//==- SystemZInstrHFP.td - Floating-point SystemZ instructions -*- tblgen-*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // The instructions in this file implement SystemZ hexadecimal floating-point // arithmetic. Since this format is not mapped to any source-language data // type, these instructions are not used for code generation, but are provided // for use with the assembler and disassembler only. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Move instructions //===----------------------------------------------------------------------===// // Load and test. let Defs = [CC] in { def LTER : UnaryRR <"lter", 0x32, null_frag, FP32, FP32>; def LTDR : UnaryRR <"ltdr", 0x22, null_frag, FP64, FP64>; def LTXR : UnaryRRE<"ltxr", 0xB362, null_frag, FP128, FP128>; } //===----------------------------------------------------------------------===// // Conversion instructions //===----------------------------------------------------------------------===// // Convert floating-point values to narrower representations. def LEDR : UnaryRR <"ledr", 0x35, null_frag, FP32, FP64>; def LEXR : UnaryRRE<"lexr", 0xB366, null_frag, FP32, FP128>; def LDXR : UnaryRR <"ldxr", 0x25, null_frag, FP64, FP128>; let isAsmParserOnly = 1 in { def LRER : UnaryRR <"lrer", 0x35, null_frag, FP32, FP64>; def LRDR : UnaryRR <"lrdr", 0x25, null_frag, FP64, FP128>; } // Extend floating-point values to wider representations. def LDER : UnaryRRE<"lder", 0xB324, null_frag, FP64, FP32>; def LXER : UnaryRRE<"lxer", 0xB326, null_frag, FP128, FP32>; def LXDR : UnaryRRE<"lxdr", 0xB325, null_frag, FP128, FP64>; def LDE : UnaryRXE<"lde", 0xED24, null_frag, FP64, 4>; def LXE : UnaryRXE<"lxe", 0xED26, null_frag, FP128, 4>; def LXD : UnaryRXE<"lxd", 0xED25, null_frag, FP128, 8>; // Convert a signed integer register value to a floating-point one. def CEFR : UnaryRRE<"cefr", 0xB3B4, null_frag, FP32, GR32>; def CDFR : UnaryRRE<"cdfr", 0xB3B5, null_frag, FP64, GR32>; def CXFR : UnaryRRE<"cxfr", 0xB3B6, null_frag, FP128, GR32>; def CEGR : UnaryRRE<"cegr", 0xB3C4, null_frag, FP32, GR64>; def CDGR : UnaryRRE<"cdgr", 0xB3C5, null_frag, FP64, GR64>; def CXGR : UnaryRRE<"cxgr", 0xB3C6, null_frag, FP128, GR64>; // Convert a floating-point register value to a signed integer value, // with the second operand (modifier M3) specifying the rounding mode. let Defs = [CC] in { def CFER : BinaryRRFe<"cfer", 0xB3B8, GR32, FP32>; def CFDR : BinaryRRFe<"cfdr", 0xB3B9, GR32, FP64>; def CFXR : BinaryRRFe<"cfxr", 0xB3BA, GR32, FP128>; def CGER : BinaryRRFe<"cger", 0xB3C8, GR64, FP32>; def CGDR : BinaryRRFe<"cgdr", 0xB3C9, GR64, FP64>; def CGXR : BinaryRRFe<"cgxr", 0xB3CA, GR64, FP128>; } // Convert BFP to HFP. let Defs = [CC] in { def THDER : UnaryRRE<"thder", 0xB358, null_frag, FP64, FP32>; def THDR : UnaryRRE<"thdr", 0xB359, null_frag, FP64, FP64>; } // Convert HFP to BFP. let Defs = [CC] in { def TBEDR : BinaryRRFe<"tbedr", 0xB350, FP32, FP64>; def TBDR : BinaryRRFe<"tbdr", 0xB351, FP64, FP64>; } //===----------------------------------------------------------------------===// // Unary arithmetic //===----------------------------------------------------------------------===// // Negation (Load Complement). let Defs = [CC] in { def LCER : UnaryRR <"lcer", 0x33, null_frag, FP32, FP32>; def LCDR : UnaryRR <"lcdr", 0x23, null_frag, FP64, FP64>; def LCXR : UnaryRRE<"lcxr", 0xB363, null_frag, FP128, FP128>; } // Absolute value (Load Positive). let Defs = [CC] in { def LPER : UnaryRR <"lper", 0x30, null_frag, FP32, FP32>; def LPDR : UnaryRR <"lpdr", 0x20, null_frag, FP64, FP64>; def LPXR : UnaryRRE<"lpxr", 0xB360, null_frag, FP128, FP128>; } // Negative absolute value (Load Negative). let Defs = [CC] in { def LNER : UnaryRR <"lner", 0x31, null_frag, FP32, FP32>; def LNDR : UnaryRR <"lndr", 0x21, null_frag, FP64, FP64>; def LNXR : UnaryRRE<"lnxr", 0xB361, null_frag, FP128, FP128>; } // Halve. def HER : UnaryRR <"her", 0x34, null_frag, FP32, FP32>; def HDR : UnaryRR <"hdr", 0x24, null_frag, FP64, FP64>; // Square root. def SQER : UnaryRRE<"sqer", 0xB245, null_frag, FP32, FP32>; def SQDR : UnaryRRE<"sqdr", 0xB244, null_frag, FP64, FP64>; def SQXR : UnaryRRE<"sqxr", 0xB336, null_frag, FP128, FP128>; def SQE : UnaryRXE<"sqe", 0xED34, null_frag, FP32, 4>; def SQD : UnaryRXE<"sqd", 0xED35, null_frag, FP64, 8>; // Round to an integer (rounding towards zero). def FIER : UnaryRRE<"fier", 0xB377, null_frag, FP32, FP32>; def FIDR : UnaryRRE<"fidr", 0xB37F, null_frag, FP64, FP64>; def FIXR : UnaryRRE<"fixr", 0xB367, null_frag, FP128, FP128>; //===----------------------------------------------------------------------===// // Binary arithmetic //===----------------------------------------------------------------------===// // Addition. let Defs = [CC] in { let isCommutable = 1 in { def AER : BinaryRR<"aer", 0x3A, null_frag, FP32, FP32>; def ADR : BinaryRR<"adr", 0x2A, null_frag, FP64, FP64>; def AXR : BinaryRR<"axr", 0x36, null_frag, FP128, FP128>; } def AE : BinaryRX<"ae", 0x7A, null_frag, FP32, z_load, 4>; def AD : BinaryRX<"ad", 0x6A, null_frag, FP64, z_load, 8>; } // Addition (unnormalized). let Defs = [CC] in { let isCommutable = 1 in { def AUR : BinaryRR<"aur", 0x3E, null_frag, FP32, FP32>; def AWR : BinaryRR<"awr", 0x2E, null_frag, FP64, FP64>; } def AU : BinaryRX<"au", 0x7E, null_frag, FP32, z_load, 4>; def AW : BinaryRX<"aw", 0x6E, null_frag, FP64, z_load, 8>; } // Subtraction. let Defs = [CC] in { def SER : BinaryRR<"ser", 0x3B, null_frag, FP32, FP32>; def SDR : BinaryRR<"sdr", 0x2B, null_frag, FP64, FP64>; def SXR : BinaryRR<"sxr", 0x37, null_frag, FP128, FP128>; def SE : BinaryRX<"se", 0x7B, null_frag, FP32, z_load, 4>; def SD : BinaryRX<"sd", 0x6B, null_frag, FP64, z_load, 8>; } // Subtraction (unnormalized). let Defs = [CC] in { def SUR : BinaryRR<"sur", 0x3F, null_frag, FP32, FP32>; def SWR : BinaryRR<"swr", 0x2F, null_frag, FP64, FP64>; def SU : BinaryRX<"su", 0x7F, null_frag, FP32, z_load, 4>; def SW : BinaryRX<"sw", 0x6F, null_frag, FP64, z_load, 8>; } // Multiplication. let isCommutable = 1 in { def MEER : BinaryRRE<"meer", 0xB337, null_frag, FP32, FP32>; def MDR : BinaryRR <"mdr", 0x2C, null_frag, FP64, FP64>; def MXR : BinaryRR <"mxr", 0x26, null_frag, FP128, FP128>; } def MEE : BinaryRXE<"mee", 0xED37, null_frag, FP32, z_load, 4>; def MD : BinaryRX <"md", 0x6C, null_frag, FP64, z_load, 8>; // Extending multiplication (f32 x f32 -> f64). def MDER : BinaryRR<"mder", 0x3C, null_frag, FP64, FP32>; def MDE : BinaryRX<"mde", 0x7C, null_frag, FP64, z_load, 4>; let isAsmParserOnly = 1 in { def MER : BinaryRR<"mer", 0x3C, null_frag, FP64, FP32>; def ME : BinaryRX<"me", 0x7C, null_frag, FP64, z_load, 4>; } // Extending multiplication (f64 x f64 -> f128). def MXDR : BinaryRR<"mxdr", 0x27, null_frag, FP128, FP64>; def MXD : BinaryRX<"mxd", 0x67, null_frag, FP128, z_load, 8>; // Fused multiply-add. def MAER : TernaryRRD<"maer", 0xB32E, null_frag, FP32, FP32>; def MADR : TernaryRRD<"madr", 0xB33E, null_frag, FP64, FP64>; def MAE : TernaryRXF<"mae", 0xED2E, null_frag, FP32, FP32, z_load, 4>; def MAD : TernaryRXF<"mad", 0xED3E, null_frag, FP64, FP64, z_load, 8>; // Fused multiply-subtract. def MSER : TernaryRRD<"mser", 0xB32F, null_frag, FP32, FP32>; def MSDR : TernaryRRD<"msdr", 0xB33F, null_frag, FP64, FP64>; def MSE : TernaryRXF<"mse", 0xED2F, null_frag, FP32, FP32, z_load, 4>; def MSD : TernaryRXF<"msd", 0xED3F, null_frag, FP64, FP64, z_load, 8>; // Multiplication (unnormalized). def MYR : BinaryRRD<"myr", 0xB33B, null_frag, FP128, FP64>; def MYHR : BinaryRRD<"myhr", 0xB33D, null_frag, FP64, FP64>; def MYLR : BinaryRRD<"mylr", 0xB339, null_frag, FP64, FP64>; def MY : BinaryRXF<"my", 0xED3B, null_frag, FP128, FP64, z_load, 8>; def MYH : BinaryRXF<"myh", 0xED3D, null_frag, FP64, FP64, z_load, 8>; def MYL : BinaryRXF<"myl", 0xED39, null_frag, FP64, FP64, z_load, 8>; // Fused multiply-add (unnormalized). def MAYHR : TernaryRRD<"mayhr", 0xB33C, null_frag, FP64, FP64>; def MAYLR : TernaryRRD<"maylr", 0xB338, null_frag, FP64, FP64>; def MAYH : TernaryRXF<"mayh", 0xED3C, null_frag, FP64, FP64, z_load, 8>; def MAYL : TernaryRXF<"mayl", 0xED38, null_frag, FP64, FP64, z_load, 8>; // MAY and MAYR allow the user to specify the floating point register pair // making up the FP128 register by either the lower-numbered register or the // higher-numbered register, in contrast to all other floating point // instructions. // For this reason, the defs below accept `FP64,FP64` instead of `FP128,FP64`. // This is ok since these instructions are not used in code generation. // If and when code generation is enabled, the code gen variants should be // split out from this and use the proper register classes, while these should // remain for the Assembler and Disassembler to remain compliant with the POP. def MAY : TernaryRXF<"may", 0xED3A, null_frag, FP64, FP64, z_load, 8>; def MAYR : TernaryRRD<"mayr", 0xB33A, null_frag, FP64, FP64>; // Division. def DER : BinaryRR <"der", 0x3D, null_frag, FP32, FP32>; def DDR : BinaryRR <"ddr", 0x2D, null_frag, FP64, FP64>; def DXR : BinaryRRE<"dxr", 0xB22D, null_frag, FP128, FP128>; def DE : BinaryRX <"de", 0x7D, null_frag, FP32, z_load, 4>; def DD : BinaryRX <"dd", 0x6D, null_frag, FP64, z_load, 8>; //===----------------------------------------------------------------------===// // Comparisons //===----------------------------------------------------------------------===// let Defs = [CC] in { def CER : CompareRR <"cer", 0x39, null_frag, FP32, FP32>; def CDR : CompareRR <"cdr", 0x29, null_frag, FP64, FP64>; def CXR : CompareRRE<"cxr", 0xB369, null_frag, FP128, FP128>; def CE : CompareRX<"ce", 0x79, null_frag, FP32, z_load, 4>; def CD : CompareRX<"cd", 0x69, null_frag, FP64, z_load, 8>; }