//===- X86InstrFPStack.td - FPU Instruction Set ------------*- tablegen -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file describes the X86 x87 FPU instruction set, defining the // instructions, and properties of the instructions which are needed for code // generation, machine code emission, and analysis. // //===----------------------------------------------------------------------===// // Some 'special' instructions - expanded after instruction selection. // Clobbers EFLAGS due to OR instruction used internally. // FIXME: Can we model this in SelectionDAG? let usesCustomInserter = 1, hasNoSchedulingInfo = 1, Defs = [EFLAGS] in { def FP32_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP32:$src), [(X86fp_to_i16mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP32:$src), [(X86fp_to_i32mem RFP32:$src, addr:$dst)]>; def FP32_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP32:$src), [(X86fp_to_i64mem RFP32:$src, addr:$dst)]>; def FP64_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP64:$src), [(X86fp_to_i16mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP64:$src), [(X86fp_to_i32mem RFP64:$src, addr:$dst)]>; def FP64_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP64:$src), [(X86fp_to_i64mem RFP64:$src, addr:$dst)]>; def FP80_TO_INT16_IN_MEM : PseudoI<(outs), (ins i16mem:$dst, RFP80:$src), [(X86fp_to_i16mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT32_IN_MEM : PseudoI<(outs), (ins i32mem:$dst, RFP80:$src), [(X86fp_to_i32mem RFP80:$src, addr:$dst)]>; def FP80_TO_INT64_IN_MEM : PseudoI<(outs), (ins i64mem:$dst, RFP80:$src), [(X86fp_to_i64mem RFP80:$src, addr:$dst)]>; def FP80_ADDr : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), [(set RFP80:$dst, (any_X86fp80_add RFP80:$src1, RFP80:$src2))]>; def FP80_ADDm32 : PseudoI<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), [(set RFP80:$dst, (any_X86fp80_add RFP80:$src1, (f80 (extloadf32 addr:$src2))))]>; } // All FP Stack operations are represented with four instructions here. The // first three instructions, generated by the instruction selector, use "RFP32" // "RFP64" or "RFP80" registers: traditional register files to reference 32-bit, // 64-bit or 80-bit floating point values. These sizes apply to the values, // not the registers, which are always 80 bits; RFP32, RFP64 and RFP80 can be // copied to each other without losing information. These instructions are all // pseudo instructions and use the "_Fp" suffix. // In some cases there are additional variants with a mixture of different // register sizes. // The second instruction is defined with FPI, which is the actual instruction // emitted by the assembler. These use "RST" registers, although frequently // the actual register(s) used are implicit. These are always 80 bits. // The FP stackifier pass converts one to the other after register allocation // occurs. // // Note that the FpI instruction should have instruction selection info (e.g. // a pattern) and the FPI instruction should have emission info (e.g. opcode // encoding and asm printing info). // FpIf32, FpIf64 - Floating Point Pseudo Instruction template. // f32 instructions can use SSE1 and are predicated on FPStackf32 == !SSE1. // f64 instructions can use SSE2 and are predicated on FPStackf64 == !SSE2. // f80 instructions cannot use SSE and use neither of these. class FpIf32 pattern> : FpI_, Requires<[FPStackf32]>; class FpIf64 pattern> : FpI_, Requires<[FPStackf64]>; // Factoring for arithmetic. multiclass FPBinary_rr { // Register op register -> register // These are separated out because they have no reversed form. def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), TwoArgFP, [(set RFP32:$dst, (OpNode RFP32:$src1, RFP32:$src2))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), TwoArgFP, [(set RFP64:$dst, (OpNode RFP64:$src1, RFP64:$src2))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), TwoArgFP, [(set RFP80:$dst, (OpNode RFP80:$src1, RFP80:$src2))]>; } // The FopST0 series are not included here because of the irregularities // in where the 'r' goes in assembly output. // These instructions cannot address 80-bit memory. multiclass FPBinary { // ST(0) = ST(0) + [mem] def _Fp32m : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (loadf32 addr:$src2))), (set RFP32:$dst, (OpNode (loadf32 addr:$src2), RFP32:$src1)))]>; def _Fp64m : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f64mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (loadf64 addr:$src2))), (set RFP64:$dst, (OpNode (loadf64 addr:$src2), RFP64:$src1)))]>; def _Fp64m32: FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (f64 (extloadf32 addr:$src2)))), (set RFP64:$dst, (OpNode (f64 (extloadf32 addr:$src2)), RFP64:$src1)))]>; def _Fp80m32: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf32 addr:$src2)))), (set RFP80:$dst, (OpNode (f80 (extloadf32 addr:$src2)), RFP80:$src1)))]>; def _Fp80m64: FpI_<(outs RFP80:$dst), (ins RFP80:$src1, f64mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (f80 (extloadf64 addr:$src2)))), (set RFP80:$dst, (OpNode (f80 (extloadf64 addr:$src2)), RFP80:$src1)))]>; let mayLoad = 1 in def _F32m : FPI<0xD8, fp, (outs), (ins f32mem:$src), !strconcat("f", asmstring, "{s}\t$src")>; let mayLoad = 1 in def _F64m : FPI<0xDC, fp, (outs), (ins f64mem:$src), !strconcat("f", asmstring, "{l}\t$src")>; // ST(0) = ST(0) + [memint] def _FpI16m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (X86fild16 addr:$src2))), (set RFP32:$dst, (OpNode (X86fild16 addr:$src2), RFP32:$src1)))]>; def _FpI32m32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP32:$dst, (OpNode RFP32:$src1, (X86fild32 addr:$src2))), (set RFP32:$dst, (OpNode (X86fild32 addr:$src2), RFP32:$src1)))]>; def _FpI16m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (X86fild16 addr:$src2))), (set RFP64:$dst, (OpNode (X86fild16 addr:$src2), RFP64:$src1)))]>; def _FpI32m64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP64:$dst, (OpNode RFP64:$src1, (X86fild32 addr:$src2))), (set RFP64:$dst, (OpNode (X86fild32 addr:$src2), RFP64:$src1)))]>; def _FpI16m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i16mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (X86fild16 addr:$src2))), (set RFP80:$dst, (OpNode (X86fild16 addr:$src2), RFP80:$src1)))]>; def _FpI32m80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, i32mem:$src2), OneArgFPRW, [!if(Forward, (set RFP80:$dst, (OpNode RFP80:$src1, (X86fild32 addr:$src2))), (set RFP80:$dst, (OpNode (X86fild32 addr:$src2), RFP80:$src1)))]>; let mayLoad = 1 in def _FI16m : FPI<0xDE, fp, (outs), (ins i16mem:$src), !strconcat("fi", asmstring, "{s}\t$src")>; let mayLoad = 1 in def _FI32m : FPI<0xDA, fp, (outs), (ins i32mem:$src), !strconcat("fi", asmstring, "{l}\t$src")>; } let Uses = [FPCW], mayRaiseFPException = 1 in { // FPBinary_rr just defines pseudo-instructions, no need to set a scheduling // resources. let hasNoSchedulingInfo = 1 in { defm ADD : FPBinary_rr; defm SUB : FPBinary_rr; defm MUL : FPBinary_rr; defm DIV : FPBinary_rr; } // Sets the scheduling resources for the actual NAME#_Fm definitions. let SchedRW = [WriteFAddLd] in { defm ADD : FPBinary; defm SUB : FPBinary; defm SUBR: FPBinary; } let SchedRW = [WriteFMulLd] in { defm MUL : FPBinary; } let SchedRW = [WriteFDivLd] in { defm DIV : FPBinary; defm DIVR: FPBinary; } } // Uses = [FPCW], mayRaiseFPException = 1 class FPST0rInst : FPI<0xD8, fp, (outs), (ins RSTi:$op), asm>; class FPrST0Inst : FPI<0xDC, fp, (outs), (ins RSTi:$op), asm>; class FPrST0PInst : FPI<0xDE, fp, (outs), (ins RSTi:$op), asm>; // NOTE: GAS and apparently all other AT&T style assemblers have a broken notion // of some of the 'reverse' forms of the fsub and fdiv instructions. As such, // we have to put some 'r's in and take them out of weird places. let SchedRW = [WriteFAdd], Uses = [FPCW], mayRaiseFPException = 1 in { def ADD_FST0r : FPST0rInst ; def ADD_FrST0 : FPrST0Inst ; def ADD_FPrST0 : FPrST0PInst; def SUBR_FST0r : FPST0rInst ; def SUB_FrST0 : FPrST0Inst ; def SUB_FPrST0 : FPrST0PInst; def SUB_FST0r : FPST0rInst ; def SUBR_FrST0 : FPrST0Inst ; def SUBR_FPrST0 : FPrST0PInst; } // SchedRW let SchedRW = [WriteFCom], Uses = [FPCW], mayRaiseFPException = 1 in { def COM_FST0r : FPST0rInst ; def COMP_FST0r : FPST0rInst ; } // SchedRW let SchedRW = [WriteFMul], Uses = [FPCW], mayRaiseFPException = 1 in { def MUL_FST0r : FPST0rInst ; def MUL_FrST0 : FPrST0Inst ; def MUL_FPrST0 : FPrST0PInst; } // SchedRW let SchedRW = [WriteFDiv], Uses = [FPCW], mayRaiseFPException = 1 in { def DIVR_FST0r : FPST0rInst ; def DIV_FrST0 : FPrST0Inst ; def DIV_FPrST0 : FPrST0PInst; def DIV_FST0r : FPST0rInst ; def DIVR_FrST0 : FPrST0Inst ; def DIVR_FPrST0 : FPrST0PInst; } // SchedRW // Unary operations. multiclass FPUnary { def _Fp32 : FpIf32<(outs RFP32:$dst), (ins RFP32:$src), OneArgFPRW, [(set RFP32:$dst, (OpNode RFP32:$src))]>; def _Fp64 : FpIf64<(outs RFP64:$dst), (ins RFP64:$src), OneArgFPRW, [(set RFP64:$dst, (OpNode RFP64:$src))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src), OneArgFPRW, [(set RFP80:$dst, (OpNode RFP80:$src))]>; def _F : FPI<0xD9, fp, (outs), (ins), asmstring>; } let SchedRW = [WriteFSign] in { defm CHS : FPUnary; defm ABS : FPUnary; } let Uses = [FPCW], mayRaiseFPException = 1 in { let SchedRW = [WriteFSqrt80] in defm SQRT: FPUnary; let SchedRW = [WriteFCom] in { let hasSideEffects = 0 in { def TST_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; def TST_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; def TST_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; } // hasSideEffects def TST_F : FPI<0xD9, MRM_E4, (outs), (ins), "ftst">; } // SchedRW } // Uses = [FPCW], mayRaiseFPException = 1 let SchedRW = [WriteFTest], Defs = [FPSW] in { def XAM_Fp32 : FpIf32<(outs), (ins RFP32:$src), OneArgFP, []>; def XAM_Fp64 : FpIf64<(outs), (ins RFP64:$src), OneArgFP, []>; def XAM_Fp80 : FpI_<(outs), (ins RFP80:$src), OneArgFP, []>; def XAM_F : FPI<0xD9, MRM_E5, (outs), (ins), "fxam">; } // SchedRW // Versions of FP instructions that take a single memory operand. Added for the // disassembler; remove as they are included with patterns elsewhere. let SchedRW = [WriteFComLd], Uses = [FPCW], mayRaiseFPException = 1, mayLoad = 1 in { def FCOM32m : FPI<0xD8, MRM2m, (outs), (ins f32mem:$src), "fcom{s}\t$src">; def FCOMP32m : FPI<0xD8, MRM3m, (outs), (ins f32mem:$src), "fcomp{s}\t$src">; def FCOM64m : FPI<0xDC, MRM2m, (outs), (ins f64mem:$src), "fcom{l}\t$src">; def FCOMP64m : FPI<0xDC, MRM3m, (outs), (ins f64mem:$src), "fcomp{l}\t$src">; def FICOM16m : FPI<0xDE, MRM2m, (outs), (ins i16mem:$src), "ficom{s}\t$src">; def FICOMP16m: FPI<0xDE, MRM3m, (outs), (ins i16mem:$src), "ficomp{s}\t$src">; def FICOM32m : FPI<0xDA, MRM2m, (outs), (ins i32mem:$src), "ficom{l}\t$src">; def FICOMP32m: FPI<0xDA, MRM3m, (outs), (ins i32mem:$src), "ficomp{l}\t$src">; } // SchedRW let SchedRW = [WriteMicrocoded] in { let Defs = [FPSW, FPCW], mayLoad = 1 in { def FRSTORm : FPI<0xDD, MRM4m, (outs), (ins anymem:$src), "frstor\t$src">; let Predicates = [HasX87] in def FLDENVm : I<0xD9, MRM4m, (outs), (ins anymem:$src), "fldenv\t$src", [(X86fpenv_set addr:$src)]>; } let Defs = [FPSW, FPCW], Uses = [FPSW, FPCW], mayStore = 1 in { def FSAVEm : FPI<0xDD, MRM6m, (outs), (ins anymem:$dst), "fnsave\t$dst">; let Predicates = [HasX87] in def FSTENVm : I<0xD9, MRM6m, (outs), (ins anymem:$dst), "fnstenv\t$dst", [(X86fpenv_get addr:$dst)]>; } let Uses = [FPSW], mayStore = 1 in def FNSTSWm : FPI<0xDD, MRM7m, (outs), (ins i16mem:$dst), "fnstsw\t$dst">; let mayLoad = 1 in def FBLDm : FPI<0xDF, MRM4m, (outs), (ins f80mem:$src), "fbld\t$src">; let Uses = [FPCW] ,mayRaiseFPException = 1, mayStore = 1 in def FBSTPm : FPI<0xDF, MRM6m, (outs), (ins f80mem:$dst), "fbstp\t$dst">; } // SchedRW // Floating point cmovs. class FpIf32CMov pattern> : FpI_, Requires<[FPStackf32, HasCMOV]>; class FpIf64CMov pattern> : FpI_, Requires<[FPStackf64, HasCMOV]>; multiclass FPCMov { def _Fp32 : FpIf32CMov<(outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2), CondMovFP, [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, cc, EFLAGS))]>; def _Fp64 : FpIf64CMov<(outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2), CondMovFP, [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, cc, EFLAGS))]>; def _Fp80 : FpI_<(outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2), CondMovFP, [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, cc, EFLAGS))]>, Requires<[HasCMOV]>; } let SchedRW = [WriteFCMOV] in { let Uses = [EFLAGS], Constraints = "$src1 = $dst" in { defm CMOVB : FPCMov; defm CMOVBE : FPCMov; defm CMOVE : FPCMov; defm CMOVP : FPCMov; defm CMOVNB : FPCMov; defm CMOVNBE: FPCMov; defm CMOVNE : FPCMov; defm CMOVNP : FPCMov; } // Uses = [EFLAGS], Constraints = "$src1 = $dst" let Predicates = [HasCMOV] in { // These are not factored because there's no clean way to pass DA/DB. def CMOVB_F : FPI<0xDA, MRM0r, (outs), (ins RSTi:$op), "fcmovb\t{$op, %st|st, $op}">; def CMOVBE_F : FPI<0xDA, MRM2r, (outs), (ins RSTi:$op), "fcmovbe\t{$op, %st|st, $op}">; def CMOVE_F : FPI<0xDA, MRM1r, (outs), (ins RSTi:$op), "fcmove\t{$op, %st|st, $op}">; def CMOVP_F : FPI<0xDA, MRM3r, (outs), (ins RSTi:$op), "fcmovu\t{$op, %st|st, $op}">; def CMOVNB_F : FPI<0xDB, MRM0r, (outs), (ins RSTi:$op), "fcmovnb\t{$op, %st|st, $op}">; def CMOVNBE_F: FPI<0xDB, MRM2r, (outs), (ins RSTi:$op), "fcmovnbe\t{$op, %st|st, $op}">; def CMOVNE_F : FPI<0xDB, MRM1r, (outs), (ins RSTi:$op), "fcmovne\t{$op, %st|st, $op}">; def CMOVNP_F : FPI<0xDB, MRM3r, (outs), (ins RSTi:$op), "fcmovnu\t{$op, %st|st, $op}">; } // Predicates = [HasCMOV] } // SchedRW let mayRaiseFPException = 1 in { // Floating point loads & stores. let SchedRW = [WriteLoad], Uses = [FPCW] in { let canFoldAsLoad = 1 in { def LD_Fp32m : FpIf32<(outs RFP32:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP32:$dst, (loadf32 addr:$src))]>; def LD_Fp64m : FpIf64<(outs RFP64:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP64:$dst, (loadf64 addr:$src))]>; def LD_Fp80m : FpI_<(outs RFP80:$dst), (ins f80mem:$src), ZeroArgFP, [(set RFP80:$dst, (loadf80 addr:$src))]>; } // canFoldAsLoad def LD_Fp32m64 : FpIf64<(outs RFP64:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP64:$dst, (f64 (extloadf32 addr:$src)))]>; def LD_Fp64m80 : FpI_<(outs RFP80:$dst), (ins f64mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf64 addr:$src)))]>; def LD_Fp32m80 : FpI_<(outs RFP80:$dst), (ins f32mem:$src), ZeroArgFP, [(set RFP80:$dst, (f80 (extloadf32 addr:$src)))]>; let mayRaiseFPException = 0 in { def ILD_Fp16m32: FpIf32<(outs RFP32:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild16 addr:$src))]>; def ILD_Fp32m32: FpIf32<(outs RFP32:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild32 addr:$src))]>; def ILD_Fp64m32: FpIf32<(outs RFP32:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP32:$dst, (X86fild64 addr:$src))]>; def ILD_Fp16m64: FpIf64<(outs RFP64:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild16 addr:$src))]>; def ILD_Fp32m64: FpIf64<(outs RFP64:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild32 addr:$src))]>; def ILD_Fp64m64: FpIf64<(outs RFP64:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP64:$dst, (X86fild64 addr:$src))]>; def ILD_Fp16m80: FpI_<(outs RFP80:$dst), (ins i16mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild16 addr:$src))]>; def ILD_Fp32m80: FpI_<(outs RFP80:$dst), (ins i32mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild32 addr:$src))]>; def ILD_Fp64m80: FpI_<(outs RFP80:$dst), (ins i64mem:$src), ZeroArgFP, [(set RFP80:$dst, (X86fild64 addr:$src))]>; } // mayRaiseFPException = 0 } // SchedRW let SchedRW = [WriteStore], Uses = [FPCW] in { def ST_Fp32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, [(store RFP32:$src, addr:$op)]>; def ST_Fp64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, [(truncstoref32 RFP64:$src, addr:$op)]>; def ST_Fp64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, [(store RFP64:$src, addr:$op)]>; def ST_Fp80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, [(truncstoref32 RFP80:$src, addr:$op)]>; def ST_Fp80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, [(truncstoref64 RFP80:$src, addr:$op)]>; // FST does not support 80-bit memory target; FSTP must be used. let mayStore = 1, hasSideEffects = 0 in { def ST_FpP32m : FpIf32<(outs), (ins f32mem:$op, RFP32:$src), OneArgFP, []>; def ST_FpP64m32 : FpIf64<(outs), (ins f32mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP64m : FpIf64<(outs), (ins f64mem:$op, RFP64:$src), OneArgFP, []>; def ST_FpP80m32 : FpI_<(outs), (ins f32mem:$op, RFP80:$src), OneArgFP, []>; def ST_FpP80m64 : FpI_<(outs), (ins f64mem:$op, RFP80:$src), OneArgFP, []>; } // mayStore def ST_FpP80m : FpI_<(outs), (ins f80mem:$op, RFP80:$src), OneArgFP, [(store RFP80:$src, addr:$op)]>; let mayStore = 1, hasSideEffects = 0 in { def IST_Fp16m32 : FpIf32<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, []>; def IST_Fp32m32 : FpIf32<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, [(X86fist32 RFP32:$src, addr:$op)]>; def IST_Fp64m32 : FpIf32<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, [(X86fist64 RFP32:$src, addr:$op)]>; def IST_Fp16m64 : FpIf64<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, []>; def IST_Fp32m64 : FpIf64<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, [(X86fist32 RFP64:$src, addr:$op)]>; def IST_Fp64m64 : FpIf64<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fist64 RFP64:$src, addr:$op)]>; def IST_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, []>; def IST_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, [(X86fist32 RFP80:$src, addr:$op)]>; def IST_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, [(X86fist64 RFP80:$src, addr:$op)]>; } // mayStore } // SchedRW, Uses = [FPCW] let mayLoad = 1, SchedRW = [WriteLoad], Uses = [FPCW] in { def LD_F32m : FPI<0xD9, MRM0m, (outs), (ins f32mem:$src), "fld{s}\t$src">; def LD_F64m : FPI<0xDD, MRM0m, (outs), (ins f64mem:$src), "fld{l}\t$src">; def LD_F80m : FPI<0xDB, MRM5m, (outs), (ins f80mem:$src), "fld{t}\t$src">; let mayRaiseFPException = 0 in { def ILD_F16m : FPI<0xDF, MRM0m, (outs), (ins i16mem:$src), "fild{s}\t$src">; def ILD_F32m : FPI<0xDB, MRM0m, (outs), (ins i32mem:$src), "fild{l}\t$src">; def ILD_F64m : FPI<0xDF, MRM5m, (outs), (ins i64mem:$src), "fild{ll}\t$src">; } } let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in { def ST_F32m : FPI<0xD9, MRM2m, (outs), (ins f32mem:$dst), "fst{s}\t$dst">; def ST_F64m : FPI<0xDD, MRM2m, (outs), (ins f64mem:$dst), "fst{l}\t$dst">; def ST_FP32m : FPI<0xD9, MRM3m, (outs), (ins f32mem:$dst), "fstp{s}\t$dst">; def ST_FP64m : FPI<0xDD, MRM3m, (outs), (ins f64mem:$dst), "fstp{l}\t$dst">; def ST_FP80m : FPI<0xDB, MRM7m, (outs), (ins f80mem:$dst), "fstp{t}\t$dst">; def IST_F16m : FPI<0xDF, MRM2m, (outs), (ins i16mem:$dst), "fist{s}\t$dst">; def IST_F32m : FPI<0xDB, MRM2m, (outs), (ins i32mem:$dst), "fist{l}\t$dst">; def IST_FP16m : FPI<0xDF, MRM3m, (outs), (ins i16mem:$dst), "fistp{s}\t$dst">; def IST_FP32m : FPI<0xDB, MRM3m, (outs), (ins i32mem:$dst), "fistp{l}\t$dst">; def IST_FP64m : FPI<0xDF, MRM7m, (outs), (ins i64mem:$dst), "fistp{ll}\t$dst">; } // FISTTP requires SSE3 even though it's a FPStack op. let Predicates = [HasSSE3], SchedRW = [WriteStore], Uses = [FPCW] in { def ISTT_Fp16m32 : FpI_<(outs), (ins i16mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i16mem RFP32:$src, addr:$op)]>; def ISTT_Fp32m32 : FpI_<(outs), (ins i32mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i32mem RFP32:$src, addr:$op)]>; def ISTT_Fp64m32 : FpI_<(outs), (ins i64mem:$op, RFP32:$src), OneArgFP, [(X86fp_to_i64mem RFP32:$src, addr:$op)]>; def ISTT_Fp16m64 : FpI_<(outs), (ins i16mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i16mem RFP64:$src, addr:$op)]>; def ISTT_Fp32m64 : FpI_<(outs), (ins i32mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i32mem RFP64:$src, addr:$op)]>; def ISTT_Fp64m64 : FpI_<(outs), (ins i64mem:$op, RFP64:$src), OneArgFP, [(X86fp_to_i64mem RFP64:$src, addr:$op)]>; def ISTT_Fp16m80 : FpI_<(outs), (ins i16mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i16mem RFP80:$src, addr:$op)]>; def ISTT_Fp32m80 : FpI_<(outs), (ins i32mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i32mem RFP80:$src, addr:$op)]>; def ISTT_Fp64m80 : FpI_<(outs), (ins i64mem:$op, RFP80:$src), OneArgFP, [(X86fp_to_i64mem RFP80:$src, addr:$op)]>; } // Predicates = [HasSSE3] let mayStore = 1, SchedRW = [WriteStore], Uses = [FPCW] in { def ISTT_FP16m : FPI<0xDF, MRM1m, (outs), (ins i16mem:$dst), "fisttp{s}\t$dst">; def ISTT_FP32m : FPI<0xDB, MRM1m, (outs), (ins i32mem:$dst), "fisttp{l}\t$dst">; def ISTT_FP64m : FPI<0xDD, MRM1m, (outs), (ins i64mem:$dst), "fisttp{ll}\t$dst">; } // FP Stack manipulation instructions. let SchedRW = [WriteMove], Uses = [FPCW] in { def LD_Frr : FPI<0xD9, MRM0r, (outs), (ins RSTi:$op), "fld\t$op">; def ST_Frr : FPI<0xDD, MRM2r, (outs), (ins RSTi:$op), "fst\t$op">; def ST_FPrr : FPI<0xDD, MRM3r, (outs), (ins RSTi:$op), "fstp\t$op">; let mayRaiseFPException = 0 in def XCH_F : FPI<0xD9, MRM1r, (outs), (ins RSTi:$op), "fxch\t$op">; } // Floating point constant loads. let SchedRW = [WriteZero], Uses = [FPCW], isReMaterializable = 1 in { def LD_Fp032 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm0)]>; def LD_Fp132 : FpIf32<(outs RFP32:$dst), (ins), ZeroArgFP, [(set RFP32:$dst, fpimm1)]>; def LD_Fp064 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm0)]>; def LD_Fp164 : FpIf64<(outs RFP64:$dst), (ins), ZeroArgFP, [(set RFP64:$dst, fpimm1)]>; def LD_Fp080 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm0)]>; def LD_Fp180 : FpI_<(outs RFP80:$dst), (ins), ZeroArgFP, [(set RFP80:$dst, fpimm1)]>; } let SchedRW = [WriteFLD0], Uses = [FPCW], mayRaiseFPException = 0 in def LD_F0 : FPI<0xD9, MRM_EE, (outs), (ins), "fldz">; let SchedRW = [WriteFLD1], Uses = [FPCW], mayRaiseFPException = 0 in def LD_F1 : FPI<0xD9, MRM_E8, (outs), (ins), "fld1">; let SchedRW = [WriteFLDC], Defs = [FPSW], Uses = [FPCW], mayRaiseFPException = 0 in { def FLDL2T : I<0xD9, MRM_E9, (outs), (ins), "fldl2t", []>; def FLDL2E : I<0xD9, MRM_EA, (outs), (ins), "fldl2e", []>; def FLDPI : I<0xD9, MRM_EB, (outs), (ins), "fldpi", []>; def FLDLG2 : I<0xD9, MRM_EC, (outs), (ins), "fldlg2", []>; def FLDLN2 : I<0xD9, MRM_ED, (outs), (ins), "fldln2", []>; } // SchedRW // Floating point compares. let SchedRW = [WriteFCom], Uses = [FPCW], hasSideEffects = 0 in { def UCOM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>; def UCOM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>; def UCOM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>; def COM_Fpr32 : FpIf32<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, []>; def COM_Fpr64 : FpIf64<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, []>; def COM_Fpr80 : FpI_ <(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, []>; } // SchedRW } // mayRaiseFPException = 1 let SchedRW = [WriteFCom], mayRaiseFPException = 1 in { // CC = ST(0) cmp ST(i) let Defs = [EFLAGS, FPSW], Uses = [FPCW] in { def UCOM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(set EFLAGS, (X86any_fcmp RFP32:$lhs, RFP32:$rhs))]>, Requires<[FPStackf32, HasCMOV]>; def UCOM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(set EFLAGS, (X86any_fcmp RFP64:$lhs, RFP64:$rhs))]>, Requires<[FPStackf64, HasCMOV]>; def UCOM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(set EFLAGS, (X86any_fcmp RFP80:$lhs, RFP80:$rhs))]>, Requires<[HasCMOV]>; def COM_FpIr32: FpI_<(outs), (ins RFP32:$lhs, RFP32:$rhs), CompareFP, [(set EFLAGS, (X86strict_fcmps RFP32:$lhs, RFP32:$rhs))]>, Requires<[FPStackf32, HasCMOV]>; def COM_FpIr64: FpI_<(outs), (ins RFP64:$lhs, RFP64:$rhs), CompareFP, [(set EFLAGS, (X86strict_fcmps RFP64:$lhs, RFP64:$rhs))]>, Requires<[FPStackf64, HasCMOV]>; def COM_FpIr80: FpI_<(outs), (ins RFP80:$lhs, RFP80:$rhs), CompareFP, [(set EFLAGS, (X86strict_fcmps RFP80:$lhs, RFP80:$rhs))]>, Requires<[HasCMOV]>; } let Uses = [ST0, FPCW] in { def UCOM_Fr : FPI<0xDD, MRM4r, // FPSW = cmp ST(0) with ST(i) (outs), (ins RSTi:$reg), "fucom\t$reg">; def UCOM_FPr : FPI<0xDD, MRM5r, // FPSW = cmp ST(0) with ST(i), pop (outs), (ins RSTi:$reg), "fucomp\t$reg">; def UCOM_FPPr : FPI<0xDA, MRM_E9, // cmp ST(0) with ST(1), pop, pop (outs), (ins), "fucompp">; } let Defs = [EFLAGS, FPSW], Uses = [ST0, FPCW] in { def UCOM_FIr : FPI<0xDB, MRM5r, // CC = cmp ST(0) with ST(i) (outs), (ins RSTi:$reg), "fucomi\t{$reg, %st|st, $reg}">; def UCOM_FIPr : FPI<0xDF, MRM5r, // CC = cmp ST(0) with ST(i), pop (outs), (ins RSTi:$reg), "fucompi\t{$reg, %st|st, $reg}">; def COM_FIr : FPI<0xDB, MRM6r, (outs), (ins RSTi:$reg), "fcomi\t{$reg, %st|st, $reg}">; def COM_FIPr : FPI<0xDF, MRM6r, (outs), (ins RSTi:$reg), "fcompi\t{$reg, %st|st, $reg}">; } } // SchedRW // Floating point flag ops. let SchedRW = [WriteALU] in { let Defs = [AX, FPSW], Uses = [FPSW], hasSideEffects = 0 in def FNSTSW16r : I<0xDF, MRM_E0, // AX = fp flags (outs), (ins), "fnstsw\t{%ax|ax}", []>; let Defs = [FPSW], Uses = [FPCW] in def FNSTCW16m : I<0xD9, MRM7m, // [mem16] = X87 control world (outs), (ins i16mem:$dst), "fnstcw\t$dst", [(X86fp_cwd_get16 addr:$dst)]>; } // SchedRW let Defs = [FPSW,FPCW], mayLoad = 1 in def FLDCW16m : I<0xD9, MRM5m, // X87 control world = [mem16] (outs), (ins i16mem:$dst), "fldcw\t$dst", [(X86fp_cwd_set16 addr:$dst)]>, Sched<[WriteLoad]>; // FPU control instructions let SchedRW = [WriteMicrocoded] in { def FFREE : FPI<0xDD, MRM0r, (outs), (ins RSTi:$reg), "ffree\t$reg">; def FFREEP : FPI<0xDF, MRM0r, (outs), (ins RSTi:$reg), "ffreep\t$reg">; let Defs = [FPSW, FPCW] in def FNINIT : I<0xDB, MRM_E3, (outs), (ins), "fninit", []>; // Clear exceptions let Defs = [FPSW] in def FNCLEX : I<0xDB, MRM_E2, (outs), (ins), "fnclex", []>; } // SchedRW // Operand-less floating-point instructions for the disassembler. let Defs = [FPSW] in def FNOP : I<0xD9, MRM_D0, (outs), (ins), "fnop", []>, Sched<[WriteNop]>; let SchedRW = [WriteMicrocoded] in { let Defs = [FPSW] in { def WAIT : I<0x9B, RawFrm, (outs), (ins), "wait", []>; def FDECSTP : I<0xD9, MRM_F6, (outs), (ins), "fdecstp", []>; def FINCSTP : I<0xD9, MRM_F7, (outs), (ins), "fincstp", []>; let Uses = [FPCW], mayRaiseFPException = 1 in { def F2XM1 : I<0xD9, MRM_F0, (outs), (ins), "f2xm1", []>; def FYL2X : I<0xD9, MRM_F1, (outs), (ins), "fyl2x", []>; def FPTAN : I<0xD9, MRM_F2, (outs), (ins), "fptan", []>; def FPATAN : I<0xD9, MRM_F3, (outs), (ins), "fpatan", []>; def FXTRACT : I<0xD9, MRM_F4, (outs), (ins), "fxtract", []>; def FPREM1 : I<0xD9, MRM_F5, (outs), (ins), "fprem1", []>; def FPREM : I<0xD9, MRM_F8, (outs), (ins), "fprem", []>; def FYL2XP1 : I<0xD9, MRM_F9, (outs), (ins), "fyl2xp1", []>; def FSIN : I<0xD9, MRM_FE, (outs), (ins), "fsin", []>; def FCOS : I<0xD9, MRM_FF, (outs), (ins), "fcos", []>; def FSINCOS : I<0xD9, MRM_FB, (outs), (ins), "fsincos", []>; def FRNDINT : I<0xD9, MRM_FC, (outs), (ins), "frndint", []>; def FSCALE : I<0xD9, MRM_FD, (outs), (ins), "fscale", []>; def FCOMPP : I<0xDE, MRM_D9, (outs), (ins), "fcompp", []>; } // Uses = [FPCW], mayRaiseFPException = 1 } // Defs = [FPSW] let Uses = [FPSW, FPCW] in { def FXSAVE : I<0xAE, MRM0m, (outs), (ins opaquemem:$dst), "fxsave\t$dst", [(int_x86_fxsave addr:$dst)]>, TB, Requires<[HasFXSR]>; def FXSAVE64 : RI<0xAE, MRM0m, (outs), (ins opaquemem:$dst), "fxsave64\t$dst", [(int_x86_fxsave64 addr:$dst)]>, TB, Requires<[HasFXSR, In64BitMode]>; } // Uses = [FPSW, FPCW] let Defs = [FPSW, FPCW] in { def FXRSTOR : I<0xAE, MRM1m, (outs), (ins opaquemem:$src), "fxrstor\t$src", [(int_x86_fxrstor addr:$src)]>, TB, Requires<[HasFXSR]>; def FXRSTOR64 : RI<0xAE, MRM1m, (outs), (ins opaquemem:$src), "fxrstor64\t$src", [(int_x86_fxrstor64 addr:$src)]>, TB, Requires<[HasFXSR, In64BitMode]>; } // Defs = [FPSW, FPCW] } // SchedRW //===----------------------------------------------------------------------===// // Non-Instruction Patterns //===----------------------------------------------------------------------===// // Required for RET of f32 / f64 / f80 values. def : Pat<(X86fldf32 addr:$src), (LD_Fp32m addr:$src)>; def : Pat<(X86fldf32 addr:$src), (LD_Fp32m64 addr:$src)>; def : Pat<(X86fldf64 addr:$src), (LD_Fp64m addr:$src)>; def : Pat<(X86fldf32 addr:$src), (LD_Fp32m80 addr:$src)>; def : Pat<(X86fldf64 addr:$src), (LD_Fp64m80 addr:$src)>; def : Pat<(X86fldf80 addr:$src), (LD_Fp80m addr:$src)>; // Required for CALL which return f32 / f64 / f80 values. def : Pat<(X86fstf32 RFP32:$src, addr:$op), (ST_Fp32m addr:$op, RFP32:$src)>; def : Pat<(X86fstf32 RFP64:$src, addr:$op), (ST_Fp64m32 addr:$op, RFP64:$src)>; def : Pat<(X86fstf64 RFP64:$src, addr:$op), (ST_Fp64m addr:$op, RFP64:$src)>; def : Pat<(X86fstf32 RFP80:$src, addr:$op), (ST_Fp80m32 addr:$op, RFP80:$src)>; def : Pat<(X86fstf64 RFP80:$src, addr:$op), (ST_Fp80m64 addr:$op, RFP80:$src)>; def : Pat<(X86fstf80 RFP80:$src, addr:$op), (ST_FpP80m addr:$op, RFP80:$src)>; // Floating point constant -0.0 and -1.0 def : Pat<(f32 fpimmneg0), (CHS_Fp32 (LD_Fp032))>, Requires<[FPStackf32]>; def : Pat<(f32 fpimmneg1), (CHS_Fp32 (LD_Fp132))>, Requires<[FPStackf32]>; def : Pat<(f64 fpimmneg0), (CHS_Fp64 (LD_Fp064))>, Requires<[FPStackf64]>; def : Pat<(f64 fpimmneg1), (CHS_Fp64 (LD_Fp164))>, Requires<[FPStackf64]>; def : Pat<(f80 fpimmneg0), (CHS_Fp80 (LD_Fp080))>; def : Pat<(f80 fpimmneg1), (CHS_Fp80 (LD_Fp180))>; // FP extensions map onto simple pseudo-value conversions if they are to/from // the FP stack. def : Pat<(f64 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP64)>, Requires<[FPStackf32]>; def : Pat<(f80 (any_fpextend RFP32:$src)), (COPY_TO_REGCLASS RFP32:$src, RFP80)>, Requires<[FPStackf32]>; def : Pat<(f80 (any_fpextend RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP80)>, Requires<[FPStackf64]>; // FP truncations map onto simple pseudo-value conversions if they are to/from // the FP stack. We have validated that only value-preserving truncations make // it through isel. def : Pat<(f32 (any_fpround RFP64:$src)), (COPY_TO_REGCLASS RFP64:$src, RFP32)>, Requires<[FPStackf32]>; def : Pat<(f32 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP32)>, Requires<[FPStackf32]>; def : Pat<(f64 (any_fpround RFP80:$src)), (COPY_TO_REGCLASS RFP80:$src, RFP64)>, Requires<[FPStackf64]>;