//===---- RISCVISelDAGToDAG.h - A dag to dag inst selector for RISC-V -----===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines an instruction selector for the RISC-V target. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_RISCV_RISCVISELDAGTODAG_H #define LLVM_LIB_TARGET_RISCV_RISCVISELDAGTODAG_H #include "RISCV.h" #include "RISCVTargetMachine.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/Support/KnownBits.h" // RISC-V specific code to select RISC-V machine instructions for // SelectionDAG operations. namespace llvm { class RISCVDAGToDAGISel : public SelectionDAGISel { const RISCVSubtarget *Subtarget = nullptr; public: RISCVDAGToDAGISel() = delete; explicit RISCVDAGToDAGISel(RISCVTargetMachine &TargetMachine, CodeGenOptLevel OptLevel) : SelectionDAGISel(TargetMachine, OptLevel) {} bool runOnMachineFunction(MachineFunction &MF) override { Subtarget = &MF.getSubtarget(); return SelectionDAGISel::runOnMachineFunction(MF); } void PreprocessISelDAG() override; void PostprocessISelDAG() override; void Select(SDNode *Node) override; bool SelectInlineAsmMemoryOperand(const SDValue &Op, InlineAsm::ConstraintCode ConstraintID, std::vector &OutOps) override; bool SelectAddrFrameIndex(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectFrameAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectAddrRegImm(SDValue Addr, SDValue &Base, SDValue &Offset, bool IsINX = false); bool SelectAddrRegImmINX(SDValue Addr, SDValue &Base, SDValue &Offset) { return SelectAddrRegImm(Addr, Base, Offset, true); } bool SelectAddrRegImmLsb00000(SDValue Addr, SDValue &Base, SDValue &Offset); bool SelectAddrRegRegScale(SDValue Addr, unsigned MaxShiftAmount, SDValue &Base, SDValue &Index, SDValue &Scale); template bool SelectAddrRegRegScale(SDValue Addr, SDValue &Base, SDValue &Index, SDValue &Scale) { return SelectAddrRegRegScale(Addr, MaxShift, Base, Index, Scale); } template bool SelectAddrRegZextRegScale(SDValue Addr, SDValue &Base, SDValue &Index, SDValue &Scale) { if (SelectAddrRegRegScale(Addr, MaxShift, Base, Index, Scale)) { if (Index.getOpcode() == ISD::AND) { auto *C = dyn_cast(Index.getOperand(1)); if (C && C->getZExtValue() == maskTrailingOnes(Bits)) { Index = Index.getOperand(0); return true; } } } return false; } bool SelectAddrRegReg(SDValue Addr, SDValue &Base, SDValue &Offset); bool tryShrinkShlLogicImm(SDNode *Node); bool trySignedBitfieldExtract(SDNode *Node); bool tryIndexedLoad(SDNode *Node); bool selectShiftMask(SDValue N, unsigned ShiftWidth, SDValue &ShAmt); bool selectShiftMaskXLen(SDValue N, SDValue &ShAmt) { return selectShiftMask(N, Subtarget->getXLen(), ShAmt); } bool selectShiftMask32(SDValue N, SDValue &ShAmt) { return selectShiftMask(N, 32, ShAmt); } bool selectSETCC(SDValue N, ISD::CondCode ExpectedCCVal, SDValue &Val); bool selectSETNE(SDValue N, SDValue &Val) { return selectSETCC(N, ISD::SETNE, Val); } bool selectSETEQ(SDValue N, SDValue &Val) { return selectSETCC(N, ISD::SETEQ, Val); } bool selectSExtBits(SDValue N, unsigned Bits, SDValue &Val); template bool selectSExtBits(SDValue N, SDValue &Val) { return selectSExtBits(N, Bits, Val); } bool selectZExtBits(SDValue N, unsigned Bits, SDValue &Val); template bool selectZExtBits(SDValue N, SDValue &Val) { return selectZExtBits(N, Bits, Val); } bool selectSHXADDOp(SDValue N, unsigned ShAmt, SDValue &Val); template bool selectSHXADDOp(SDValue N, SDValue &Val) { return selectSHXADDOp(N, ShAmt, Val); } bool selectSHXADD_UWOp(SDValue N, unsigned ShAmt, SDValue &Val); template bool selectSHXADD_UWOp(SDValue N, SDValue &Val) { return selectSHXADD_UWOp(N, ShAmt, Val); } bool hasAllNBitUsers(SDNode *Node, unsigned Bits, const unsigned Depth = 0) const; bool hasAllBUsers(SDNode *Node) const { return hasAllNBitUsers(Node, 8); } bool hasAllHUsers(SDNode *Node) const { return hasAllNBitUsers(Node, 16); } bool hasAllWUsers(SDNode *Node) const { return hasAllNBitUsers(Node, 32); } bool selectSimm5Shl2(SDValue N, SDValue &Simm5, SDValue &Shl2); bool selectVLOp(SDValue N, SDValue &VL); bool selectVSplat(SDValue N, SDValue &SplatVal); bool selectVSplatSimm5(SDValue N, SDValue &SplatVal); bool selectVSplatUimm(SDValue N, unsigned Bits, SDValue &SplatVal); template bool selectVSplatUimmBits(SDValue N, SDValue &Val) { return selectVSplatUimm(N, Bits, Val); } bool selectVSplatSimm5Plus1(SDValue N, SDValue &SplatVal); bool selectVSplatSimm5Plus1NonZero(SDValue N, SDValue &SplatVal); // Matches the splat of a value which can be extended or truncated, such that // only the bottom 8 bits are preserved. bool selectLow8BitsVSplat(SDValue N, SDValue &SplatVal); bool selectFPImm(SDValue N, SDValue &Imm); bool selectRVVSimm5(SDValue N, unsigned Width, SDValue &Imm); template bool selectRVVSimm5(SDValue N, SDValue &Imm) { return selectRVVSimm5(N, Width, Imm); } void addVectorLoadStoreOperands(SDNode *Node, unsigned SEWImm, const SDLoc &DL, unsigned CurOp, bool IsMasked, bool IsStridedOrIndexed, SmallVectorImpl &Operands, bool IsLoad = false, MVT *IndexVT = nullptr); void selectVLSEG(SDNode *Node, bool IsMasked, bool IsStrided); void selectVLSEGFF(SDNode *Node, bool IsMasked); void selectVLXSEG(SDNode *Node, bool IsMasked, bool IsOrdered); void selectVSSEG(SDNode *Node, bool IsMasked, bool IsStrided); void selectVSXSEG(SDNode *Node, bool IsMasked, bool IsOrdered); void selectVSETVLI(SDNode *Node); void selectSF_VC_X_SE(SDNode *Node); // Return the RISC-V condition code that matches the given DAG integer // condition code. The CondCode must be one of those supported by the RISC-V // ISA (see translateSetCCForBranch). static RISCVCC::CondCode getRISCVCCForIntCC(ISD::CondCode CC) { switch (CC) { default: llvm_unreachable("Unsupported CondCode"); case ISD::SETEQ: return RISCVCC::COND_EQ; case ISD::SETNE: return RISCVCC::COND_NE; case ISD::SETLT: return RISCVCC::COND_LT; case ISD::SETGE: return RISCVCC::COND_GE; case ISD::SETULT: return RISCVCC::COND_LTU; case ISD::SETUGE: return RISCVCC::COND_GEU; } } // Include the pieces autogenerated from the target description. #include "RISCVGenDAGISel.inc" private: bool doPeepholeSExtW(SDNode *Node); bool doPeepholeMaskedRVV(MachineSDNode *Node); bool doPeepholeMergeVVMFold(); bool doPeepholeNoRegPassThru(); bool performCombineVMergeAndVOps(SDNode *N); }; class RISCVDAGToDAGISelLegacy : public SelectionDAGISelLegacy { public: static char ID; explicit RISCVDAGToDAGISelLegacy(RISCVTargetMachine &TargetMachine, CodeGenOptLevel OptLevel); }; namespace RISCV { struct VLSEGPseudo { uint16_t NF : 4; uint16_t Masked : 1; uint16_t Strided : 1; uint16_t FF : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t Pseudo; }; struct VLXSEGPseudo { uint16_t NF : 4; uint16_t Masked : 1; uint16_t Ordered : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t IndexLMUL : 3; uint16_t Pseudo; }; struct VSSEGPseudo { uint16_t NF : 4; uint16_t Masked : 1; uint16_t Strided : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t Pseudo; }; struct VSXSEGPseudo { uint16_t NF : 4; uint16_t Masked : 1; uint16_t Ordered : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t IndexLMUL : 3; uint16_t Pseudo; }; struct VLEPseudo { uint16_t Masked : 1; uint16_t Strided : 1; uint16_t FF : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t Pseudo; }; struct VSEPseudo { uint16_t Masked :1; uint16_t Strided : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t Pseudo; }; struct VLX_VSXPseudo { uint16_t Masked : 1; uint16_t Ordered : 1; uint16_t Log2SEW : 3; uint16_t LMUL : 3; uint16_t IndexLMUL : 3; uint16_t Pseudo; }; #define GET_RISCVVSSEGTable_DECL #define GET_RISCVVLSEGTable_DECL #define GET_RISCVVLXSEGTable_DECL #define GET_RISCVVSXSEGTable_DECL #define GET_RISCVVLETable_DECL #define GET_RISCVVSETable_DECL #define GET_RISCVVLXTable_DECL #define GET_RISCVVSXTable_DECL } // namespace RISCV } // namespace llvm #endif