//===---- PPCReduceCRLogicals.cpp - Reduce CR Bit Logical operations ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===---------------------------------------------------------------------===// // // This pass aims to reduce the number of logical operations on bits in the CR // register. These instructions have a fairly high latency and only a single // pipeline at their disposal in modern PPC cores. Furthermore, they have a // tendency to occur in fairly small blocks where there's little opportunity // to hide the latency between the CR logical operation and its user. // //===---------------------------------------------------------------------===// #include "PPC.h" #include "PPCInstrInfo.h" #include "PPCTargetMachine.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/InitializePasses.h" #include "llvm/Support/Debug.h" using namespace llvm; #define DEBUG_TYPE "ppc-reduce-cr-ops" STATISTIC(NumContainedSingleUseBinOps, "Number of single-use binary CR logical ops contained in a block"); STATISTIC(NumToSplitBlocks, "Number of binary CR logical ops that can be used to split blocks"); STATISTIC(TotalCRLogicals, "Number of CR logical ops."); STATISTIC(TotalNullaryCRLogicals, "Number of nullary CR logical ops (CRSET/CRUNSET)."); STATISTIC(TotalUnaryCRLogicals, "Number of unary CR logical ops."); STATISTIC(TotalBinaryCRLogicals, "Number of CR logical ops."); STATISTIC(NumBlocksSplitOnBinaryCROp, "Number of blocks split on CR binary logical ops."); STATISTIC(NumNotSplitIdenticalOperands, "Number of blocks not split due to operands being identical."); STATISTIC(NumNotSplitChainCopies, "Number of blocks not split due to operands being chained copies."); STATISTIC(NumNotSplitWrongOpcode, "Number of blocks not split due to the wrong opcode."); /// Given a basic block \p Successor that potentially contains PHIs, this /// function will look for any incoming values in the PHIs that are supposed to /// be coming from \p OrigMBB but whose definition is actually in \p NewMBB. /// Any such PHIs will be updated to reflect reality. static void updatePHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { for (auto &MI : Successor->instrs()) { if (!MI.isPHI()) continue; // This is a really ugly-looking loop, but it was pillaged directly from // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { MachineOperand &MO = MI.getOperand(i); if (MO.getMBB() == OrigMBB) { // Check if the instruction is actually defined in NewMBB. if (MI.getOperand(i - 1).isReg()) { MachineInstr *DefMI = MRI->getVRegDef(MI.getOperand(i - 1).getReg()); if (DefMI->getParent() == NewMBB || !OrigMBB->isSuccessor(Successor)) { MO.setMBB(NewMBB); break; } } } } } } /// Given a basic block \p Successor that potentially contains PHIs, this /// function will look for PHIs that have an incoming value from \p OrigMBB /// and will add the same incoming value from \p NewMBB. /// NOTE: This should only be used if \p NewMBB is an immediate dominator of /// \p OrigMBB. static void addIncomingValuesToPHIs(MachineBasicBlock *Successor, MachineBasicBlock *OrigMBB, MachineBasicBlock *NewMBB, MachineRegisterInfo *MRI) { assert(OrigMBB->isSuccessor(NewMBB) && "NewMBB must be a successor of OrigMBB"); for (auto &MI : Successor->instrs()) { if (!MI.isPHI()) continue; // This is a really ugly-looking loop, but it was pillaged directly from // MachineBasicBlock::transferSuccessorsAndUpdatePHIs(). for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { MachineOperand &MO = MI.getOperand(i); if (MO.getMBB() == OrigMBB) { MachineInstrBuilder MIB(*MI.getParent()->getParent(), &MI); MIB.addReg(MI.getOperand(i - 1).getReg()).addMBB(NewMBB); break; } } } } struct BlockSplitInfo { MachineInstr *OrigBranch; MachineInstr *SplitBefore; MachineInstr *SplitCond; bool InvertNewBranch; bool InvertOrigBranch; bool BranchToFallThrough; const MachineBranchProbabilityInfo *MBPI; MachineInstr *MIToDelete; MachineInstr *NewCond; bool allInstrsInSameMBB() { if (!OrigBranch || !SplitBefore || !SplitCond) return false; MachineBasicBlock *MBB = OrigBranch->getParent(); if (SplitBefore->getParent() != MBB || SplitCond->getParent() != MBB) return false; if (MIToDelete && MIToDelete->getParent() != MBB) return false; if (NewCond && NewCond->getParent() != MBB) return false; return true; } }; /// Splits a MachineBasicBlock to branch before \p SplitBefore. The original /// branch is \p OrigBranch. The target of the new branch can either be the same /// as the target of the original branch or the fallthrough successor of the /// original block as determined by \p BranchToFallThrough. The branch /// conditions will be inverted according to \p InvertNewBranch and /// \p InvertOrigBranch. If an instruction that previously fed the branch is to /// be deleted, it is provided in \p MIToDelete and \p NewCond will be used as /// the branch condition. The branch probabilities will be set if the /// MachineBranchProbabilityInfo isn't null. static bool splitMBB(BlockSplitInfo &BSI) { assert(BSI.allInstrsInSameMBB() && "All instructions must be in the same block."); MachineBasicBlock *ThisMBB = BSI.OrigBranch->getParent(); MachineFunction *MF = ThisMBB->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); assert(MRI->isSSA() && "Can only do this while the function is in SSA form."); if (ThisMBB->succ_size() != 2) { LLVM_DEBUG( dbgs() << "Don't know how to handle blocks that don't have exactly" << " two successors.\n"); return false; } const PPCInstrInfo *TII = MF->getSubtarget().getInstrInfo(); unsigned OrigBROpcode = BSI.OrigBranch->getOpcode(); unsigned InvertedOpcode = OrigBROpcode == PPC::BC ? PPC::BCn : OrigBROpcode == PPC::BCn ? PPC::BC : OrigBROpcode == PPC::BCLR ? PPC::BCLRn : PPC::BCLR; unsigned NewBROpcode = BSI.InvertNewBranch ? InvertedOpcode : OrigBROpcode; MachineBasicBlock *OrigTarget = BSI.OrigBranch->getOperand(1).getMBB(); MachineBasicBlock *OrigFallThrough = OrigTarget == *ThisMBB->succ_begin() ? *ThisMBB->succ_rbegin() : *ThisMBB->succ_begin(); MachineBasicBlock *NewBRTarget = BSI.BranchToFallThrough ? OrigFallThrough : OrigTarget; // It's impossible to know the precise branch probability after the split. // But it still needs to be reasonable, the whole probability to original // targets should not be changed. // After split NewBRTarget will get two incoming edges. Assume P0 is the // original branch probability to NewBRTarget, P1 and P2 are new branch // probabilies to NewBRTarget after split. If the two edge frequencies are // same, then // F * P1 = F * P0 / 2 ==> P1 = P0 / 2 // F * (1 - P1) * P2 = F * P1 ==> P2 = P1 / (1 - P1) BranchProbability ProbToNewTarget, ProbFallThrough; // Prob for new Br. BranchProbability ProbOrigTarget, ProbOrigFallThrough; // Prob for orig Br. ProbToNewTarget = ProbFallThrough = BranchProbability::getUnknown(); ProbOrigTarget = ProbOrigFallThrough = BranchProbability::getUnknown(); if (BSI.MBPI) { if (BSI.BranchToFallThrough) { ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigFallThrough) / 2; ProbFallThrough = ProbToNewTarget.getCompl(); ProbOrigFallThrough = ProbToNewTarget / ProbToNewTarget.getCompl(); ProbOrigTarget = ProbOrigFallThrough.getCompl(); } else { ProbToNewTarget = BSI.MBPI->getEdgeProbability(ThisMBB, OrigTarget) / 2; ProbFallThrough = ProbToNewTarget.getCompl(); ProbOrigTarget = ProbToNewTarget / ProbToNewTarget.getCompl(); ProbOrigFallThrough = ProbOrigTarget.getCompl(); } } // Create a new basic block. MachineBasicBlock::iterator InsertPoint = BSI.SplitBefore; const BasicBlock *LLVM_BB = ThisMBB->getBasicBlock(); MachineFunction::iterator It = ThisMBB->getIterator(); MachineBasicBlock *NewMBB = MF->CreateMachineBasicBlock(LLVM_BB); MF->insert(++It, NewMBB); // Move everything after SplitBefore into the new block. NewMBB->splice(NewMBB->end(), ThisMBB, InsertPoint, ThisMBB->end()); NewMBB->transferSuccessors(ThisMBB); if (!ProbOrigTarget.isUnknown()) { auto MBBI = find(NewMBB->successors(), OrigTarget); NewMBB->setSuccProbability(MBBI, ProbOrigTarget); MBBI = find(NewMBB->successors(), OrigFallThrough); NewMBB->setSuccProbability(MBBI, ProbOrigFallThrough); } // Add the two successors to ThisMBB. ThisMBB->addSuccessor(NewBRTarget, ProbToNewTarget); ThisMBB->addSuccessor(NewMBB, ProbFallThrough); // Add the branches to ThisMBB. BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), TII->get(NewBROpcode)) .addReg(BSI.SplitCond->getOperand(0).getReg()) .addMBB(NewBRTarget); BuildMI(*ThisMBB, ThisMBB->end(), BSI.SplitBefore->getDebugLoc(), TII->get(PPC::B)) .addMBB(NewMBB); if (BSI.MIToDelete) BSI.MIToDelete->eraseFromParent(); // Change the condition on the original branch and invert it if requested. auto FirstTerminator = NewMBB->getFirstTerminator(); if (BSI.NewCond) { assert(FirstTerminator->getOperand(0).isReg() && "Can't update condition of unconditional branch."); FirstTerminator->getOperand(0).setReg(BSI.NewCond->getOperand(0).getReg()); } if (BSI.InvertOrigBranch) FirstTerminator->setDesc(TII->get(InvertedOpcode)); // If any of the PHIs in the successors of NewMBB reference values that // now come from NewMBB, they need to be updated. for (auto *Succ : NewMBB->successors()) { updatePHIs(Succ, ThisMBB, NewMBB, MRI); } addIncomingValuesToPHIs(NewBRTarget, ThisMBB, NewMBB, MRI); LLVM_DEBUG(dbgs() << "After splitting, ThisMBB:\n"; ThisMBB->dump()); LLVM_DEBUG(dbgs() << "NewMBB:\n"; NewMBB->dump()); LLVM_DEBUG(dbgs() << "New branch-to block:\n"; NewBRTarget->dump()); return true; } static bool isBinary(MachineInstr &MI) { return MI.getNumOperands() == 3; } static bool isNullary(MachineInstr &MI) { return MI.getNumOperands() == 1; } /// Given a CR logical operation \p CROp, branch opcode \p BROp as well as /// a flag to indicate if the first operand of \p CROp is used as the /// SplitBefore operand, determines whether either of the branches are to be /// inverted as well as whether the new target should be the original /// fall-through block. static void computeBranchTargetAndInversion(unsigned CROp, unsigned BROp, bool UsingDef1, bool &InvertNewBranch, bool &InvertOrigBranch, bool &TargetIsFallThrough) { // The conditions under which each of the output operands should be [un]set // can certainly be written much more concisely with just 3 if statements or // ternary expressions. However, this provides a much clearer overview to the // reader as to what is set for each combination. if (BROp == PPC::BC || BROp == PPC::BCLR) { // Regular branches. switch (CROp) { default: llvm_unreachable("Don't know how to handle this CR logical."); case PPC::CROR: InvertNewBranch = false; InvertOrigBranch = false; TargetIsFallThrough = false; return; case PPC::CRAND: InvertNewBranch = true; InvertOrigBranch = false; TargetIsFallThrough = true; return; case PPC::CRNAND: InvertNewBranch = true; InvertOrigBranch = true; TargetIsFallThrough = false; return; case PPC::CRNOR: InvertNewBranch = false; InvertOrigBranch = true; TargetIsFallThrough = true; return; case PPC::CRORC: InvertNewBranch = UsingDef1; InvertOrigBranch = !UsingDef1; TargetIsFallThrough = false; return; case PPC::CRANDC: InvertNewBranch = !UsingDef1; InvertOrigBranch = !UsingDef1; TargetIsFallThrough = true; return; } } else if (BROp == PPC::BCn || BROp == PPC::BCLRn) { // Negated branches. switch (CROp) { default: llvm_unreachable("Don't know how to handle this CR logical."); case PPC::CROR: InvertNewBranch = true; InvertOrigBranch = false; TargetIsFallThrough = true; return; case PPC::CRAND: InvertNewBranch = false; InvertOrigBranch = false; TargetIsFallThrough = false; return; case PPC::CRNAND: InvertNewBranch = false; InvertOrigBranch = true; TargetIsFallThrough = true; return; case PPC::CRNOR: InvertNewBranch = true; InvertOrigBranch = true; TargetIsFallThrough = false; return; case PPC::CRORC: InvertNewBranch = !UsingDef1; InvertOrigBranch = !UsingDef1; TargetIsFallThrough = true; return; case PPC::CRANDC: InvertNewBranch = UsingDef1; InvertOrigBranch = !UsingDef1; TargetIsFallThrough = false; return; } } else llvm_unreachable("Don't know how to handle this branch."); } namespace { class PPCReduceCRLogicals : public MachineFunctionPass { public: static char ID; struct CRLogicalOpInfo { MachineInstr *MI; // FIXME: If chains of copies are to be handled, this should be a vector. std::pair CopyDefs; std::pair TrueDefs; unsigned IsBinary : 1; unsigned IsNullary : 1; unsigned ContainedInBlock : 1; unsigned FeedsISEL : 1; unsigned FeedsBR : 1; unsigned FeedsLogical : 1; unsigned SingleUse : 1; unsigned DefsSingleUse : 1; unsigned SubregDef1; unsigned SubregDef2; CRLogicalOpInfo() : MI(nullptr), IsBinary(0), IsNullary(0), ContainedInBlock(0), FeedsISEL(0), FeedsBR(0), FeedsLogical(0), SingleUse(0), DefsSingleUse(1), SubregDef1(0), SubregDef2(0) { } void dump(); }; private: const PPCInstrInfo *TII = nullptr; MachineFunction *MF = nullptr; MachineRegisterInfo *MRI = nullptr; const MachineBranchProbabilityInfo *MBPI = nullptr; // A vector to contain all the CR logical operations SmallVector AllCRLogicalOps; void initialize(MachineFunction &MFParm); void collectCRLogicals(); bool handleCROp(unsigned Idx); bool splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI); static bool isCRLogical(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return Opc == PPC::CRAND || Opc == PPC::CRNAND || Opc == PPC::CROR || Opc == PPC::CRXOR || Opc == PPC::CRNOR || Opc == PPC::CRNOT || Opc == PPC::CREQV || Opc == PPC::CRANDC || Opc == PPC::CRORC || Opc == PPC::CRSET || Opc == PPC::CRUNSET || Opc == PPC::CR6SET || Opc == PPC::CR6UNSET; } bool simplifyCode() { bool Changed = false; // Not using a range-based for loop here as the vector may grow while being // operated on. for (unsigned i = 0; i < AllCRLogicalOps.size(); i++) Changed |= handleCROp(i); return Changed; } public: PPCReduceCRLogicals() : MachineFunctionPass(ID) { initializePPCReduceCRLogicalsPass(*PassRegistry::getPassRegistry()); } MachineInstr *lookThroughCRCopy(unsigned Reg, unsigned &Subreg, MachineInstr *&CpDef); bool runOnMachineFunction(MachineFunction &MF) override { if (skipFunction(MF.getFunction())) return false; // If the subtarget doesn't use CR bits, there's nothing to do. const PPCSubtarget &STI = MF.getSubtarget(); if (!STI.useCRBits()) return false; initialize(MF); collectCRLogicals(); return simplifyCode(); } CRLogicalOpInfo createCRLogicalOpInfo(MachineInstr &MI); void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } }; #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void PPCReduceCRLogicals::CRLogicalOpInfo::dump() { dbgs() << "CRLogicalOpMI: "; MI->dump(); dbgs() << "IsBinary: " << IsBinary << ", FeedsISEL: " << FeedsISEL; dbgs() << ", FeedsBR: " << FeedsBR << ", FeedsLogical: "; dbgs() << FeedsLogical << ", SingleUse: " << SingleUse; dbgs() << ", DefsSingleUse: " << DefsSingleUse; dbgs() << ", SubregDef1: " << SubregDef1 << ", SubregDef2: "; dbgs() << SubregDef2 << ", ContainedInBlock: " << ContainedInBlock; if (!IsNullary) { dbgs() << "\nDefs:\n"; TrueDefs.first->dump(); } if (IsBinary) TrueDefs.second->dump(); dbgs() << "\n"; if (CopyDefs.first) { dbgs() << "CopyDef1: "; CopyDefs.first->dump(); } if (CopyDefs.second) { dbgs() << "CopyDef2: "; CopyDefs.second->dump(); } } #endif PPCReduceCRLogicals::CRLogicalOpInfo PPCReduceCRLogicals::createCRLogicalOpInfo(MachineInstr &MIParam) { CRLogicalOpInfo Ret; Ret.MI = &MIParam; // Get the defs if (isNullary(MIParam)) { Ret.IsNullary = 1; Ret.TrueDefs = std::make_pair(nullptr, nullptr); Ret.CopyDefs = std::make_pair(nullptr, nullptr); } else { MachineInstr *Def1 = lookThroughCRCopy(MIParam.getOperand(1).getReg(), Ret.SubregDef1, Ret.CopyDefs.first); assert(Def1 && "Must be able to find a definition of operand 1."); Ret.DefsSingleUse &= MRI->hasOneNonDBGUse(Def1->getOperand(0).getReg()); Ret.DefsSingleUse &= MRI->hasOneNonDBGUse(Ret.CopyDefs.first->getOperand(0).getReg()); if (isBinary(MIParam)) { Ret.IsBinary = 1; MachineInstr *Def2 = lookThroughCRCopy(MIParam.getOperand(2).getReg(), Ret.SubregDef2, Ret.CopyDefs.second); assert(Def2 && "Must be able to find a definition of operand 2."); Ret.DefsSingleUse &= MRI->hasOneNonDBGUse(Def2->getOperand(0).getReg()); Ret.DefsSingleUse &= MRI->hasOneNonDBGUse(Ret.CopyDefs.second->getOperand(0).getReg()); Ret.TrueDefs = std::make_pair(Def1, Def2); } else { Ret.TrueDefs = std::make_pair(Def1, nullptr); Ret.CopyDefs.second = nullptr; } } Ret.ContainedInBlock = 1; // Get the uses for (MachineInstr &UseMI : MRI->use_nodbg_instructions(MIParam.getOperand(0).getReg())) { unsigned Opc = UseMI.getOpcode(); if (Opc == PPC::ISEL || Opc == PPC::ISEL8) Ret.FeedsISEL = 1; if (Opc == PPC::BC || Opc == PPC::BCn || Opc == PPC::BCLR || Opc == PPC::BCLRn) Ret.FeedsBR = 1; Ret.FeedsLogical = isCRLogical(UseMI); if (UseMI.getParent() != MIParam.getParent()) Ret.ContainedInBlock = 0; } Ret.SingleUse = MRI->hasOneNonDBGUse(MIParam.getOperand(0).getReg()) ? 1 : 0; // We now know whether all the uses of the CR logical are in the same block. if (!Ret.IsNullary) { Ret.ContainedInBlock &= (MIParam.getParent() == Ret.TrueDefs.first->getParent()); if (Ret.IsBinary) Ret.ContainedInBlock &= (MIParam.getParent() == Ret.TrueDefs.second->getParent()); } LLVM_DEBUG(Ret.dump()); if (Ret.IsBinary && Ret.ContainedInBlock && Ret.SingleUse) { NumContainedSingleUseBinOps++; if (Ret.FeedsBR && Ret.DefsSingleUse) NumToSplitBlocks++; } return Ret; } /// Looks through a COPY instruction to the actual definition of the CR-bit /// register and returns the instruction that defines it. /// FIXME: This currently handles what is by-far the most common case: /// an instruction that defines a CR field followed by a single copy of a bit /// from that field into a virtual register. If chains of copies need to be /// handled, this should have a loop until a non-copy instruction is found. MachineInstr *PPCReduceCRLogicals::lookThroughCRCopy(unsigned Reg, unsigned &Subreg, MachineInstr *&CpDef) { Subreg = -1; if (!Register::isVirtualRegister(Reg)) return nullptr; MachineInstr *Copy = MRI->getVRegDef(Reg); CpDef = Copy; if (!Copy->isCopy()) return Copy; Register CopySrc = Copy->getOperand(1).getReg(); Subreg = Copy->getOperand(1).getSubReg(); if (!CopySrc.isVirtual()) { const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); // Set the Subreg if (CopySrc == PPC::CR0EQ || CopySrc == PPC::CR6EQ) Subreg = PPC::sub_eq; if (CopySrc == PPC::CR0LT || CopySrc == PPC::CR6LT) Subreg = PPC::sub_lt; if (CopySrc == PPC::CR0GT || CopySrc == PPC::CR6GT) Subreg = PPC::sub_gt; if (CopySrc == PPC::CR0UN || CopySrc == PPC::CR6UN) Subreg = PPC::sub_un; // Loop backwards and return the first MI that modifies the physical CR Reg. MachineBasicBlock::iterator Me = Copy, B = Copy->getParent()->begin(); while (Me != B) if ((--Me)->modifiesRegister(CopySrc, TRI)) return &*Me; return nullptr; } return MRI->getVRegDef(CopySrc); } void PPCReduceCRLogicals::initialize(MachineFunction &MFParam) { MF = &MFParam; MRI = &MF->getRegInfo(); TII = MF->getSubtarget().getInstrInfo(); MBPI = &getAnalysis().getMBPI(); AllCRLogicalOps.clear(); } /// Contains all the implemented transformations on CR logical operations. /// For example, a binary CR logical can be used to split a block on its inputs, /// a unary CR logical might be used to change the condition code on a /// comparison feeding it. A nullary CR logical might simply be removable /// if the user of the bit it [un]sets can be transformed. bool PPCReduceCRLogicals::handleCROp(unsigned Idx) { // We can definitely split a block on the inputs to a binary CR operation // whose defs and (single) use are within the same block. bool Changed = false; CRLogicalOpInfo CRI = AllCRLogicalOps[Idx]; if (CRI.IsBinary && CRI.ContainedInBlock && CRI.SingleUse && CRI.FeedsBR && CRI.DefsSingleUse) { Changed = splitBlockOnBinaryCROp(CRI); if (Changed) NumBlocksSplitOnBinaryCROp++; } return Changed; } /// Splits a block that contains a CR-logical operation that feeds a branch /// and whose operands are produced within the block. /// Example: /// %vr5 = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 /// %vr6 = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 /// %vr7 = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 /// %vr8 = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 /// %vr9 = CROR %vr6, %vr8; CRBITRC:%vr9,%vr6,%vr8 /// BC %vr9, ; CRBITRC:%vr9 /// Becomes: /// %vr5 = CMPDI %vr2, 0; CRRC:%vr5 G8RC:%vr2 /// %vr6 = COPY %vr5:sub_eq; CRBITRC:%vr6 CRRC:%vr5 /// BC %vr6, ; CRBITRC:%vr6 /// /// %vr7 = CMPDI %vr3, 0; CRRC:%vr7 G8RC:%vr3 /// %vr8 = COPY %vr7:sub_eq; CRBITRC:%vr8 CRRC:%vr7 /// BC %vr9, ; CRBITRC:%vr9 bool PPCReduceCRLogicals::splitBlockOnBinaryCROp(CRLogicalOpInfo &CRI) { if (CRI.CopyDefs.first == CRI.CopyDefs.second) { LLVM_DEBUG(dbgs() << "Unable to split as the two operands are the same\n"); NumNotSplitIdenticalOperands++; return false; } if (CRI.TrueDefs.first->isCopy() || CRI.TrueDefs.second->isCopy() || CRI.TrueDefs.first->isPHI() || CRI.TrueDefs.second->isPHI()) { LLVM_DEBUG( dbgs() << "Unable to split because one of the operands is a PHI or " "chain of copies.\n"); NumNotSplitChainCopies++; return false; } // Note: keep in sync with computeBranchTargetAndInversion(). if (CRI.MI->getOpcode() != PPC::CROR && CRI.MI->getOpcode() != PPC::CRAND && CRI.MI->getOpcode() != PPC::CRNOR && CRI.MI->getOpcode() != PPC::CRNAND && CRI.MI->getOpcode() != PPC::CRORC && CRI.MI->getOpcode() != PPC::CRANDC) { LLVM_DEBUG(dbgs() << "Unable to split blocks on this opcode.\n"); NumNotSplitWrongOpcode++; return false; } LLVM_DEBUG(dbgs() << "Splitting the following CR op:\n"; CRI.dump()); MachineBasicBlock::iterator Def1It = CRI.TrueDefs.first; MachineBasicBlock::iterator Def2It = CRI.TrueDefs.second; bool UsingDef1 = false; MachineInstr *SplitBefore = &*Def2It; for (auto E = CRI.MI->getParent()->end(); Def2It != E; ++Def2It) { if (Def1It == Def2It) { // Def2 comes before Def1. SplitBefore = &*Def1It; UsingDef1 = true; break; } } LLVM_DEBUG(dbgs() << "We will split the following block:\n";); LLVM_DEBUG(CRI.MI->getParent()->dump()); LLVM_DEBUG(dbgs() << "Before instruction:\n"; SplitBefore->dump()); // Get the branch instruction. MachineInstr *Branch = MRI->use_nodbg_begin(CRI.MI->getOperand(0).getReg())->getParent(); // We want the new block to have no code in it other than the definition // of the input to the CR logical and the CR logical itself. So we move // those to the bottom of the block (just before the branch). Then we // will split before the CR logical. MachineBasicBlock *MBB = SplitBefore->getParent(); auto FirstTerminator = MBB->getFirstTerminator(); MachineBasicBlock::iterator FirstInstrToMove = UsingDef1 ? CRI.TrueDefs.first : CRI.TrueDefs.second; MachineBasicBlock::iterator SecondInstrToMove = UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second; // The instructions that need to be moved are not guaranteed to be // contiguous. Move them individually. // FIXME: If one of the operands is a chain of (single use) copies, they // can all be moved and we can still split. MBB->splice(FirstTerminator, MBB, FirstInstrToMove); if (FirstInstrToMove != SecondInstrToMove) MBB->splice(FirstTerminator, MBB, SecondInstrToMove); MBB->splice(FirstTerminator, MBB, CRI.MI); unsigned Opc = CRI.MI->getOpcode(); bool InvertOrigBranch, InvertNewBranch, TargetIsFallThrough; computeBranchTargetAndInversion(Opc, Branch->getOpcode(), UsingDef1, InvertNewBranch, InvertOrigBranch, TargetIsFallThrough); MachineInstr *SplitCond = UsingDef1 ? CRI.CopyDefs.second : CRI.CopyDefs.first; LLVM_DEBUG(dbgs() << "We will " << (InvertNewBranch ? "invert" : "copy")); LLVM_DEBUG(dbgs() << " the original branch and the target is the " << (TargetIsFallThrough ? "fallthrough block\n" : "orig. target block\n")); LLVM_DEBUG(dbgs() << "Original branch instruction: "; Branch->dump()); BlockSplitInfo BSI { Branch, SplitBefore, SplitCond, InvertNewBranch, InvertOrigBranch, TargetIsFallThrough, MBPI, CRI.MI, UsingDef1 ? CRI.CopyDefs.first : CRI.CopyDefs.second }; bool Changed = splitMBB(BSI); // If we've split on a CR logical that is fed by a CR logical, // recompute the source CR logical as it may be usable for splitting. if (Changed) { bool Input1CRlogical = CRI.TrueDefs.first && isCRLogical(*CRI.TrueDefs.first); bool Input2CRlogical = CRI.TrueDefs.second && isCRLogical(*CRI.TrueDefs.second); if (Input1CRlogical) AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.first)); if (Input2CRlogical) AllCRLogicalOps.push_back(createCRLogicalOpInfo(*CRI.TrueDefs.second)); } return Changed; } void PPCReduceCRLogicals::collectCRLogicals() { for (MachineBasicBlock &MBB : *MF) { for (MachineInstr &MI : MBB) { if (isCRLogical(MI)) { AllCRLogicalOps.push_back(createCRLogicalOpInfo(MI)); TotalCRLogicals++; if (AllCRLogicalOps.back().IsNullary) TotalNullaryCRLogicals++; else if (AllCRLogicalOps.back().IsBinary) TotalBinaryCRLogicals++; else TotalUnaryCRLogicals++; } } } } } // end anonymous namespace INITIALIZE_PASS_BEGIN(PPCReduceCRLogicals, DEBUG_TYPE, "PowerPC Reduce CR logical Operation", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) INITIALIZE_PASS_END(PPCReduceCRLogicals, DEBUG_TYPE, "PowerPC Reduce CR logical Operation", false, false) char PPCReduceCRLogicals::ID = 0; FunctionPass* llvm::createPPCReduceCRLogicalsPass() { return new PPCReduceCRLogicals(); }