handle indirect branch. // In practice we should never have an undef eflags operand, if we do // abort here as we are not prepared to preserve the flag. if (I->findRegisterUseOperand(X86::EFLAGS, /*TRI=*/nullptr)->isUndef()) return true; // Working from the bottom, handle the first conditional branch. if (Cond.empty()) { FBB = TBB; TBB = I->getOperand(0).getMBB(); Cond.push_back(MachineOperand::CreateImm(BranchCode)); CondBranches.push_back(&*I); continue; } // Handle subsequent conditional branches. Only handle the case where all // conditional branches branch to the same destination and their condition // opcodes fit one of the special multi-branch idioms. assert(Cond.size() == 1); assert(TBB); // If the conditions are the same, we can leave them alone. X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm(); auto NewTBB = I->getOperand(0).getMBB(); if (OldBranchCode == BranchCode && TBB == NewTBB) continue; // If they differ, see if they fit one of the known patterns. Theoretically, // we could handle more patterns here, but we shouldn't expect to see them // if instruction selection has done a reasonable job. if (TBB == NewTBB && ((OldBranchCode == X86::COND_P && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_NE && BranchCode == X86::COND_P))) { BranchCode = X86::COND_NE_OR_P; } else if ((OldBranchCode == X86::COND_NP && BranchCode == X86::COND_NE) || (OldBranchCode == X86::COND_E && BranchCode == X86::COND_P)) { if (NewTBB != (FBB ? FBB : getFallThroughMBB(&MBB, TBB))) return true; // X86::COND_E_AND_NP usually has two different branch destinations. // // JP B1 // JE B2 // JMP B1 // B1: // B2: // // Here this condition branches to B2 only if NP && E. It has another // equivalent form: // // JNE B1 // JNP B2 // JMP B1 // B1: // B2: // // Similarly it branches to B2 only if E && NP. That is why this condition // is named with COND_E_AND_NP. BranchCode = X86::COND_E_AND_NP; } else return true; // Update the MachineOperand. Cond[0].setImm(BranchCode); CondBranches.push_back(&*I); } return false; } bool X86InstrInfo::analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB, MachineBasicBlock *&FBB, SmallVectorImpl &Cond, bool AllowModify) const { SmallVector CondBranches; return analyzeBranchImpl(MBB, TBB, FBB, Cond, CondBranches, AllowModify); } static int getJumpTableIndexFromAddr(const MachineInstr &MI) { const MCInstrDesc &Desc = MI.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); assert(MemRefBegin >= 0 && "instr should have memory operand"); MemRefBegin += X86II::getOperandBias(Desc); const MachineOperand &MO = MI.getOperand(MemRefBegin + X86::AddrDisp); if (!MO.isJTI()) return -1; return MO.getIndex(); } static int getJumpTableIndexFromReg(const MachineRegisterInfo &MRI, Register Reg) { if (!Reg.isVirtual()) return -1; MachineInstr *MI = MRI.getUniqueVRegDef(Reg); if (MI == nullptr) return -1; unsigned Opcode = MI->getOpcode(); if (Opcode != X86::LEA64r && Opcode != X86::LEA32r) return -1; return getJumpTableIndexFromAddr(*MI); } int X86InstrInfo::getJumpTableIndex(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); // Switch-jump pattern for non-PIC code looks like: // JMP64m $noreg, 8, %X, %jump-table.X, $noreg if (Opcode == X86::JMP64m || Opcode == X86::JMP32m) { return getJumpTableIndexFromAddr(MI); } // The pattern for PIC code looks like: // %0 = LEA64r $rip, 1, $noreg, %jump-table.X // %1 = MOVSX64rm32 %0, 4, XX, 0, $noreg // %2 = ADD64rr %1, %0 // JMP64r %2 if (Opcode == X86::JMP64r || Opcode == X86::JMP32r) { Register Reg = MI.getOperand(0).getReg(); if (!Reg.isVirtual()) return -1; const MachineFunction &MF = *MI.getParent()->getParent(); const MachineRegisterInfo &MRI = MF.getRegInfo(); MachineInstr *Add = MRI.getUniqueVRegDef(Reg); if (Add == nullptr) return -1; if (Add->getOpcode() != X86::ADD64rr && Add->getOpcode() != X86::ADD32rr) return -1; int JTI1 = getJumpTableIndexFromReg(MRI, Add->getOperand(1).getReg()); if (JTI1 >= 0) return JTI1; int JTI2 = getJumpTableIndexFromReg(MRI, Add->getOperand(2).getReg()); if (JTI2 >= 0) return JTI2; } return -1; } bool X86InstrInfo::analyzeBranchPredicate(MachineBasicBlock &MBB, MachineBranchPredicate &MBP, bool AllowModify) const { using namespace std::placeholders; SmallVector Cond; SmallVector CondBranches; if (analyzeBranchImpl(MBB, MBP.TrueDest, MBP.FalseDest, Cond, CondBranches, AllowModify)) return true; if (Cond.size() != 1) return true; assert(MBP.TrueDest && "expected!"); if (!MBP.FalseDest) MBP.FalseDest = MBB.getNextNode(); const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineInstr *ConditionDef = nullptr; bool SingleUseCondition = true; for (MachineInstr &MI : llvm::drop_begin(llvm::reverse(MBB))) { if (MI.modifiesRegister(X86::EFLAGS, TRI)) { ConditionDef = &MI; break; } if (MI.readsRegister(X86::EFLAGS, TRI)) SingleUseCondition = false; } if (!ConditionDef) return true; if (SingleUseCondition) { for (auto *Succ : MBB.successors()) if (Succ->isLiveIn(X86::EFLAGS)) SingleUseCondition = false; } MBP.ConditionDef = ConditionDef; MBP.SingleUseCondition = SingleUseCondition; // Currently we only recognize the simple pattern: // // test %reg, %reg // je %label // const unsigned TestOpcode = Subtarget.is64Bit() ? X86::TEST64rr : X86::TEST32rr; if (ConditionDef->getOpcode() == TestOpcode && ConditionDef->getNumOperands() == 3 && ConditionDef->getOperand(0).isIdenticalTo(ConditionDef->getOperand(1)) && (Cond[0].getImm() == X86::COND_NE || Cond[0].getImm() == X86::COND_E)) { MBP.LHS = ConditionDef->getOperand(0); MBP.RHS = MachineOperand::CreateImm(0); MBP.Predicate = Cond[0].getImm() == X86::COND_NE ? MachineBranchPredicate::PRED_NE : MachineBranchPredicate::PRED_EQ; return false; } return true; } unsigned X86InstrInfo::removeBranch(MachineBasicBlock &MBB, int *BytesRemoved) const { assert(!BytesRemoved && "code size not handled"); MachineBasicBlock::iterator I = MBB.end(); unsigned Count = 0; while (I != MBB.begin()) { --I; if (I->isDebugInstr()) continue; if (I->getOpcode() != X86::JMP_1 && X86::getCondFromBranch(*I) == X86::COND_INVALID) break; // Remove the branch. I->eraseFromParent(); I = MBB.end(); ++Count; } return Count; } unsigned X86InstrInfo::insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB, ArrayRef Cond, const DebugLoc &DL, int *BytesAdded) const { // Shouldn't be a fall through. assert(TBB && "insertBranch must not be told to insert a fallthrough"); assert((Cond.size() == 1 || Cond.size() == 0) && "X86 branch conditions have one component!"); assert(!BytesAdded && "code size not handled"); if (Cond.empty()) { // Unconditional branch? assert(!FBB && "Unconditional branch with multiple successors!"); BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(TBB); return 1; } // If FBB is null, it is implied to be a fall-through block. bool FallThru = FBB == nullptr; // Conditional branch. unsigned Count = 0; X86::CondCode CC = (X86::CondCode)Cond[0].getImm(); switch (CC) { case X86::COND_NE_OR_P: // Synthesize NE_OR_P with two branches. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NE); ++Count; BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_P); ++Count; break; case X86::COND_E_AND_NP: // Use the next block of MBB as FBB if it is null. if (FBB == nullptr) { FBB = getFallThroughMBB(&MBB, TBB); assert(FBB && "MBB cannot be the last block in function when the false " "body is a fall-through."); } // Synthesize COND_E_AND_NP with two branches. BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(FBB).addImm(X86::COND_NE); ++Count; BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(X86::COND_NP); ++Count; break; default: { BuildMI(&MBB, DL, get(X86::JCC_1)).addMBB(TBB).addImm(CC); ++Count; } } if (!FallThru) { // Two-way Conditional branch. Insert the second branch. BuildMI(&MBB, DL, get(X86::JMP_1)).addMBB(FBB); ++Count; } return Count; } bool X86InstrInfo::canInsertSelect(const MachineBasicBlock &MBB, ArrayRef Cond, Register DstReg, Register TrueReg, Register FalseReg, int &CondCycles, int &TrueCycles, int &FalseCycles) const { // Not all subtargets have cmov instructions. if (!Subtarget.canUseCMOV()) return false; if (Cond.size() != 1) return false; // We cannot do the composite conditions, at least not in SSA form. if ((X86::CondCode)Cond[0].getImm() > X86::LAST_VALID_COND) return false; // Check register classes. const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterClass *RC = RI.getCommonSubClass(MRI.getRegClass(TrueReg), MRI.getRegClass(FalseReg)); if (!RC) return false; // We have cmov instructions for 16, 32, and 64 bit general purpose registers. if (X86::GR16RegClass.hasSubClassEq(RC) || X86::GR32RegClass.hasSubClassEq(RC) || X86::GR64RegClass.hasSubClassEq(RC)) { // This latency applies to Pentium M, Merom, Wolfdale, Nehalem, and Sandy // Bridge. Probably Ivy Bridge as well. CondCycles = 2; TrueCycles = 2; FalseCycles = 2; return true; } // Can't do vectors. return false; } void X86InstrInfo::insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator I, const DebugLoc &DL, Register DstReg, ArrayRef Cond, Register TrueReg, Register FalseReg) const { MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); const TargetRegisterClass &RC = *MRI.getRegClass(DstReg); assert(Cond.size() == 1 && "Invalid Cond array"); unsigned Opc = X86::getCMovOpcode(TRI.getRegSizeInBits(RC) / 8, false /*HasMemoryOperand*/, Subtarget.hasNDD()); BuildMI(MBB, I, DL, get(Opc), DstReg) .addReg(FalseReg) .addReg(TrueReg) .addImm(Cond[0].getImm()); } /// Test if the given register is a physical h register. static bool isHReg(unsigned Reg) { return X86::GR8_ABCD_HRegClass.contains(Reg); } // Try and copy between VR128/VR64 and GR64 registers. static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg, const X86Subtarget &Subtarget) { bool HasAVX = Subtarget.hasAVX(); bool HasAVX512 = Subtarget.hasAVX512(); bool HasEGPR = Subtarget.hasEGPR(); // SrcReg(MaskReg) -> DestReg(GR64) // SrcReg(MaskReg) -> DestReg(GR32) // All KMASK RegClasses hold the same k registers, can be tested against // anyone. if (X86::VK16RegClass.contains(SrcReg)) { if (X86::GR64RegClass.contains(DestReg)) { assert(Subtarget.hasBWI()); return HasEGPR ? X86::KMOVQrk_EVEX : X86::KMOVQrk; } if (X86::GR32RegClass.contains(DestReg)) return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDrk_EVEX : X86::KMOVDrk) : (HasEGPR ? X86::KMOVWrk_EVEX : X86::KMOVWrk); } // SrcReg(GR64) -> DestReg(MaskReg) // SrcReg(GR32) -> DestReg(MaskReg) // All KMASK RegClasses hold the same k registers, can be tested against // anyone. if (X86::VK16RegClass.contains(DestReg)) { if (X86::GR64RegClass.contains(SrcReg)) { assert(Subtarget.hasBWI()); return HasEGPR ? X86::KMOVQkr_EVEX : X86::KMOVQkr; } if (X86::GR32RegClass.contains(SrcReg)) return Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVDkr_EVEX : X86::KMOVDkr) : (HasEGPR ? X86::KMOVWkr_EVEX : X86::KMOVWkr); } // SrcReg(VR128) -> DestReg(GR64) // SrcReg(VR64) -> DestReg(GR64) // SrcReg(GR64) -> DestReg(VR128) // SrcReg(GR64) -> DestReg(VR64) if (X86::GR64RegClass.contains(DestReg)) { if (X86::VR128XRegClass.contains(SrcReg)) // Copy from a VR128 register to a GR64 register. return HasAVX512 ? X86::VMOVPQIto64Zrr : HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr; if (X86::VR64RegClass.contains(SrcReg)) // Copy from a VR64 register to a GR64 register. return X86::MMX_MOVD64from64rr; } else if (X86::GR64RegClass.contains(SrcReg)) { // Copy from a GR64 register to a VR128 register. if (X86::VR128XRegClass.contains(DestReg)) return HasAVX512 ? X86::VMOV64toPQIZrr : HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr; // Copy from a GR64 register to a VR64 register. if (X86::VR64RegClass.contains(DestReg)) return X86::MMX_MOVD64to64rr; } // SrcReg(VR128) -> DestReg(GR32) // SrcReg(GR32) -> DestReg(VR128) if (X86::GR32RegClass.contains(DestReg) && X86::VR128XRegClass.contains(SrcReg)) // Copy from a VR128 register to a GR32 register. return HasAVX512 ? X86::VMOVPDI2DIZrr : HasAVX ? X86::VMOVPDI2DIrr : X86::MOVPDI2DIrr; if (X86::VR128XRegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg)) // Copy from a VR128 register to a VR128 register. return HasAVX512 ? X86::VMOVDI2PDIZrr : HasAVX ? X86::VMOVDI2PDIrr : X86::MOVDI2PDIrr; return 0; } void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg, bool KillSrc) const { // First deal with the normal symmetric copies. bool HasAVX = Subtarget.hasAVX(); bool HasVLX = Subtarget.hasVLX(); bool HasEGPR = Subtarget.hasEGPR(); unsigned Opc = 0; if (X86::GR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV64rr; else if (X86::GR32RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV32rr; else if (X86::GR16RegClass.contains(DestReg, SrcReg)) Opc = X86::MOV16rr; else if (X86::GR8RegClass.contains(DestReg, SrcReg)) { // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if ((isHReg(DestReg) || isHReg(SrcReg)) && Subtarget.is64Bit()) { Opc = X86::MOV8rr_NOREX; // Both operands must be encodable without an REX prefix. assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) && "8-bit H register can not be copied outside GR8_NOREX"); } else Opc = X86::MOV8rr; } else if (X86::VR64RegClass.contains(DestReg, SrcReg)) Opc = X86::MMX_MOVQ64rr; else if (X86::VR128XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ128rr; else if (X86::VR128RegClass.contains(DestReg, SrcReg)) Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_xmm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); } } else if (X86::VR256XRegClass.contains(DestReg, SrcReg)) { if (HasVLX) Opc = X86::VMOVAPSZ256rr; else if (X86::VR256RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSYrr; else { // If this an extended register and we don't have VLX we need to use a // 512-bit move. Opc = X86::VMOVAPSZrr; const TargetRegisterInfo *TRI = &getRegisterInfo(); DestReg = TRI->getMatchingSuperReg(DestReg, X86::sub_ymm, &X86::VR512RegClass); SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); } } else if (X86::VR512RegClass.contains(DestReg, SrcReg)) Opc = X86::VMOVAPSZrr; // All KMASK RegClasses hold the same k registers, can be tested against // anyone. else if (X86::VK16RegClass.contains(DestReg, SrcReg)) Opc = Subtarget.hasBWI() ? (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVQkk) : (HasEGPR ? X86::KMOVQkk_EVEX : X86::KMOVWkk); if (!Opc) Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, Subtarget); if (Opc) { BuildMI(MBB, MI, DL, get(Opc), DestReg) .addReg(SrcReg, getKillRegState(KillSrc)); return; } if (SrcReg == X86::EFLAGS || DestReg == X86::EFLAGS) { // FIXME: We use a fatal error here because historically LLVM has tried // lower some of these physreg copies and we want to ensure we get // reasonable bug reports if someone encounters a case no other testing // found. This path should be removed after the LLVM 7 release. report_fatal_error("Unable to copy EFLAGS physical register!"); } LLVM_DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg) << " to " << RI.getName(DestReg) << '\n'); report_fatal_error("Cannot emit physreg copy instruction"); } std::optional X86InstrInfo::isCopyInstrImpl(const MachineInstr &MI) const { if (MI.isMoveReg()) { // FIXME: Dirty hack for apparent invariant that doesn't hold when // subreg_to_reg is coalesced with ordinary copies, such that the bits that // were asserted as 0 are now undef. if (MI.getOperand(0).isUndef() && MI.getOperand(0).getSubReg()) return std::nullopt; return DestSourcePair{MI.getOperand(0), MI.getOperand(1)}; } return std::nullopt; } static unsigned getLoadStoreOpcodeForFP16(bool Load, const X86Subtarget &STI) { if (STI.hasFP16()) return Load ? X86::VMOVSHZrm_alt : X86::VMOVSHZmr; if (Load) return STI.hasAVX512() ? X86::VMOVSSZrm : STI.hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; else return STI.hasAVX512() ? X86::VMOVSSZmr : STI.hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr; } static unsigned getLoadStoreRegOpcode(Register Reg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI, bool Load) { bool HasAVX = STI.hasAVX(); bool HasAVX512 = STI.hasAVX512(); bool HasVLX = STI.hasVLX(); bool HasEGPR = STI.hasEGPR(); assert(RC != nullptr && "Invalid target register class"); switch (STI.getRegisterInfo()->getSpillSize(*RC)) { default: llvm_unreachable("Unknown spill size"); case 1: assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass"); if (STI.is64Bit()) // Copying to or from a physical H register on x86-64 requires a NOREX // move. Otherwise use a normal move. if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC)) return Load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX; return Load ? X86::MOV8rm : X86::MOV8mr; case 2: if (X86::VK16RegClass.hasSubClassEq(RC)) return Load ? (HasEGPR ? X86::KMOVWkm_EVEX : X86::KMOVWkm) : (HasEGPR ? X86::KMOVWmk_EVEX : X86::KMOVWmk); assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass"); return Load ? X86::MOV16rm : X86::MOV16mr; case 4: if (X86::GR32RegClass.hasSubClassEq(RC)) return Load ? X86::MOV32rm : X86::MOV32mr; if (X86::FR32XRegClass.hasSubClassEq(RC)) return Load ? (HasAVX512 ? X86::VMOVSSZrm_alt : HasAVX ? X86::VMOVSSrm_alt : X86::MOVSSrm_alt) : (HasAVX512 ? X86::VMOVSSZmr : HasAVX ? X86::VMOVSSmr : X86::MOVSSmr); if (X86::RFP32RegClass.hasSubClassEq(RC)) return Load ? X86::LD_Fp32m : X86::ST_Fp32m; if (X86::VK32RegClass.hasSubClassEq(RC)) { assert(STI.hasBWI() && "KMOVD requires BWI"); return Load ? (HasEGPR ? X86::KMOVDkm_EVEX : X86::KMOVDkm) : (HasEGPR ? X86::KMOVDmk_EVEX : X86::KMOVDmk); } // All of these mask pair classes have the same spill size, the same kind // of kmov instructions can be used with all of them. if (X86::VK1PAIRRegClass.hasSubClassEq(RC) || X86::VK2PAIRRegClass.hasSubClassEq(RC) || X86::VK4PAIRRegClass.hasSubClassEq(RC) || X86::VK8PAIRRegClass.hasSubClassEq(RC) || X86::VK16PAIRRegClass.hasSubClassEq(RC)) return Load ? X86::MASKPAIR16LOAD : X86::MASKPAIR16STORE; if (X86::FR16RegClass.hasSubClassEq(RC) || X86::FR16XRegClass.hasSubClassEq(RC)) return getLoadStoreOpcodeForFP16(Load, STI); llvm_unreachable("Unknown 4-byte regclass"); case 8: if (X86::GR64RegClass.hasSubClassEq(RC)) return Load ? X86::MOV64rm : X86::MOV64mr; if (X86::FR64XRegClass.hasSubClassEq(RC)) return Load ? (HasAVX512 ? X86::VMOVSDZrm_alt : HasAVX ? X86::VMOVSDrm_alt : X86::MOVSDrm_alt) : (HasAVX512 ? X86::VMOVSDZmr : HasAVX ? X86::VMOVSDmr : X86::MOVSDmr); if (X86::VR64RegClass.hasSubClassEq(RC)) return Load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr; if (X86::RFP64RegClass.hasSubClassEq(RC)) return Load ? X86::LD_Fp64m : X86::ST_Fp64m; if (X86::VK64RegClass.hasSubClassEq(RC)) { assert(STI.hasBWI() && "KMOVQ requires BWI"); return Load ? (HasEGPR ? X86::KMOVQkm_EVEX : X86::KMOVQkm) : (HasEGPR ? X86::KMOVQmk_EVEX : X86::KMOVQmk); } llvm_unreachable("Unknown 8-byte regclass"); case 10: assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass"); return Load ? X86::LD_Fp80m : X86::ST_FpP80m; case 16: { if (X86::VR128XRegClass.hasSubClassEq(RC)) { // If stack is realigned we can use aligned stores. if (IsStackAligned) return Load ? (HasVLX ? X86::VMOVAPSZ128rm : HasAVX512 ? X86::VMOVAPSZ128rm_NOVLX : HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) : (HasVLX ? X86::VMOVAPSZ128mr : HasAVX512 ? X86::VMOVAPSZ128mr_NOVLX : HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr); else return Load ? (HasVLX ? X86::VMOVUPSZ128rm : HasAVX512 ? X86::VMOVUPSZ128rm_NOVLX : HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) : (HasVLX ? X86::VMOVUPSZ128mr : HasAVX512 ? X86::VMOVUPSZ128mr_NOVLX : HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr); } llvm_unreachable("Unknown 16-byte regclass"); } case 32: assert(X86::VR256XRegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass"); // If stack is realigned we can use aligned stores. if (IsStackAligned) return Load ? (HasVLX ? X86::VMOVAPSZ256rm : HasAVX512 ? X86::VMOVAPSZ256rm_NOVLX : X86::VMOVAPSYrm) : (HasVLX ? X86::VMOVAPSZ256mr : HasAVX512 ? X86::VMOVAPSZ256mr_NOVLX : X86::VMOVAPSYmr); else return Load ? (HasVLX ? X86::VMOVUPSZ256rm : HasAVX512 ? X86::VMOVUPSZ256rm_NOVLX : X86::VMOVUPSYrm) : (HasVLX ? X86::VMOVUPSZ256mr : HasAVX512 ? X86::VMOVUPSZ256mr_NOVLX : X86::VMOVUPSYmr); case 64: assert(X86::VR512RegClass.hasSubClassEq(RC) && "Unknown 64-byte regclass"); assert(STI.hasAVX512() && "Using 512-bit register requires AVX512"); if (IsStackAligned) return Load ? X86::VMOVAPSZrm : X86::VMOVAPSZmr; else return Load ? X86::VMOVUPSZrm : X86::VMOVUPSZmr; case 1024: assert(X86::TILERegClass.hasSubClassEq(RC) && "Unknown 1024-byte regclass"); assert(STI.hasAMXTILE() && "Using 8*1024-bit register requires AMX-TILE"); #define GET_EGPR_IF_ENABLED(OPC) (STI.hasEGPR() ? OPC##_EVEX : OPC) return Load ? GET_EGPR_IF_ENABLED(X86::TILELOADD) : GET_EGPR_IF_ENABLED(X86::TILESTORED); #undef GET_EGPR_IF_ENABLED } } std::optional X86InstrInfo::getAddrModeFromMemoryOp(const MachineInstr &MemI, const TargetRegisterInfo *TRI) const { const MCInstrDesc &Desc = MemI.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBegin < 0) return std::nullopt; MemRefBegin += X86II::getOperandBias(Desc); auto &BaseOp = MemI.getOperand(MemRefBegin + X86::AddrBaseReg); if (!BaseOp.isReg()) // Can be an MO_FrameIndex return std::nullopt; const MachineOperand &DispMO = MemI.getOperand(MemRefBegin + X86::AddrDisp); // Displacement can be symbolic if (!DispMO.isImm()) return std::nullopt; ExtAddrMode AM; AM.BaseReg = BaseOp.getReg(); AM.ScaledReg = MemI.getOperand(MemRefBegin + X86::AddrIndexReg).getReg(); AM.Scale = MemI.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm(); AM.Displacement = DispMO.getImm(); return AM; } bool X86InstrInfo::verifyInstruction(const MachineInstr &MI, StringRef &ErrInfo) const { std::optional AMOrNone = getAddrModeFromMemoryOp(MI, nullptr); if (!AMOrNone) return true; ExtAddrMode AM = *AMOrNone; assert(AM.Form == ExtAddrMode::Formula::Basic); if (AM.ScaledReg != X86::NoRegister) { switch (AM.Scale) { case 1: case 2: case 4: case 8: break; default: ErrInfo = "Scale factor in address must be 1, 2, 4 or 8"; return false; } } if (!isInt<32>(AM.Displacement)) { ErrInfo = "Displacement in address must fit into 32-bit signed " "integer"; return false; } return true; } bool X86InstrInfo::getConstValDefinedInReg(const MachineInstr &MI, const Register Reg, int64_t &ImmVal) const { Register MovReg = Reg; const MachineInstr *MovMI = &MI; // Follow use-def for SUBREG_TO_REG to find the real move immediate // instruction. It is quite common for x86-64. if (MI.isSubregToReg()) { // We use following pattern to setup 64b immediate. // %8:gr32 = MOV32r0 implicit-def dead $eflags // %6:gr64 = SUBREG_TO_REG 0, killed %8:gr32, %subreg.sub_32bit if (!MI.getOperand(1).isImm()) return false; unsigned FillBits = MI.getOperand(1).getImm(); unsigned SubIdx = MI.getOperand(3).getImm(); MovReg = MI.getOperand(2).getReg(); if (SubIdx != X86::sub_32bit || FillBits != 0) return false; const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); MovMI = MRI.getUniqueVRegDef(MovReg); if (!MovMI) return false; } if (MovMI->getOpcode() == X86::MOV32r0 && MovMI->getOperand(0).getReg() == MovReg) { ImmVal = 0; return true; } if (MovMI->getOpcode() != X86::MOV32ri && MovMI->getOpcode() != X86::MOV64ri && MovMI->getOpcode() != X86::MOV32ri64 && MovMI->getOpcode() != X86::MOV8ri) return false; // Mov Src can be a global address. if (!MovMI->getOperand(1).isImm() || MovMI->getOperand(0).getReg() != MovReg) return false; ImmVal = MovMI->getOperand(1).getImm(); return true; } bool X86InstrInfo::preservesZeroValueInReg( const MachineInstr *MI, const Register NullValueReg, const TargetRegisterInfo *TRI) const { if (!MI->modifiesRegister(NullValueReg, TRI)) return true; switch (MI->getOpcode()) { // Shift right/left of a null unto itself is still a null, i.e. rax = shl rax // X. case X86::SHR64ri: case X86::SHR32ri: case X86::SHL64ri: case X86::SHL32ri: assert(MI->getOperand(0).isDef() && MI->getOperand(1).isUse() && "expected for shift opcode!"); return MI->getOperand(0).getReg() == NullValueReg && MI->getOperand(1).getReg() == NullValueReg; // Zero extend of a sub-reg of NullValueReg into itself does not change the // null value. case X86::MOV32rr: return llvm::all_of(MI->operands(), [&](const MachineOperand &MO) { return TRI->isSubRegisterEq(NullValueReg, MO.getReg()); }); default: return false; } llvm_unreachable("Should be handled above!"); } bool X86InstrInfo::getMemOperandsWithOffsetWidth( const MachineInstr &MemOp, SmallVectorImpl &BaseOps, int64_t &Offset, bool &OffsetIsScalable, LocationSize &Width, const TargetRegisterInfo *TRI) const { const MCInstrDesc &Desc = MemOp.getDesc(); int MemRefBegin = X86II::getMemoryOperandNo(Desc.TSFlags); if (MemRefBegin < 0) return false; MemRefBegin += X86II::getOperandBias(Desc); const MachineOperand *BaseOp = &MemOp.getOperand(MemRefBegin + X86::AddrBaseReg); if (!BaseOp->isReg()) // Can be an MO_FrameIndex return false; if (MemOp.getOperand(MemRefBegin + X86::AddrScaleAmt).getImm() != 1) return false; if (MemOp.getOperand(MemRefBegin + X86::AddrIndexReg).getReg() != X86::NoRegister) return false; const MachineOperand &DispMO = MemOp.getOperand(MemRefBegin + X86::AddrDisp); // Displacement can be symbolic if (!DispMO.isImm()) return false; Offset = DispMO.getImm(); if (!BaseOp->isReg()) return false; OffsetIsScalable = false; // FIXME: Relying on memoperands() may not be right thing to do here. Check // with X86 maintainers, and fix it accordingly. For now, it is ok, since // there is no use of `Width` for X86 back-end at the moment. Width = !MemOp.memoperands_empty() ? MemOp.memoperands().front()->getSize() : 0; BaseOps.push_back(BaseOp); return true; } static unsigned getStoreRegOpcode(Register SrcReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(SrcReg, RC, IsStackAligned, STI, false); } static unsigned getLoadRegOpcode(Register DestReg, const TargetRegisterClass *RC, bool IsStackAligned, const X86Subtarget &STI) { return getLoadStoreRegOpcode(DestReg, RC, IsStackAligned, STI, true); } static bool isAMXOpcode(unsigned Opc) { switch (Opc) { default: return false; case X86::TILELOADD: case X86::TILESTORED: case X86::TILELOADD_EVEX: case X86::TILESTORED_EVEX: return true; } } void X86InstrInfo::loadStoreTileReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned Opc, Register Reg, int FrameIdx, bool isKill) const { switch (Opc) { default: llvm_unreachable("Unexpected special opcode!"); case X86::TILESTORED: case X86::TILESTORED_EVEX: { // tilestored %tmm, (%sp, %idx) MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); MachineInstr *NewMI = addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) .addReg(Reg, getKillRegState(isKill)); MachineOperand &MO = NewMI->getOperand(X86::AddrIndexReg); MO.setReg(VirtReg); MO.setIsKill(true); break; } case X86::TILELOADD: case X86::TILELOADD_EVEX: { // tileloadd (%sp, %idx), %tmm MachineRegisterInfo &RegInfo = MBB.getParent()->getRegInfo(); Register VirtReg = RegInfo.createVirtualRegister(&X86::GR64_NOSPRegClass); BuildMI(MBB, MI, DebugLoc(), get(X86::MOV64ri), VirtReg).addImm(64); MachineInstr *NewMI = addFrameReference( BuildMI(MBB, MI, DebugLoc(), get(Opc), Reg), FrameIdx); MachineOperand &MO = NewMI->getOperand(1 + X86::AddrIndexReg); MO.setReg(VirtReg); MO.setIsKill(true); break; } } } void X86InstrInfo::storeRegToStackSlot( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register SrcReg, bool isKill, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { const MachineFunction &MF = *MBB.getParent(); const MachineFrameInfo &MFI = MF.getFrameInfo(); assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && "Stack slot too small for store"); unsigned Alignment = std::max(TRI->getSpillSize(*RC), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, Subtarget); if (isAMXOpcode(Opc)) loadStoreTileReg(MBB, MI, Opc, SrcReg, FrameIdx, isKill); else addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc)), FrameIdx) .addReg(SrcReg, getKillRegState(isKill)); } void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, Register DestReg, int FrameIdx, const TargetRegisterClass *RC, const TargetRegisterInfo *TRI, Register VReg) const { const MachineFunction &MF = *MBB.getParent(); const MachineFrameInfo &MFI = MF.getFrameInfo(); assert(MFI.getObjectSize(FrameIdx) >= TRI->getSpillSize(*RC) && "Load size exceeds stack slot"); unsigned Alignment = std::max(TRI->getSpillSize(*RC), 16); bool isAligned = (Subtarget.getFrameLowering()->getStackAlign() >= Alignment) || (RI.canRealignStack(MF) && !MFI.isFixedObjectIndex(FrameIdx)); unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, Subtarget); if (isAMXOpcode(Opc)) loadStoreTileReg(MBB, MI, Opc, DestReg, FrameIdx); else addFrameReference(BuildMI(MBB, MI, DebugLoc(), get(Opc), DestReg), FrameIdx); } bool X86InstrInfo::analyzeCompare(const MachineInstr &MI, Register &SrcReg, Register &SrcReg2, int64_t &CmpMask, int64_t &CmpValue) const { switch (MI.getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP32ri: case X86::CMP16ri: case X86::CMP8ri: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = 0; if (MI.getOperand(1).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(1).getImm(); } else { CmpMask = CmpValue = 0; } return true; // A SUB can be used to perform comparison. CASE_ND(SUB64rm) CASE_ND(SUB32rm) CASE_ND(SUB16rm) CASE_ND(SUB8rm) SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; CmpMask = 0; CmpValue = 0; return true; CASE_ND(SUB64rr) CASE_ND(SUB32rr) CASE_ND(SUB16rr) CASE_ND(SUB8rr) SrcReg = MI.getOperand(1).getReg(); SrcReg2 = MI.getOperand(2).getReg(); CmpMask = 0; CmpValue = 0; return true; CASE_ND(SUB64ri32) CASE_ND(SUB32ri) CASE_ND(SUB16ri) CASE_ND(SUB8ri) SrcReg = MI.getOperand(1).getReg(); SrcReg2 = 0; if (MI.getOperand(2).isImm()) { CmpMask = ~0; CmpValue = MI.getOperand(2).getImm(); } else { CmpMask = CmpValue = 0; } return true; case X86::CMP64rr: case X86::CMP32rr: case X86::CMP16rr: case X86::CMP8rr: SrcReg = MI.getOperand(0).getReg(); SrcReg2 = MI.getOperand(1).getReg(); CmpMask = 0; CmpValue = 0; return true; case X86::TEST8rr: case X86::TEST16rr: case X86::TEST32rr: case X86::TEST64rr: SrcReg = MI.getOperand(0).getReg(); if (MI.getOperand(1).getReg() != SrcReg) return false; // Compare against zero. SrcReg2 = 0; CmpMask = ~0; CmpValue = 0; return true; } return false; } bool X86InstrInfo::isRedundantFlagInstr(const MachineInstr &FlagI, Register SrcReg, Register SrcReg2, int64_t ImmMask, int64_t ImmValue, const MachineInstr &OI, bool *IsSwapped, int64_t *ImmDelta) const { switch (OI.getOpcode()) { case X86::CMP64rr: case X86::CMP32rr: case X86::CMP16rr: case X86::CMP8rr: CASE_ND(SUB64rr) CASE_ND(SUB32rr) CASE_ND(SUB16rr) CASE_ND(SUB8rr) { Register OISrcReg; Register OISrcReg2; int64_t OIMask; int64_t OIValue; if (!analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) || OIMask != ImmMask || OIValue != ImmValue) return false; if (SrcReg == OISrcReg && SrcReg2 == OISrcReg2) { *IsSwapped = false; return true; } if (SrcReg == OISrcReg2 && SrcReg2 == OISrcReg) { *IsSwapped = true; return true; } return false; } case X86::CMP64ri32: case X86::CMP32ri: case X86::CMP16ri: case X86::CMP8ri: CASE_ND(SUB64ri32) CASE_ND(SUB32ri) CASE_ND(SUB16ri) CASE_ND(SUB8ri) case X86::TEST64rr: case X86::TEST32rr: case X86::TEST16rr: case X86::TEST8rr: { if (ImmMask != 0) { Register OISrcReg; Register OISrcReg2; int64_t OIMask; int64_t OIValue; if (analyzeCompare(OI, OISrcReg, OISrcReg2, OIMask, OIValue) && SrcReg == OISrcReg && ImmMask == OIMask) { if (OIValue == ImmValue) { *ImmDelta = 0; return true; } else if (static_cast(ImmValue) == static_cast(OIValue) - 1) { *ImmDelta = -1; return true; } else if (static_cast(ImmValue) == static_cast(OIValue) + 1) { *ImmDelta = 1; return true; } else { return false; } } } return FlagI.isIdenticalTo(OI); } default: return false; } } /// Check whether the definition can be converted /// to remove a comparison against zero. inline static bool isDefConvertible(const MachineInstr &MI, bool &NoSignFlag, bool &ClearsOverflowFlag) { NoSignFlag = false; ClearsOverflowFlag = false; // "ELF Handling for Thread-Local Storage" specifies that x86-64 GOTTPOFF, and // i386 GOTNTPOFF/INDNTPOFF relocations can convert an ADD to a LEA during // Initial Exec to Local Exec relaxation. In these cases, we must not depend // on the EFLAGS modification of ADD actually happening in the final binary. if (MI.getOpcode() == X86::ADD64rm || MI.getOpcode() == X86::ADD32rm) { unsigned Flags = MI.getOperand(5).getTargetFlags(); if (Flags == X86II::MO_GOTTPOFF || Flags == X86II::MO_INDNTPOFF || Flags == X86II::MO_GOTNTPOFF) return false; } switch (MI.getOpcode()) { default: return false; // The shift instructions only modify ZF if their shift count is non-zero. // N.B.: The processor truncates the shift count depending on the encoding. CASE_ND(SAR8ri) CASE_ND(SAR16ri) CASE_ND(SAR32ri) CASE_ND(SAR64ri) CASE_ND(SHR8ri) CASE_ND(SHR16ri) CASE_ND(SHR32ri) CASE_ND(SHR64ri) return getTruncatedShiftCount(MI, 2) != 0; // Some left shift instructions can be turned into LEA instructions but only // if their flags aren't used. Avoid transforming such instructions. CASE_ND(SHL8ri) CASE_ND(SHL16ri) CASE_ND(SHL32ri) CASE_ND(SHL64ri) { unsigned ShAmt = getTruncatedShiftCount(MI, 2); if (isTruncatedShiftCountForLEA(ShAmt)) return false; return ShAmt != 0; } CASE_ND(SHRD16rri8) CASE_ND(SHRD32rri8) CASE_ND(SHRD64rri8) CASE_ND(SHLD16rri8) CASE_ND(SHLD32rri8) CASE_ND(SHLD64rri8) return getTruncatedShiftCount(MI, 3) != 0; CASE_ND(SUB64ri32) CASE_ND(SUB32ri) CASE_ND(SUB16ri) CASE_ND(SUB8ri) CASE_ND(SUB64rr) CASE_ND(SUB32rr) CASE_ND(SUB16rr) CASE_ND(SUB8rr) CASE_ND(SUB64rm) CASE_ND(SUB32rm) CASE_ND(SUB16rm) CASE_ND(SUB8rm) CASE_ND(DEC64r) CASE_ND(DEC32r) CASE_ND(DEC16r) CASE_ND(DEC8r) CASE_ND(ADD64ri32) CASE_ND(ADD32ri) CASE_ND(ADD16ri) CASE_ND(ADD8ri) CASE_ND(ADD64rr) CASE_ND(ADD32rr) CASE_ND(ADD16rr) CASE_ND(ADD8rr) CASE_ND(ADD64rm) CASE_ND(ADD32rm) CASE_ND(ADD16rm) CASE_ND(ADD8rm) CASE_ND(INC64r) CASE_ND(INC32r) CASE_ND(INC16r) CASE_ND(INC8r) CASE_ND(ADC64ri32) CASE_ND(ADC32ri) CASE_ND(ADC16ri) CASE_ND(ADC8ri) CASE_ND(ADC64rr) CASE_ND(ADC32rr) CASE_ND(ADC16rr) CASE_ND(ADC8rr) CASE_ND(ADC64rm) CASE_ND(ADC32rm) CASE_ND(ADC16rm) CASE_ND(ADC8rm) CASE_ND(SBB64ri32) CASE_ND(SBB32ri) CASE_ND(SBB16ri) CASE_ND(SBB8ri) CASE_ND(SBB64rr) CASE_ND(SBB32rr) CASE_ND(SBB16rr) CASE_ND(SBB8rr) CASE_ND(SBB64rm) CASE_ND(SBB32rm) CASE_ND(SBB16rm) CASE_ND(SBB8rm) CASE_ND(NEG8r) CASE_ND(NEG16r) CASE_ND(NEG32r) CASE_ND(NEG64r) case X86::LZCNT16rr: case X86::LZCNT16rm: case X86::LZCNT32rr: case X86::LZCNT32rm: case X86::LZCNT64rr: case X86::LZCNT64rm: case X86::POPCNT16rr: case X86::POPCNT16rm: case X86::POPCNT32rr: case X86::POPCNT32rm: case X86::POPCNT64rr: case X86::POPCNT64rm: case X86::TZCNT16rr: case X86::TZCNT16rm: case X86::TZCNT32rr: case X86::TZCNT32rm: case X86::TZCNT64rr: case X86::TZCNT64rm: return true; CASE_ND(AND64ri32) CASE_ND(AND32ri) CASE_ND(AND16ri) CASE_ND(AND8ri) CASE_ND(AND64rr) CASE_ND(AND32rr) CASE_ND(AND16rr) CASE_ND(AND8rr) CASE_ND(AND64rm) CASE_ND(AND32rm) CASE_ND(AND16rm) CASE_ND(AND8rm) CASE_ND(XOR64ri32) CASE_ND(XOR32ri) CASE_ND(XOR16ri) CASE_ND(XOR8ri) CASE_ND(XOR64rr) CASE_ND(XOR32rr) CASE_ND(XOR16rr) CASE_ND(XOR8rr) CASE_ND(XOR64rm) CASE_ND(XOR32rm) CASE_ND(XOR16rm) CASE_ND(XOR8rm) CASE_ND(OR64ri32) CASE_ND(OR32ri) CASE_ND(OR16ri) CASE_ND(OR8ri) CASE_ND(OR64rr) CASE_ND(OR32rr) CASE_ND(OR16rr) CASE_ND(OR8rr) CASE_ND(OR64rm) CASE_ND(OR32rm) CASE_ND(OR16rm) CASE_ND(OR8rm) case X86::ANDN32rr: case X86::ANDN32rm: case X86::ANDN64rr: case X86::ANDN64rm: case X86::BLSI32rr: case X86::BLSI32rm: case X86::BLSI64rr: case X86::BLSI64rm: case X86::BLSMSK32rr: case X86::BLSMSK32rm: case X86::BLSMSK64rr: case X86::BLSMSK64rm: case X86::BLSR32rr: case X86::BLSR32rm: case X86::BLSR64rr: case X86::BLSR64rm: case X86::BLCFILL32rr: case X86::BLCFILL32rm: case X86::BLCFILL64rr: case X86::BLCFILL64rm: case X86::BLCI32rr: case X86::BLCI32rm: case X86::BLCI64rr: case X86::BLCI64rm: case X86::BLCIC32rr: case X86::BLCIC32rm: case X86::BLCIC64rr: case X86::BLCIC64rm: case X86::BLCMSK32rr: case X86::BLCMSK32rm: case X86::BLCMSK64rr: case X86::BLCMSK64rm: case X86::BLCS32rr: case X86::BLCS32rm: case X86::BLCS64rr: case X86::BLCS64rm: case X86::BLSFILL32rr: case X86::BLSFILL32rm: case X86::BLSFILL64rr: case X86::BLSFILL64rm: case X86::BLSIC32rr: case X86::BLSIC32rm: case X86::BLSIC64rr: case X86::BLSIC64rm: case X86::BZHI32rr: case X86::BZHI32rm: case X86::BZHI64rr: case X86::BZHI64rm: case X86::T1MSKC32rr: case X86::T1MSKC32rm: case X86::T1MSKC64rr: case X86::T1MSKC64rm: case X86::TZMSK32rr: case X86::TZMSK32rm: case X86::TZMSK64rr: case X86::TZMSK64rm: // These instructions clear the overflow flag just like TEST. // FIXME: These are not the only instructions in this switch that clear the // overflow flag. ClearsOverflowFlag = true; return true; case X86::BEXTR32rr: case X86::BEXTR64rr: case X86::BEXTR32rm: case X86::BEXTR64rm: case X86::BEXTRI32ri: case X86::BEXTRI32mi: case X86::BEXTRI64ri: case X86::BEXTRI64mi: // BEXTR doesn't update the sign flag so we can't use it. It does clear // the overflow flag, but that's not useful without the sign flag. NoSignFlag = true; return true; } } /// Check whether the use can be converted to remove a comparison against zero. static X86::CondCode isUseDefConvertible(const MachineInstr &MI) { switch (MI.getOpcode()) { default: return X86::COND_INVALID; CASE_ND(NEG8r) CASE_ND(NEG16r) CASE_ND(NEG32r) CASE_ND(NEG64r) return X86::COND_AE; case X86::LZCNT16rr: case X86::LZCNT32rr: case X86::LZCNT64rr: return X86::COND_B; case X86::POPCNT16rr: case X86::POPCNT32rr: case X86::POPCNT64rr: return X86::COND_E; case X86::TZCNT16rr: case X86::TZCNT32rr: case X86::TZCNT64rr: return X86::COND_B; case X86::BSF16rr: case X86::BSF32rr: case X86::BSF64rr: case X86::BSR16rr: case X86::BSR32rr: case X86::BSR64rr: return X86::COND_E; case X86::BLSI32rr: case X86::BLSI64rr: return X86::COND_AE; case X86::BLSR32rr: case X86::BLSR64rr: case X86::BLSMSK32rr: case X86::BLSMSK64rr: return X86::COND_B; // TODO: TBM instructions. } } /// Check if there exists an earlier instruction that /// operates on the same source operands and sets flags in the same way as /// Compare; remove Compare if possible. bool X86InstrInfo::optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg, Register SrcReg2, int64_t CmpMask, int64_t CmpValue, const MachineRegisterInfo *MRI) const { // Check whether we can replace SUB with CMP. switch (CmpInstr.getOpcode()) { default: break; CASE_ND(SUB64ri32) CASE_ND(SUB32ri) CASE_ND(SUB16ri) CASE_ND(SUB8ri) CASE_ND(SUB64rm) CASE_ND(SUB32rm) CASE_ND(SUB16rm) CASE_ND(SUB8rm) CASE_ND(SUB64rr) CASE_ND(SUB32rr) CASE_ND(SUB16rr) CASE_ND(SUB8rr) { if (!MRI->use_nodbg_empty(CmpInstr.getOperand(0).getReg())) return false; // There is no use of the destination register, we can replace SUB with CMP. unsigned NewOpcode = 0; #define FROM_TO(A, B) \ CASE_ND(A) NewOpcode = X86::B; \ break; switch (CmpInstr.getOpcode()) { default: llvm_unreachable("Unreachable!"); FROM_TO(SUB64rm, CMP64rm) FROM_TO(SUB32rm, CMP32rm) FROM_TO(SUB16rm, CMP16rm) FROM_TO(SUB8rm, CMP8rm) FROM_TO(SUB64rr, CMP64rr) FROM_TO(SUB32rr, CMP32rr) FROM_TO(SUB16rr, CMP16rr) FROM_TO(SUB8rr, CMP8rr) FROM_TO(SUB64ri32, CMP64ri32) FROM_TO(SUB32ri, CMP32ri) FROM_TO(SUB16ri, CMP16ri) FROM_TO(SUB8ri, CMP8ri) } #undef FROM_TO CmpInstr.setDesc(get(NewOpcode)); CmpInstr.removeOperand(0); // Mutating this instruction invalidates any debug data associated with it. CmpInstr.dropDebugNumber(); // Fall through to optimize Cmp if Cmp is CMPrr or CMPri. if (NewOpcode == X86::CMP64rm || NewOpcode == X86::CMP32rm || NewOpcode == X86::CMP16rm || NewOpcode == X86::CMP8rm) return false; } } // The following code tries to remove the comparison by re-using EFLAGS // from earlier instructions. bool IsCmpZero = (CmpMask != 0 && CmpValue == 0); // Transformation currently requires SSA values. if (SrcReg2.isPhysical()) return false; MachineInstr *SrcRegDef = MRI->getVRegDef(SrcReg); assert(SrcRegDef && "Must have a definition (SSA)"); MachineInstr *MI = nullptr; MachineInstr *Sub = nullptr; MachineInstr *Movr0Inst = nullptr; bool NoSignFlag = false; bool ClearsOverflowFlag = false; bool ShouldUpdateCC = false; bool IsSwapped = false; X86::CondCode NewCC = X86::COND_INVALID; int64_t ImmDelta = 0; // Search backward from CmpInstr for the next instruction defining EFLAGS. const TargetRegisterInfo *TRI = &getRegisterInfo(); MachineBasicBlock &CmpMBB = *CmpInstr.getParent(); MachineBasicBlock::reverse_iterator From = std::next(MachineBasicBlock::reverse_iterator(CmpInstr)); for (MachineBasicBlock *MBB = &CmpMBB;;) { for (MachineInstr &Inst : make_range(From, MBB->rend())) { // Try to use EFLAGS from the instruction defining %SrcReg. Example: // %eax = addl ... // ... // EFLAGS not changed // testl %eax, %eax // <-- can be removed if (&Inst == SrcRegDef) { if (IsCmpZero && isDefConvertible(Inst, NoSignFlag, ClearsOverflowFlag)) { MI = &Inst; break; } // Look back for the following pattern, in which case the // test16rr/test64rr instruction could be erased. // // Example for test16rr: // %reg = and32ri %in_reg, 5 // ... // EFLAGS not changed. // %src_reg = copy %reg.sub_16bit:gr32 // test16rr %src_reg, %src_reg, implicit-def $eflags // Example for test64rr: // %reg = and32ri %in_reg, 5 // ... // EFLAGS not changed. // %src_reg = subreg_to_reg 0, %reg, %subreg.sub_index // test64rr %src_reg, %src_reg, implicit-def $eflags MachineInstr *AndInstr = nullptr; if (IsCmpZero && findRedundantFlagInstr(CmpInstr, Inst, MRI, &AndInstr, TRI, NoSignFlag, ClearsOverflowFlag)) { assert(AndInstr != nullptr && X86::isAND(AndInstr->getOpcode())); MI = AndInstr; break; } // Cannot find other candidates before definition of SrcReg. return false; } if (Inst.modifiesRegister(X86::EFLAGS, TRI)) { // Try to use EFLAGS produced by an instruction reading %SrcReg. // Example: // %eax = ... // ... // popcntl %eax // ... // EFLAGS not changed // testl %eax, %eax // <-- can be removed if (IsCmpZero) { NewCC = isUseDefConvertible(Inst); if (NewCC != X86::COND_INVALID && Inst.getOperand(1).isReg() && Inst.getOperand(1).getReg() == SrcReg) { ShouldUpdateCC = true; MI = &Inst; break; } } // Try to use EFLAGS from an instruction with similar flag results. // Example: // sub x, y or cmp x, y // ... // EFLAGS not changed // cmp x, y // <-- can be removed if (isRedundantFlagInstr(CmpInstr, SrcReg, SrcReg2, CmpMask, CmpValue, Inst, &IsSwapped, &ImmDelta)) { Sub = &Inst; break; } // MOV32r0 is implemented with xor which clobbers condition code. It is // safe to move up, if the definition to EFLAGS is dead and earlier // instructions do not read or write EFLAGS. if (!Movr0Inst && Inst.getOpcode() == X86::MOV32r0 && Inst.registerDefIsDead(X86::EFLAGS, TRI)) { Movr0Inst = &Inst; continue; } // Cannot do anything for any other EFLAG changes. return false; } } if (MI || Sub) break; // Reached begin of basic block. Continue in predecessor if there is // exactly one. if (MBB->pred_size() != 1) return false; MBB = *MBB->pred_begin(); From = MBB->rbegin(); } // Scan forward from the instruction after CmpInstr for uses of EFLAGS. // It is safe to remove CmpInstr if EFLAGS is redefined or killed. // If we are done with the basic block, we need to check whether EFLAGS is // live-out. bool FlagsMayLiveOut = true; SmallVector, 4> OpsToUpdate; MachineBasicBlock::iterator AfterCmpInstr = std::next(MachineBasicBlock::iterator(CmpInstr)); for (MachineInstr &Instr : make_range(AfterCmpInstr, CmpMBB.end())) { bool ModifyEFLAGS = Instr.modifiesRegister(X86::EFLAGS, TRI); bool UseEFLAGS = Instr.readsRegister(X86::EFLAGS, TRI); // We should check the usage if this instruction uses and updates EFLAGS. if (!UseEFLAGS && ModifyEFLAGS) { // It is safe to remove CmpInstr if EFLAGS is updated again. FlagsMayLiveOut = false; break; } if (!UseEFLAGS && !ModifyEFLAGS) continue; // EFLAGS is used by this instruction. X86::CondCode OldCC = X86::getCondFromMI(Instr); if ((MI || IsSwapped || ImmDelta != 0) && OldCC == X86::COND_INVALID) return false; X86::CondCode ReplacementCC = X86::COND_INVALID; if (MI) { switch (OldCC) { default: break; case X86::COND_A: case X86::COND_AE: case X86::COND_B: case X86::COND_BE: // CF is used, we can't perform this optimization. return false; case X86::COND_G: case X86::COND_GE: case X86::COND_L: case X86::COND_LE: // If SF is used, but the instruction doesn't update the SF, then we // can't do the optimization. if (NoSignFlag) return false; [[fallthrough]]; case X86::COND_O: case X86::COND_NO: // If OF is used, the instruction needs to clear it like CmpZero does. if (!ClearsOverflowFlag) return false; break; case X86::COND_S: case X86::COND_NS: // If SF is used, but the instruction doesn't update the SF, then we // can't do the optimization. if (NoSignFlag) return false; break; } // If we're updating the condition code check if we have to reverse the // condition. if (ShouldUpdateCC) switch (OldCC) { default: return false; case X86::COND_E: ReplacementCC = NewCC; break; case X86::COND_NE: ReplacementCC = GetOppositeBranchCondition(NewCC); break; } } else if (IsSwapped) { // If we have SUB(r1, r2) and CMP(r2, r1), the condition code needs // to be changed from r2 > r1 to r1 < r2, from r2 < r1 to r1 > r2, etc. // We swap the condition code and synthesize the new opcode. ReplacementCC = getSwappedCondition(OldCC); if (ReplacementCC == X86::COND_INVALID) return false; ShouldUpdateCC = true; } else if (ImmDelta != 0) { unsigned BitWidth = TRI->getRegSizeInBits(*MRI->getRegClass(SrcReg)); // Shift amount for min/max constants to adjust for 8/16/32 instruction // sizes. switch (OldCC) { case X86::COND_L: // x x <=s C if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) return false; ReplacementCC = X86::COND_LE; break; case X86::COND_B: // x x <=u C if (ImmDelta != 1 || CmpValue == 0) return false; ReplacementCC = X86::COND_BE; break; case X86::COND_GE: // x >=s (C + 1) --> x >s C if (ImmDelta != 1 || APInt::getSignedMinValue(BitWidth) == CmpValue) return false; ReplacementCC = X86::COND_G; break; case X86::COND_AE: // x >=u (C + 1) --> x >u C if (ImmDelta != 1 || CmpValue == 0) return false; ReplacementCC = X86::COND_A; break; case X86::COND_G: // x >s (C - 1) --> x >=s C if (ImmDelta != -1 || APInt::getSignedMaxValue(BitWidth) == CmpValue) return false; ReplacementCC = X86::COND_GE; break; case X86::COND_A: // x >u (C - 1) --> x >=u C if (ImmDelta != -1 || APInt::getMaxValue(BitWidth) == CmpValue) return false; ReplacementCC = X86::COND_AE; break; case X86::COND_LE: // x <=s (C - 1) --> x x isLiveIn(X86::EFLAGS)) return false; } // The instruction to be updated is either Sub or MI. assert((MI == nullptr || Sub == nullptr) && "Should not have Sub and MI set"); Sub = MI != nullptr ? MI : Sub; MachineBasicBlock *SubBB = Sub->getParent(); // Move Movr0Inst to the appropriate place before Sub. if (Movr0Inst) { // Only move within the same block so we don't accidentally move to a // block with higher execution frequency. if (&CmpMBB != SubBB) return false; // Look backwards until we find a def that doesn't use the current EFLAGS. MachineBasicBlock::reverse_iterator InsertI = Sub, InsertE = Sub->getParent()->rend(); for (; InsertI != InsertE; ++InsertI) { MachineInstr *Instr = &*InsertI; if (!Instr->readsRegister(X86::EFLAGS, TRI) && Instr->modifiesRegister(X86::EFLAGS, TRI)) { Movr0Inst->getParent()->remove(Movr0Inst); Instr->getParent()->insert(MachineBasicBlock::iterator(Instr), Movr0Inst); break; } } if (InsertI == InsertE) return false; } // Make sure Sub instruction defines EFLAGS and mark the def live. MachineOperand *FlagDef = Sub->findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); assert(FlagDef && "Unable to locate a def EFLAGS operand"); FlagDef->setIsDead(false); CmpInstr.eraseFromParent(); // Modify the condition code of instructions in OpsToUpdate. for (auto &Op : OpsToUpdate) { Op.first->getOperand(Op.first->getDesc().getNumOperands() - 1) .setImm(Op.second); } // Add EFLAGS to block live-ins between CmpBB and block of flags producer. for (MachineBasicBlock *MBB = &CmpMBB; MBB != SubBB; MBB = *MBB->pred_begin()) { assert(MBB->pred_size() == 1 && "Expected exactly one predecessor"); if (!MBB->isLiveIn(X86::EFLAGS)) MBB->addLiveIn(X86::EFLAGS); } return true; } /// Try to remove the load by folding it to a register /// operand at the use. We fold the load instructions if load defines a virtual /// register, the virtual register is used once in the same BB, and the /// instructions in-between do not load or store, and have no side effects. MachineInstr *X86InstrInfo::optimizeLoadInstr(MachineInstr &MI, const MachineRegisterInfo *MRI, Register &FoldAsLoadDefReg, MachineInstr *&DefMI) const { // Check whether we can move DefMI here. DefMI = MRI->getVRegDef(FoldAsLoadDefReg); assert(DefMI); bool SawStore = false; if (!DefMI->isSafeToMove(nullptr, SawStore)) return nullptr; // Collect information about virtual register operands of MI. SmallVector SrcOperandIds; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg != FoldAsLoadDefReg) continue; // Do not fold if we have a subreg use or a def. if (MO.getSubReg() || MO.isDef()) return nullptr; SrcOperandIds.push_back(i); } if (SrcOperandIds.empty()) return nullptr; // Check whether we can fold the def into SrcOperandId. if (MachineInstr *FoldMI = foldMemoryOperand(MI, SrcOperandIds, *DefMI)) { FoldAsLoadDefReg = 0; return FoldMI; } return nullptr; } /// \returns true if the instruction can be changed to COPY when imm is 0. static bool canConvert2Copy(unsigned Opc) { switch (Opc) { default: return false; CASE_ND(ADD64ri32) CASE_ND(SUB64ri32) CASE_ND(OR64ri32) CASE_ND(XOR64ri32) CASE_ND(ADD32ri) CASE_ND(SUB32ri) CASE_ND(OR32ri) CASE_ND(XOR32ri) return true; } } /// Convert an ALUrr opcode to corresponding ALUri opcode. Such as /// ADD32rr ==> ADD32ri static unsigned convertALUrr2ALUri(unsigned Opc) { switch (Opc) { default: return 0; #define FROM_TO(FROM, TO) \ case X86::FROM: \ return X86::TO; \ case X86::FROM##_ND: \ return X86::TO##_ND; FROM_TO(ADD64rr, ADD64ri32) FROM_TO(ADC64rr, ADC64ri32) FROM_TO(SUB64rr, SUB64ri32) FROM_TO(SBB64rr, SBB64ri32) FROM_TO(AND64rr, AND64ri32) FROM_TO(OR64rr, OR64ri32) FROM_TO(XOR64rr, XOR64ri32) FROM_TO(SHR64rCL, SHR64ri) FROM_TO(SHL64rCL, SHL64ri) FROM_TO(SAR64rCL, SAR64ri) FROM_TO(ROL64rCL, ROL64ri) FROM_TO(ROR64rCL, ROR64ri) FROM_TO(RCL64rCL, RCL64ri) FROM_TO(RCR64rCL, RCR64ri) FROM_TO(ADD32rr, ADD32ri) FROM_TO(ADC32rr, ADC32ri) FROM_TO(SUB32rr, SUB32ri) FROM_TO(SBB32rr, SBB32ri) FROM_TO(AND32rr, AND32ri) FROM_TO(OR32rr, OR32ri) FROM_TO(XOR32rr, XOR32ri) FROM_TO(SHR32rCL, SHR32ri) FROM_TO(SHL32rCL, SHL32ri) FROM_TO(SAR32rCL, SAR32ri) FROM_TO(ROL32rCL, ROL32ri) FROM_TO(ROR32rCL, ROR32ri) FROM_TO(RCL32rCL, RCL32ri) FROM_TO(RCR32rCL, RCR32ri) #undef FROM_TO #define FROM_TO(FROM, TO) \ case X86::FROM: \ return X86::TO; FROM_TO(TEST64rr, TEST64ri32) FROM_TO(CTEST64rr, CTEST64ri32) FROM_TO(CMP64rr, CMP64ri32) FROM_TO(CCMP64rr, CCMP64ri32) FROM_TO(TEST32rr, TEST32ri) FROM_TO(CTEST32rr, CTEST32ri) FROM_TO(CMP32rr, CMP32ri) FROM_TO(CCMP32rr, CCMP32ri) #undef FROM_TO } } /// Reg is assigned ImmVal in DefMI, and is used in UseMI. /// If MakeChange is true, this function tries to replace Reg by ImmVal in /// UseMI. If MakeChange is false, just check if folding is possible. // /// \returns true if folding is successful or possible. bool X86InstrInfo::foldImmediateImpl(MachineInstr &UseMI, MachineInstr *DefMI, Register Reg, int64_t ImmVal, MachineRegisterInfo *MRI, bool MakeChange) const { bool Modified = false; // 64 bit operations accept sign extended 32 bit immediates. // 32 bit operations accept all 32 bit immediates, so we don't need to check // them. const TargetRegisterClass *RC = nullptr; if (Reg.isVirtual()) RC = MRI->getRegClass(Reg); if ((Reg.isPhysical() && X86::GR64RegClass.contains(Reg)) || (Reg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC))) { if (!isInt<32>(ImmVal)) return false; } if (UseMI.findRegisterUseOperand(Reg, /*TRI=*/nullptr)->getSubReg()) return false; // Immediate has larger code size than register. So avoid folding the // immediate if it has more than 1 use and we are optimizing for size. if (UseMI.getMF()->getFunction().hasOptSize() && Reg.isVirtual() && !MRI->hasOneNonDBGUse(Reg)) return false; unsigned Opc = UseMI.getOpcode(); unsigned NewOpc; if (Opc == TargetOpcode::COPY) { Register ToReg = UseMI.getOperand(0).getReg(); const TargetRegisterClass *RC = nullptr; if (ToReg.isVirtual()) RC = MRI->getRegClass(ToReg); bool GR32Reg = (ToReg.isVirtual() && X86::GR32RegClass.hasSubClassEq(RC)) || (ToReg.isPhysical() && X86::GR32RegClass.contains(ToReg)); bool GR64Reg = (ToReg.isVirtual() && X86::GR64RegClass.hasSubClassEq(RC)) || (ToReg.isPhysical() && X86::GR64RegClass.contains(ToReg)); bool GR8Reg = (ToReg.isVirtual() && X86::GR8RegClass.hasSubClassEq(RC)) || (ToReg.isPhysical() && X86::GR8RegClass.contains(ToReg)); if (ImmVal == 0) { // We have MOV32r0 only. if (!GR32Reg) return false; } if (GR64Reg) { if (isUInt<32>(ImmVal)) NewOpc = X86::MOV32ri64; else NewOpc = X86::MOV64ri; } else if (GR32Reg) { NewOpc = X86::MOV32ri; if (ImmVal == 0) { // MOV32r0 clobbers EFLAGS. const TargetRegisterInfo *TRI = &getRegisterInfo(); if (UseMI.getParent()->computeRegisterLiveness( TRI, X86::EFLAGS, UseMI) != MachineBasicBlock::LQR_Dead) return false; // MOV32r0 is different than other cases because it doesn't encode the // immediate in the instruction. So we directly modify it here. if (!MakeChange) return true; UseMI.setDesc(get(X86::MOV32r0)); UseMI.removeOperand( UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); UseMI.addOperand(MachineOperand::CreateReg(X86::EFLAGS, /*isDef=*/true, /*isImp=*/true, /*isKill=*/false, /*isDead=*/true)); Modified = true; } } else if (GR8Reg) NewOpc = X86::MOV8ri; else return false; } else NewOpc = convertALUrr2ALUri(Opc); if (!NewOpc) return false; // For SUB instructions the immediate can only be the second source operand. if ((NewOpc == X86::SUB64ri32 || NewOpc == X86::SUB32ri || NewOpc == X86::SBB64ri32 || NewOpc == X86::SBB32ri || NewOpc == X86::SUB64ri32_ND || NewOpc == X86::SUB32ri_ND || NewOpc == X86::SBB64ri32_ND || NewOpc == X86::SBB32ri_ND) && UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 2) return false; // For CMP instructions the immediate can only be at index 1. if (((NewOpc == X86::CMP64ri32 || NewOpc == X86::CMP32ri) || (NewOpc == X86::CCMP64ri32 || NewOpc == X86::CCMP32ri)) && UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr) != 1) return false; using namespace X86; if (isSHL(Opc) || isSHR(Opc) || isSAR(Opc) || isROL(Opc) || isROR(Opc) || isRCL(Opc) || isRCR(Opc)) { unsigned RegIdx = UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr); if (RegIdx < 2) return false; if (!isInt<8>(ImmVal)) return false; assert(Reg == X86::CL); if (!MakeChange) return true; UseMI.setDesc(get(NewOpc)); UseMI.removeOperand(RegIdx); UseMI.addOperand(MachineOperand::CreateImm(ImmVal)); // Reg is physical register $cl, so we don't know if DefMI is dead through // MRI. Let the caller handle it, or pass dead-mi-elimination can delete // the dead physical register define instruction. return true; } if (!MakeChange) return true; if (!Modified) { // Modify the instruction. if (ImmVal == 0 && canConvert2Copy(NewOpc) && UseMI.registerDefIsDead(X86::EFLAGS, /*TRI=*/nullptr)) { // %100 = add %101, 0 // ==> // %100 = COPY %101 UseMI.setDesc(get(TargetOpcode::COPY)); UseMI.removeOperand( UseMI.findRegisterUseOperandIdx(Reg, /*TRI=*/nullptr)); UseMI.removeOperand( UseMI.findRegisterDefOperandIdx(X86::EFLAGS, /*TRI=*/nullptr)); UseMI.untieRegOperand(0); UseMI.clearFlag(MachineInstr::MIFlag::NoSWrap); UseMI.clearFlag(MachineInstr::MIFlag::NoUWrap); } else { unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex; unsigned ImmOpNum = 2; if (!UseMI.getOperand(0).isDef()) { Op1 = 0; // TEST, CMP, CTEST, CCMP ImmOpNum = 1; } if (Opc == TargetOpcode::COPY) ImmOpNum = 1; if (findCommutedOpIndices(UseMI, Op1, Op2) && UseMI.getOperand(Op1).getReg() == Reg) commuteInstruction(UseMI); assert(UseMI.getOperand(ImmOpNum).getReg() == Reg); UseMI.setDesc(get(NewOpc)); UseMI.getOperand(ImmOpNum).ChangeToImmediate(ImmVal); } } if (Reg.isVirtual() && MRI->use_nodbg_empty(Reg)) DefMI->eraseFromBundle(); return true; } /// foldImmediate - 'Reg' is known to be defined by a move immediate /// instruction, try to fold the immediate into the use instruction. bool X86InstrInfo::foldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg, MachineRegisterInfo *MRI) const { int64_t ImmVal; if (!getConstValDefinedInReg(DefMI, Reg, ImmVal)) return false; return foldImmediateImpl(UseMI, &DefMI, Reg, ImmVal, MRI, true); } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two undef reads of the register being defined. /// This is used for mapping: /// %xmm4 = V_SET0 /// to: /// %xmm4 = PXORrr undef %xmm4, undef %xmm4 /// static bool Expand2AddrUndef(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); Register Reg = MIB.getReg(0); MIB->setDesc(Desc); // MachineInstr::addOperand() will insert explicit operands before any // implicit operands. MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); // But we don't trust that. assert(MIB.getReg(1) == Reg && MIB.getReg(2) == Reg && "Misplaced operand"); return true; } /// Expand a single-def pseudo instruction to a two-addr /// instruction with two %k0 reads. /// This is used for mapping: /// %k4 = K_SET1 /// to: /// %k4 = KXNORrr %k0, %k0 static bool Expand2AddrKreg(MachineInstrBuilder &MIB, const MCInstrDesc &Desc, Register Reg) { assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction."); MIB->setDesc(Desc); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef); return true; } static bool expandMOV32r1(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, bool MinusOne) { MachineBasicBlock &MBB = *MIB->getParent(); const DebugLoc &DL = MIB->getDebugLoc(); Register Reg = MIB.getReg(0); // Insert the XOR. BuildMI(MBB, MIB.getInstr(), DL, TII.get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); // Turn the pseudo into an INC or DEC. MIB->setDesc(TII.get(MinusOne ? X86::DEC32r : X86::INC32r)); MIB.addReg(Reg); return true; } static bool ExpandMOVImmSExti8(MachineInstrBuilder &MIB, const TargetInstrInfo &TII, const X86Subtarget &Subtarget) { MachineBasicBlock &MBB = *MIB->getParent(); const DebugLoc &DL = MIB->getDebugLoc(); int64_t Imm = MIB->getOperand(1).getImm(); assert(Imm != 0 && "Using push/pop for 0 is not efficient."); MachineBasicBlock::iterator I = MIB.getInstr(); int StackAdjustment; if (Subtarget.is64Bit()) { assert(MIB->getOpcode() == X86::MOV64ImmSExti8 || MIB->getOpcode() == X86::MOV32ImmSExti8); // Can't use push/pop lowering if the function might write to the red zone. X86MachineFunctionInfo *X86FI = MBB.getParent()->getInfo(); if (X86FI->getUsesRedZone()) { MIB->setDesc(TII.get(MIB->getOpcode() == X86::MOV32ImmSExti8 ? X86::MOV32ri : X86::MOV64ri)); return true; } // 64-bit mode doesn't have 32-bit push/pop, so use 64-bit operations and // widen the register if necessary. StackAdjustment = 8; BuildMI(MBB, I, DL, TII.get(X86::PUSH64i32)).addImm(Imm); MIB->setDesc(TII.get(X86::POP64r)); MIB->getOperand(0).setReg(getX86SubSuperRegister(MIB.getReg(0), 64)); } else { assert(MIB->getOpcode() == X86::MOV32ImmSExti8); StackAdjustment = 4; BuildMI(MBB, I, DL, TII.get(X86::PUSH32i)).addImm(Imm); MIB->setDesc(TII.get(X86::POP32r)); } MIB->removeOperand(1); MIB->addImplicitDefUseOperands(*MBB.getParent()); // Build CFI if necessary. MachineFunction &MF = *MBB.getParent(); const X86FrameLowering *TFL = Subtarget.getFrameLowering(); bool IsWin64Prologue = MF.getTarget().getMCAsmInfo()->usesWindowsCFI(); bool NeedsDwarfCFI = !IsWin64Prologue && MF.needsFrameMoves(); bool EmitCFI = !TFL->hasFP(MF) && NeedsDwarfCFI; if (EmitCFI) { TFL->BuildCFI( MBB, I, DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, StackAdjustment)); TFL->BuildCFI( MBB, std::next(I), DL, MCCFIInstruction::createAdjustCfaOffset(nullptr, -StackAdjustment)); } return true; } // LoadStackGuard has so far only been implemented for 64-bit MachO. Different // code sequence is needed for other targets. static void expandLoadStackGuard(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); const DebugLoc &DL = MIB->getDebugLoc(); Register Reg = MIB.getReg(0); const GlobalValue *GV = cast((*MIB->memoperands_begin())->getValue()); auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant; MachineMemOperand *MMO = MBB.getParent()->getMachineMemOperand( MachinePointerInfo::getGOT(*MBB.getParent()), Flags, 8, Align(8)); MachineBasicBlock::iterator I = MIB.getInstr(); BuildMI(MBB, I, DL, TII.get(X86::MOV64rm), Reg) .addReg(X86::RIP) .addImm(1) .addReg(0) .addGlobalAddress(GV, 0, X86II::MO_GOTPCREL) .addReg(0) .addMemOperand(MMO); MIB->setDebugLoc(DL); MIB->setDesc(TII.get(X86::MOV64rm)); MIB.addReg(Reg, RegState::Kill).addImm(1).addReg(0).addImm(0).addReg(0); } static bool expandXorFP(MachineInstrBuilder &MIB, const TargetInstrInfo &TII) { MachineBasicBlock &MBB = *MIB->getParent(); MachineFunction &MF = *MBB.getParent(); const X86Subtarget &Subtarget = MF.getSubtarget(); const X86RegisterInfo *TRI = Subtarget.getRegisterInfo(); unsigned XorOp = MIB->getOpcode() == X86::XOR64_FP ? X86::XOR64rr : X86::XOR32rr; MIB->setDesc(TII.get(XorOp)); MIB.addReg(TRI->getFrameRegister(MF), RegState::Undef); return true; } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that loads the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXLoad(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &LoadDesc, const MCInstrDesc &BroadcastDesc, unsigned SubIdx) { Register DestReg = MIB.getReg(0); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(DestReg) < 16) { // We can use a normal VEX encoded load. MIB->setDesc(LoadDesc); } else { // Use a 128/256-bit VBROADCAST instruction. MIB->setDesc(BroadcastDesc); // Change the destination to a 512-bit register. DestReg = TRI->getMatchingSuperReg(DestReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(0).setReg(DestReg); } return true; } // This is used to handle spills for 128/256-bit registers when we have AVX512, // but not VLX. If it uses an extended register we need to use an instruction // that stores the lower 128/256-bit, but is available with only AVX512F. static bool expandNOVLXStore(MachineInstrBuilder &MIB, const TargetRegisterInfo *TRI, const MCInstrDesc &StoreDesc, const MCInstrDesc &ExtractDesc, unsigned SubIdx) { Register SrcReg = MIB.getReg(X86::AddrNumOperands); // Check if DestReg is XMM16-31 or YMM16-31. if (TRI->getEncodingValue(SrcReg) < 16) { // We can use a normal VEX encoded store. MIB->setDesc(StoreDesc); } else { // Use a VEXTRACTF instruction. MIB->setDesc(ExtractDesc); // Change the destination to a 512-bit register. SrcReg = TRI->getMatchingSuperReg(SrcReg, SubIdx, &X86::VR512RegClass); MIB->getOperand(X86::AddrNumOperands).setReg(SrcReg); MIB.addImm(0x0); // Append immediate to extract from the lower bits. } return true; } static bool expandSHXDROT(MachineInstrBuilder &MIB, const MCInstrDesc &Desc) { MIB->setDesc(Desc); int64_t ShiftAmt = MIB->getOperand(2).getImm(); // Temporarily remove the immediate so we can add another source register. MIB->removeOperand(2); // Add the register. Don't copy the kill flag if there is one. MIB.addReg(MIB.getReg(1), getUndefRegState(MIB->getOperand(1).isUndef())); // Add back the immediate. MIB.addImm(ShiftAmt); return true; } bool X86InstrInfo::expandPostRAPseudo(MachineInstr &MI) const { bool HasAVX = Subtarget.hasAVX(); MachineInstrBuilder MIB(*MI.getParent()->getParent(), MI); switch (MI.getOpcode()) { case X86::MOV32r0: return Expand2AddrUndef(MIB, get(X86::XOR32rr)); case X86::MOV32r1: return expandMOV32r1(MIB, *this, /*MinusOne=*/false); case X86::MOV32r_1: return expandMOV32r1(MIB, *this, /*MinusOne=*/true); case X86::MOV32ImmSExti8: case X86::MOV64ImmSExti8: return ExpandMOVImmSExti8(MIB, *this, Subtarget); case X86::SETB_C32r: return Expand2AddrUndef(MIB, get(X86::SBB32rr)); case X86::SETB_C64r: return Expand2AddrUndef(MIB, get(X86::SBB64rr)); case X86::MMX_SET0: return Expand2AddrUndef(MIB, get(X86::MMX_PXORrr)); case X86::V_SET0: case X86::FsFLD0SS: case X86::FsFLD0SD: case X86::FsFLD0SH: case X86::FsFLD0F128: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr)); case X86::AVX_SET0: { assert(HasAVX && "AVX not supported"); const TargetRegisterInfo *TRI = &getRegisterInfo(); Register SrcReg = MIB.getReg(0); Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); MIB->getOperand(0).setReg(XReg); Expand2AddrUndef(MIB, get(X86::VXORPSrr)); MIB.addReg(SrcReg, RegState::ImplicitDefine); return true; } case X86::AVX512_128_SET0: case X86::AVX512_FsFLD0SH: case X86::AVX512_FsFLD0SS: case X86::AVX512_FsFLD0SD: case X86::AVX512_FsFLD0F128: { bool HasVLX = Subtarget.hasVLX(); Register SrcReg = MIB.getReg(0); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) return Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); // Extended register without VLX. Use a larger XOR. SrcReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_xmm, &X86::VR512RegClass); MIB->getOperand(0).setReg(SrcReg); return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: { bool HasVLX = Subtarget.hasVLX(); Register SrcReg = MIB.getReg(0); const TargetRegisterInfo *TRI = &getRegisterInfo(); if (HasVLX || TRI->getEncodingValue(SrcReg) < 16) { Register XReg = TRI->getSubReg(SrcReg, X86::sub_xmm); MIB->getOperand(0).setReg(XReg); Expand2AddrUndef(MIB, get(HasVLX ? X86::VPXORDZ128rr : X86::VXORPSrr)); MIB.addReg(SrcReg, RegState::ImplicitDefine); return true; } if (MI.getOpcode() == X86::AVX512_256_SET0) { // No VLX so we must reference a zmm. unsigned ZReg = TRI->getMatchingSuperReg(SrcReg, X86::sub_ymm, &X86::VR512RegClass); MIB->getOperand(0).setReg(ZReg); } return Expand2AddrUndef(MIB, get(X86::VPXORDZrr)); } case X86::V_SETALLONES: return Expand2AddrUndef(MIB, get(HasAVX ? X86::VPCMPEQDrr : X86::PCMPEQDrr)); case X86::AVX2_SETALLONES: return Expand2AddrUndef(MIB, get(X86::VPCMPEQDYrr)); case X86::AVX1_SETALLONES: { Register Reg = MIB.getReg(0); // VCMPPSYrri with an immediate 0xf should produce VCMPTRUEPS. MIB->setDesc(get(X86::VCMPPSYrri)); MIB.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef).addImm(0xf); return true; } case X86::AVX512_512_SETALLONES: { Register Reg = MIB.getReg(0); MIB->setDesc(get(X86::VPTERNLOGDZrri)); // VPTERNLOGD needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef) .addImm(0xff); return true; } case X86::AVX512_512_SEXT_MASK_32: case X86::AVX512_512_SEXT_MASK_64: { Register Reg = MIB.getReg(0); Register MaskReg = MIB.getReg(1); unsigned MaskState = getRegState(MIB->getOperand(1)); unsigned Opc = (MI.getOpcode() == X86::AVX512_512_SEXT_MASK_64) ? X86::VPTERNLOGQZrrikz : X86::VPTERNLOGDZrrikz; MI.removeOperand(1); MIB->setDesc(get(Opc)); // VPTERNLOG needs 3 register inputs and an immediate. // 0xff will return 1s for any input. MIB.addReg(Reg, RegState::Undef) .addReg(MaskReg, MaskState) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef) .addImm(0xff); return true; } case X86::VMOVAPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVUPSZ128rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSrm), get(X86::VBROADCASTF32X4rm), X86::sub_xmm); case X86::VMOVAPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVAPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVUPSZ256rm_NOVLX: return expandNOVLXLoad(MIB, &getRegisterInfo(), get(X86::VMOVUPSYrm), get(X86::VBROADCASTF64X4rm), X86::sub_ymm); case X86::VMOVAPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVUPSZ128mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSmr), get(X86::VEXTRACTF32x4Zmr), X86::sub_xmm); case X86::VMOVAPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVAPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::VMOVUPSZ256mr_NOVLX: return expandNOVLXStore(MIB, &getRegisterInfo(), get(X86::VMOVUPSYmr), get(X86::VEXTRACTF64x4Zmr), X86::sub_ymm); case X86::MOV32ri64: { Register Reg = MIB.getReg(0); Register Reg32 = RI.getSubReg(Reg, X86::sub_32bit); MI.setDesc(get(X86::MOV32ri)); MIB->getOperand(0).setReg(Reg32); MIB.addReg(Reg, RegState::ImplicitDefine); return true; } case X86::RDFLAGS32: case X86::RDFLAGS64: { unsigned Is64Bit = MI.getOpcode() == X86::RDFLAGS64; MachineBasicBlock &MBB = *MIB->getParent(); MachineInstr *NewMI = BuildMI(MBB, MI, MIB->getDebugLoc(), get(Is64Bit ? X86::PUSHF64 : X86::PUSHF32)) .getInstr(); // Permit reads of the EFLAGS and DF registers without them being defined. // This intrinsic exists to read external processor state in flags, such as // the trap flag, interrupt flag, and direction flag, none of which are // modeled by the backend. assert(NewMI->getOperand(2).getReg() == X86::EFLAGS && "Unexpected register in operand! Should be EFLAGS."); NewMI->getOperand(2).setIsUndef(); assert(NewMI->getOperand(3).getReg() == X86::DF && "Unexpected register in operand! Should be DF."); NewMI->getOperand(3).setIsUndef(); MIB->setDesc(get(Is64Bit ? X86::POP64r : X86::POP32r)); return true; } case X86::WRFLAGS32: case X86::WRFLAGS64: { unsigned Is64Bit = MI.getOpcode() == X86::WRFLAGS64; MachineBasicBlock &MBB = *MIB->getParent(); BuildMI(MBB, MI, MIB->getDebugLoc(), get(Is64Bit ? X86::PUSH64r : X86::PUSH32r)) .addReg(MI.getOperand(0).getReg()); BuildMI(MBB, MI, MIB->getDebugLoc(), get(Is64Bit ? X86::POPF64 : X86::POPF32)); MI.eraseFromParent(); return true; } // KNL does not recognize dependency-breaking idioms for mask registers, // so kxnor %k1, %k1, %k2 has a RAW dependence on %k1. // Using %k0 as the undef input register is a performance heuristic based // on the assumption that %k0 is used less frequently than the other mask // registers, since it is not usable as a write mask. // FIXME: A more advanced approach would be to choose the best input mask // register based on context. case X86::KSET0W: return Expand2AddrKreg(MIB, get(X86::KXORWrr), X86::K0); case X86::KSET0D: return Expand2AddrKreg(MIB, get(X86::KXORDrr), X86::K0); case X86::KSET0Q: return Expand2AddrKreg(MIB, get(X86::KXORQrr), X86::K0); case X86::KSET1W: return Expand2AddrKreg(MIB, get(X86::KXNORWrr), X86::K0); case X86::KSET1D: return Expand2AddrKreg(MIB, get(X86::KXNORDrr), X86::K0); case X86::KSET1Q: return Expand2AddrKreg(MIB, get(X86::KXNORQrr), X86::K0); case TargetOpcode::LOAD_STACK_GUARD: expandLoadStackGuard(MIB, *this); return true; case X86::XOR64_FP: case X86::XOR32_FP: return expandXorFP(MIB, *this); case X86::SHLDROT32ri: return expandSHXDROT(MIB, get(X86::SHLD32rri8)); case X86::SHLDROT64ri: return expandSHXDROT(MIB, get(X86::SHLD64rri8)); case X86::SHRDROT32ri: return expandSHXDROT(MIB, get(X86::SHRD32rri8)); case X86::SHRDROT64ri: return expandSHXDROT(MIB, get(X86::SHRD64rri8)); case X86::ADD8rr_DB: MIB->setDesc(get(X86::OR8rr)); break; case X86::ADD16rr_DB: MIB->setDesc(get(X86::OR16rr)); break; case X86::ADD32rr_DB: MIB->setDesc(get(X86::OR32rr)); break; case X86::ADD64rr_DB: MIB->setDesc(get(X86::OR64rr)); break; case X86::ADD8ri_DB: MIB->setDesc(get(X86::OR8ri)); break; case X86::ADD16ri_DB: MIB->setDesc(get(X86::OR16ri)); break; case X86::ADD32ri_DB: MIB->setDesc(get(X86::OR32ri)); break; case X86::ADD64ri32_DB: MIB->setDesc(get(X86::OR64ri32)); break; } return false; } /// Return true for all instructions that only update /// the first 32 or 64-bits of the destination register and leave the rest /// unmodified. This can be used to avoid folding loads if the instructions /// only update part of the destination register, and the non-updated part is /// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these /// instructions breaks the partial register dependency and it can improve /// performance. e.g.: /// /// movss (%rdi), %xmm0 /// cvtss2sd %xmm0, %xmm0 /// /// Instead of /// cvtss2sd (%rdi), %xmm0 /// /// FIXME: This should be turned into a TSFlags. /// static bool hasPartialRegUpdate(unsigned Opcode, const X86Subtarget &Subtarget, bool ForLoadFold = false) { switch (Opcode) { case X86::CVTSI2SSrr: case X86::CVTSI2SSrm: case X86::CVTSI642SSrr: case X86::CVTSI642SSrm: case X86::CVTSI2SDrr: case X86::CVTSI2SDrm: case X86::CVTSI642SDrr: case X86::CVTSI642SDrm: // Load folding won't effect the undef register update since the input is // a GPR. return !ForLoadFold; case X86::CVTSD2SSrr: case X86::CVTSD2SSrm: case X86::CVTSS2SDrr: case X86::CVTSS2SDrm: case X86::MOVHPDrm: case X86::MOVHPSrm: case X86::MOVLPDrm: case X86::MOVLPSrm: case X86::RCPSSr: case X86::RCPSSm: case X86::RCPSSr_Int: case X86::RCPSSm_Int: case X86::ROUNDSDri: case X86::ROUNDSDmi: case X86::ROUNDSSri: case X86::ROUNDSSmi: case X86::RSQRTSSr: case X86::RSQRTSSm: case X86::RSQRTSSr_Int: case X86::RSQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSm: case X86::SQRTSSr_Int: case X86::SQRTSSm_Int: case X86::SQRTSDr: case X86::SQRTSDm: case X86::SQRTSDr_Int: case X86::SQRTSDm_Int: return true; case X86::VFCMULCPHZ128rm: case X86::VFCMULCPHZ128rmb: case X86::VFCMULCPHZ128rmbkz: case X86::VFCMULCPHZ128rmkz: case X86::VFCMULCPHZ128rr: case X86::VFCMULCPHZ128rrkz: case X86::VFCMULCPHZ256rm: case X86::VFCMULCPHZ256rmb: case X86::VFCMULCPHZ256rmbkz: case X86::VFCMULCPHZ256rmkz: case X86::VFCMULCPHZ256rr: case X86::VFCMULCPHZ256rrkz: case X86::VFCMULCPHZrm: case X86::VFCMULCPHZrmb: case X86::VFCMULCPHZrmbkz: case X86::VFCMULCPHZrmkz: case X86::VFCMULCPHZrr: case X86::VFCMULCPHZrrb: case X86::VFCMULCPHZrrbkz: case X86::VFCMULCPHZrrkz: case X86::VFMULCPHZ128rm: case X86::VFMULCPHZ128rmb: case X86::VFMULCPHZ128rmbkz: case X86::VFMULCPHZ128rmkz: case X86::VFMULCPHZ128rr: case X86::VFMULCPHZ128rrkz: case X86::VFMULCPHZ256rm: case X86::VFMULCPHZ256rmb: case X86::VFMULCPHZ256rmbkz: case X86::VFMULCPHZ256rmkz: case X86::VFMULCPHZ256rr: case X86::VFMULCPHZ256rrkz: case X86::VFMULCPHZrm: case X86::VFMULCPHZrmb: case X86::VFMULCPHZrmbkz: case X86::VFMULCPHZrmkz: case X86::VFMULCPHZrr: case X86::VFMULCPHZrrb: case X86::VFMULCPHZrrbkz: case X86::VFMULCPHZrrkz: case X86::VFCMULCSHZrm: case X86::VFCMULCSHZrmkz: case X86::VFCMULCSHZrr: case X86::VFCMULCSHZrrb: case X86::VFCMULCSHZrrbkz: case X86::VFCMULCSHZrrkz: case X86::VFMULCSHZrm: case X86::VFMULCSHZrmkz: case X86::VFMULCSHZrr: case X86::VFMULCSHZrrb: case X86::VFMULCSHZrrbkz: case X86::VFMULCSHZrrkz: return Subtarget.hasMULCFalseDeps(); case X86::VPERMDYrm: case X86::VPERMDYrr: case X86::VPERMQYmi: case X86::VPERMQYri: case X86::VPERMPSYrm: case X86::VPERMPSYrr: case X86::VPERMPDYmi: case X86::VPERMPDYri: case X86::VPERMDZ256rm: case X86::VPERMDZ256rmb: case X86::VPERMDZ256rmbkz: case X86::VPERMDZ256rmkz: case X86::VPERMDZ256rr: case X86::VPERMDZ256rrkz: case X86::VPERMDZrm: case X86::VPERMDZrmb: case X86::VPERMDZrmbkz: case X86::VPERMDZrmkz: case X86::VPERMDZrr: case X86::VPERMDZrrkz: case X86::VPERMQZ256mbi: case X86::VPERMQZ256mbikz: case X86::VPERMQZ256mi: case X86::VPERMQZ256mikz: case X86::VPERMQZ256ri: case X86::VPERMQZ256rikz: case X86::VPERMQZ256rm: case X86::VPERMQZ256rmb: case X86::VPERMQZ256rmbkz: case X86::VPERMQZ256rmkz: case X86::VPERMQZ256rr: case X86::VPERMQZ256rrkz: case X86::VPERMQZmbi: case X86::VPERMQZmbikz: case X86::VPERMQZmi: case X86::VPERMQZmikz: case X86::VPERMQZri: case X86::VPERMQZrikz: case X86::VPERMQZrm: case X86::VPERMQZrmb: case X86::VPERMQZrmbkz: case X86::VPERMQZrmkz: case X86::VPERMQZrr: case X86::VPERMQZrrkz: case X86::VPERMPSZ256rm: case X86::VPERMPSZ256rmb: case X86::VPERMPSZ256rmbkz: case X86::VPERMPSZ256rmkz: case X86::VPERMPSZ256rr: case X86::VPERMPSZ256rrkz: case X86::VPERMPSZrm: case X86::VPERMPSZrmb: case X86::VPERMPSZrmbkz: case X86::VPERMPSZrmkz: case X86::VPERMPSZrr: case X86::VPERMPSZrrkz: case X86::VPERMPDZ256mbi: case X86::VPERMPDZ256mbikz: case X86::VPERMPDZ256mi: case X86::VPERMPDZ256mikz: case X86::VPERMPDZ256ri: case X86::VPERMPDZ256rikz: case X86::VPERMPDZ256rm: case X86::VPERMPDZ256rmb: case X86::VPERMPDZ256rmbkz: case X86::VPERMPDZ256rmkz: case X86::VPERMPDZ256rr: case X86::VPERMPDZ256rrkz: case X86::VPERMPDZmbi: case X86::VPERMPDZmbikz: case X86::VPERMPDZmi: case X86::VPERMPDZmikz: case X86::VPERMPDZri: case X86::VPERMPDZrikz: case X86::VPERMPDZrm: case X86::VPERMPDZrmb: case X86::VPERMPDZrmbkz: case X86::VPERMPDZrmkz: case X86::VPERMPDZrr: case X86::VPERMPDZrrkz: return Subtarget.hasPERMFalseDeps(); case X86::VRANGEPDZ128rmbi: case X86::VRANGEPDZ128rmbikz: case X86::VRANGEPDZ128rmi: case X86::VRANGEPDZ128rmikz: case X86::VRANGEPDZ128rri: case X86::VRANGEPDZ128rrikz: case X86::VRANGEPDZ256rmbi: case X86::VRANGEPDZ256rmbikz: case X86::VRANGEPDZ256rmi: case X86::VRANGEPDZ256rmikz: case X86::VRANGEPDZ256rri: case X86::VRANGEPDZ256rrikz: case X86::VRANGEPDZrmbi: case X86::VRANGEPDZrmbikz: case X86::VRANGEPDZrmi: case X86::VRANGEPDZrmikz: case X86::VRANGEPDZrri: case X86::VRANGEPDZrrib: case X86::VRANGEPDZrribkz: case X86::VRANGEPDZrrikz: case X86::VRANGEPSZ128rmbi: case X86::VRANGEPSZ128rmbikz: case X86::VRANGEPSZ128rmi: case X86::VRANGEPSZ128rmikz: case X86::VRANGEPSZ128rri: case X86::VRANGEPSZ128rrikz: case X86::VRANGEPSZ256rmbi: case X86::VRANGEPSZ256rmbikz: case X86::VRANGEPSZ256rmi: case X86::VRANGEPSZ256rmikz: case X86::VRANGEPSZ256rri: case X86::VRANGEPSZ256rrikz: case X86::VRANGEPSZrmbi: case X86::VRANGEPSZrmbikz: case X86::VRANGEPSZrmi: case X86::VRANGEPSZrmikz: case X86::VRANGEPSZrri: case X86::VRANGEPSZrrib: case X86::VRANGEPSZrribkz: case X86::VRANGEPSZrrikz: case X86::VRANGESDZrmi: case X86::VRANGESDZrmikz: case X86::VRANGESDZrri: case X86::VRANGESDZrrib: case X86::VRANGESDZrribkz: case X86::VRANGESDZrrikz: case X86::VRANGESSZrmi: case X86::VRANGESSZrmikz: case X86::VRANGESSZrri: case X86::VRANGESSZrrib: case X86::VRANGESSZrribkz: case X86::VRANGESSZrrikz: return Subtarget.hasRANGEFalseDeps(); case X86::VGETMANTSSZrmi: case X86::VGETMANTSSZrmikz: case X86::VGETMANTSSZrri: case X86::VGETMANTSSZrrib: case X86::VGETMANTSSZrribkz: case X86::VGETMANTSSZrrikz: case X86::VGETMANTSDZrmi: case X86::VGETMANTSDZrmikz: case X86::VGETMANTSDZrri: case X86::VGETMANTSDZrrib: case X86::VGETMANTSDZrribkz: case X86::VGETMANTSDZrrikz: case X86::VGETMANTSHZrmi: case X86::VGETMANTSHZrmikz: case X86::VGETMANTSHZrri: case X86::VGETMANTSHZrrib: case X86::VGETMANTSHZrribkz: case X86::VGETMANTSHZrrikz: case X86::VGETMANTPSZ128rmbi: case X86::VGETMANTPSZ128rmbikz: case X86::VGETMANTPSZ128rmi: case X86::VGETMANTPSZ128rmikz: case X86::VGETMANTPSZ256rmbi: case X86::VGETMANTPSZ256rmbikz: case X86::VGETMANTPSZ256rmi: case X86::VGETMANTPSZ256rmikz: case X86::VGETMANTPSZrmbi: case X86::VGETMANTPSZrmbikz: case X86::VGETMANTPSZrmi: case X86::VGETMANTPSZrmikz: case X86::VGETMANTPDZ128rmbi: case X86::VGETMANTPDZ128rmbikz: case X86::VGETMANTPDZ128rmi: case X86::VGETMANTPDZ128rmikz: case X86::VGETMANTPDZ256rmbi: case X86::VGETMANTPDZ256rmbikz: case X86::VGETMANTPDZ256rmi: case X86::VGETMANTPDZ256rmikz: case X86::VGETMANTPDZrmbi: case X86::VGETMANTPDZrmbikz: case X86::VGETMANTPDZrmi: case X86::VGETMANTPDZrmikz: return Subtarget.hasGETMANTFalseDeps(); case X86::VPMULLQZ128rm: case X86::VPMULLQZ128rmb: case X86::VPMULLQZ128rmbkz: case X86::VPMULLQZ128rmkz: case X86::VPMULLQZ128rr: case X86::VPMULLQZ128rrkz: case X86::VPMULLQZ256rm: case X86::VPMULLQZ256rmb: case X86::VPMULLQZ256rmbkz: case X86::VPMULLQZ256rmkz: case X86::VPMULLQZ256rr: case X86::VPMULLQZ256rrkz: case X86::VPMULLQZrm: case X86::VPMULLQZrmb: case X86::VPMULLQZrmbkz: case X86::VPMULLQZrmkz: case X86::VPMULLQZrr: case X86::VPMULLQZrrkz: return Subtarget.hasMULLQFalseDeps(); // GPR case X86::POPCNT32rm: case X86::POPCNT32rr: case X86::POPCNT64rm: case X86::POPCNT64rr: return Subtarget.hasPOPCNTFalseDeps(); case X86::LZCNT32rm: case X86::LZCNT32rr: case X86::LZCNT64rm: case X86::LZCNT64rr: case X86::TZCNT32rm: case X86::TZCNT32rr: case X86::TZCNT64rm: case X86::TZCNT64rr: return Subtarget.hasLZCNTFalseDeps(); } return false; } /// Inform the BreakFalseDeps pass how many idle /// instructions we would like before a partial register update. unsigned X86InstrInfo::getPartialRegUpdateClearance( const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { if (OpNum != 0 || !hasPartialRegUpdate(MI.getOpcode(), Subtarget)) return 0; // If MI is marked as reading Reg, the partial register update is wanted. const MachineOperand &MO = MI.getOperand(0); Register Reg = MO.getReg(); if (Reg.isVirtual()) { if (MO.readsReg() || MI.readsVirtualRegister(Reg)) return 0; } else { if (MI.readsRegister(Reg, TRI)) return 0; } // If any instructions in the clearance range are reading Reg, insert a // dependency breaking instruction, which is inexpensive and is likely to // be hidden in other instruction's cycles. return PartialRegUpdateClearance; } // Return true for any instruction the copies the high bits of the first source // operand into the unused high bits of the destination operand. // Also returns true for instructions that have two inputs where one may // be undef and we want it to use the same register as the other input. static bool hasUndefRegUpdate(unsigned Opcode, unsigned OpNum, bool ForLoadFold = false) { // Set the OpNum parameter to the first source operand. switch (Opcode) { case X86::MMX_PUNPCKHBWrr: case X86::MMX_PUNPCKHWDrr: case X86::MMX_PUNPCKHDQrr: case X86::MMX_PUNPCKLBWrr: case X86::MMX_PUNPCKLWDrr: case X86::MMX_PUNPCKLDQrr: case X86::MOVHLPSrr: case X86::PACKSSWBrr: case X86::PACKUSWBrr: case X86::PACKSSDWrr: case X86::PACKUSDWrr: case X86::PUNPCKHBWrr: case X86::PUNPCKLBWrr: case X86::PUNPCKHWDrr: case X86::PUNPCKLWDrr: case X86::PUNPCKHDQrr: case X86::PUNPCKLDQrr: case X86::PUNPCKHQDQrr: case X86::PUNPCKLQDQrr: case X86::SHUFPDrri: case X86::SHUFPSrri: // These instructions are sometimes used with an undef first or second // source. Return true here so BreakFalseDeps will assign this source to the // same register as the first source to avoid a false dependency. // Operand 1 of these instructions is tied so they're separate from their // VEX counterparts. return OpNum == 2 && !ForLoadFold; case X86::VMOVLHPSrr: case X86::VMOVLHPSZrr: case X86::VPACKSSWBrr: case X86::VPACKUSWBrr: case X86::VPACKSSDWrr: case X86::VPACKUSDWrr: case X86::VPACKSSWBZ128rr: case X86::VPACKUSWBZ128rr: case X86::VPACKSSDWZ128rr: case X86::VPACKUSDWZ128rr: case X86::VPERM2F128rr: case X86::VPERM2I128rr: case X86::VSHUFF32X4Z256rri: case X86::VSHUFF32X4Zrri: case X86::VSHUFF64X2Z256rri: case X86::VSHUFF64X2Zrri: case X86::VSHUFI32X4Z256rri: case X86::VSHUFI32X4Zrri: case X86::VSHUFI64X2Z256rri: case X86::VSHUFI64X2Zrri: case X86::VPUNPCKHBWrr: case X86::VPUNPCKLBWrr: case X86::VPUNPCKHBWYrr: case X86::VPUNPCKLBWYrr: case X86::VPUNPCKHBWZ128rr: case X86::VPUNPCKLBWZ128rr: case X86::VPUNPCKHBWZ256rr: case X86::VPUNPCKLBWZ256rr: case X86::VPUNPCKHBWZrr: case X86::VPUNPCKLBWZrr: case X86::VPUNPCKHWDrr: case X86::VPUNPCKLWDrr: case X86::VPUNPCKHWDYrr: case X86::VPUNPCKLWDYrr: case X86::VPUNPCKHWDZ128rr: case X86::VPUNPCKLWDZ128rr: case X86::VPUNPCKHWDZ256rr: case X86::VPUNPCKLWDZ256rr: case X86::VPUNPCKHWDZrr: case X86::VPUNPCKLWDZrr: case X86::VPUNPCKHDQrr: case X86::VPUNPCKLDQrr: case X86::VPUNPCKHDQYrr: case X86::VPUNPCKLDQYrr: case X86::VPUNPCKHDQZ128rr: case X86::VPUNPCKLDQZ128rr: case X86::VPUNPCKHDQZ256rr: case X86::VPUNPCKLDQZ256rr: case X86::VPUNPCKHDQZrr: case X86::VPUNPCKLDQZrr: case X86::VPUNPCKHQDQrr: case X86::VPUNPCKLQDQrr: case X86::VPUNPCKHQDQYrr: case X86::VPUNPCKLQDQYrr: case X86::VPUNPCKHQDQZ128rr: case X86::VPUNPCKLQDQZ128rr: case X86::VPUNPCKHQDQZ256rr: case X86::VPUNPCKLQDQZ256rr: case X86::VPUNPCKHQDQZrr: case X86::VPUNPCKLQDQZrr: // These instructions are sometimes used with an undef first or second // source. Return true here so BreakFalseDeps will assign this source to the // same register as the first source to avoid a false dependency. return (OpNum == 1 || OpNum == 2) && !ForLoadFold; case X86::VCVTSI2SSrr: case X86::VCVTSI2SSrm: case X86::VCVTSI2SSrr_Int: case X86::VCVTSI2SSrm_Int: case X86::VCVTSI642SSrr: case X86::VCVTSI642SSrm: case X86::VCVTSI642SSrr_Int: case X86::VCVTSI642SSrm_Int: case X86::VCVTSI2SDrr: case X86::VCVTSI2SDrm: case X86::VCVTSI2SDrr_Int: case X86::VCVTSI2SDrm_Int: case X86::VCVTSI642SDrr: case X86::VCVTSI642SDrm: case X86::VCVTSI642SDrr_Int: case X86::VCVTSI642SDrm_Int: // AVX-512 case X86::VCVTSI2SSZrr: case X86::VCVTSI2SSZrm: case X86::VCVTSI2SSZrr_Int: case X86::VCVTSI2SSZrrb_Int: case X86::VCVTSI2SSZrm_Int: case X86::VCVTSI642SSZrr: case X86::VCVTSI642SSZrm: case X86::VCVTSI642SSZrr_Int: case X86::VCVTSI642SSZrrb_Int: case X86::VCVTSI642SSZrm_Int: case X86::VCVTSI2SDZrr: case X86::VCVTSI2SDZrm: case X86::VCVTSI2SDZrr_Int: case X86::VCVTSI2SDZrm_Int: case X86::VCVTSI642SDZrr: case X86::VCVTSI642SDZrm: case X86::VCVTSI642SDZrr_Int: case X86::VCVTSI642SDZrrb_Int: case X86::VCVTSI642SDZrm_Int: case X86::VCVTUSI2SSZrr: case X86::VCVTUSI2SSZrm: case X86::VCVTUSI2SSZrr_Int: case X86::VCVTUSI2SSZrrb_Int: case X86::VCVTUSI2SSZrm_Int: case X86::VCVTUSI642SSZrr: case X86::VCVTUSI642SSZrm: case X86::VCVTUSI642SSZrr_Int: case X86::VCVTUSI642SSZrrb_Int: case X86::VCVTUSI642SSZrm_Int: case X86::VCVTUSI2SDZrr: case X86::VCVTUSI2SDZrm: case X86::VCVTUSI2SDZrr_Int: case X86::VCVTUSI2SDZrm_Int: case X86::VCVTUSI642SDZrr: case X86::VCVTUSI642SDZrm: case X86::VCVTUSI642SDZrr_Int: case X86::VCVTUSI642SDZrrb_Int: case X86::VCVTUSI642SDZrm_Int: case X86::VCVTSI2SHZrr: case X86::VCVTSI2SHZrm: case X86::VCVTSI2SHZrr_Int: case X86::VCVTSI2SHZrrb_Int: case X86::VCVTSI2SHZrm_Int: case X86::VCVTSI642SHZrr: case X86::VCVTSI642SHZrm: case X86::VCVTSI642SHZrr_Int: case X86::VCVTSI642SHZrrb_Int: case X86::VCVTSI642SHZrm_Int: case X86::VCVTUSI2SHZrr: case X86::VCVTUSI2SHZrm: case X86::VCVTUSI2SHZrr_Int: case X86::VCVTUSI2SHZrrb_Int: case X86::VCVTUSI2SHZrm_Int: case X86::VCVTUSI642SHZrr: case X86::VCVTUSI642SHZrm: case X86::VCVTUSI642SHZrr_Int: case X86::VCVTUSI642SHZrrb_Int: case X86::VCVTUSI642SHZrm_Int: // Load folding won't effect the undef register update since the input is // a GPR. return OpNum == 1 && !ForLoadFold; case X86::VCVTSD2SSrr: case X86::VCVTSD2SSrm: case X86::VCVTSD2SSrr_Int: case X86::VCVTSD2SSrm_Int: case X86::VCVTSS2SDrr: case X86::VCVTSS2SDrm: case X86::VCVTSS2SDrr_Int: case X86::VCVTSS2SDrm_Int: case X86::VRCPSSr: case X86::VRCPSSr_Int: case X86::VRCPSSm: case X86::VRCPSSm_Int: case X86::VROUNDSDri: case X86::VROUNDSDmi: case X86::VROUNDSDri_Int: case X86::VROUNDSDmi_Int: case X86::VROUNDSSri: case X86::VROUNDSSmi: case X86::VROUNDSSri_Int: case X86::VROUNDSSmi_Int: case X86::VRSQRTSSr: case X86::VRSQRTSSr_Int: case X86::VRSQRTSSm: case X86::VRSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: // AVX-512 case X86::VCVTSD2SSZrr: case X86::VCVTSD2SSZrr_Int: case X86::VCVTSD2SSZrrb_Int: case X86::VCVTSD2SSZrm: case X86::VCVTSD2SSZrm_Int: case X86::VCVTSS2SDZrr: case X86::VCVTSS2SDZrr_Int: case X86::VCVTSS2SDZrrb_Int: case X86::VCVTSS2SDZrm: case X86::VCVTSS2SDZrm_Int: case X86::VGETEXPSDZr: case X86::VGETEXPSDZrb: case X86::VGETEXPSDZm: case X86::VGETEXPSSZr: case X86::VGETEXPSSZrb: case X86::VGETEXPSSZm: case X86::VGETMANTSDZrri: case X86::VGETMANTSDZrrib: case X86::VGETMANTSDZrmi: case X86::VGETMANTSSZrri: case X86::VGETMANTSSZrrib: case X86::VGETMANTSSZrmi: case X86::VRNDSCALESDZr: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZrb_Int: case X86::VRNDSCALESDZm: case X86::VRNDSCALESDZm_Int: case X86::VRNDSCALESSZr: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZrb_Int: case X86::VRNDSCALESSZm: case X86::VRNDSCALESSZm_Int: case X86::VRCP14SDZrr: case X86::VRCP14SDZrm: case X86::VRCP14SSZrr: case X86::VRCP14SSZrm: case X86::VRCPSHZrr: case X86::VRCPSHZrm: case X86::VRSQRTSHZrr: case X86::VRSQRTSHZrm: case X86::VREDUCESHZrmi: case X86::VREDUCESHZrri: case X86::VREDUCESHZrrib: case X86::VGETEXPSHZr: case X86::VGETEXPSHZrb: case X86::VGETEXPSHZm: case X86::VGETMANTSHZrri: case X86::VGETMANTSHZrrib: case X86::VGETMANTSHZrmi: case X86::VRNDSCALESHZr: case X86::VRNDSCALESHZr_Int: case X86::VRNDSCALESHZrb_Int: case X86::VRNDSCALESHZm: case X86::VRNDSCALESHZm_Int: case X86::VSQRTSHZr: case X86::VSQRTSHZr_Int: case X86::VSQRTSHZrb_Int: case X86::VSQRTSHZm: case X86::VSQRTSHZm_Int: case X86::VRCP28SDZr: case X86::VRCP28SDZrb: case X86::VRCP28SDZm: case X86::VRCP28SSZr: case X86::VRCP28SSZrb: case X86::VRCP28SSZm: case X86::VREDUCESSZrmi: case X86::VREDUCESSZrri: case X86::VREDUCESSZrrib: case X86::VRSQRT14SDZrr: case X86::VRSQRT14SDZrm: case X86::VRSQRT14SSZrr: case X86::VRSQRT14SSZrm: case X86::VRSQRT28SDZr: case X86::VRSQRT28SDZrb: case X86::VRSQRT28SDZm: case X86::VRSQRT28SSZr: case X86::VRSQRT28SSZrb: case X86::VRSQRT28SSZm: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: case X86::VCVTSD2SHZrr: case X86::VCVTSD2SHZrr_Int: case X86::VCVTSD2SHZrrb_Int: case X86::VCVTSD2SHZrm: case X86::VCVTSD2SHZrm_Int: case X86::VCVTSS2SHZrr: case X86::VCVTSS2SHZrr_Int: case X86::VCVTSS2SHZrrb_Int: case X86::VCVTSS2SHZrm: case X86::VCVTSS2SHZrm_Int: case X86::VCVTSH2SDZrr: case X86::VCVTSH2SDZrr_Int: case X86::VCVTSH2SDZrrb_Int: case X86::VCVTSH2SDZrm: case X86::VCVTSH2SDZrm_Int: case X86::VCVTSH2SSZrr: case X86::VCVTSH2SSZrr_Int: case X86::VCVTSH2SSZrrb_Int: case X86::VCVTSH2SSZrm: case X86::VCVTSH2SSZrm_Int: return OpNum == 1; case X86::VMOVSSZrrk: case X86::VMOVSDZrrk: return OpNum == 3 && !ForLoadFold; case X86::VMOVSSZrrkz: case X86::VMOVSDZrrkz: return OpNum == 2 && !ForLoadFold; } return false; } /// Inform the BreakFalseDeps pass how many idle instructions we would like /// before certain undef register reads. /// /// This catches the VCVTSI2SD family of instructions: /// /// vcvtsi2sdq %rax, undef %xmm0, %xmm14 /// /// We should to be careful *not* to catch VXOR idioms which are presumably /// handled specially in the pipeline: /// /// vxorps undef %xmm1, undef %xmm1, %xmm1 /// /// Like getPartialRegUpdateClearance, this makes a strong assumption that the /// high bits that are passed-through are not live. unsigned X86InstrInfo::getUndefRegClearance(const MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { const MachineOperand &MO = MI.getOperand(OpNum); if (MO.getReg().isPhysical() && hasUndefRegUpdate(MI.getOpcode(), OpNum)) return UndefRegClearance; return 0; } void X86InstrInfo::breakPartialRegDependency( MachineInstr &MI, unsigned OpNum, const TargetRegisterInfo *TRI) const { Register Reg = MI.getOperand(OpNum).getReg(); // If MI kills this register, the false dependence is already broken. if (MI.killsRegister(Reg, TRI)) return; if (X86::VR128RegClass.contains(Reg)) { // These instructions are all floating point domain, so xorps is the best // choice. unsigned Opc = Subtarget.hasAVX() ? X86::VXORPSrr : X86::XORPSrr; BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(Opc), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR256RegClass.contains(Reg)) { // Use vxorps to clear the full ymm register. // It wants to read and write the xmm sub-register. Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VXORPSrr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR128XRegClass.contains(Reg)) { // Only handle VLX targets. if (!Subtarget.hasVLX()) return; // Since vxorps requires AVX512DQ, vpxord should be the best choice. BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::VR256XRegClass.contains(Reg) || X86::VR512RegClass.contains(Reg)) { // Only handle VLX targets. if (!Subtarget.hasVLX()) return; // Use vpxord to clear the full ymm/zmm register. // It wants to read and write the xmm sub-register. Register XReg = TRI->getSubReg(Reg, X86::sub_xmm); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::VPXORDZ128rr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::GR64RegClass.contains(Reg)) { // Using XOR32rr because it has shorter encoding and zeros up the upper bits // as well. Register XReg = TRI->getSubReg(Reg, X86::sub_32bit); BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), XReg) .addReg(XReg, RegState::Undef) .addReg(XReg, RegState::Undef) .addReg(Reg, RegState::ImplicitDefine); MI.addRegisterKilled(Reg, TRI, true); } else if (X86::GR32RegClass.contains(Reg)) { BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); MI.addRegisterKilled(Reg, TRI, true); } } static void addOperands(MachineInstrBuilder &MIB, ArrayRef MOs, int PtrOffset = 0) { unsigned NumAddrOps = MOs.size(); if (NumAddrOps < 4) { // FrameIndex only - add an immediate offset (whether its zero or not). for (unsigned i = 0; i != NumAddrOps; ++i) MIB.add(MOs[i]); addOffset(MIB, PtrOffset); } else { // General Memory Addressing - we need to add any offset to an existing // offset. assert(MOs.size() == 5 && "Unexpected memory operand list length"); for (unsigned i = 0; i != NumAddrOps; ++i) { const MachineOperand &MO = MOs[i]; if (i == 3 && PtrOffset != 0) { MIB.addDisp(MO, PtrOffset); } else { MIB.add(MO); } } } } static void updateOperandRegConstraints(MachineFunction &MF, MachineInstr &NewMI, const TargetInstrInfo &TII) { MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo(); for (int Idx : llvm::seq(0, NewMI.getNumOperands())) { MachineOperand &MO = NewMI.getOperand(Idx); // We only need to update constraints on virtual register operands. if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (!Reg.isVirtual()) continue; auto *NewRC = MRI.constrainRegClass( Reg, TII.getRegClass(NewMI.getDesc(), Idx, &TRI, MF)); if (!NewRC) { LLVM_DEBUG( dbgs() << "WARNING: Unable to update register constraint for operand " << Idx << " of instruction:\n"; NewMI.dump(); dbgs() << "\n"); } } } static MachineInstr *fuseTwoAddrInst(MachineFunction &MF, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII) { // Create the base instruction with the memory operand as the first part. // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); addOperands(MIB, MOs); // Loop over the rest of the ri operands, converting them over. unsigned NumOps = MI.getDesc().getNumOperands() - 2; for (unsigned i = 0; i != NumOps; ++i) { MachineOperand &MO = MI.getOperand(i + 2); MIB.add(MO); } for (const MachineOperand &MO : llvm::drop_begin(MI.operands(), NumOps + 2)) MIB.add(MO); updateOperandRegConstraints(MF, *NewMI, TII); MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *fuseInst(MachineFunction &MF, unsigned Opcode, unsigned OpNo, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI, const TargetInstrInfo &TII, int PtrOffset = 0) { // Omit the implicit operands, something BuildMI can't do. MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode), MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, NewMI); for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &MO = MI.getOperand(i); if (i == OpNo) { assert(MO.isReg() && "Expected to fold into reg operand!"); addOperands(MIB, MOs, PtrOffset); } else { MIB.add(MO); } } updateOperandRegConstraints(MF, *NewMI, TII); // Copy the NoFPExcept flag from the instruction we're fusing. if (MI.getFlag(MachineInstr::MIFlag::NoFPExcept)) NewMI->setFlag(MachineInstr::MIFlag::NoFPExcept); MachineBasicBlock *MBB = InsertPt->getParent(); MBB->insert(InsertPt, NewMI); return MIB; } static MachineInstr *makeM0Inst(const TargetInstrInfo &TII, unsigned Opcode, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, MachineInstr &MI) { MachineInstrBuilder MIB = BuildMI(*InsertPt->getParent(), InsertPt, MI.getDebugLoc(), TII.get(Opcode)); addOperands(MIB, MOs); return MIB.addImm(0); } MachineInstr *X86InstrInfo::foldMemoryOperandCustom( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, Align Alignment) const { switch (MI.getOpcode()) { case X86::INSERTPSrr: case X86::VINSERTPSrr: case X86::VINSERTPSZrr: // Attempt to convert the load of inserted vector into a fold load // of a single float. if (OpNum == 2) { unsigned Imm = MI.getOperand(MI.getNumOperands() - 1).getImm(); unsigned ZMask = Imm & 15; unsigned DstIdx = (Imm >> 4) & 3; unsigned SrcIdx = (Imm >> 6) & 3; const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if ((Size == 0 || Size >= 16) && RCSize >= 16 && (MI.getOpcode() != X86::INSERTPSrr || Alignment >= Align(4))) { int PtrOffset = SrcIdx * 4; unsigned NewImm = (DstIdx << 4) | ZMask; unsigned NewOpCode = (MI.getOpcode() == X86::VINSERTPSZrr) ? X86::VINSERTPSZrm : (MI.getOpcode() == X86::VINSERTPSrr) ? X86::VINSERTPSrm : X86::INSERTPSrm; MachineInstr *NewMI = fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, PtrOffset); NewMI->getOperand(NewMI->getNumOperands() - 1).setImm(NewImm); return NewMI; } } break; case X86::MOVHLPSrr: case X86::VMOVHLPSrr: case X86::VMOVHLPSZrr: // Move the upper 64-bits of the second operand to the lower 64-bits. // To fold the load, adjust the pointer to the upper and use (V)MOVLPS. // TODO: In most cases AVX doesn't have a 8-byte alignment requirement. if (OpNum == 2) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment >= Align(8)) { unsigned NewOpCode = (MI.getOpcode() == X86::VMOVHLPSZrr) ? X86::VMOVLPSZ128rm : (MI.getOpcode() == X86::VMOVHLPSrr) ? X86::VMOVLPSrm : X86::MOVLPSrm; MachineInstr *NewMI = fuseInst(MF, NewOpCode, OpNum, MOs, InsertPt, MI, *this, 8); return NewMI; } } break; case X86::UNPCKLPDrr: // If we won't be able to fold this to the memory form of UNPCKL, use // MOVHPD instead. Done as custom because we can't have this in the load // table twice. if (OpNum == 2) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; if ((Size == 0 || Size >= 16) && RCSize >= 16 && Alignment < Align(16)) { MachineInstr *NewMI = fuseInst(MF, X86::MOVHPDrm, OpNum, MOs, InsertPt, MI, *this); return NewMI; } } break; case X86::MOV32r0: if (auto *NewMI = makeM0Inst(*this, (Size == 4) ? X86::MOV32mi : X86::MOV64mi32, MOs, InsertPt, MI)) return NewMI; break; } return nullptr; } static bool shouldPreventUndefRegUpdateMemFold(MachineFunction &MF, MachineInstr &MI) { if (!hasUndefRegUpdate(MI.getOpcode(), 1, /*ForLoadFold*/ true) || !MI.getOperand(1).isReg()) return false; // The are two cases we need to handle depending on where in the pipeline // the folding attempt is being made. // -Register has the undef flag set. // -Register is produced by the IMPLICIT_DEF instruction. if (MI.getOperand(1).isUndef()) return true; MachineRegisterInfo &RegInfo = MF.getRegInfo(); MachineInstr *VRegDef = RegInfo.getUniqueVRegDef(MI.getOperand(1).getReg()); return VRegDef && VRegDef->isImplicitDef(); } unsigned X86InstrInfo::commuteOperandsForFold(MachineInstr &MI, unsigned Idx1) const { unsigned Idx2 = CommuteAnyOperandIndex; if (!findCommutedOpIndices(MI, Idx1, Idx2)) return Idx1; bool HasDef = MI.getDesc().getNumDefs(); Register Reg0 = HasDef ? MI.getOperand(0).getReg() : Register(); Register Reg1 = MI.getOperand(Idx1).getReg(); Register Reg2 = MI.getOperand(Idx2).getReg(); bool Tied1 = 0 == MI.getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO); bool Tied2 = 0 == MI.getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO); // If either of the commutable operands are tied to the destination // then we can not commute + fold. if ((HasDef && Reg0 == Reg1 && Tied1) || (HasDef && Reg0 == Reg2 && Tied2)) return Idx1; return commuteInstruction(MI, false, Idx1, Idx2) ? Idx2 : Idx1; } static void printFailMsgforFold(const MachineInstr &MI, unsigned Idx) { if (PrintFailedFusing && !MI.isCopy()) dbgs() << "We failed to fuse operand " << Idx << " in " << MI; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned Size, Align Alignment, bool AllowCommute) const { bool isSlowTwoMemOps = Subtarget.slowTwoMemOps(); unsigned Opc = MI.getOpcode(); // For CPUs that favor the register form of a call or push, // do not fold loads into calls or pushes, unless optimizing for size // aggressively. if (isSlowTwoMemOps && !MF.getFunction().hasMinSize() && (Opc == X86::CALL32r || Opc == X86::CALL64r || Opc == X86::PUSH16r || Opc == X86::PUSH32r || Opc == X86::PUSH64r)) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().hasOptSize() && (hasPartialRegUpdate(Opc, Subtarget, /*ForLoadFold*/ true) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; unsigned NumOps = MI.getDesc().getNumOperands(); bool IsTwoAddr = NumOps > 1 && OpNum < 2 && MI.getOperand(0).isReg() && MI.getOperand(1).isReg() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg(); // FIXME: AsmPrinter doesn't know how to handle // X86II::MO_GOT_ABSOLUTE_ADDRESS after folding. if (Opc == X86::ADD32ri && MI.getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS) return nullptr; // GOTTPOFF relocation loads can only be folded into add instructions. // FIXME: Need to exclude other relocations that only support specific // instructions. if (MOs.size() == X86::AddrNumOperands && MOs[X86::AddrDisp].getTargetFlags() == X86II::MO_GOTTPOFF && Opc != X86::ADD64rr) return nullptr; // Don't fold loads into indirect calls that need a KCFI check as we'll // have to unfold these in X86TargetLowering::EmitKCFICheck anyway. if (MI.isCall() && MI.getCFIType()) return nullptr; // Attempt to fold any custom cases we have. if (auto *CustomMI = foldMemoryOperandCustom(MF, MI, OpNum, MOs, InsertPt, Size, Alignment)) return CustomMI; // Folding a memory location into the two-address part of a two-address // instruction is different than folding it other places. It requires // replacing the *two* registers with the memory location. // // Utilize the mapping NonNDD -> RMW for the NDD variant. unsigned NonNDOpc = Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U; const X86FoldTableEntry *I = IsTwoAddr ? lookupTwoAddrFoldTable(NonNDOpc ? NonNDOpc : Opc) : lookupFoldTable(Opc, OpNum); MachineInstr *NewMI = nullptr; if (I) { unsigned Opcode = I->DstOp; if (Alignment < Align(1ULL << ((I->Flags & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT))) return nullptr; bool NarrowToMOV32rm = false; if (Size) { const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MI.getDesc(), OpNum, &RI, MF); unsigned RCSize = TRI.getRegSizeInBits(*RC) / 8; // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. // FIXME: Allow scalar intrinsic instructions like ADDSSrm_Int. if ((I->Flags & TB_FOLDED_LOAD) && Size < RCSize) { // If this is a 64-bit load, but the spill slot is 32, then we can do // a 32-bit load which is implicitly zero-extended. This likely is // due to live interval analysis remat'ing a load from stack slot. if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4) return nullptr; if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg()) return nullptr; Opcode = X86::MOV32rm; NarrowToMOV32rm = true; } // For stores, make sure the size of the object is equal to the size of // the store. If the object is larger, the extra bits would be garbage. If // the object is smaller we might overwrite another object or fault. if ((I->Flags & TB_FOLDED_STORE) && Size != RCSize) return nullptr; } NewMI = IsTwoAddr ? fuseTwoAddrInst(MF, Opcode, MOs, InsertPt, MI, *this) : fuseInst(MF, Opcode, OpNum, MOs, InsertPt, MI, *this); if (NarrowToMOV32rm) { // If this is the special case where we use a MOV32rm to load a 32-bit // value and zero-extend the top bits. Change the destination register // to a 32-bit one. Register DstReg = NewMI->getOperand(0).getReg(); if (DstReg.isPhysical()) NewMI->getOperand(0).setReg(RI.getSubReg(DstReg, X86::sub_32bit)); else NewMI->getOperand(0).setSubReg(X86::sub_32bit); } return NewMI; } if (AllowCommute) { // If the instruction and target operand are commutable, commute the // instruction and try again. unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); if (CommuteOpIdx2 == OpNum) { printFailMsgforFold(MI, OpNum); return nullptr; } // Attempt to fold with the commuted version of the instruction. NewMI = foldMemoryOperandImpl(MF, MI, CommuteOpIdx2, MOs, InsertPt, Size, Alignment, /*AllowCommute=*/false); if (NewMI) return NewMI; // Folding failed again - undo the commute before returning. commuteInstruction(MI, false, OpNum, CommuteOpIdx2); } printFailMsgforFold(MI, OpNum); return nullptr; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, int FrameIndex, LiveIntervals *LIS, VirtRegMap *VRM) const { // Check switch flag if (NoFusing) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().hasOptSize() && (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; // Don't fold subreg spills, or reloads that use a high subreg. for (auto Op : Ops) { MachineOperand &MO = MI.getOperand(Op); auto SubReg = MO.getSubReg(); // MOV32r0 is special b/c it's used to clear a 64-bit register too. // (See patterns for MOV32r0 in TD files). if (MI.getOpcode() == X86::MOV32r0 && SubReg == X86::sub_32bit) continue; if (SubReg && (MO.isDef() || SubReg == X86::sub_8bit_hi)) return nullptr; } const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned Size = MFI.getObjectSize(FrameIndex); Align Alignment = MFI.getObjectAlign(FrameIndex); // If the function stack isn't realigned we don't want to fold instructions // that need increased alignment. if (!RI.hasStackRealignment(MF)) Alignment = std::min(Alignment, Subtarget.getFrameLowering()->getStackAlign()); auto Impl = [&]() { return foldMemoryOperandImpl(MF, MI, Ops[0], MachineOperand::CreateFI(FrameIndex), InsertPt, Size, Alignment, /*AllowCommute=*/true); }; if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; unsigned RCSize = 0; unsigned Opc = MI.getOpcode(); switch (Opc) { default: // NDD can be folded into RMW though its Op0 and Op1 are not tied. return (Subtarget.hasNDD() ? X86::getNonNDVariant(Opc) : 0U) ? Impl() : nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break; case X86::TEST16rr: NewOpc = X86::CMP16ri; RCSize = 2; break; case X86::TEST32rr: NewOpc = X86::CMP32ri; RCSize = 4; break; case X86::TEST64rr: NewOpc = X86::CMP64ri32; RCSize = 8; break; } // Check if it's safe to fold the load. If the size of the object is // narrower than the load width, then it's not. if (Size < RCSize) return nullptr; // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; return Impl(); } /// Check if \p LoadMI is a partial register load that we can't fold into \p MI /// because the latter uses contents that wouldn't be defined in the folded /// version. For instance, this transformation isn't legal: /// movss (%rdi), %xmm0 /// addps %xmm0, %xmm0 /// -> /// addps (%rdi), %xmm0 /// /// But this one is: /// movss (%rdi), %xmm0 /// addss %xmm0, %xmm0 /// -> /// addss (%rdi), %xmm0 /// static bool isNonFoldablePartialRegisterLoad(const MachineInstr &LoadMI, const MachineInstr &UserMI, const MachineFunction &MF) { unsigned Opc = LoadMI.getOpcode(); unsigned UserOpc = UserMI.getOpcode(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(LoadMI.getOperand(0).getReg()); unsigned RegSize = TRI.getRegSizeInBits(*RC); if ((Opc == X86::MOVSSrm || Opc == X86::VMOVSSrm || Opc == X86::VMOVSSZrm || Opc == X86::MOVSSrm_alt || Opc == X86::VMOVSSrm_alt || Opc == X86::VMOVSSZrm_alt) && RegSize > 32) { // These instructions only load 32 bits, we can't fold them if the // destination register is wider than 32 bits (4 bytes), and its user // instruction isn't scalar (SS). switch (UserOpc) { case X86::CVTSS2SDrr_Int: case X86::VCVTSS2SDrr_Int: case X86::VCVTSS2SDZrr_Int: case X86::VCVTSS2SDZrr_Intk: case X86::VCVTSS2SDZrr_Intkz: case X86::CVTSS2SIrr_Int: case X86::CVTSS2SI64rr_Int: case X86::VCVTSS2SIrr_Int: case X86::VCVTSS2SI64rr_Int: case X86::VCVTSS2SIZrr_Int: case X86::VCVTSS2SI64Zrr_Int: case X86::CVTTSS2SIrr_Int: case X86::CVTTSS2SI64rr_Int: case X86::VCVTTSS2SIrr_Int: case X86::VCVTTSS2SI64rr_Int: case X86::VCVTTSS2SIZrr_Int: case X86::VCVTTSS2SI64Zrr_Int: case X86::VCVTSS2USIZrr_Int: case X86::VCVTSS2USI64Zrr_Int: case X86::VCVTTSS2USIZrr_Int: case X86::VCVTTSS2USI64Zrr_Int: case X86::RCPSSr_Int: case X86::VRCPSSr_Int: case X86::RSQRTSSr_Int: case X86::VRSQRTSSr_Int: case X86::ROUNDSSri_Int: case X86::VROUNDSSri_Int: case X86::COMISSrr_Int: case X86::VCOMISSrr_Int: case X86::VCOMISSZrr_Int: case X86::UCOMISSrr_Int: case X86::VUCOMISSrr_Int: case X86::VUCOMISSZrr_Int: case X86::ADDSSrr_Int: case X86::VADDSSrr_Int: case X86::VADDSSZrr_Int: case X86::CMPSSrri_Int: case X86::VCMPSSrri_Int: case X86::VCMPSSZrri_Int: case X86::DIVSSrr_Int: case X86::VDIVSSrr_Int: case X86::VDIVSSZrr_Int: case X86::MAXSSrr_Int: case X86::VMAXSSrr_Int: case X86::VMAXSSZrr_Int: case X86::MINSSrr_Int: case X86::VMINSSrr_Int: case X86::VMINSSZrr_Int: case X86::MULSSrr_Int: case X86::VMULSSrr_Int: case X86::VMULSSZrr_Int: case X86::SQRTSSr_Int: case X86::VSQRTSSr_Int: case X86::VSQRTSSZr_Int: case X86::SUBSSrr_Int: case X86::VSUBSSrr_Int: case X86::VSUBSSZrr_Int: case X86::VADDSSZrr_Intk: case X86::VADDSSZrr_Intkz: case X86::VCMPSSZrri_Intk: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VMAXSSZrr_Intk: case X86::VMAXSSZrr_Intkz: case X86::VMINSSZrr_Intk: case X86::VMINSSZrr_Intkz: case X86::VMULSSZrr_Intk: case X86::VMULSSZrr_Intkz: case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: case X86::VSUBSSZrr_Intk: case X86::VSUBSSZrr_Intkz: case X86::VFMADDSS4rr_Int: case X86::VFNMADDSS4rr_Int: case X86::VFMSUBSS4rr_Int: case X86::VFNMSUBSS4rr_Int: case X86::VFMADD132SSr_Int: case X86::VFNMADD132SSr_Int: case X86::VFMADD213SSr_Int: case X86::VFNMADD213SSr_Int: case X86::VFMADD231SSr_Int: case X86::VFNMADD231SSr_Int: case X86::VFMSUB132SSr_Int: case X86::VFNMSUB132SSr_Int: case X86::VFMSUB213SSr_Int: case X86::VFNMSUB213SSr_Int: case X86::VFMSUB231SSr_Int: case X86::VFNMSUB231SSr_Int: case X86::VFMADD132SSZr_Int: case X86::VFNMADD132SSZr_Int: case X86::VFMADD213SSZr_Int: case X86::VFNMADD213SSZr_Int: case X86::VFMADD231SSZr_Int: case X86::VFNMADD231SSZr_Int: case X86::VFMSUB132SSZr_Int: case X86::VFNMSUB132SSZr_Int: case X86::VFMSUB213SSZr_Int: case X86::VFNMSUB213SSZr_Int: case X86::VFMSUB231SSZr_Int: case X86::VFNMSUB231SSZr_Int: case X86::VFMADD132SSZr_Intk: case X86::VFNMADD132SSZr_Intk: case X86::VFMADD213SSZr_Intk: case X86::VFNMADD213SSZr_Intk: case X86::VFMADD231SSZr_Intk: case X86::VFNMADD231SSZr_Intk: case X86::VFMSUB132SSZr_Intk: case X86::VFNMSUB132SSZr_Intk: case X86::VFMSUB213SSZr_Intk: case X86::VFNMSUB213SSZr_Intk: case X86::VFMSUB231SSZr_Intk: case X86::VFNMSUB231SSZr_Intk: case X86::VFMADD132SSZr_Intkz: case X86::VFNMADD132SSZr_Intkz: case X86::VFMADD213SSZr_Intkz: case X86::VFNMADD213SSZr_Intkz: case X86::VFMADD231SSZr_Intkz: case X86::VFNMADD231SSZr_Intkz: case X86::VFMSUB132SSZr_Intkz: case X86::VFNMSUB132SSZr_Intkz: case X86::VFMSUB213SSZr_Intkz: case X86::VFNMSUB213SSZr_Intkz: case X86::VFMSUB231SSZr_Intkz: case X86::VFNMSUB231SSZr_Intkz: case X86::VFIXUPIMMSSZrri: case X86::VFIXUPIMMSSZrrik: case X86::VFIXUPIMMSSZrrikz: case X86::VFPCLASSSSZrr: case X86::VFPCLASSSSZrrk: case X86::VGETEXPSSZr: case X86::VGETEXPSSZrk: case X86::VGETEXPSSZrkz: case X86::VGETMANTSSZrri: case X86::VGETMANTSSZrrik: case X86::VGETMANTSSZrrikz: case X86::VRANGESSZrri: case X86::VRANGESSZrrik: case X86::VRANGESSZrrikz: case X86::VRCP14SSZrr: case X86::VRCP14SSZrrk: case X86::VRCP14SSZrrkz: case X86::VRCP28SSZr: case X86::VRCP28SSZrk: case X86::VRCP28SSZrkz: case X86::VREDUCESSZrri: case X86::VREDUCESSZrrik: case X86::VREDUCESSZrrikz: case X86::VRNDSCALESSZr_Int: case X86::VRNDSCALESSZr_Intk: case X86::VRNDSCALESSZr_Intkz: case X86::VRSQRT14SSZrr: case X86::VRSQRT14SSZrrk: case X86::VRSQRT14SSZrrkz: case X86::VRSQRT28SSZr: case X86::VRSQRT28SSZrk: case X86::VRSQRT28SSZrkz: case X86::VSCALEFSSZrr: case X86::VSCALEFSSZrrk: case X86::VSCALEFSSZrrkz: return false; default: return true; } } if ((Opc == X86::MOVSDrm || Opc == X86::VMOVSDrm || Opc == X86::VMOVSDZrm || Opc == X86::MOVSDrm_alt || Opc == X86::VMOVSDrm_alt || Opc == X86::VMOVSDZrm_alt) && RegSize > 64) { // These instructions only load 64 bits, we can't fold them if the // destination register is wider than 64 bits (8 bytes), and its user // instruction isn't scalar (SD). switch (UserOpc) { case X86::CVTSD2SSrr_Int: case X86::VCVTSD2SSrr_Int: case X86::VCVTSD2SSZrr_Int: case X86::VCVTSD2SSZrr_Intk: case X86::VCVTSD2SSZrr_Intkz: case X86::CVTSD2SIrr_Int: case X86::CVTSD2SI64rr_Int: case X86::VCVTSD2SIrr_Int: case X86::VCVTSD2SI64rr_Int: case X86::VCVTSD2SIZrr_Int: case X86::VCVTSD2SI64Zrr_Int: case X86::CVTTSD2SIrr_Int: case X86::CVTTSD2SI64rr_Int: case X86::VCVTTSD2SIrr_Int: case X86::VCVTTSD2SI64rr_Int: case X86::VCVTTSD2SIZrr_Int: case X86::VCVTTSD2SI64Zrr_Int: case X86::VCVTSD2USIZrr_Int: case X86::VCVTSD2USI64Zrr_Int: case X86::VCVTTSD2USIZrr_Int: case X86::VCVTTSD2USI64Zrr_Int: case X86::ROUNDSDri_Int: case X86::VROUNDSDri_Int: case X86::COMISDrr_Int: case X86::VCOMISDrr_Int: case X86::VCOMISDZrr_Int: case X86::UCOMISDrr_Int: case X86::VUCOMISDrr_Int: case X86::VUCOMISDZrr_Int: case X86::ADDSDrr_Int: case X86::VADDSDrr_Int: case X86::VADDSDZrr_Int: case X86::CMPSDrri_Int: case X86::VCMPSDrri_Int: case X86::VCMPSDZrri_Int: case X86::DIVSDrr_Int: case X86::VDIVSDrr_Int: case X86::VDIVSDZrr_Int: case X86::MAXSDrr_Int: case X86::VMAXSDrr_Int: case X86::VMAXSDZrr_Int: case X86::MINSDrr_Int: case X86::VMINSDrr_Int: case X86::VMINSDZrr_Int: case X86::MULSDrr_Int: case X86::VMULSDrr_Int: case X86::VMULSDZrr_Int: case X86::SQRTSDr_Int: case X86::VSQRTSDr_Int: case X86::VSQRTSDZr_Int: case X86::SUBSDrr_Int: case X86::VSUBSDrr_Int: case X86::VSUBSDZrr_Int: case X86::VADDSDZrr_Intk: case X86::VADDSDZrr_Intkz: case X86::VCMPSDZrri_Intk: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VMAXSDZrr_Intk: case X86::VMAXSDZrr_Intkz: case X86::VMINSDZrr_Intk: case X86::VMINSDZrr_Intkz: case X86::VMULSDZrr_Intk: case X86::VMULSDZrr_Intkz: case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: case X86::VSUBSDZrr_Intk: case X86::VSUBSDZrr_Intkz: case X86::VFMADDSD4rr_Int: case X86::VFNMADDSD4rr_Int: case X86::VFMSUBSD4rr_Int: case X86::VFNMSUBSD4rr_Int: case X86::VFMADD132SDr_Int: case X86::VFNMADD132SDr_Int: case X86::VFMADD213SDr_Int: case X86::VFNMADD213SDr_Int: case X86::VFMADD231SDr_Int: case X86::VFNMADD231SDr_Int: case X86::VFMSUB132SDr_Int: case X86::VFNMSUB132SDr_Int: case X86::VFMSUB213SDr_Int: case X86::VFNMSUB213SDr_Int: case X86::VFMSUB231SDr_Int: case X86::VFNMSUB231SDr_Int: case X86::VFMADD132SDZr_Int: case X86::VFNMADD132SDZr_Int: case X86::VFMADD213SDZr_Int: case X86::VFNMADD213SDZr_Int: case X86::VFMADD231SDZr_Int: case X86::VFNMADD231SDZr_Int: case X86::VFMSUB132SDZr_Int: case X86::VFNMSUB132SDZr_Int: case X86::VFMSUB213SDZr_Int: case X86::VFNMSUB213SDZr_Int: case X86::VFMSUB231SDZr_Int: case X86::VFNMSUB231SDZr_Int: case X86::VFMADD132SDZr_Intk: case X86::VFNMADD132SDZr_Intk: case X86::VFMADD213SDZr_Intk: case X86::VFNMADD213SDZr_Intk: case X86::VFMADD231SDZr_Intk: case X86::VFNMADD231SDZr_Intk: case X86::VFMSUB132SDZr_Intk: case X86::VFNMSUB132SDZr_Intk: case X86::VFMSUB213SDZr_Intk: case X86::VFNMSUB213SDZr_Intk: case X86::VFMSUB231SDZr_Intk: case X86::VFNMSUB231SDZr_Intk: case X86::VFMADD132SDZr_Intkz: case X86::VFNMADD132SDZr_Intkz: case X86::VFMADD213SDZr_Intkz: case X86::VFNMADD213SDZr_Intkz: case X86::VFMADD231SDZr_Intkz: case X86::VFNMADD231SDZr_Intkz: case X86::VFMSUB132SDZr_Intkz: case X86::VFNMSUB132SDZr_Intkz: case X86::VFMSUB213SDZr_Intkz: case X86::VFNMSUB213SDZr_Intkz: case X86::VFMSUB231SDZr_Intkz: case X86::VFNMSUB231SDZr_Intkz: case X86::VFIXUPIMMSDZrri: case X86::VFIXUPIMMSDZrrik: case X86::VFIXUPIMMSDZrrikz: case X86::VFPCLASSSDZrr: case X86::VFPCLASSSDZrrk: case X86::VGETEXPSDZr: case X86::VGETEXPSDZrk: case X86::VGETEXPSDZrkz: case X86::VGETMANTSDZrri: case X86::VGETMANTSDZrrik: case X86::VGETMANTSDZrrikz: case X86::VRANGESDZrri: case X86::VRANGESDZrrik: case X86::VRANGESDZrrikz: case X86::VRCP14SDZrr: case X86::VRCP14SDZrrk: case X86::VRCP14SDZrrkz: case X86::VRCP28SDZr: case X86::VRCP28SDZrk: case X86::VRCP28SDZrkz: case X86::VREDUCESDZrri: case X86::VREDUCESDZrrik: case X86::VREDUCESDZrrikz: case X86::VRNDSCALESDZr_Int: case X86::VRNDSCALESDZr_Intk: case X86::VRNDSCALESDZr_Intkz: case X86::VRSQRT14SDZrr: case X86::VRSQRT14SDZrrk: case X86::VRSQRT14SDZrrkz: case X86::VRSQRT28SDZr: case X86::VRSQRT28SDZrk: case X86::VRSQRT28SDZrkz: case X86::VSCALEFSDZrr: case X86::VSCALEFSDZrrk: case X86::VSCALEFSDZrrkz: return false; default: return true; } } if ((Opc == X86::VMOVSHZrm || Opc == X86::VMOVSHZrm_alt) && RegSize > 16) { // These instructions only load 16 bits, we can't fold them if the // destination register is wider than 16 bits (2 bytes), and its user // instruction isn't scalar (SH). switch (UserOpc) { case X86::VADDSHZrr_Int: case X86::VCMPSHZrri_Int: case X86::VDIVSHZrr_Int: case X86::VMAXSHZrr_Int: case X86::VMINSHZrr_Int: case X86::VMULSHZrr_Int: case X86::VSUBSHZrr_Int: case X86::VADDSHZrr_Intk: case X86::VADDSHZrr_Intkz: case X86::VCMPSHZrri_Intk: case X86::VDIVSHZrr_Intk: case X86::VDIVSHZrr_Intkz: case X86::VMAXSHZrr_Intk: case X86::VMAXSHZrr_Intkz: case X86::VMINSHZrr_Intk: case X86::VMINSHZrr_Intkz: case X86::VMULSHZrr_Intk: case X86::VMULSHZrr_Intkz: case X86::VSUBSHZrr_Intk: case X86::VSUBSHZrr_Intkz: case X86::VFMADD132SHZr_Int: case X86::VFNMADD132SHZr_Int: case X86::VFMADD213SHZr_Int: case X86::VFNMADD213SHZr_Int: case X86::VFMADD231SHZr_Int: case X86::VFNMADD231SHZr_Int: case X86::VFMSUB132SHZr_Int: case X86::VFNMSUB132SHZr_Int: case X86::VFMSUB213SHZr_Int: case X86::VFNMSUB213SHZr_Int: case X86::VFMSUB231SHZr_Int: case X86::VFNMSUB231SHZr_Int: case X86::VFMADD132SHZr_Intk: case X86::VFNMADD132SHZr_Intk: case X86::VFMADD213SHZr_Intk: case X86::VFNMADD213SHZr_Intk: case X86::VFMADD231SHZr_Intk: case X86::VFNMADD231SHZr_Intk: case X86::VFMSUB132SHZr_Intk: case X86::VFNMSUB132SHZr_Intk: case X86::VFMSUB213SHZr_Intk: case X86::VFNMSUB213SHZr_Intk: case X86::VFMSUB231SHZr_Intk: case X86::VFNMSUB231SHZr_Intk: case X86::VFMADD132SHZr_Intkz: case X86::VFNMADD132SHZr_Intkz: case X86::VFMADD213SHZr_Intkz: case X86::VFNMADD213SHZr_Intkz: case X86::VFMADD231SHZr_Intkz: case X86::VFNMADD231SHZr_Intkz: case X86::VFMSUB132SHZr_Intkz: case X86::VFNMSUB132SHZr_Intkz: case X86::VFMSUB213SHZr_Intkz: case X86::VFNMSUB213SHZr_Intkz: case X86::VFMSUB231SHZr_Intkz: case X86::VFNMSUB231SHZr_Intkz: return false; default: return true; } } return false; } MachineInstr *X86InstrInfo::foldMemoryOperandImpl( MachineFunction &MF, MachineInstr &MI, ArrayRef Ops, MachineBasicBlock::iterator InsertPt, MachineInstr &LoadMI, LiveIntervals *LIS) const { // TODO: Support the case where LoadMI loads a wide register, but MI // only uses a subreg. for (auto Op : Ops) { if (MI.getOperand(Op).getSubReg()) return nullptr; } // If loading from a FrameIndex, fold directly from the FrameIndex. unsigned NumOps = LoadMI.getDesc().getNumOperands(); int FrameIndex; if (isLoadFromStackSlot(LoadMI, FrameIndex)) { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; return foldMemoryOperandImpl(MF, MI, Ops, InsertPt, FrameIndex, LIS); } // Check switch flag if (NoFusing) return nullptr; // Avoid partial and undef register update stalls unless optimizing for size. if (!MF.getFunction().hasOptSize() && (hasPartialRegUpdate(MI.getOpcode(), Subtarget, /*ForLoadFold*/ true) || shouldPreventUndefRegUpdateMemFold(MF, MI))) return nullptr; // Determine the alignment of the load. Align Alignment; unsigned LoadOpc = LoadMI.getOpcode(); if (LoadMI.hasOneMemOperand()) Alignment = (*LoadMI.memoperands_begin())->getAlign(); else switch (LoadOpc) { case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: Alignment = Align(64); break; case X86::AVX2_SETALLONES: case X86::AVX1_SETALLONES: case X86::AVX_SET0: case X86::AVX512_256_SET0: Alignment = Align(32); break; case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX512_128_SET0: case X86::FsFLD0F128: case X86::AVX512_FsFLD0F128: Alignment = Align(16); break; case X86::MMX_SET0: case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: Alignment = Align(8); break; case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: Alignment = Align(4); break; case X86::FsFLD0SH: case X86::AVX512_FsFLD0SH: Alignment = Align(2); break; default: return nullptr; } if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) { unsigned NewOpc = 0; switch (MI.getOpcode()) { default: return nullptr; case X86::TEST8rr: NewOpc = X86::CMP8ri; break; case X86::TEST16rr: NewOpc = X86::CMP16ri; break; case X86::TEST32rr: NewOpc = X86::CMP32ri; break; case X86::TEST64rr: NewOpc = X86::CMP64ri32; break; } // Change to CMPXXri r, 0 first. MI.setDesc(get(NewOpc)); MI.getOperand(1).ChangeToImmediate(0); } else if (Ops.size() != 1) return nullptr; // Make sure the subregisters match. // Otherwise we risk changing the size of the load. if (LoadMI.getOperand(0).getSubReg() != MI.getOperand(Ops[0]).getSubReg()) return nullptr; SmallVector MOs; switch (LoadOpc) { case X86::MMX_SET0: case X86::V_SET0: case X86::V_SETALLONES: case X86::AVX2_SETALLONES: case X86::AVX1_SETALLONES: case X86::AVX_SET0: case X86::AVX512_128_SET0: case X86::AVX512_256_SET0: case X86::AVX512_512_SET0: case X86::AVX512_512_SETALLONES: case X86::FsFLD0SH: case X86::AVX512_FsFLD0SH: case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: case X86::FsFLD0F128: case X86::AVX512_FsFLD0F128: { // Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure. // Create a constant-pool entry and operands to load from it. // Large code model can't fold loads this way. if (MF.getTarget().getCodeModel() == CodeModel::Large) return nullptr; // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; // Since we're using Small or Kernel code model, we can always use // RIP-relative addressing for a smaller encoding. if (Subtarget.is64Bit()) { PICBase = X86::RIP; } else if (MF.getTarget().isPositionIndependent()) { // FIXME: PICBase = getGlobalBaseReg(&MF); // This doesn't work for several reasons. // 1. GlobalBaseReg may have been spilled. // 2. It may not be live at MI. return nullptr; } // Create a constant-pool entry. MachineConstantPool &MCP = *MF.getConstantPool(); Type *Ty; bool IsAllOnes = false; switch (LoadOpc) { case X86::FsFLD0SS: case X86::AVX512_FsFLD0SS: Ty = Type::getFloatTy(MF.getFunction().getContext()); break; case X86::FsFLD0SD: case X86::AVX512_FsFLD0SD: Ty = Type::getDoubleTy(MF.getFunction().getContext()); break; case X86::FsFLD0F128: case X86::AVX512_FsFLD0F128: Ty = Type::getFP128Ty(MF.getFunction().getContext()); break; case X86::FsFLD0SH: case X86::AVX512_FsFLD0SH: Ty = Type::getHalfTy(MF.getFunction().getContext()); break; case X86::AVX512_512_SETALLONES: IsAllOnes = true; [[fallthrough]]; case X86::AVX512_512_SET0: Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 16); break; case X86::AVX1_SETALLONES: case X86::AVX2_SETALLONES: IsAllOnes = true; [[fallthrough]]; case X86::AVX512_256_SET0: case X86::AVX_SET0: Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 8); break; case X86::MMX_SET0: Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 2); break; case X86::V_SETALLONES: IsAllOnes = true; [[fallthrough]]; case X86::V_SET0: case X86::AVX512_128_SET0: Ty = FixedVectorType::get(Type::getInt32Ty(MF.getFunction().getContext()), 4); break; } const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) : Constant::getNullValue(Ty); unsigned CPI = MCP.getConstantPoolIndex(C, Alignment); // Create operands to load from the constant pool entry. MOs.push_back(MachineOperand::CreateReg(PICBase, false)); MOs.push_back(MachineOperand::CreateImm(1)); MOs.push_back(MachineOperand::CreateReg(0, false)); MOs.push_back(MachineOperand::CreateCPI(CPI, 0)); MOs.push_back(MachineOperand::CreateReg(0, false)); break; } case X86::VPBROADCASTBZ128rm: case X86::VPBROADCASTBZ256rm: case X86::VPBROADCASTBZrm: case X86::VBROADCASTF32X2Z256rm: case X86::VBROADCASTF32X2Zrm: case X86::VBROADCASTI32X2Z128rm: case X86::VBROADCASTI32X2Z256rm: case X86::VBROADCASTI32X2Zrm: // No instructions currently fuse with 8bits or 32bits x 2. return nullptr; #define FOLD_BROADCAST(SIZE) \ MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, \ LoadMI.operands_begin() + NumOps); \ return foldMemoryBroadcast(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/SIZE, \ /*AllowCommute=*/true); case X86::VPBROADCASTWZ128rm: case X86::VPBROADCASTWZ256rm: case X86::VPBROADCASTWZrm: FOLD_BROADCAST(16); case X86::VPBROADCASTDZ128rm: case X86::VPBROADCASTDZ256rm: case X86::VPBROADCASTDZrm: case X86::VBROADCASTSSZ128rm: case X86::VBROADCASTSSZ256rm: case X86::VBROADCASTSSZrm: FOLD_BROADCAST(32); case X86::VPBROADCASTQZ128rm: case X86::VPBROADCASTQZ256rm: case X86::VPBROADCASTQZrm: case X86::VBROADCASTSDZ256rm: case X86::VBROADCASTSDZrm: FOLD_BROADCAST(64); default: { if (isNonFoldablePartialRegisterLoad(LoadMI, MI, MF)) return nullptr; // Folding a normal load. Just copy the load's address operands. MOs.append(LoadMI.operands_begin() + NumOps - X86::AddrNumOperands, LoadMI.operands_begin() + NumOps); break; } } return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, InsertPt, /*Size=*/0, Alignment, /*AllowCommute=*/true); } MachineInstr * X86InstrInfo::foldMemoryBroadcast(MachineFunction &MF, MachineInstr &MI, unsigned OpNum, ArrayRef MOs, MachineBasicBlock::iterator InsertPt, unsigned BitsSize, bool AllowCommute) const { if (auto *I = lookupBroadcastFoldTable(MI.getOpcode(), OpNum)) return matchBroadcastSize(*I, BitsSize) ? fuseInst(MF, I->DstOp, OpNum, MOs, InsertPt, MI, *this) : nullptr; if (AllowCommute) { // If the instruction and target operand are commutable, commute the // instruction and try again. unsigned CommuteOpIdx2 = commuteOperandsForFold(MI, OpNum); if (CommuteOpIdx2 == OpNum) { printFailMsgforFold(MI, OpNum); return nullptr; } MachineInstr *NewMI = foldMemoryBroadcast(MF, MI, CommuteOpIdx2, MOs, InsertPt, BitsSize, /*AllowCommute=*/false); if (NewMI) return NewMI; // Folding failed again - undo the commute before returning. commuteInstruction(MI, false, OpNum, CommuteOpIdx2); } printFailMsgforFold(MI, OpNum); return nullptr; } static SmallVector extractLoadMMOs(ArrayRef MMOs, MachineFunction &MF) { SmallVector LoadMMOs; for (MachineMemOperand *MMO : MMOs) { if (!MMO->isLoad()) continue; if (!MMO->isStore()) { // Reuse the MMO. LoadMMOs.push_back(MMO); } else { // Clone the MMO and unset the store flag. LoadMMOs.push_back(MF.getMachineMemOperand( MMO, MMO->getFlags() & ~MachineMemOperand::MOStore)); } } return LoadMMOs; } static SmallVector extractStoreMMOs(ArrayRef MMOs, MachineFunction &MF) { SmallVector StoreMMOs; for (MachineMemOperand *MMO : MMOs) { if (!MMO->isStore()) continue; if (!MMO->isLoad()) { // Reuse the MMO. StoreMMOs.push_back(MMO); } else { // Clone the MMO and unset the load flag. StoreMMOs.push_back(MF.getMachineMemOperand( MMO, MMO->getFlags() & ~MachineMemOperand::MOLoad)); } } return StoreMMOs; } static unsigned getBroadcastOpcode(const X86FoldTableEntry *I, const TargetRegisterClass *RC, const X86Subtarget &STI) { assert(STI.hasAVX512() && "Expected at least AVX512!"); unsigned SpillSize = STI.getRegisterInfo()->getSpillSize(*RC); assert((SpillSize == 64 || STI.hasVLX()) && "Can't broadcast less than 64 bytes without AVX512VL!"); #define CASE_BCAST_TYPE_OPC(TYPE, OP16, OP32, OP64) \ case TYPE: \ switch (SpillSize) { \ default: \ llvm_unreachable("Unknown spill size"); \ case 16: \ return X86::OP16; \ case 32: \ return X86::OP32; \ case 64: \ return X86::OP64; \ } \ break; switch (I->Flags & TB_BCAST_MASK) { default: llvm_unreachable("Unexpected broadcast type!"); CASE_BCAST_TYPE_OPC(TB_BCAST_W, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, VPBROADCASTWZrm) CASE_BCAST_TYPE_OPC(TB_BCAST_D, VPBROADCASTDZ128rm, VPBROADCASTDZ256rm, VPBROADCASTDZrm) CASE_BCAST_TYPE_OPC(TB_BCAST_Q, VPBROADCASTQZ128rm, VPBROADCASTQZ256rm, VPBROADCASTQZrm) CASE_BCAST_TYPE_OPC(TB_BCAST_SH, VPBROADCASTWZ128rm, VPBROADCASTWZ256rm, VPBROADCASTWZrm) CASE_BCAST_TYPE_OPC(TB_BCAST_SS, VBROADCASTSSZ128rm, VBROADCASTSSZ256rm, VBROADCASTSSZrm) CASE_BCAST_TYPE_OPC(TB_BCAST_SD, VMOVDDUPZ128rm, VBROADCASTSDZ256rm, VBROADCASTSDZrm) } } bool X86InstrInfo::unfoldMemoryOperand( MachineFunction &MF, MachineInstr &MI, unsigned Reg, bool UnfoldLoad, bool UnfoldStore, SmallVectorImpl &NewMIs) const { const X86FoldTableEntry *I = lookupUnfoldTable(MI.getOpcode()); if (I == nullptr) return false; unsigned Opc = I->DstOp; unsigned Index = I->Flags & TB_INDEX_MASK; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return false; UnfoldLoad &= FoldedLoad; if (UnfoldStore && !FoldedStore) return false; UnfoldStore &= FoldedStore; const MCInstrDesc &MCID = get(Opc); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); // TODO: Check if 32-byte or greater accesses are slow too? if (!MI.hasOneMemOperand() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Without memoperands, loadRegFromAddr and storeRegToStackSlot will // conservatively assume the address is unaligned. That's bad for // performance. return false; SmallVector AddrOps; SmallVector BeforeOps; SmallVector AfterOps; SmallVector ImpOps; for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { MachineOperand &Op = MI.getOperand(i); if (i >= Index && i < Index + X86::AddrNumOperands) AddrOps.push_back(Op); else if (Op.isReg() && Op.isImplicit()) ImpOps.push_back(Op); else if (i < Index) BeforeOps.push_back(Op); else if (i > Index) AfterOps.push_back(Op); } // Emit the load or broadcast instruction. if (UnfoldLoad) { auto MMOs = extractLoadMMOs(MI.memoperands(), MF); unsigned Opc; if (I->Flags & TB_BCAST_MASK) { Opc = getBroadcastOpcode(I, RC, Subtarget); } else { unsigned Alignment = std::max(TRI.getSpillSize(*RC), 16); bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; Opc = getLoadRegOpcode(Reg, RC, isAligned, Subtarget); } DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), Reg); for (const MachineOperand &AddrOp : AddrOps) MIB.add(AddrOp); MIB.setMemRefs(MMOs); NewMIs.push_back(MIB); if (UnfoldStore) { // Address operands cannot be marked isKill. for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) { MachineOperand &MO = NewMIs[0]->getOperand(i); if (MO.isReg()) MO.setIsKill(false); } } } // Emit the data processing instruction. MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI.getDebugLoc(), true); MachineInstrBuilder MIB(MF, DataMI); if (FoldedStore) MIB.addReg(Reg, RegState::Define); for (MachineOperand &BeforeOp : BeforeOps) MIB.add(BeforeOp); if (FoldedLoad) MIB.addReg(Reg); for (MachineOperand &AfterOp : AfterOps) MIB.add(AfterOp); for (MachineOperand &ImpOp : ImpOps) { MIB.addReg(ImpOp.getReg(), getDefRegState(ImpOp.isDef()) | RegState::Implicit | getKillRegState(ImpOp.isKill()) | getDeadRegState(ImpOp.isDead()) | getUndefRegState(ImpOp.isUndef())); } // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (DataMI->getOpcode()) { default: break; case X86::CMP64ri32: case X86::CMP32ri: case X86::CMP16ri: case X86::CMP8ri: { MachineOperand &MO0 = DataMI->getOperand(0); MachineOperand &MO1 = DataMI->getOperand(1); if (MO1.isImm() && MO1.getImm() == 0) { unsigned NewOpc; switch (DataMI->getOpcode()) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri32: NewOpc = X86::TEST64rr; break; case X86::CMP32ri: NewOpc = X86::TEST32rr; break; case X86::CMP16ri: NewOpc = X86::TEST16rr; break; case X86::CMP8ri: NewOpc = X86::TEST8rr; break; } DataMI->setDesc(get(NewOpc)); MO1.ChangeToRegister(MO0.getReg(), false); } } } NewMIs.push_back(DataMI); // Emit the store instruction. if (UnfoldStore) { const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI, MF); auto MMOs = extractStoreMMOs(MI.memoperands(), MF); unsigned Alignment = std::max(TRI.getSpillSize(*DstRC), 16); bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; unsigned Opc = getStoreRegOpcode(Reg, DstRC, isAligned, Subtarget); DebugLoc DL; MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc)); for (const MachineOperand &AddrOp : AddrOps) MIB.add(AddrOp); MIB.addReg(Reg, RegState::Kill); MIB.setMemRefs(MMOs); NewMIs.push_back(MIB); } return true; } bool X86InstrInfo::unfoldMemoryOperand( SelectionDAG &DAG, SDNode *N, SmallVectorImpl &NewNodes) const { if (!N->isMachineOpcode()) return false; const X86FoldTableEntry *I = lookupUnfoldTable(N->getMachineOpcode()); if (I == nullptr) return false; unsigned Opc = I->DstOp; unsigned Index = I->Flags & TB_INDEX_MASK; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; const MCInstrDesc &MCID = get(Opc); MachineFunction &MF = DAG.getMachineFunction(); const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI, MF); unsigned NumDefs = MCID.NumDefs; std::vector AddrOps; std::vector BeforeOps; std::vector AfterOps; SDLoc dl(N); unsigned NumOps = N->getNumOperands(); for (unsigned i = 0; i != NumOps - 1; ++i) { SDValue Op = N->getOperand(i); if (i >= Index - NumDefs && i < Index - NumDefs + X86::AddrNumOperands) AddrOps.push_back(Op); else if (i < Index - NumDefs) BeforeOps.push_back(Op); else if (i > Index - NumDefs) AfterOps.push_back(Op); } SDValue Chain = N->getOperand(NumOps - 1); AddrOps.push_back(Chain); // Emit the load instruction. SDNode *Load = nullptr; if (FoldedLoad) { EVT VT = *TRI.legalclasstypes_begin(*RC); auto MMOs = extractLoadMMOs(cast(N)->memoperands(), MF); if (MMOs.empty() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned load. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Opc; if (I->Flags & TB_BCAST_MASK) { Opc = getBroadcastOpcode(I, RC, Subtarget); } else { unsigned Alignment = std::max(TRI.getSpillSize(*RC), 16); bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; Opc = getLoadRegOpcode(0, RC, isAligned, Subtarget); } Load = DAG.getMachineNode(Opc, dl, VT, MVT::Other, AddrOps); NewNodes.push_back(Load); // Preserve memory reference information. DAG.setNodeMemRefs(cast(Load), MMOs); } // Emit the data processing instruction. std::vector VTs; const TargetRegisterClass *DstRC = nullptr; if (MCID.getNumDefs() > 0) { DstRC = getRegClass(MCID, 0, &RI, MF); VTs.push_back(*TRI.legalclasstypes_begin(*DstRC)); } for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) { EVT VT = N->getValueType(i); if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs()) VTs.push_back(VT); } if (Load) BeforeOps.push_back(SDValue(Load, 0)); llvm::append_range(BeforeOps, AfterOps); // Change CMP32ri r, 0 back to TEST32rr r, r, etc. switch (Opc) { default: break; case X86::CMP64ri32: case X86::CMP32ri: case X86::CMP16ri: case X86::CMP8ri: if (isNullConstant(BeforeOps[1])) { switch (Opc) { default: llvm_unreachable("Unreachable!"); case X86::CMP64ri32: Opc = X86::TEST64rr; break; case X86::CMP32ri: Opc = X86::TEST32rr; break; case X86::CMP16ri: Opc = X86::TEST16rr; break; case X86::CMP8ri: Opc = X86::TEST8rr; break; } BeforeOps[1] = BeforeOps[0]; } } SDNode *NewNode = DAG.getMachineNode(Opc, dl, VTs, BeforeOps); NewNodes.push_back(NewNode); // Emit the store instruction. if (FoldedStore) { AddrOps.pop_back(); AddrOps.push_back(SDValue(NewNode, 0)); AddrOps.push_back(Chain); auto MMOs = extractStoreMMOs(cast(N)->memoperands(), MF); if (MMOs.empty() && RC == &X86::VR128RegClass && Subtarget.isUnalignedMem16Slow()) // Do not introduce a slow unaligned store. return false; // FIXME: If a VR128 can have size 32, we should be checking if a 32-byte // memory access is slow above. unsigned Alignment = std::max(TRI.getSpillSize(*RC), 16); bool isAligned = !MMOs.empty() && MMOs.front()->getAlign() >= Alignment; SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC, isAligned, Subtarget), dl, MVT::Other, AddrOps); NewNodes.push_back(Store); // Preserve memory reference information. DAG.setNodeMemRefs(cast(Store), MMOs); } return true; } unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc, bool UnfoldLoad, bool UnfoldStore, unsigned *LoadRegIndex) const { const X86FoldTableEntry *I = lookupUnfoldTable(Opc); if (I == nullptr) return 0; bool FoldedLoad = I->Flags & TB_FOLDED_LOAD; bool FoldedStore = I->Flags & TB_FOLDED_STORE; if (UnfoldLoad && !FoldedLoad) return 0; if (UnfoldStore && !FoldedStore) return 0; if (LoadRegIndex) *LoadRegIndex = I->Flags & TB_INDEX_MASK; return I->DstOp; } bool X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2, int64_t &Offset1, int64_t &Offset2) const { if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode()) return false; auto IsLoadOpcode = [&](unsigned Opcode) { switch (Opcode) { default: return false; case X86::MOV8rm: case X86::MOV16rm: case X86::MOV32rm: case X86::MOV64rm: case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MOVSSrm: case X86::MOVSSrm_alt: case X86::MOVSDrm: case X86::MOVSDrm_alt: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: case X86::MOVAPSrm: case X86::MOVUPSrm: case X86::MOVAPDrm: case X86::MOVUPDrm: case X86::MOVDQArm: case X86::MOVDQUrm: // AVX load instructions case X86::VMOVSSrm: case X86::VMOVSSrm_alt: case X86::VMOVSDrm: case X86::VMOVSDrm_alt: case X86::VMOVAPSrm: case X86::VMOVUPSrm: case X86::VMOVAPDrm: case X86::VMOVUPDrm: case X86::VMOVDQArm: case X86::VMOVDQUrm: case X86::VMOVAPSYrm: case X86::VMOVUPSYrm: case X86::VMOVAPDYrm: case X86::VMOVUPDYrm: case X86::VMOVDQAYrm: case X86::VMOVDQUYrm: // AVX512 load instructions case X86::VMOVSSZrm: case X86::VMOVSSZrm_alt: case X86::VMOVSDZrm: case X86::VMOVSDZrm_alt: case X86::VMOVAPSZ128rm: case X86::VMOVUPSZ128rm: case X86::VMOVAPSZ128rm_NOVLX: case X86::VMOVUPSZ128rm_NOVLX: case X86::VMOVAPDZ128rm: case X86::VMOVUPDZ128rm: case X86::VMOVDQU8Z128rm: case X86::VMOVDQU16Z128rm: case X86::VMOVDQA32Z128rm: case X86::VMOVDQU32Z128rm: case X86::VMOVDQA64Z128rm: case X86::VMOVDQU64Z128rm: case X86::VMOVAPSZ256rm: case X86::VMOVUPSZ256rm: case X86::VMOVAPSZ256rm_NOVLX: case X86::VMOVUPSZ256rm_NOVLX: case X86::VMOVAPDZ256rm: case X86::VMOVUPDZ256rm: case X86::VMOVDQU8Z256rm: case X86::VMOVDQU16Z256rm: case X86::VMOVDQA32Z256rm: case X86::VMOVDQU32Z256rm: case X86::VMOVDQA64Z256rm: case X86::VMOVDQU64Z256rm: case X86::VMOVAPSZrm: case X86::VMOVUPSZrm: case X86::VMOVAPDZrm: case X86::VMOVUPDZrm: case X86::VMOVDQU8Zrm: case X86::VMOVDQU16Zrm: case X86::VMOVDQA32Zrm: case X86::VMOVDQU32Zrm: case X86::VMOVDQA64Zrm: case X86::VMOVDQU64Zrm: case X86::KMOVBkm: case X86::KMOVBkm_EVEX: case X86::KMOVWkm: case X86::KMOVWkm_EVEX: case X86::KMOVDkm: case X86::KMOVDkm_EVEX: case X86::KMOVQkm: case X86::KMOVQkm_EVEX: return true; } }; if (!IsLoadOpcode(Load1->getMachineOpcode()) || !IsLoadOpcode(Load2->getMachineOpcode())) return false; // Lambda to check if both the loads have the same value for an operand index. auto HasSameOp = [&](int I) { return Load1->getOperand(I) == Load2->getOperand(I); }; // All operands except the displacement should match. if (!HasSameOp(X86::AddrBaseReg) || !HasSameOp(X86::AddrScaleAmt) || !HasSameOp(X86::AddrIndexReg) || !HasSameOp(X86::AddrSegmentReg)) return false; // Chain Operand must be the same. if (!HasSameOp(5)) return false; // Now let's examine if the displacements are constants. auto Disp1 = dyn_cast(Load1->getOperand(X86::AddrDisp)); auto Disp2 = dyn_cast(Load2->getOperand(X86::AddrDisp)); if (!Disp1 || !Disp2) return false; Offset1 = Disp1->getSExtValue(); Offset2 = Disp2->getSExtValue(); return true; } bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2, int64_t Offset1, int64_t Offset2, unsigned NumLoads) const { assert(Offset2 > Offset1); if ((Offset2 - Offset1) / 8 > 64) return false; unsigned Opc1 = Load1->getMachineOpcode(); unsigned Opc2 = Load2->getMachineOpcode(); if (Opc1 != Opc2) return false; // FIXME: overly conservative? switch (Opc1) { default: break; case X86::LD_Fp32m: case X86::LD_Fp64m: case X86::LD_Fp80m: case X86::MMX_MOVD64rm: case X86::MMX_MOVQ64rm: return false; } EVT VT = Load1->getValueType(0); switch (VT.getSimpleVT().SimpleTy) { default: // XMM registers. In 64-bit mode we can be a bit more aggressive since we // have 16 of them to play with. if (Subtarget.is64Bit()) { if (NumLoads >= 3) return false; } else if (NumLoads) { return false; } break; case MVT::i8: case MVT::i16: case MVT::i32: case MVT::i64: case MVT::f32: case MVT::f64: if (NumLoads) return false; break; } return true; } bool X86InstrInfo::isSchedulingBoundary(const MachineInstr &MI, const MachineBasicBlock *MBB, const MachineFunction &MF) const { // ENDBR instructions should not be scheduled around. unsigned Opcode = MI.getOpcode(); if (Opcode == X86::ENDBR64 || Opcode == X86::ENDBR32 || Opcode == X86::PLDTILECFGV) return true; // Frame setup and destory can't be scheduled around. if (MI.getFlag(MachineInstr::FrameSetup) || MI.getFlag(MachineInstr::FrameDestroy)) return true; return TargetInstrInfo::isSchedulingBoundary(MI, MBB, MF); } bool X86InstrInfo::reverseBranchCondition( SmallVectorImpl &Cond) const { assert(Cond.size() == 1 && "Invalid X86 branch condition!"); X86::CondCode CC = static_cast(Cond[0].getImm()); Cond[0].setImm(GetOppositeBranchCondition(CC)); return false; } bool X86InstrInfo::isSafeToMoveRegClassDefs( const TargetRegisterClass *RC) const { // FIXME: Return false for x87 stack register classes for now. We can't // allow any loads of these registers before FpGet_ST0_80. return !(RC == &X86::CCRRegClass || RC == &X86::DFCCRRegClass || RC == &X86::RFP32RegClass || RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass); } /// Return a virtual register initialized with the /// the global base register value. Output instructions required to /// initialize the register in the function entry block, if necessary. /// /// TODO: Eliminate this and move the code to X86MachineFunctionInfo. /// unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const { X86MachineFunctionInfo *X86FI = MF->getInfo(); Register GlobalBaseReg = X86FI->getGlobalBaseReg(); if (GlobalBaseReg != 0) return GlobalBaseReg; // Create the register. The code to initialize it is inserted // later, by the CGBR pass (below). MachineRegisterInfo &RegInfo = MF->getRegInfo(); GlobalBaseReg = RegInfo.createVirtualRegister( Subtarget.is64Bit() ? &X86::GR64_NOSPRegClass : &X86::GR32_NOSPRegClass); X86FI->setGlobalBaseReg(GlobalBaseReg); return GlobalBaseReg; } // FIXME: Some shuffle and unpack instructions have equivalents in different // domains, but they require a bit more work than just switching opcodes. static const uint16_t *lookup(unsigned opcode, unsigned domain, ArrayRef Table) { for (const uint16_t(&Row)[3] : Table) if (Row[domain - 1] == opcode) return Row; return nullptr; } static const uint16_t *lookupAVX512(unsigned opcode, unsigned domain, ArrayRef Table) { // If this is the integer domain make sure to check both integer columns. for (const uint16_t(&Row)[4] : Table) if (Row[domain - 1] == opcode || (domain == 3 && Row[3] == opcode)) return Row; return nullptr; } // Helper to attempt to widen/narrow blend masks. static bool AdjustBlendMask(unsigned OldMask, unsigned OldWidth, unsigned NewWidth, unsigned *pNewMask = nullptr) { assert(((OldWidth % NewWidth) == 0 || (NewWidth % OldWidth) == 0) && "Illegal blend mask scale"); unsigned NewMask = 0; if ((OldWidth % NewWidth) == 0) { unsigned Scale = OldWidth / NewWidth; unsigned SubMask = (1u << Scale) - 1; for (unsigned i = 0; i != NewWidth; ++i) { unsigned Sub = (OldMask >> (i * Scale)) & SubMask; if (Sub == SubMask) NewMask |= (1u << i); else if (Sub != 0x0) return false; } } else { unsigned Scale = NewWidth / OldWidth; unsigned SubMask = (1u << Scale) - 1; for (unsigned i = 0; i != OldWidth; ++i) { if (OldMask & (1 << i)) { NewMask |= (SubMask << (i * Scale)); } } } if (pNewMask) *pNewMask = NewMask; return true; } uint16_t X86InstrInfo::getExecutionDomainCustom(const MachineInstr &MI) const { unsigned Opcode = MI.getOpcode(); unsigned NumOperands = MI.getDesc().getNumOperands(); auto GetBlendDomains = [&](unsigned ImmWidth, bool Is256) { uint16_t validDomains = 0; if (MI.getOperand(NumOperands - 1).isImm()) { unsigned Imm = MI.getOperand(NumOperands - 1).getImm(); if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4)) validDomains |= 0x2; // PackedSingle if (AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2)) validDomains |= 0x4; // PackedDouble if (!Is256 || Subtarget.hasAVX2()) validDomains |= 0x8; // PackedInt } return validDomains; }; switch (Opcode) { case X86::BLENDPDrmi: case X86::BLENDPDrri: case X86::VBLENDPDrmi: case X86::VBLENDPDrri: return GetBlendDomains(2, false); case X86::VBLENDPDYrmi: case X86::VBLENDPDYrri: return GetBlendDomains(4, true); case X86::BLENDPSrmi: case X86::BLENDPSrri: case X86::VBLENDPSrmi: case X86::VBLENDPSrri: case X86::VPBLENDDrmi: case X86::VPBLENDDrri: return GetBlendDomains(4, false); case X86::VBLENDPSYrmi: case X86::VBLENDPSYrri: case X86::VPBLENDDYrmi: case X86::VPBLENDDYrri: return GetBlendDomains(8, true); case X86::PBLENDWrmi: case X86::PBLENDWrri: case X86::VPBLENDWrmi: case X86::VPBLENDWrri: // Treat VPBLENDWY as a 128-bit vector as it repeats the lo/hi masks. case X86::VPBLENDWYrmi: case X86::VPBLENDWYrri: return GetBlendDomains(8, false); case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: case X86::VPORDZ128rr: case X86::VPORDZ128rm: case X86::VPORDZ256rr: case X86::VPORDZ256rm: case X86::VPORQZ128rr: case X86::VPORQZ128rm: case X86::VPORQZ256rr: case X86::VPORQZ256rm: case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: // If we don't have DQI see if we can still switch from an EVEX integer // instruction to a VEX floating point instruction. if (Subtarget.hasDQI()) return 0; if (RI.getEncodingValue(MI.getOperand(0).getReg()) >= 16) return 0; if (RI.getEncodingValue(MI.getOperand(1).getReg()) >= 16) return 0; // Register forms will have 3 operands. Memory form will have more. if (NumOperands == 3 && RI.getEncodingValue(MI.getOperand(2).getReg()) >= 16) return 0; // All domains are valid. return 0xe; case X86::MOVHLPSrr: // We can swap domains when both inputs are the same register. // FIXME: This doesn't catch all the cases we would like. If the input // register isn't KILLed by the instruction, the two address instruction // pass puts a COPY on one input. The other input uses the original // register. This prevents the same physical register from being used by // both inputs. if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0) return 0x6; return 0; case X86::SHUFPDrri: return 0x6; } return 0; } #include "X86ReplaceableInstrs.def" bool X86InstrInfo::setExecutionDomainCustom(MachineInstr &MI, unsigned Domain) const { assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); unsigned Opcode = MI.getOpcode(); unsigned NumOperands = MI.getDesc().getNumOperands(); auto SetBlendDomain = [&](unsigned ImmWidth, bool Is256) { if (MI.getOperand(NumOperands - 1).isImm()) { unsigned Imm = MI.getOperand(NumOperands - 1).getImm() & 255; Imm = (ImmWidth == 16 ? ((Imm << 8) | Imm) : Imm); unsigned NewImm = Imm; const uint16_t *table = lookup(Opcode, dom, ReplaceableBlendInstrs); if (!table) table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); if (Domain == 1) { // PackedSingle AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); } else if (Domain == 2) { // PackedDouble AdjustBlendMask(Imm, ImmWidth, Is256 ? 4 : 2, &NewImm); } else if (Domain == 3) { // PackedInt if (Subtarget.hasAVX2()) { // If we are already VPBLENDW use that, else use VPBLENDD. if ((ImmWidth / (Is256 ? 2 : 1)) != 8) { table = lookup(Opcode, dom, ReplaceableBlendAVX2Instrs); AdjustBlendMask(Imm, ImmWidth, Is256 ? 8 : 4, &NewImm); } } else { assert(!Is256 && "128-bit vector expected"); AdjustBlendMask(Imm, ImmWidth, 8, &NewImm); } } assert(table && table[Domain - 1] && "Unknown domain op"); MI.setDesc(get(table[Domain - 1])); MI.getOperand(NumOperands - 1).setImm(NewImm & 255); } return true; }; switch (Opcode) { case X86::BLENDPDrmi: case X86::BLENDPDrri: case X86::VBLENDPDrmi: case X86::VBLENDPDrri: return SetBlendDomain(2, false); case X86::VBLENDPDYrmi: case X86::VBLENDPDYrri: return SetBlendDomain(4, true); case X86::BLENDPSrmi: case X86::BLENDPSrri: case X86::VBLENDPSrmi: case X86::VBLENDPSrri: case X86::VPBLENDDrmi: case X86::VPBLENDDrri: return SetBlendDomain(4, false); case X86::VBLENDPSYrmi: case X86::VBLENDPSYrri: case X86::VPBLENDDYrmi: case X86::VPBLENDDYrri: return SetBlendDomain(8, true); case X86::PBLENDWrmi: case X86::PBLENDWrri: case X86::VPBLENDWrmi: case X86::VPBLENDWrri: return SetBlendDomain(8, false); case X86::VPBLENDWYrmi: case X86::VPBLENDWYrri: return SetBlendDomain(16, true); case X86::VPANDDZ128rr: case X86::VPANDDZ128rm: case X86::VPANDDZ256rr: case X86::VPANDDZ256rm: case X86::VPANDQZ128rr: case X86::VPANDQZ128rm: case X86::VPANDQZ256rr: case X86::VPANDQZ256rm: case X86::VPANDNDZ128rr: case X86::VPANDNDZ128rm: case X86::VPANDNDZ256rr: case X86::VPANDNDZ256rm: case X86::VPANDNQZ128rr: case X86::VPANDNQZ128rm: case X86::VPANDNQZ256rr: case X86::VPANDNQZ256rm: case X86::VPORDZ128rr: case X86::VPORDZ128rm: case X86::VPORDZ256rr: case X86::VPORDZ256rm: case X86::VPORQZ128rr: case X86::VPORQZ128rm: case X86::VPORQZ256rr: case X86::VPORQZ256rm: case X86::VPXORDZ128rr: case X86::VPXORDZ128rm: case X86::VPXORDZ256rr: case X86::VPXORDZ256rm: case X86::VPXORQZ128rr: case X86::VPXORQZ128rm: case X86::VPXORQZ256rr: case X86::VPXORQZ256rm: { // Without DQI, convert EVEX instructions to VEX instructions. if (Subtarget.hasDQI()) return false; const uint16_t *table = lookupAVX512(MI.getOpcode(), dom, ReplaceableCustomAVX512LogicInstrs); assert(table && "Instruction not found in table?"); // Don't change integer Q instructions to D instructions and // use D intructions if we started with a PS instruction. if (Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; MI.setDesc(get(table[Domain - 1])); return true; } case X86::UNPCKHPDrr: case X86::MOVHLPSrr: // We just need to commute the instruction which will switch the domains. if (Domain != dom && Domain != 3 && MI.getOperand(1).getReg() == MI.getOperand(2).getReg() && MI.getOperand(0).getSubReg() == 0 && MI.getOperand(1).getSubReg() == 0 && MI.getOperand(2).getSubReg() == 0) { commuteInstruction(MI, false); return true; } // We must always return true for MOVHLPSrr. if (Opcode == X86::MOVHLPSrr) return true; break; case X86::SHUFPDrri: { if (Domain == 1) { unsigned Imm = MI.getOperand(3).getImm(); unsigned NewImm = 0x44; if (Imm & 1) NewImm |= 0x0a; if (Imm & 2) NewImm |= 0xa0; MI.getOperand(3).setImm(NewImm); MI.setDesc(get(X86::SHUFPSrri)); } return true; } } return false; } std::pair X86InstrInfo::getExecutionDomain(const MachineInstr &MI) const { uint16_t domain = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; unsigned opcode = MI.getOpcode(); uint16_t validDomains = 0; if (domain) { // Attempt to match for custom instructions. validDomains = getExecutionDomainCustom(MI); if (validDomains) return std::make_pair(domain, validDomains); if (lookup(opcode, domain, ReplaceableInstrs)) { validDomains = 0xe; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2)) { validDomains = Subtarget.hasAVX2() ? 0xe : 0x6; } else if (lookup(opcode, domain, ReplaceableInstrsFP)) { validDomains = 0x6; } else if (lookup(opcode, domain, ReplaceableInstrsAVX2InsertExtract)) { // Insert/extract instructions should only effect domain if AVX2 // is enabled. if (!Subtarget.hasAVX2()) return std::make_pair(0, 0); validDomains = 0xe; } else if (lookupAVX512(opcode, domain, ReplaceableInstrsAVX512)) { validDomains = 0xe; } else if (Subtarget.hasDQI() && lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQ)) { validDomains = 0xe; } else if (Subtarget.hasDQI()) { if (const uint16_t *table = lookupAVX512(opcode, domain, ReplaceableInstrsAVX512DQMasked)) { if (domain == 1 || (domain == 3 && table[3] == opcode)) validDomains = 0xa; else validDomains = 0xc; } } } return std::make_pair(domain, validDomains); } void X86InstrInfo::setExecutionDomain(MachineInstr &MI, unsigned Domain) const { assert(Domain > 0 && Domain < 4 && "Invalid execution domain"); uint16_t dom = (MI.getDesc().TSFlags >> X86II::SSEDomainShift) & 3; assert(dom && "Not an SSE instruction"); // Attempt to match for custom instructions. if (setExecutionDomainCustom(MI, Domain)) return; const uint16_t *table = lookup(MI.getOpcode(), dom, ReplaceableInstrs); if (!table) { // try the other table assert((Subtarget.hasAVX2() || Domain < 3) && "256-bit vector operations only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2); } if (!table) { // try the FP table table = lookup(MI.getOpcode(), dom, ReplaceableInstrsFP); assert((!table || Domain < 3) && "Can only select PackedSingle or PackedDouble"); } if (!table) { // try the other table assert(Subtarget.hasAVX2() && "256-bit insert/extract only available in AVX2"); table = lookup(MI.getOpcode(), dom, ReplaceableInstrsAVX2InsertExtract); } if (!table) { // try the AVX512 table assert(Subtarget.hasAVX512() && "Requires AVX-512"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512); // Don't change integer Q instructions to D instructions. if (table && Domain == 3 && table[3] == MI.getOpcode()) Domain = 4; } if (!table) { // try the AVX512DQ table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQ); // Don't change integer Q instructions to D instructions and // use D instructions if we started with a PS instruction. if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } if (!table) { // try the AVX512DQMasked table assert((Subtarget.hasDQI() || Domain >= 3) && "Requires AVX-512DQ"); table = lookupAVX512(MI.getOpcode(), dom, ReplaceableInstrsAVX512DQMasked); if (table && Domain == 3 && (dom == 1 || table[3] == MI.getOpcode())) Domain = 4; } assert(table && "Cannot change domain"); MI.setDesc(get(table[Domain - 1])); } void X86InstrInfo::insertNoop(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI) const { DebugLoc DL; BuildMI(MBB, MI, DL, get(X86::NOOP)); } /// Return the noop instruction to use for a noop. MCInst X86InstrInfo::getNop() const { MCInst Nop; Nop.setOpcode(X86::NOOP); return Nop; } bool X86InstrInfo::isHighLatencyDef(int opc) const { switch (opc) { default: return false; case X86::DIVPDrm: case X86::DIVPDrr: case X86::DIVPSrm: case X86::DIVPSrr: case X86::DIVSDrm: case X86::DIVSDrm_Int: case X86::DIVSDrr: case X86::DIVSDrr_Int: case X86::DIVSSrm: case X86::DIVSSrm_Int: case X86::DIVSSrr: case X86::DIVSSrr_Int: case X86::SQRTPDm: case X86::SQRTPDr: case X86::SQRTPSm: case X86::SQRTPSr: case X86::SQRTSDm: case X86::SQRTSDm_Int: case X86::SQRTSDr: case X86::SQRTSDr_Int: case X86::SQRTSSm: case X86::SQRTSSm_Int: case X86::SQRTSSr: case X86::SQRTSSr_Int: // AVX instructions with high latency case X86::VDIVPDrm: case X86::VDIVPDrr: case X86::VDIVPDYrm: case X86::VDIVPDYrr: case X86::VDIVPSrm: case X86::VDIVPSrr: case X86::VDIVPSYrm: case X86::VDIVPSYrr: case X86::VDIVSDrm: case X86::VDIVSDrm_Int: case X86::VDIVSDrr: case X86::VDIVSDrr_Int: case X86::VDIVSSrm: case X86::VDIVSSrm_Int: case X86::VDIVSSrr: case X86::VDIVSSrr_Int: case X86::VSQRTPDm: case X86::VSQRTPDr: case X86::VSQRTPDYm: case X86::VSQRTPDYr: case X86::VSQRTPSm: case X86::VSQRTPSr: case X86::VSQRTPSYm: case X86::VSQRTPSYr: case X86::VSQRTSDm: case X86::VSQRTSDm_Int: case X86::VSQRTSDr: case X86::VSQRTSDr_Int: case X86::VSQRTSSm: case X86::VSQRTSSm_Int: case X86::VSQRTSSr: case X86::VSQRTSSr_Int: // AVX512 instructions with high latency case X86::VDIVPDZ128rm: case X86::VDIVPDZ128rmb: case X86::VDIVPDZ128rmbk: case X86::VDIVPDZ128rmbkz: case X86::VDIVPDZ128rmk: case X86::VDIVPDZ128rmkz: case X86::VDIVPDZ128rr: case X86::VDIVPDZ128rrk: case X86::VDIVPDZ128rrkz: case X86::VDIVPDZ256rm: case X86::VDIVPDZ256rmb: case X86::VDIVPDZ256rmbk: case X86::VDIVPDZ256rmbkz: case X86::VDIVPDZ256rmk: case X86::VDIVPDZ256rmkz: case X86::VDIVPDZ256rr: case X86::VDIVPDZ256rrk: case X86::VDIVPDZ256rrkz: case X86::VDIVPDZrrb: case X86::VDIVPDZrrbk: case X86::VDIVPDZrrbkz: case X86::VDIVPDZrm: case X86::VDIVPDZrmb: case X86::VDIVPDZrmbk: case X86::VDIVPDZrmbkz: case X86::VDIVPDZrmk: case X86::VDIVPDZrmkz: case X86::VDIVPDZrr: case X86::VDIVPDZrrk: case X86::VDIVPDZrrkz: case X86::VDIVPSZ128rm: case X86::VDIVPSZ128rmb: case X86::VDIVPSZ128rmbk: case X86::VDIVPSZ128rmbkz: case X86::VDIVPSZ128rmk: case X86::VDIVPSZ128rmkz: case X86::VDIVPSZ128rr: case X86::VDIVPSZ128rrk: case X86::VDIVPSZ128rrkz: case X86::VDIVPSZ256rm: case X86::VDIVPSZ256rmb: case X86::VDIVPSZ256rmbk: case X86::VDIVPSZ256rmbkz: case X86::VDIVPSZ256rmk: case X86::VDIVPSZ256rmkz: case X86::VDIVPSZ256rr: case X86::VDIVPSZ256rrk: case X86::VDIVPSZ256rrkz: case X86::VDIVPSZrrb: case X86::VDIVPSZrrbk: case X86::VDIVPSZrrbkz: case X86::VDIVPSZrm: case X86::VDIVPSZrmb: case X86::VDIVPSZrmbk: case X86::VDIVPSZrmbkz: case X86::VDIVPSZrmk: case X86::VDIVPSZrmkz: case X86::VDIVPSZrr: case X86::VDIVPSZrrk: case X86::VDIVPSZrrkz: case X86::VDIVSDZrm: case X86::VDIVSDZrr: case X86::VDIVSDZrm_Int: case X86::VDIVSDZrm_Intk: case X86::VDIVSDZrm_Intkz: case X86::VDIVSDZrr_Int: case X86::VDIVSDZrr_Intk: case X86::VDIVSDZrr_Intkz: case X86::VDIVSDZrrb_Int: case X86::VDIVSDZrrb_Intk: case X86::VDIVSDZrrb_Intkz: case X86::VDIVSSZrm: case X86::VDIVSSZrr: case X86::VDIVSSZrm_Int: case X86::VDIVSSZrm_Intk: case X86::VDIVSSZrm_Intkz: case X86::VDIVSSZrr_Int: case X86::VDIVSSZrr_Intk: case X86::VDIVSSZrr_Intkz: case X86::VDIVSSZrrb_Int: case X86::VDIVSSZrrb_Intk: case X86::VDIVSSZrrb_Intkz: case X86::VSQRTPDZ128m: case X86::VSQRTPDZ128mb: case X86::VSQRTPDZ128mbk: case X86::VSQRTPDZ128mbkz: case X86::VSQRTPDZ128mk: case X86::VSQRTPDZ128mkz: case X86::VSQRTPDZ128r: case X86::VSQRTPDZ128rk: case X86::VSQRTPDZ128rkz: case X86::VSQRTPDZ256m: case X86::VSQRTPDZ256mb: case X86::VSQRTPDZ256mbk: case X86::VSQRTPDZ256mbkz: case X86::VSQRTPDZ256mk: case X86::VSQRTPDZ256mkz: case X86::VSQRTPDZ256r: case X86::VSQRTPDZ256rk: case X86::VSQRTPDZ256rkz: case X86::VSQRTPDZm: case X86::VSQRTPDZmb: case X86::VSQRTPDZmbk: case X86::VSQRTPDZmbkz: case X86::VSQRTPDZmk: case X86::VSQRTPDZmkz: case X86::VSQRTPDZr: case X86::VSQRTPDZrb: case X86::VSQRTPDZrbk: case X86::VSQRTPDZrbkz: case X86::VSQRTPDZrk: case X86::VSQRTPDZrkz: case X86::VSQRTPSZ128m: case X86::VSQRTPSZ128mb: case X86::VSQRTPSZ128mbk: case X86::VSQRTPSZ128mbkz: case X86::VSQRTPSZ128mk: case X86::VSQRTPSZ128mkz: case X86::VSQRTPSZ128r: case X86::VSQRTPSZ128rk: case X86::VSQRTPSZ128rkz: case X86::VSQRTPSZ256m: case X86::VSQRTPSZ256mb: case X86::VSQRTPSZ256mbk: case X86::VSQRTPSZ256mbkz: case X86::VSQRTPSZ256mk: case X86::VSQRTPSZ256mkz: case X86::VSQRTPSZ256r: case X86::VSQRTPSZ256rk: case X86::VSQRTPSZ256rkz: case X86::VSQRTPSZm: case X86::VSQRTPSZmb: case X86::VSQRTPSZmbk: case X86::VSQRTPSZmbkz: case X86::VSQRTPSZmk: case X86::VSQRTPSZmkz: case X86::VSQRTPSZr: case X86::VSQRTPSZrb: case X86::VSQRTPSZrbk: case X86::VSQRTPSZrbkz: case X86::VSQRTPSZrk: case X86::VSQRTPSZrkz: case X86::VSQRTSDZm: case X86::VSQRTSDZm_Int: case X86::VSQRTSDZm_Intk: case X86::VSQRTSDZm_Intkz: case X86::VSQRTSDZr: case X86::VSQRTSDZr_Int: case X86::VSQRTSDZr_Intk: case X86::VSQRTSDZr_Intkz: case X86::VSQRTSDZrb_Int: case X86::VSQRTSDZrb_Intk: case X86::VSQRTSDZrb_Intkz: case X86::VSQRTSSZm: case X86::VSQRTSSZm_Int: case X86::VSQRTSSZm_Intk: case X86::VSQRTSSZm_Intkz: case X86::VSQRTSSZr: case X86::VSQRTSSZr_Int: case X86::VSQRTSSZr_Intk: case X86::VSQRTSSZr_Intkz: case X86::VSQRTSSZrb_Int: case X86::VSQRTSSZrb_Intk: case X86::VSQRTSSZrb_Intkz: case X86::VGATHERDPDYrm: case X86::VGATHERDPDZ128rm: case X86::VGATHERDPDZ256rm: case X86::VGATHERDPDZrm: case X86::VGATHERDPDrm: case X86::VGATHERDPSYrm: case X86::VGATHERDPSZ128rm: case X86::VGATHERDPSZ256rm: case X86::VGATHERDPSZrm: case X86::VGATHERDPSrm: case X86::VGATHERPF0DPDm: case X86::VGATHERPF0DPSm: case X86::VGATHERPF0QPDm: case X86::VGATHERPF0QPSm: case X86::VGATHERPF1DPDm: case X86::VGATHERPF1DPSm: case X86::VGATHERPF1QPDm: case X86::VGATHERPF1QPSm: case X86::VGATHERQPDYrm: case X86::VGATHERQPDZ128rm: case X86::VGATHERQPDZ256rm: case X86::VGATHERQPDZrm: case X86::VGATHERQPDrm: case X86::VGATHERQPSYrm: case X86::VGATHERQPSZ128rm: case X86::VGATHERQPSZ256rm: case X86::VGATHERQPSZrm: case X86::VGATHERQPSrm: case X86::VPGATHERDDYrm: case X86::VPGATHERDDZ128rm: case X86::VPGATHERDDZ256rm: case X86::VPGATHERDDZrm: case X86::VPGATHERDDrm: case X86::VPGATHERDQYrm: case X86::VPGATHERDQZ128rm: case X86::VPGATHERDQZ256rm: case X86::VPGATHERDQZrm: case X86::VPGATHERDQrm: case X86::VPGATHERQDYrm: case X86::VPGATHERQDZ128rm: case X86::VPGATHERQDZ256rm: case X86::VPGATHERQDZrm: case X86::VPGATHERQDrm: case X86::VPGATHERQQYrm: case X86::VPGATHERQQZ128rm: case X86::VPGATHERQQZ256rm: case X86::VPGATHERQQZrm: case X86::VPGATHERQQrm: case X86::VSCATTERDPDZ128mr: case X86::VSCATTERDPDZ256mr: case X86::VSCATTERDPDZmr: case X86::VSCATTERDPSZ128mr: case X86::VSCATTERDPSZ256mr: case X86::VSCATTERDPSZmr: case X86::VSCATTERPF0DPDm: case X86::VSCATTERPF0DPSm: case X86::VSCATTERPF0QPDm: case X86::VSCATTERPF0QPSm: case X86::VSCATTERPF1DPDm: case X86::VSCATTERPF1DPSm: case X86::VSCATTERPF1QPDm: case X86::VSCATTERPF1QPSm: case X86::VSCATTERQPDZ128mr: case X86::VSCATTERQPDZ256mr: case X86::VSCATTERQPDZmr: case X86::VSCATTERQPSZ128mr: case X86::VSCATTERQPSZ256mr: case X86::VSCATTERQPSZmr: case X86::VPSCATTERDDZ128mr: case X86::VPSCATTERDDZ256mr: case X86::VPSCATTERDDZmr: case X86::VPSCATTERDQZ128mr: case X86::VPSCATTERDQZ256mr: case X86::VPSCATTERDQZmr: case X86::VPSCATTERQDZ128mr: case X86::VPSCATTERQDZ256mr: case X86::VPSCATTERQDZmr: case X86::VPSCATTERQQZ128mr: case X86::VPSCATTERQQZ256mr: case X86::VPSCATTERQQZmr: return true; } } bool X86InstrInfo::hasHighOperandLatency(const TargetSchedModel &SchedModel, const MachineRegisterInfo *MRI, const MachineInstr &DefMI, unsigned DefIdx, const MachineInstr &UseMI, unsigned UseIdx) const { return isHighLatencyDef(DefMI.getOpcode()); } bool X86InstrInfo::hasReassociableOperands(const MachineInstr &Inst, const MachineBasicBlock *MBB) const { assert(Inst.getNumExplicitOperands() == 3 && Inst.getNumExplicitDefs() == 1 && Inst.getNumDefs() <= 2 && "Reassociation needs binary operators"); // Integer binary math/logic instructions have a third source operand: // the EFLAGS register. That operand must be both defined here and never // used; ie, it must be dead. If the EFLAGS operand is live, then we can // not change anything because rearranging the operands could affect other // instructions that depend on the exact status flags (zero, sign, etc.) // that are set by using these particular operands with this operation. const MachineOperand *FlagDef = Inst.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); assert((Inst.getNumDefs() == 1 || FlagDef) && "Implicit def isn't flags?"); if (FlagDef && !FlagDef->isDead()) return false; return TargetInstrInfo::hasReassociableOperands(Inst, MBB); } // TODO: There are many more machine instruction opcodes to match: // 1. Other data types (integer, vectors) // 2. Other math / logic operations (xor, or) // 3. Other forms of the same operation (intrinsics and other variants) bool X86InstrInfo::isAssociativeAndCommutative(const MachineInstr &Inst, bool Invert) const { if (Invert) return false; switch (Inst.getOpcode()) { CASE_ND(ADD8rr) CASE_ND(ADD16rr) CASE_ND(ADD32rr) CASE_ND(ADD64rr) CASE_ND(AND8rr) CASE_ND(AND16rr) CASE_ND(AND32rr) CASE_ND(AND64rr) CASE_ND(OR8rr) CASE_ND(OR16rr) CASE_ND(OR32rr) CASE_ND(OR64rr) CASE_ND(XOR8rr) CASE_ND(XOR16rr) CASE_ND(XOR32rr) CASE_ND(XOR64rr) CASE_ND(IMUL16rr) CASE_ND(IMUL32rr) CASE_ND(IMUL64rr) case X86::PANDrr: case X86::PORrr: case X86::PXORrr: case X86::ANDPDrr: case X86::ANDPSrr: case X86::ORPDrr: case X86::ORPSrr: case X86::XORPDrr: case X86::XORPSrr: case X86::PADDBrr: case X86::PADDWrr: case X86::PADDDrr: case X86::PADDQrr: case X86::PMULLWrr: case X86::PMULLDrr: case X86::PMAXSBrr: case X86::PMAXSDrr: case X86::PMAXSWrr: case X86::PMAXUBrr: case X86::PMAXUDrr: case X86::PMAXUWrr: case X86::PMINSBrr: case X86::PMINSDrr: case X86::PMINSWrr: case X86::PMINUBrr: case X86::PMINUDrr: case X86::PMINUWrr: case X86::VPANDrr: case X86::VPANDYrr: case X86::VPANDDZ128rr: case X86::VPANDDZ256rr: case X86::VPANDDZrr: case X86::VPANDQZ128rr: case X86::VPANDQZ256rr: case X86::VPANDQZrr: case X86::VPORrr: case X86::VPORYrr: case X86::VPORDZ128rr: case X86::VPORDZ256rr: case X86::VPORDZrr: case X86::VPORQZ128rr: case X86::VPORQZ256rr: case X86::VPORQZrr: case X86::VPXORrr: case X86::VPXORYrr: case X86::VPXORDZ128rr: case X86::VPXORDZ256rr: case X86::VPXORDZrr: case X86::VPXORQZ128rr: case X86::VPXORQZ256rr: case X86::VPXORQZrr: case X86::VANDPDrr: case X86::VANDPSrr: case X86::VANDPDYrr: case X86::VANDPSYrr: case X86::VANDPDZ128rr: case X86::VANDPSZ128rr: case X86::VANDPDZ256rr: case X86::VANDPSZ256rr: case X86::VANDPDZrr: case X86::VANDPSZrr: case X86::VORPDrr: case X86::VORPSrr: case X86::VORPDYrr: case X86::VORPSYrr: case X86::VORPDZ128rr: case X86::VORPSZ128rr: case X86::VORPDZ256rr: case X86::VORPSZ256rr: case X86::VORPDZrr: case X86::VORPSZrr: case X86::VXORPDrr: case X86::VXORPSrr: case X86::VXORPDYrr: case X86::VXORPSYrr: case X86::VXORPDZ128rr: case X86::VXORPSZ128rr: case X86::VXORPDZ256rr: case X86::VXORPSZ256rr: case X86::VXORPDZrr: case X86::VXORPSZrr: case X86::KADDBrr: case X86::KADDWrr: case X86::KADDDrr: case X86::KADDQrr: case X86::KANDBrr: case X86::KANDWrr: case X86::KANDDrr: case X86::KANDQrr: case X86::KORBrr: case X86::KORWrr: case X86::KORDrr: case X86::KORQrr: case X86::KXORBrr: case X86::KXORWrr: case X86::KXORDrr: case X86::KXORQrr: case X86::VPADDBrr: case X86::VPADDWrr: case X86::VPADDDrr: case X86::VPADDQrr: case X86::VPADDBYrr: case X86::VPADDWYrr: case X86::VPADDDYrr: case X86::VPADDQYrr: case X86::VPADDBZ128rr: case X86::VPADDWZ128rr: case X86::VPADDDZ128rr: case X86::VPADDQZ128rr: case X86::VPADDBZ256rr: case X86::VPADDWZ256rr: case X86::VPADDDZ256rr: case X86::VPADDQZ256rr: case X86::VPADDBZrr: case X86::VPADDWZrr: case X86::VPADDDZrr: case X86::VPADDQZrr: case X86::VPMULLWrr: case X86::VPMULLWYrr: case X86::VPMULLWZ128rr: case X86::VPMULLWZ256rr: case X86::VPMULLWZrr: case X86::VPMULLDrr: case X86::VPMULLDYrr: case X86::VPMULLDZ128rr: case X86::VPMULLDZ256rr: case X86::VPMULLDZrr: case X86::VPMULLQZ128rr: case X86::VPMULLQZ256rr: case X86::VPMULLQZrr: case X86::VPMAXSBrr: case X86::VPMAXSBYrr: case X86::VPMAXSBZ128rr: case X86::VPMAXSBZ256rr: case X86::VPMAXSBZrr: case X86::VPMAXSDrr: case X86::VPMAXSDYrr: case X86::VPMAXSDZ128rr: case X86::VPMAXSDZ256rr: case X86::VPMAXSDZrr: case X86::VPMAXSQZ128rr: case X86::VPMAXSQZ256rr: case X86::VPMAXSQZrr: case X86::VPMAXSWrr: case X86::VPMAXSWYrr: case X86::VPMAXSWZ128rr: case X86::VPMAXSWZ256rr: case X86::VPMAXSWZrr: case X86::VPMAXUBrr: case X86::VPMAXUBYrr: case X86::VPMAXUBZ128rr: case X86::VPMAXUBZ256rr: case X86::VPMAXUBZrr: case X86::VPMAXUDrr: case X86::VPMAXUDYrr: case X86::VPMAXUDZ128rr: case X86::VPMAXUDZ256rr: case X86::VPMAXUDZrr: case X86::VPMAXUQZ128rr: case X86::VPMAXUQZ256rr: case X86::VPMAXUQZrr: case X86::VPMAXUWrr: case X86::VPMAXUWYrr: case X86::VPMAXUWZ128rr: case X86::VPMAXUWZ256rr: case X86::VPMAXUWZrr: case X86::VPMINSBrr: case X86::VPMINSBYrr: case X86::VPMINSBZ128rr: case X86::VPMINSBZ256rr: case X86::VPMINSBZrr: case X86::VPMINSDrr: case X86::VPMINSDYrr: case X86::VPMINSDZ128rr: case X86::VPMINSDZ256rr: case X86::VPMINSDZrr: case X86::VPMINSQZ128rr: case X86::VPMINSQZ256rr: case X86::VPMINSQZrr: case X86::VPMINSWrr: case X86::VPMINSWYrr: case X86::VPMINSWZ128rr: case X86::VPMINSWZ256rr: case X86::VPMINSWZrr: case X86::VPMINUBrr: case X86::VPMINUBYrr: case X86::VPMINUBZ128rr: case X86::VPMINUBZ256rr: case X86::VPMINUBZrr: case X86::VPMINUDrr: case X86::VPMINUDYrr: case X86::VPMINUDZ128rr: case X86::VPMINUDZ256rr: case X86::VPMINUDZrr: case X86::VPMINUQZ128rr: case X86::VPMINUQZ256rr: case X86::VPMINUQZrr: case X86::VPMINUWrr: case X86::VPMINUWYrr: case X86::VPMINUWZ128rr: case X86::VPMINUWZ256rr: case X86::VPMINUWZrr: // Normal min/max instructions are not commutative because of NaN and signed // zero semantics, but these are. Thus, there's no need to check for global // relaxed math; the instructions themselves have the properties we need. case X86::MAXCPDrr: case X86::MAXCPSrr: case X86::MAXCSDrr: case X86::MAXCSSrr: case X86::MINCPDrr: case X86::MINCPSrr: case X86::MINCSDrr: case X86::MINCSSrr: case X86::VMAXCPDrr: case X86::VMAXCPSrr: case X86::VMAXCPDYrr: case X86::VMAXCPSYrr: case X86::VMAXCPDZ128rr: case X86::VMAXCPSZ128rr: case X86::VMAXCPDZ256rr: case X86::VMAXCPSZ256rr: case X86::VMAXCPDZrr: case X86::VMAXCPSZrr: case X86::VMAXCSDrr: case X86::VMAXCSSrr: case X86::VMAXCSDZrr: case X86::VMAXCSSZrr: case X86::VMINCPDrr: case X86::VMINCPSrr: case X86::VMINCPDYrr: case X86::VMINCPSYrr: case X86::VMINCPDZ128rr: case X86::VMINCPSZ128rr: case X86::VMINCPDZ256rr: case X86::VMINCPSZ256rr: case X86::VMINCPDZrr: case X86::VMINCPSZrr: case X86::VMINCSDrr: case X86::VMINCSSrr: case X86::VMINCSDZrr: case X86::VMINCSSZrr: case X86::VMAXCPHZ128rr: case X86::VMAXCPHZ256rr: case X86::VMAXCPHZrr: case X86::VMAXCSHZrr: case X86::VMINCPHZ128rr: case X86::VMINCPHZ256rr: case X86::VMINCPHZrr: case X86::VMINCSHZrr: return true; case X86::ADDPDrr: case X86::ADDPSrr: case X86::ADDSDrr: case X86::ADDSSrr: case X86::MULPDrr: case X86::MULPSrr: case X86::MULSDrr: case X86::MULSSrr: case X86::VADDPDrr: case X86::VADDPSrr: case X86::VADDPDYrr: case X86::VADDPSYrr: case X86::VADDPDZ128rr: case X86::VADDPSZ128rr: case X86::VADDPDZ256rr: case X86::VADDPSZ256rr: case X86::VADDPDZrr: case X86::VADDPSZrr: case X86::VADDSDrr: case X86::VADDSSrr: case X86::VADDSDZrr: case X86::VADDSSZrr: case X86::VMULPDrr: case X86::VMULPSrr: case X86::VMULPDYrr: case X86::VMULPSYrr: case X86::VMULPDZ128rr: case X86::VMULPSZ128rr: case X86::VMULPDZ256rr: case X86::VMULPSZ256rr: case X86::VMULPDZrr: case X86::VMULPSZrr: case X86::VMULSDrr: case X86::VMULSSrr: case X86::VMULSDZrr: case X86::VMULSSZrr: case X86::VADDPHZ128rr: case X86::VADDPHZ256rr: case X86::VADDPHZrr: case X86::VADDSHZrr: case X86::VMULPHZ128rr: case X86::VMULPHZ256rr: case X86::VMULPHZrr: case X86::VMULSHZrr: return Inst.getFlag(MachineInstr::MIFlag::FmReassoc) && Inst.getFlag(MachineInstr::MIFlag::FmNsz); default: return false; } } /// If \p DescribedReg overlaps with the MOVrr instruction's destination /// register then, if possible, describe the value in terms of the source /// register. static std::optional describeMOVrrLoadedValue(const MachineInstr &MI, Register DescribedReg, const TargetRegisterInfo *TRI) { Register DestReg = MI.getOperand(0).getReg(); Register SrcReg = MI.getOperand(1).getReg(); auto Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); // If the described register is the destination, just return the source. if (DestReg == DescribedReg) return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); // If the described register is a sub-register of the destination register, // then pick out the source register's corresponding sub-register. if (unsigned SubRegIdx = TRI->getSubRegIndex(DestReg, DescribedReg)) { Register SrcSubReg = TRI->getSubReg(SrcReg, SubRegIdx); return ParamLoadedValue(MachineOperand::CreateReg(SrcSubReg, false), Expr); } // The remaining case to consider is when the described register is a // super-register of the destination register. MOV8rr and MOV16rr does not // write to any of the other bytes in the register, meaning that we'd have to // describe the value using a combination of the source register and the // non-overlapping bits in the described register, which is not currently // possible. if (MI.getOpcode() == X86::MOV8rr || MI.getOpcode() == X86::MOV16rr || !TRI->isSuperRegister(DestReg, DescribedReg)) return std::nullopt; assert(MI.getOpcode() == X86::MOV32rr && "Unexpected super-register case"); return ParamLoadedValue(MachineOperand::CreateReg(SrcReg, false), Expr); } std::optional X86InstrInfo::describeLoadedValue(const MachineInstr &MI, Register Reg) const { const MachineOperand *Op = nullptr; DIExpression *Expr = nullptr; const TargetRegisterInfo *TRI = &getRegisterInfo(); switch (MI.getOpcode()) { case X86::LEA32r: case X86::LEA64r: case X86::LEA64_32r: { // We may need to describe a 64-bit parameter with a 32-bit LEA. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) return std::nullopt; // Operand 4 could be global address. For now we do not support // such situation. if (!MI.getOperand(4).isImm() || !MI.getOperand(2).isImm()) return std::nullopt; const MachineOperand &Op1 = MI.getOperand(1); const MachineOperand &Op2 = MI.getOperand(3); assert(Op2.isReg() && (Op2.getReg() == X86::NoRegister || Op2.getReg().isPhysical())); // Omit situations like: // %rsi = lea %rsi, 4, ... if ((Op1.isReg() && Op1.getReg() == MI.getOperand(0).getReg()) || Op2.getReg() == MI.getOperand(0).getReg()) return std::nullopt; else if ((Op1.isReg() && Op1.getReg() != X86::NoRegister && TRI->regsOverlap(Op1.getReg(), MI.getOperand(0).getReg())) || (Op2.getReg() != X86::NoRegister && TRI->regsOverlap(Op2.getReg(), MI.getOperand(0).getReg()))) return std::nullopt; int64_t Coef = MI.getOperand(2).getImm(); int64_t Offset = MI.getOperand(4).getImm(); SmallVector Ops; if ((Op1.isReg() && Op1.getReg() != X86::NoRegister)) { Op = &Op1; } else if (Op1.isFI()) Op = &Op1; if (Op && Op->isReg() && Op->getReg() == Op2.getReg() && Coef > 0) { Ops.push_back(dwarf::DW_OP_constu); Ops.push_back(Coef + 1); Ops.push_back(dwarf::DW_OP_mul); } else { if (Op && Op2.getReg() != X86::NoRegister) { int dwarfReg = TRI->getDwarfRegNum(Op2.getReg(), false); if (dwarfReg < 0) return std::nullopt; else if (dwarfReg < 32) { Ops.push_back(dwarf::DW_OP_breg0 + dwarfReg); Ops.push_back(0); } else { Ops.push_back(dwarf::DW_OP_bregx); Ops.push_back(dwarfReg); Ops.push_back(0); } } else if (!Op) { assert(Op2.getReg() != X86::NoRegister); Op = &Op2; } if (Coef > 1) { assert(Op2.getReg() != X86::NoRegister); Ops.push_back(dwarf::DW_OP_constu); Ops.push_back(Coef); Ops.push_back(dwarf::DW_OP_mul); } if (((Op1.isReg() && Op1.getReg() != X86::NoRegister) || Op1.isFI()) && Op2.getReg() != X86::NoRegister) { Ops.push_back(dwarf::DW_OP_plus); } } DIExpression::appendOffset(Ops, Offset); Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), Ops); return ParamLoadedValue(*Op, Expr); } case X86::MOV8ri: case X86::MOV16ri: // TODO: Handle MOV8ri and MOV16ri. return std::nullopt; case X86::MOV32ri: case X86::MOV64ri: case X86::MOV64ri32: // MOV32ri may be used for producing zero-extended 32-bit immediates in // 64-bit parameters, so we need to consider super-registers. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) return std::nullopt; return ParamLoadedValue(MI.getOperand(1), Expr); case X86::MOV8rr: case X86::MOV16rr: case X86::MOV32rr: case X86::MOV64rr: return describeMOVrrLoadedValue(MI, Reg, TRI); case X86::XOR32rr: { // 64-bit parameters are zero-materialized using XOR32rr, so also consider // super-registers. if (!TRI->isSuperRegisterEq(MI.getOperand(0).getReg(), Reg)) return std::nullopt; if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) return ParamLoadedValue(MachineOperand::CreateImm(0), Expr); return std::nullopt; } case X86::MOVSX64rr32: { // We may need to describe the lower 32 bits of the MOVSX; for example, in // cases like this: // // $ebx = [...] // $rdi = MOVSX64rr32 $ebx // $esi = MOV32rr $edi if (!TRI->isSubRegisterEq(MI.getOperand(0).getReg(), Reg)) return std::nullopt; Expr = DIExpression::get(MI.getMF()->getFunction().getContext(), {}); // If the described register is the destination register we need to // sign-extend the source register from 32 bits. The other case we handle // is when the described register is the 32-bit sub-register of the // destination register, in case we just need to return the source // register. if (Reg == MI.getOperand(0).getReg()) Expr = DIExpression::appendExt(Expr, 32, 64, true); else assert(X86MCRegisterClasses[X86::GR32RegClassID].contains(Reg) && "Unhandled sub-register case for MOVSX64rr32"); return ParamLoadedValue(MI.getOperand(1), Expr); } default: assert(!MI.isMoveImmediate() && "Unexpected MoveImm instruction"); return TargetInstrInfo::describeLoadedValue(MI, Reg); } } /// This is an architecture-specific helper function of reassociateOps. /// Set special operand attributes for new instructions after reassociation. void X86InstrInfo::setSpecialOperandAttr(MachineInstr &OldMI1, MachineInstr &OldMI2, MachineInstr &NewMI1, MachineInstr &NewMI2) const { // Integer instructions may define an implicit EFLAGS dest register operand. MachineOperand *OldFlagDef1 = OldMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); MachineOperand *OldFlagDef2 = OldMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); assert(!OldFlagDef1 == !OldFlagDef2 && "Unexpected instruction type for reassociation"); if (!OldFlagDef1 || !OldFlagDef2) return; assert(OldFlagDef1->isDead() && OldFlagDef2->isDead() && "Must have dead EFLAGS operand in reassociable instruction"); MachineOperand *NewFlagDef1 = NewMI1.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); MachineOperand *NewFlagDef2 = NewMI2.findRegisterDefOperand(X86::EFLAGS, /*TRI=*/nullptr); assert(NewFlagDef1 && NewFlagDef2 && "Unexpected operand in reassociable instruction"); // Mark the new EFLAGS operands as dead to be helpful to subsequent iterations // of this pass or other passes. The EFLAGS operands must be dead in these new // instructions because the EFLAGS operands in the original instructions must // be dead in order for reassociation to occur. NewFlagDef1->setIsDead(); NewFlagDef2->setIsDead(); } std::pair X86InstrInfo::decomposeMachineOperandsTargetFlags(unsigned TF) const { return std::make_pair(TF, 0u); } ArrayRef> X86InstrInfo::getSerializableDirectMachineOperandTargetFlags() const { using namespace X86II; static const std::pair TargetFlags[] = { {MO_GOT_ABSOLUTE_ADDRESS, "x86-got-absolute-address"}, {MO_PIC_BASE_OFFSET, "x86-pic-base-offset"}, {MO_GOT, "x86-got"}, {MO_GOTOFF, "x86-gotoff"}, {MO_GOTPCREL, "x86-gotpcrel"}, {MO_GOTPCREL_NORELAX, "x86-gotpcrel-norelax"}, {MO_PLT, "x86-plt"}, {MO_TLSGD, "x86-tlsgd"}, {MO_TLSLD, "x86-tlsld"}, {MO_TLSLDM, "x86-tlsldm"}, {MO_GOTTPOFF, "x86-gottpoff"}, {MO_INDNTPOFF, "x86-indntpoff"}, {MO_TPOFF, "x86-tpoff"}, {MO_DTPOFF, "x86-dtpoff"}, {MO_NTPOFF, "x86-ntpoff"}, {MO_GOTNTPOFF, "x86-gotntpoff"}, {MO_DLLIMPORT, "x86-dllimport"}, {MO_DARWIN_NONLAZY, "x86-darwin-nonlazy"}, {MO_DARWIN_NONLAZY_PIC_BASE, "x86-darwin-nonlazy-pic-base"}, {MO_TLVP, "x86-tlvp"}, {MO_TLVP_PIC_BASE, "x86-tlvp-pic-base"}, {MO_SECREL, "x86-secrel"}, {MO_COFFSTUB, "x86-coffstub"}}; return ArrayRef(TargetFlags); } namespace { /// Create Global Base Reg pass. This initializes the PIC /// global base register for x86-32. struct CGBR : public MachineFunctionPass { static char ID; CGBR() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { const X86TargetMachine *TM = static_cast(&MF.getTarget()); const X86Subtarget &STI = MF.getSubtarget(); // Only emit a global base reg in PIC mode. if (!TM->isPositionIndependent()) return false; X86MachineFunctionInfo *X86FI = MF.getInfo(); Register GlobalBaseReg = X86FI->getGlobalBaseReg(); // If we didn't need a GlobalBaseReg, don't insert code. if (GlobalBaseReg == 0) return false; // Insert the set of GlobalBaseReg into the first MBB of the function MachineBasicBlock &FirstMBB = MF.front(); MachineBasicBlock::iterator MBBI = FirstMBB.begin(); DebugLoc DL = FirstMBB.findDebugLoc(MBBI); MachineRegisterInfo &RegInfo = MF.getRegInfo(); const X86InstrInfo *TII = STI.getInstrInfo(); Register PC; if (STI.isPICStyleGOT()) PC = RegInfo.createVirtualRegister(&X86::GR32RegClass); else PC = GlobalBaseReg; if (STI.is64Bit()) { if (TM->getCodeModel() == CodeModel::Large) { // In the large code model, we are aiming for this code, though the // register allocation may vary: // leaq .LN$pb(%rip), %rax // movq $_GLOBAL_OFFSET_TABLE_ - .LN$pb, %rcx // addq %rcx, %rax // RAX now holds address of _GLOBAL_OFFSET_TABLE_. Register PBReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); Register GOTReg = RegInfo.createVirtualRegister(&X86::GR64RegClass); BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PBReg) .addReg(X86::RIP) .addImm(0) .addReg(0) .addSym(MF.getPICBaseSymbol()) .addReg(0); std::prev(MBBI)->setPreInstrSymbol(MF, MF.getPICBaseSymbol()); BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOV64ri), GOTReg) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_PIC_BASE_OFFSET); BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD64rr), PC) .addReg(PBReg, RegState::Kill) .addReg(GOTReg, RegState::Kill); } else { // In other code models, use a RIP-relative LEA to materialize the // GOT. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::LEA64r), PC) .addReg(X86::RIP) .addImm(0) .addReg(0) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_") .addReg(0); } } else { // Operand of MovePCtoStack is completely ignored by asm printer. It's // only used in JIT code emission as displacement to pc. BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0); // If we're using vanilla 'GOT' PIC style, we should use relative // addressing not to pc, but to _GLOBAL_OFFSET_TABLE_ external. if (STI.isPICStyleGOT()) { // Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], // %some_register BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg) .addReg(PC) .addExternalSymbol("_GLOBAL_OFFSET_TABLE_", X86II::MO_GOT_ABSOLUTE_ADDRESS); } } return true; } StringRef getPassName() const override { return "X86 PIC Global Base Reg Initialization"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // namespace char CGBR::ID = 0; FunctionPass *llvm::createX86GlobalBaseRegPass() { return new CGBR(); } namespace { struct LDTLSCleanup : public MachineFunctionPass { static char ID; LDTLSCleanup() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; X86MachineFunctionInfo *MFI = MF.getInfo(); if (MFI->getNumLocalDynamicTLSAccesses() < 2) { // No point folding accesses if there isn't at least two. return false; } MachineDominatorTree *DT = &getAnalysis().getDomTree(); return VisitNode(DT->getRootNode(), 0); } // Visit the dominator subtree rooted at Node in pre-order. // If TLSBaseAddrReg is non-null, then use that to replace any // TLS_base_addr instructions. Otherwise, create the register // when the first such instruction is seen, and then use it // as we encounter more instructions. bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg) { MachineBasicBlock *BB = Node->getBlock(); bool Changed = false; // Traverse the current block. for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { switch (I->getOpcode()) { case X86::TLS_base_addr32: case X86::TLS_base_addr64: if (TLSBaseAddrReg) I = ReplaceTLSBaseAddrCall(*I, TLSBaseAddrReg); else I = SetRegister(*I, &TLSBaseAddrReg); Changed = true; break; default: break; } } // Visit the children of this block in the dominator tree. for (auto &I : *Node) { Changed |= VisitNode(I, TLSBaseAddrReg); } return Changed; } // Replace the TLS_base_addr instruction I with a copy from // TLSBaseAddrReg, returning the new instruction. MachineInstr *ReplaceTLSBaseAddrCall(MachineInstr &I, unsigned TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Insert a Copy from TLSBaseAddrReg to RAX/EAX. MachineInstr *Copy = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII->get(TargetOpcode::COPY), is64Bit ? X86::RAX : X86::EAX) .addReg(TLSBaseAddrReg); // Erase the TLS_base_addr instruction. I.eraseFromParent(); return Copy; } // Create a virtual register in *TLSBaseAddrReg, and populate it by // inserting a copy instruction after I. Returns the new instruction. MachineInstr *SetRegister(MachineInstr &I, unsigned *TLSBaseAddrReg) { MachineFunction *MF = I.getParent()->getParent(); const X86Subtarget &STI = MF->getSubtarget(); const bool is64Bit = STI.is64Bit(); const X86InstrInfo *TII = STI.getInstrInfo(); // Create a virtual register for the TLS base address. MachineRegisterInfo &RegInfo = MF->getRegInfo(); *TLSBaseAddrReg = RegInfo.createVirtualRegister( is64Bit ? &X86::GR64RegClass : &X86::GR32RegClass); // Insert a copy from RAX/EAX to TLSBaseAddrReg. MachineInstr *Next = I.getNextNode(); MachineInstr *Copy = BuildMI(*I.getParent(), Next, I.getDebugLoc(), TII->get(TargetOpcode::COPY), *TLSBaseAddrReg) .addReg(is64Bit ? X86::RAX : X86::EAX); return Copy; } StringRef getPassName() const override { return "Local Dynamic TLS Access Clean-up"; } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // namespace char LDTLSCleanup::ID = 0; FunctionPass *llvm::createCleanupLocalDynamicTLSPass() { return new LDTLSCleanup(); } /// Constants defining how certain sequences should be outlined. /// /// \p MachineOutlinerDefault implies that the function is called with a call /// instruction, and a return must be emitted for the outlined function frame. /// /// That is, /// /// I1 OUTLINED_FUNCTION: /// I2 --> call OUTLINED_FUNCTION I1 /// I3 I2 /// I3 /// ret /// /// * Call construction overhead: 1 (call instruction) /// * Frame construction overhead: 1 (return instruction) /// /// \p MachineOutlinerTailCall implies that the function is being tail called. /// A jump is emitted instead of a call, and the return is already present in /// the outlined sequence. That is, /// /// I1 OUTLINED_FUNCTION: /// I2 --> jmp OUTLINED_FUNCTION I1 /// ret I2 /// ret /// /// * Call construction overhead: 1 (jump instruction) /// * Frame construction overhead: 0 (don't need to return) /// enum MachineOutlinerClass { MachineOutlinerDefault, MachineOutlinerTailCall }; std::optional X86InstrInfo::getOutliningCandidateInfo( std::vector &RepeatedSequenceLocs) const { unsigned SequenceSize = 0; for (auto &MI : RepeatedSequenceLocs[0]) { // FIXME: x86 doesn't implement getInstSizeInBytes, so // we can't tell the cost. Just assume each instruction // is one byte. if (MI.isDebugInstr() || MI.isKill()) continue; SequenceSize += 1; } // We check to see if CFI Instructions are present, and if they are // we find the number of CFI Instructions in the candidates. unsigned CFICount = 0; for (auto &I : RepeatedSequenceLocs[0]) { if (I.isCFIInstruction()) CFICount++; } // We compare the number of found CFI Instructions to the number of CFI // instructions in the parent function for each candidate. We must check this // since if we outline one of the CFI instructions in a function, we have to // outline them all for correctness. If we do not, the address offsets will be // incorrect between the two sections of the program. for (outliner::Candidate &C : RepeatedSequenceLocs) { std::vector CFIInstructions = C.getMF()->getFrameInstructions(); if (CFICount > 0 && CFICount != CFIInstructions.size()) return std::nullopt; } // FIXME: Use real size in bytes for call and ret instructions. if (RepeatedSequenceLocs[0].back().isTerminator()) { for (outliner::Candidate &C : RepeatedSequenceLocs) C.setCallInfo(MachineOutlinerTailCall, 1); return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 0, // Number of bytes to emit frame. MachineOutlinerTailCall // Type of frame. ); } if (CFICount > 0) return std::nullopt; for (outliner::Candidate &C : RepeatedSequenceLocs) C.setCallInfo(MachineOutlinerDefault, 1); return outliner::OutlinedFunction(RepeatedSequenceLocs, SequenceSize, 1, MachineOutlinerDefault); } bool X86InstrInfo::isFunctionSafeToOutlineFrom( MachineFunction &MF, bool OutlineFromLinkOnceODRs) const { const Function &F = MF.getFunction(); // Does the function use a red zone? If it does, then we can't risk messing // with the stack. if (Subtarget.getFrameLowering()->has128ByteRedZone(MF)) { // It could have a red zone. If it does, then we don't want to touch it. const X86MachineFunctionInfo *X86FI = MF.getInfo(); if (!X86FI || X86FI->getUsesRedZone()) return false; } // If we *don't* want to outline from things that could potentially be deduped // then return false. if (!OutlineFromLinkOnceODRs && F.hasLinkOnceODRLinkage()) return false; // This function is viable for outlining, so return true. return true; } outliner::InstrType X86InstrInfo::getOutliningTypeImpl(MachineBasicBlock::iterator &MIT, unsigned Flags) const { MachineInstr &MI = *MIT; // Is this a terminator for a basic block? if (MI.isTerminator()) // TargetInstrInfo::getOutliningType has already filtered out anything // that would break this, so we can allow it here. return outliner::InstrType::Legal; // Don't outline anything that modifies or reads from the stack pointer. // // FIXME: There are instructions which are being manually built without // explicit uses/defs so we also have to check the MCInstrDesc. We should be // able to remove the extra checks once those are fixed up. For example, // sometimes we might get something like %rax = POP64r 1. This won't be // caught by modifiesRegister or readsRegister even though the instruction // really ought to be formed so that modifiesRegister/readsRegister would // catch it. if (MI.modifiesRegister(X86::RSP, &RI) || MI.readsRegister(X86::RSP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RSP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RSP)) return outliner::InstrType::Illegal; // Outlined calls change the instruction pointer, so don't read from it. if (MI.readsRegister(X86::RIP, &RI) || MI.getDesc().hasImplicitUseOfPhysReg(X86::RIP) || MI.getDesc().hasImplicitDefOfPhysReg(X86::RIP)) return outliner::InstrType::Illegal; // Don't outline CFI instructions. if (MI.isCFIInstruction()) return outliner::InstrType::Illegal; return outliner::InstrType::Legal; } void X86InstrInfo::buildOutlinedFrame( MachineBasicBlock &MBB, MachineFunction &MF, const outliner::OutlinedFunction &OF) const { // If we're a tail call, we already have a return, so don't do anything. if (OF.FrameConstructionID == MachineOutlinerTailCall) return; // We're a normal call, so our sequence doesn't have a return instruction. // Add it in. MachineInstr *retq = BuildMI(MF, DebugLoc(), get(X86::RET64)); MBB.insert(MBB.end(), retq); } MachineBasicBlock::iterator X86InstrInfo::insertOutlinedCall( Module &M, MachineBasicBlock &MBB, MachineBasicBlock::iterator &It, MachineFunction &MF, outliner::Candidate &C) const { // Is it a tail call? if (C.CallConstructionID == MachineOutlinerTailCall) { // Yes, just insert a JMP. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::TAILJMPd64)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } else { // No, insert a call. It = MBB.insert(It, BuildMI(MF, DebugLoc(), get(X86::CALL64pcrel32)) .addGlobalAddress(M.getNamedValue(MF.getName()))); } return It; } void X86InstrInfo::buildClearRegister(Register Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator Iter, DebugLoc &DL, bool AllowSideEffects) const { const MachineFunction &MF = *MBB.getParent(); const X86Subtarget &ST = MF.getSubtarget(); const TargetRegisterInfo &TRI = getRegisterInfo(); if (ST.hasMMX() && X86::VR64RegClass.contains(Reg)) // FIXME: Should we ignore MMX registers? return; if (TRI.isGeneralPurposeRegister(MF, Reg)) { // Convert register to the 32-bit version. Both 'movl' and 'xorl' clear the // upper bits of a 64-bit register automagically. Reg = getX86SubSuperRegister(Reg, 32); if (!AllowSideEffects) // XOR affects flags, so use a MOV instead. BuildMI(MBB, Iter, DL, get(X86::MOV32ri), Reg).addImm(0); else BuildMI(MBB, Iter, DL, get(X86::XOR32rr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } else if (X86::VR128RegClass.contains(Reg)) { // XMM# if (!ST.hasSSE1()) return; // PXOR is safe to use because it doesn't affect flags. BuildMI(MBB, Iter, DL, get(X86::PXORrr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } else if (X86::VR256RegClass.contains(Reg)) { // YMM# if (!ST.hasAVX()) return; // VPXOR is safe to use because it doesn't affect flags. BuildMI(MBB, Iter, DL, get(X86::VPXORrr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } else if (X86::VR512RegClass.contains(Reg)) { // ZMM# if (!ST.hasAVX512()) return; // VPXORY is safe to use because it doesn't affect flags. BuildMI(MBB, Iter, DL, get(X86::VPXORYrr), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } else if (X86::VK1RegClass.contains(Reg) || X86::VK2RegClass.contains(Reg) || X86::VK4RegClass.contains(Reg) || X86::VK8RegClass.contains(Reg) || X86::VK16RegClass.contains(Reg)) { if (!ST.hasVLX()) return; // KXOR is safe to use because it doesn't affect flags. unsigned Op = ST.hasBWI() ? X86::KXORQrr : X86::KXORWrr; BuildMI(MBB, Iter, DL, get(Op), Reg) .addReg(Reg, RegState::Undef) .addReg(Reg, RegState::Undef); } } bool X86InstrInfo::getMachineCombinerPatterns( MachineInstr &Root, SmallVectorImpl &Patterns, bool DoRegPressureReduce) const { unsigned Opc = Root.getOpcode(); switch (Opc) { case X86::VPDPWSSDrr: case X86::VPDPWSSDrm: case X86::VPDPWSSDYrr: case X86::VPDPWSSDYrm: { if (!Subtarget.hasFastDPWSSD()) { Patterns.push_back(X86MachineCombinerPattern::DPWSSD); return true; } break; } case X86::VPDPWSSDZ128r: case X86::VPDPWSSDZ128m: case X86::VPDPWSSDZ256r: case X86::VPDPWSSDZ256m: case X86::VPDPWSSDZr: case X86::VPDPWSSDZm: { if (Subtarget.hasBWI() && !Subtarget.hasFastDPWSSD()) { Patterns.push_back(X86MachineCombinerPattern::DPWSSD); return true; } break; } } return TargetInstrInfo::getMachineCombinerPatterns(Root, Patterns, DoRegPressureReduce); } static void genAlternativeDpCodeSequence(MachineInstr &Root, const TargetInstrInfo &TII, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg) { MachineFunction *MF = Root.getMF(); MachineRegisterInfo &RegInfo = MF->getRegInfo(); unsigned Opc = Root.getOpcode(); unsigned AddOpc = 0; unsigned MaddOpc = 0; switch (Opc) { default: assert(false && "It should not reach here"); break; // vpdpwssd xmm2,xmm3,xmm1 // --> // vpmaddwd xmm3,xmm3,xmm1 // vpaddd xmm2,xmm2,xmm3 case X86::VPDPWSSDrr: MaddOpc = X86::VPMADDWDrr; AddOpc = X86::VPADDDrr; break; case X86::VPDPWSSDrm: MaddOpc = X86::VPMADDWDrm; AddOpc = X86::VPADDDrr; break; case X86::VPDPWSSDZ128r: MaddOpc = X86::VPMADDWDZ128rr; AddOpc = X86::VPADDDZ128rr; break; case X86::VPDPWSSDZ128m: MaddOpc = X86::VPMADDWDZ128rm; AddOpc = X86::VPADDDZ128rr; break; // vpdpwssd ymm2,ymm3,ymm1 // --> // vpmaddwd ymm3,ymm3,ymm1 // vpaddd ymm2,ymm2,ymm3 case X86::VPDPWSSDYrr: MaddOpc = X86::VPMADDWDYrr; AddOpc = X86::VPADDDYrr; break; case X86::VPDPWSSDYrm: MaddOpc = X86::VPMADDWDYrm; AddOpc = X86::VPADDDYrr; break; case X86::VPDPWSSDZ256r: MaddOpc = X86::VPMADDWDZ256rr; AddOpc = X86::VPADDDZ256rr; break; case X86::VPDPWSSDZ256m: MaddOpc = X86::VPMADDWDZ256rm; AddOpc = X86::VPADDDZ256rr; break; // vpdpwssd zmm2,zmm3,zmm1 // --> // vpmaddwd zmm3,zmm3,zmm1 // vpaddd zmm2,zmm2,zmm3 case X86::VPDPWSSDZr: MaddOpc = X86::VPMADDWDZrr; AddOpc = X86::VPADDDZrr; break; case X86::VPDPWSSDZm: MaddOpc = X86::VPMADDWDZrm; AddOpc = X86::VPADDDZrr; break; } // Create vpmaddwd. const TargetRegisterClass *RC = RegInfo.getRegClass(Root.getOperand(0).getReg()); Register NewReg = RegInfo.createVirtualRegister(RC); MachineInstr *Madd = Root.getMF()->CloneMachineInstr(&Root); Madd->setDesc(TII.get(MaddOpc)); Madd->untieRegOperand(1); Madd->removeOperand(1); Madd->getOperand(0).setReg(NewReg); InstrIdxForVirtReg.insert(std::make_pair(NewReg, 0)); // Create vpaddd. Register DstReg = Root.getOperand(0).getReg(); bool IsKill = Root.getOperand(1).isKill(); MachineInstr *Add = BuildMI(*MF, MIMetadata(Root), TII.get(AddOpc), DstReg) .addReg(Root.getOperand(1).getReg(), getKillRegState(IsKill)) .addReg(Madd->getOperand(0).getReg(), getKillRegState(true)); InsInstrs.push_back(Madd); InsInstrs.push_back(Add); DelInstrs.push_back(&Root); } void X86InstrInfo::genAlternativeCodeSequence( MachineInstr &Root, unsigned Pattern, SmallVectorImpl &InsInstrs, SmallVectorImpl &DelInstrs, DenseMap &InstrIdxForVirtReg) const { switch (Pattern) { default: // Reassociate instructions. TargetInstrInfo::genAlternativeCodeSequence(Root, Pattern, InsInstrs, DelInstrs, InstrIdxForVirtReg); return; case X86MachineCombinerPattern::DPWSSD: genAlternativeDpCodeSequence(Root, *this, InsInstrs, DelInstrs, InstrIdxForVirtReg); return; } } // See also: X86DAGToDAGISel::SelectInlineAsmMemoryOperand(). void X86InstrInfo::getFrameIndexOperands(SmallVectorImpl &Ops, int FI) const { X86AddressMode M; M.BaseType = X86AddressMode::FrameIndexBase; M.Base.FrameIndex = FI; M.getFullAddress(Ops); } #define GET_INSTRINFO_HELPERS #include "X86GenInstrInfo.inc"