//===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the PPCISelLowering class. // //===----------------------------------------------------------------------===// #include "PPCISelLowering.h" #include "MCTargetDesc/PPCMCTargetDesc.h" #include "MCTargetDesc/PPCPredicates.h" #include "PPC.h" #include "PPCCCState.h" #include "PPCCallingConv.h" #include "PPCFrameLowering.h" #include "PPCInstrInfo.h" #include "PPCMachineFunctionInfo.h" #include "PPCPerfectShuffle.h" #include "PPCRegisterInfo.h" #include "PPCSubtarget.h" #include "PPCTargetMachine.h" #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/ISDOpcodes.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RuntimeLibcallUtil.h" #include "llvm/CodeGen/SelectionDAG.h" #include "llvm/CodeGen/SelectionDAGNodes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/CodeGenTypes/MachineValueType.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/IntrinsicsPowerPC.h" #include "llvm/IR/Module.h" #include "llvm/IR/Type.h" #include "llvm/IR/Use.h" #include "llvm/IR/Value.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSectionXCOFF.h" #include "llvm/MC/MCSymbolXCOFF.h" #include "llvm/Support/AtomicOrdering.h" #include "llvm/Support/BranchProbability.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CodeGen.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/KnownBits.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "ppc-lowering" static cl::opt DisablePPCPreinc("disable-ppc-preinc", cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden); static cl::opt DisableILPPref("disable-ppc-ilp-pref", cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden); static cl::opt DisablePPCUnaligned("disable-ppc-unaligned", cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden); static cl::opt DisableSCO("disable-ppc-sco", cl::desc("disable sibling call optimization on ppc"), cl::Hidden); static cl::opt DisableInnermostLoopAlign32("disable-ppc-innermost-loop-align32", cl::desc("don't always align innermost loop to 32 bytes on ppc"), cl::Hidden); static cl::opt UseAbsoluteJumpTables("ppc-use-absolute-jumptables", cl::desc("use absolute jump tables on ppc"), cl::Hidden); static cl::opt DisablePerfectShuffle("ppc-disable-perfect-shuffle", cl::desc("disable vector permute decomposition"), cl::init(true), cl::Hidden); cl::opt DisableAutoPairedVecSt( "disable-auto-paired-vec-st", cl::desc("disable automatically generated 32byte paired vector stores"), cl::init(true), cl::Hidden); static cl::opt PPCMinimumJumpTableEntries( "ppc-min-jump-table-entries", cl::init(64), cl::Hidden, cl::desc("Set minimum number of entries to use a jump table on PPC")); static cl::opt PPCGatherAllAliasesMaxDepth( "ppc-gather-alias-max-depth", cl::init(18), cl::Hidden, cl::desc("max depth when checking alias info in GatherAllAliases()")); static cl::opt PPCAIXTLSModelOptUseIEForLDLimit( "ppc-aix-shared-lib-tls-model-opt-limit", cl::init(1), cl::Hidden, cl::desc("Set inclusive limit count of TLS local-dynamic access(es) in a " "function to use initial-exec")); STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumSiblingCalls, "Number of sibling calls"); STATISTIC(ShufflesHandledWithVPERM, "Number of shuffles lowered to a VPERM or XXPERM"); STATISTIC(NumDynamicAllocaProbed, "Number of dynamic stack allocation probed"); static bool isNByteElemShuffleMask(ShuffleVectorSDNode *, unsigned, int); static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl); static const char AIXSSPCanaryWordName[] = "__ssp_canary_word"; // A faster local-[exec|dynamic] TLS access sequence (enabled with the // -maix-small-local-[exec|dynamic]-tls option) can be produced for TLS // variables; consistent with the IBM XL compiler, we apply a max size of // slightly under 32KB. constexpr uint64_t AIXSmallTlsPolicySizeLimit = 32751; // FIXME: Remove this once the bug has been fixed! extern cl::opt ANDIGlueBug; PPCTargetLowering::PPCTargetLowering(const PPCTargetMachine &TM, const PPCSubtarget &STI) : TargetLowering(TM), Subtarget(STI) { // Initialize map that relates the PPC addressing modes to the computed flags // of a load/store instruction. The map is used to determine the optimal // addressing mode when selecting load and stores. initializeAddrModeMap(); // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all // arguments are at least 4/8 bytes aligned. bool isPPC64 = Subtarget.isPPC64(); setMinStackArgumentAlignment(isPPC64 ? Align(8) : Align(4)); // Set up the register classes. addRegisterClass(MVT::i32, &PPC::GPRCRegClass); if (!useSoftFloat()) { if (hasSPE()) { addRegisterClass(MVT::f32, &PPC::GPRCRegClass); // EFPU2 APU only supports f32 if (!Subtarget.hasEFPU2()) addRegisterClass(MVT::f64, &PPC::SPERCRegClass); } else { addRegisterClass(MVT::f32, &PPC::F4RCRegClass); addRegisterClass(MVT::f64, &PPC::F8RCRegClass); } } // Match BITREVERSE to customized fast code sequence in the td file. setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); setOperationAction(ISD::BITREVERSE, MVT::i64, Legal); // Sub-word ATOMIC_CMP_SWAP need to ensure that the input is zero-extended. setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom); // Custom lower inline assembly to check for special registers. setOperationAction(ISD::INLINEASM, MVT::Other, Custom); setOperationAction(ISD::INLINEASM_BR, MVT::Other, Custom); // PowerPC has an i16 but no i8 (or i1) SEXTLOAD. for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Expand); } if (Subtarget.isISA3_0()) { setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Legal); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Legal); setTruncStoreAction(MVT::f64, MVT::f16, Legal); setTruncStoreAction(MVT::f32, MVT::f16, Legal); } else { // No extending loads from f16 or HW conversions back and forth. setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); setTruncStoreAction(MVT::f64, MVT::f16, Expand); setTruncStoreAction(MVT::f32, MVT::f16, Expand); } setTruncStoreAction(MVT::f64, MVT::f32, Expand); // PowerPC has pre-inc load and store's. setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal); if (!Subtarget.hasSPE()) { setIndexedLoadAction(ISD::PRE_INC, MVT::f32, Legal); setIndexedLoadAction(ISD::PRE_INC, MVT::f64, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::f32, Legal); setIndexedStoreAction(ISD::PRE_INC, MVT::f64, Legal); } // PowerPC uses ADDC/ADDE/SUBC/SUBE to propagate carry. const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; for (MVT VT : ScalarIntVTs) { setOperationAction(ISD::ADDC, VT, Legal); setOperationAction(ISD::ADDE, VT, Legal); setOperationAction(ISD::SUBC, VT, Legal); setOperationAction(ISD::SUBE, VT, Legal); } if (Subtarget.useCRBits()) { setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); if (isPPC64 || Subtarget.hasFPCVT()) { setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Promote); AddPromotedToType(ISD::STRICT_SINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Promote); AddPromotedToType(ISD::STRICT_UINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); AddPromotedToType (ISD::SINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); AddPromotedToType(ISD::UINT_TO_FP, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i1, Promote); AddPromotedToType(ISD::STRICT_FP_TO_SINT, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i1, Promote); AddPromotedToType(ISD::STRICT_FP_TO_UINT, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); AddPromotedToType(ISD::FP_TO_SINT, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); AddPromotedToType(ISD::FP_TO_UINT, MVT::i1, isPPC64 ? MVT::i64 : MVT::i32); } else { setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i1, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i1, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i1, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Custom); } // PowerPC does not support direct load/store of condition registers. setOperationAction(ISD::LOAD, MVT::i1, Custom); setOperationAction(ISD::STORE, MVT::i1, Custom); // FIXME: Remove this once the ANDI glue bug is fixed: if (ANDIGlueBug) setOperationAction(ISD::TRUNCATE, MVT::i1, Custom); for (MVT VT : MVT::integer_valuetypes()) { setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); setTruncStoreAction(VT, MVT::i1, Expand); } addRegisterClass(MVT::i1, &PPC::CRBITRCRegClass); } // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on // PPC (the libcall is not available). setOperationAction(ISD::FP_TO_SINT, MVT::ppcf128, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::ppcf128, Custom); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::ppcf128, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::ppcf128, Custom); // We do not currently implement these libm ops for PowerPC. setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand); setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand); setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand); setOperationAction(ISD::FRINT, MVT::ppcf128, Expand); setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand); setOperationAction(ISD::FREM, MVT::ppcf128, Expand); // PowerPC has no SREM/UREM instructions unless we are on P9 // On P9 we may use a hardware instruction to compute the remainder. // When the result of both the remainder and the division is required it is // more efficient to compute the remainder from the result of the division // rather than use the remainder instruction. The instructions are legalized // directly because the DivRemPairsPass performs the transformation at the IR // level. if (Subtarget.isISA3_0()) { setOperationAction(ISD::SREM, MVT::i32, Legal); setOperationAction(ISD::UREM, MVT::i32, Legal); setOperationAction(ISD::SREM, MVT::i64, Legal); setOperationAction(ISD::UREM, MVT::i64, Legal); } else { setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::UREM, MVT::i64, Expand); } // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM. setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); // Handle constrained floating-point operations of scalar. // TODO: Handle SPE specific operation. setOperationAction(ISD::STRICT_FADD, MVT::f32, Legal); setOperationAction(ISD::STRICT_FSUB, MVT::f32, Legal); setOperationAction(ISD::STRICT_FMUL, MVT::f32, Legal); setOperationAction(ISD::STRICT_FDIV, MVT::f32, Legal); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); setOperationAction(ISD::STRICT_FADD, MVT::f64, Legal); setOperationAction(ISD::STRICT_FSUB, MVT::f64, Legal); setOperationAction(ISD::STRICT_FMUL, MVT::f64, Legal); setOperationAction(ISD::STRICT_FDIV, MVT::f64, Legal); if (!Subtarget.hasSPE()) { setOperationAction(ISD::STRICT_FMA, MVT::f32, Legal); setOperationAction(ISD::STRICT_FMA, MVT::f64, Legal); } if (Subtarget.hasVSX()) { setOperationAction(ISD::STRICT_FRINT, MVT::f32, Legal); setOperationAction(ISD::STRICT_FRINT, MVT::f64, Legal); } if (Subtarget.hasFSQRT()) { setOperationAction(ISD::STRICT_FSQRT, MVT::f32, Legal); setOperationAction(ISD::STRICT_FSQRT, MVT::f64, Legal); } if (Subtarget.hasFPRND()) { setOperationAction(ISD::STRICT_FFLOOR, MVT::f32, Legal); setOperationAction(ISD::STRICT_FCEIL, MVT::f32, Legal); setOperationAction(ISD::STRICT_FTRUNC, MVT::f32, Legal); setOperationAction(ISD::STRICT_FROUND, MVT::f32, Legal); setOperationAction(ISD::STRICT_FFLOOR, MVT::f64, Legal); setOperationAction(ISD::STRICT_FCEIL, MVT::f64, Legal); setOperationAction(ISD::STRICT_FTRUNC, MVT::f64, Legal); setOperationAction(ISD::STRICT_FROUND, MVT::f64, Legal); } // We don't support sin/cos/sqrt/fmod/pow setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); // MASS transformation for LLVM intrinsics with replicating fast-math flag // to be consistent to PPCGenScalarMASSEntries pass if (TM.getOptLevel() == CodeGenOptLevel::Aggressive) { setOperationAction(ISD::FSIN , MVT::f64, Custom); setOperationAction(ISD::FCOS , MVT::f64, Custom); setOperationAction(ISD::FPOW , MVT::f64, Custom); setOperationAction(ISD::FLOG, MVT::f64, Custom); setOperationAction(ISD::FLOG10, MVT::f64, Custom); setOperationAction(ISD::FEXP, MVT::f64, Custom); setOperationAction(ISD::FSIN , MVT::f32, Custom); setOperationAction(ISD::FCOS , MVT::f32, Custom); setOperationAction(ISD::FPOW , MVT::f32, Custom); setOperationAction(ISD::FLOG, MVT::f32, Custom); setOperationAction(ISD::FLOG10, MVT::f32, Custom); setOperationAction(ISD::FEXP, MVT::f32, Custom); } if (Subtarget.hasSPE()) { setOperationAction(ISD::FMA , MVT::f64, Expand); setOperationAction(ISD::FMA , MVT::f32, Expand); } else { setOperationAction(ISD::FMA , MVT::f64, Legal); setOperationAction(ISD::FMA , MVT::f32, Legal); } if (Subtarget.hasSPE()) setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); setOperationAction(ISD::GET_ROUNDING, MVT::i32, Custom); // If we're enabling GP optimizations, use hardware square root if (!Subtarget.hasFSQRT() && !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTE() && Subtarget.hasFRE())) setOperationAction(ISD::FSQRT, MVT::f64, Expand); if (!Subtarget.hasFSQRT() && !(TM.Options.UnsafeFPMath && Subtarget.hasFRSQRTES() && Subtarget.hasFRES())) setOperationAction(ISD::FSQRT, MVT::f32, Expand); if (Subtarget.hasFCPSGN()) { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Legal); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Legal); } else { setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); } if (Subtarget.hasFPRND()) { setOperationAction(ISD::FFLOOR, MVT::f64, Legal); setOperationAction(ISD::FCEIL, MVT::f64, Legal); setOperationAction(ISD::FTRUNC, MVT::f64, Legal); setOperationAction(ISD::FROUND, MVT::f64, Legal); setOperationAction(ISD::FFLOOR, MVT::f32, Legal); setOperationAction(ISD::FCEIL, MVT::f32, Legal); setOperationAction(ISD::FTRUNC, MVT::f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Legal); } // Prior to P10, PowerPC does not have BSWAP, but we can use vector BSWAP // instruction xxbrd to speed up scalar BSWAP64. if (Subtarget.isISA3_1()) { setOperationAction(ISD::BSWAP, MVT::i32, Legal); setOperationAction(ISD::BSWAP, MVT::i64, Legal); } else { setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction( ISD::BSWAP, MVT::i64, (Subtarget.hasP9Vector() && Subtarget.isPPC64()) ? Custom : Expand); } // CTPOP or CTTZ were introduced in P8/P9 respectively if (Subtarget.isISA3_0()) { setOperationAction(ISD::CTTZ , MVT::i32 , Legal); setOperationAction(ISD::CTTZ , MVT::i64 , Legal); } else { setOperationAction(ISD::CTTZ , MVT::i32 , Expand); setOperationAction(ISD::CTTZ , MVT::i64 , Expand); } if (Subtarget.hasPOPCNTD() == PPCSubtarget::POPCNTD_Fast) { setOperationAction(ISD::CTPOP, MVT::i32 , Legal); setOperationAction(ISD::CTPOP, MVT::i64 , Legal); } else { setOperationAction(ISD::CTPOP, MVT::i32 , Expand); setOperationAction(ISD::CTPOP, MVT::i64 , Expand); } // PowerPC does not have ROTR setOperationAction(ISD::ROTR, MVT::i32 , Expand); setOperationAction(ISD::ROTR, MVT::i64 , Expand); if (!Subtarget.useCRBits()) { // PowerPC does not have Select setOperationAction(ISD::SELECT, MVT::i32, Expand); setOperationAction(ISD::SELECT, MVT::i64, Expand); setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); } // PowerPC wants to turn select_cc of FP into fsel when possible. setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); // PowerPC wants to optimize integer setcc a bit if (!Subtarget.useCRBits()) setOperationAction(ISD::SETCC, MVT::i32, Custom); if (Subtarget.hasFPU()) { setOperationAction(ISD::STRICT_FSETCC, MVT::f32, Legal); setOperationAction(ISD::STRICT_FSETCC, MVT::f64, Legal); setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Legal); setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Legal); } // PowerPC does not have BRCOND which requires SetCC if (!Subtarget.useCRBits()) setOperationAction(ISD::BRCOND, MVT::Other, Expand); setOperationAction(ISD::BR_JT, MVT::Other, Expand); if (Subtarget.hasSPE()) { // SPE has built-in conversions setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Legal); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); // SPE supports signaling compare of f32/f64. setOperationAction(ISD::STRICT_FSETCCS, MVT::f32, Legal); setOperationAction(ISD::STRICT_FSETCCS, MVT::f64, Legal); } else { // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores. setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); // PowerPC does not have [U|S]INT_TO_FP setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); } if (Subtarget.hasDirectMove() && isPPC64) { setOperationAction(ISD::BITCAST, MVT::f32, Legal); setOperationAction(ISD::BITCAST, MVT::i32, Legal); setOperationAction(ISD::BITCAST, MVT::i64, Legal); setOperationAction(ISD::BITCAST, MVT::f64, Legal); if (TM.Options.UnsafeFPMath) { setOperationAction(ISD::LRINT, MVT::f64, Legal); setOperationAction(ISD::LRINT, MVT::f32, Legal); setOperationAction(ISD::LLRINT, MVT::f64, Legal); setOperationAction(ISD::LLRINT, MVT::f32, Legal); setOperationAction(ISD::LROUND, MVT::f64, Legal); setOperationAction(ISD::LROUND, MVT::f32, Legal); setOperationAction(ISD::LLROUND, MVT::f64, Legal); setOperationAction(ISD::LLROUND, MVT::f32, Legal); } } else { setOperationAction(ISD::BITCAST, MVT::f32, Expand); setOperationAction(ISD::BITCAST, MVT::i32, Expand); setOperationAction(ISD::BITCAST, MVT::i64, Expand); setOperationAction(ISD::BITCAST, MVT::f64, Expand); } // We cannot sextinreg(i1). Expand to shifts. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support // SjLj exception handling but a light-weight setjmp/longjmp replacement to // support continuation, user-level threading, and etc.. As a result, no // other SjLj exception interfaces are implemented and please don't build // your own exception handling based on them. // LLVM/Clang supports zero-cost DWARF exception handling. setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); // We want to legalize GlobalAddress and ConstantPool nodes into the // appropriate instructions to materialize the address. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); setOperationAction(ISD::ConstantPool, MVT::i32, Custom); setOperationAction(ISD::JumpTable, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom); setOperationAction(ISD::BlockAddress, MVT::i64, Custom); setOperationAction(ISD::ConstantPool, MVT::i64, Custom); setOperationAction(ISD::JumpTable, MVT::i64, Custom); // TRAP is legal. setOperationAction(ISD::TRAP, MVT::Other, Legal); // TRAMPOLINE is custom lowered. setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom); setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom); // VASTART needs to be custom lowered to use the VarArgsFrameIndex setOperationAction(ISD::VASTART , MVT::Other, Custom); if (Subtarget.is64BitELFABI()) { // VAARG always uses double-word chunks, so promote anything smaller. setOperationAction(ISD::VAARG, MVT::i1, Promote); AddPromotedToType(ISD::VAARG, MVT::i1, MVT::i64); setOperationAction(ISD::VAARG, MVT::i8, Promote); AddPromotedToType(ISD::VAARG, MVT::i8, MVT::i64); setOperationAction(ISD::VAARG, MVT::i16, Promote); AddPromotedToType(ISD::VAARG, MVT::i16, MVT::i64); setOperationAction(ISD::VAARG, MVT::i32, Promote); AddPromotedToType(ISD::VAARG, MVT::i32, MVT::i64); setOperationAction(ISD::VAARG, MVT::Other, Expand); } else if (Subtarget.is32BitELFABI()) { // VAARG is custom lowered with the 32-bit SVR4 ABI. setOperationAction(ISD::VAARG, MVT::Other, Custom); setOperationAction(ISD::VAARG, MVT::i64, Custom); } else setOperationAction(ISD::VAARG, MVT::Other, Expand); // VACOPY is custom lowered with the 32-bit SVR4 ABI. if (Subtarget.is32BitELFABI()) setOperationAction(ISD::VACOPY , MVT::Other, Custom); else setOperationAction(ISD::VACOPY , MVT::Other, Expand); // Use the default implementation. setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom); setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i32, Custom); setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, MVT::i64, Custom); setOperationAction(ISD::EH_DWARF_CFA, MVT::i32, Custom); setOperationAction(ISD::EH_DWARF_CFA, MVT::i64, Custom); // We want to custom lower some of our intrinsics. setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f64, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::ppcf128, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f64, Custom); // To handle counter-based loop conditions. setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i1, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::i32, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); // Comparisons that require checking two conditions. if (Subtarget.hasSPE()) { setCondCodeAction(ISD::SETO, MVT::f32, Expand); setCondCodeAction(ISD::SETO, MVT::f64, Expand); setCondCodeAction(ISD::SETUO, MVT::f32, Expand); setCondCodeAction(ISD::SETUO, MVT::f64, Expand); } setCondCodeAction(ISD::SETULT, MVT::f32, Expand); setCondCodeAction(ISD::SETULT, MVT::f64, Expand); setCondCodeAction(ISD::SETUGT, MVT::f32, Expand); setCondCodeAction(ISD::SETUGT, MVT::f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand); setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); setCondCodeAction(ISD::SETONE, MVT::f32, Expand); setCondCodeAction(ISD::SETONE, MVT::f64, Expand); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f32, Legal); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f64, Legal); if (Subtarget.has64BitSupport()) { // They also have instructions for converting between i64 and fp. setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Expand); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand); // This is just the low 32 bits of a (signed) fp->i64 conversion. // We cannot do this with Promote because i64 is not a legal type. setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); if (Subtarget.hasLFIWAX() || Subtarget.isPPC64()) { setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); } } else { // PowerPC does not have FP_TO_UINT on 32-bit implementations. if (Subtarget.hasSPE()) { setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); } else { setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); } } // With the instructions enabled under FPCVT, we can do everything. if (Subtarget.hasFPCVT()) { if (Subtarget.has64BitSupport()) { setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); } setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); } if (Subtarget.use64BitRegs()) { // 64-bit PowerPC implementations can support i64 types directly addRegisterClass(MVT::i64, &PPC::G8RCRegClass); // BUILD_PAIR can't be handled natively, and should be expanded to shl/or setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // 64-bit PowerPC wants to expand i128 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom); } else { // 32-bit PowerPC wants to expand i64 shifts itself. setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); } // PowerPC has better expansions for funnel shifts than the generic // TargetLowering::expandFunnelShift. if (Subtarget.has64BitSupport()) { setOperationAction(ISD::FSHL, MVT::i64, Custom); setOperationAction(ISD::FSHR, MVT::i64, Custom); } setOperationAction(ISD::FSHL, MVT::i32, Custom); setOperationAction(ISD::FSHR, MVT::i32, Custom); if (Subtarget.hasVSX()) { setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal); setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal); setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal); setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal); } if (Subtarget.hasAltivec()) { for (MVT VT : { MVT::v16i8, MVT::v8i16, MVT::v4i32 }) { setOperationAction(ISD::SADDSAT, VT, Legal); setOperationAction(ISD::SSUBSAT, VT, Legal); setOperationAction(ISD::UADDSAT, VT, Legal); setOperationAction(ISD::USUBSAT, VT, Legal); } // First set operation action for all vector types to expand. Then we // will selectively turn on ones that can be effectively codegen'd. for (MVT VT : MVT::fixedlen_vector_valuetypes()) { // add/sub are legal for all supported vector VT's. setOperationAction(ISD::ADD, VT, Legal); setOperationAction(ISD::SUB, VT, Legal); // For v2i64, these are only valid with P8Vector. This is corrected after // the loop. if (VT.getSizeInBits() <= 128 && VT.getScalarSizeInBits() <= 64) { setOperationAction(ISD::SMAX, VT, Legal); setOperationAction(ISD::SMIN, VT, Legal); setOperationAction(ISD::UMAX, VT, Legal); setOperationAction(ISD::UMIN, VT, Legal); } else { setOperationAction(ISD::SMAX, VT, Expand); setOperationAction(ISD::SMIN, VT, Expand); setOperationAction(ISD::UMAX, VT, Expand); setOperationAction(ISD::UMIN, VT, Expand); } if (Subtarget.hasVSX()) { setOperationAction(ISD::FMAXNUM, VT, Legal); setOperationAction(ISD::FMINNUM, VT, Legal); } // Vector instructions introduced in P8 if (Subtarget.hasP8Altivec() && (VT.SimpleTy != MVT::v1i128)) { setOperationAction(ISD::CTPOP, VT, Legal); setOperationAction(ISD::CTLZ, VT, Legal); } else { setOperationAction(ISD::CTPOP, VT, Expand); setOperationAction(ISD::CTLZ, VT, Expand); } // Vector instructions introduced in P9 if (Subtarget.hasP9Altivec() && (VT.SimpleTy != MVT::v1i128)) setOperationAction(ISD::CTTZ, VT, Legal); else setOperationAction(ISD::CTTZ, VT, Expand); // We promote all shuffles to v16i8. setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote); AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8); // We promote all non-typed operations to v4i32. setOperationAction(ISD::AND , VT, Promote); AddPromotedToType (ISD::AND , VT, MVT::v4i32); setOperationAction(ISD::OR , VT, Promote); AddPromotedToType (ISD::OR , VT, MVT::v4i32); setOperationAction(ISD::XOR , VT, Promote); AddPromotedToType (ISD::XOR , VT, MVT::v4i32); setOperationAction(ISD::LOAD , VT, Promote); AddPromotedToType (ISD::LOAD , VT, MVT::v4i32); setOperationAction(ISD::SELECT, VT, Promote); AddPromotedToType (ISD::SELECT, VT, MVT::v4i32); setOperationAction(ISD::VSELECT, VT, Legal); setOperationAction(ISD::SELECT_CC, VT, Promote); AddPromotedToType (ISD::SELECT_CC, VT, MVT::v4i32); setOperationAction(ISD::STORE, VT, Promote); AddPromotedToType (ISD::STORE, VT, MVT::v4i32); // No other operations are legal. setOperationAction(ISD::MUL , VT, Expand); setOperationAction(ISD::SDIV, VT, Expand); setOperationAction(ISD::SREM, VT, Expand); setOperationAction(ISD::UDIV, VT, Expand); setOperationAction(ISD::UREM, VT, Expand); setOperationAction(ISD::FDIV, VT, Expand); setOperationAction(ISD::FREM, VT, Expand); setOperationAction(ISD::FNEG, VT, Expand); setOperationAction(ISD::FSQRT, VT, Expand); setOperationAction(ISD::FLOG, VT, Expand); setOperationAction(ISD::FLOG10, VT, Expand); setOperationAction(ISD::FLOG2, VT, Expand); setOperationAction(ISD::FEXP, VT, Expand); setOperationAction(ISD::FEXP2, VT, Expand); setOperationAction(ISD::FSIN, VT, Expand); setOperationAction(ISD::FCOS, VT, Expand); setOperationAction(ISD::FABS, VT, Expand); setOperationAction(ISD::FFLOOR, VT, Expand); setOperationAction(ISD::FCEIL, VT, Expand); setOperationAction(ISD::FTRUNC, VT, Expand); setOperationAction(ISD::FRINT, VT, Expand); setOperationAction(ISD::FLDEXP, VT, Expand); setOperationAction(ISD::FNEARBYINT, VT, Expand); setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand); setOperationAction(ISD::BUILD_VECTOR, VT, Expand); setOperationAction(ISD::MULHU, VT, Expand); setOperationAction(ISD::MULHS, VT, Expand); setOperationAction(ISD::UMUL_LOHI, VT, Expand); setOperationAction(ISD::SMUL_LOHI, VT, Expand); setOperationAction(ISD::UDIVREM, VT, Expand); setOperationAction(ISD::SDIVREM, VT, Expand); setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand); setOperationAction(ISD::FPOW, VT, Expand); setOperationAction(ISD::BSWAP, VT, Expand); setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); setOperationAction(ISD::ROTL, VT, Expand); setOperationAction(ISD::ROTR, VT, Expand); for (MVT InnerVT : MVT::fixedlen_vector_valuetypes()) { setTruncStoreAction(VT, InnerVT, Expand); setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); } } setOperationAction(ISD::SELECT_CC, MVT::v4i32, Expand); if (!Subtarget.hasP8Vector()) { setOperationAction(ISD::SMAX, MVT::v2i64, Expand); setOperationAction(ISD::SMIN, MVT::v2i64, Expand); setOperationAction(ISD::UMAX, MVT::v2i64, Expand); setOperationAction(ISD::UMIN, MVT::v2i64, Expand); } // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle // with merges, splats, etc. setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom); // Vector truncates to sub-word integer that fit in an Altivec/VSX register // are cheap, so handle them before they get expanded to scalar. setOperationAction(ISD::TRUNCATE, MVT::v8i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v2i8, Custom); setOperationAction(ISD::TRUNCATE, MVT::v4i16, Custom); setOperationAction(ISD::TRUNCATE, MVT::v2i16, Custom); setOperationAction(ISD::AND , MVT::v4i32, Legal); setOperationAction(ISD::OR , MVT::v4i32, Legal); setOperationAction(ISD::XOR , MVT::v4i32, Legal); setOperationAction(ISD::LOAD , MVT::v4i32, Legal); setOperationAction(ISD::SELECT, MVT::v4i32, Subtarget.useCRBits() ? Legal : Expand); setOperationAction(ISD::STORE , MVT::v4i32, Legal); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v4i32, Legal); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal); setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); // Custom lowering ROTL v1i128 to VECTOR_SHUFFLE v16i8. setOperationAction(ISD::ROTL, MVT::v1i128, Custom); // With hasAltivec set, we can lower ISD::ROTL to vrl(b|h|w). if (Subtarget.hasAltivec()) for (auto VT : {MVT::v4i32, MVT::v8i16, MVT::v16i8}) setOperationAction(ISD::ROTL, VT, Legal); // With hasP8Altivec set, we can lower ISD::ROTL to vrld. if (Subtarget.hasP8Altivec()) setOperationAction(ISD::ROTL, MVT::v2i64, Legal); addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass); addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass); addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass); addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass); setOperationAction(ISD::MUL, MVT::v4f32, Legal); setOperationAction(ISD::FMA, MVT::v4f32, Legal); if (Subtarget.hasVSX()) { setOperationAction(ISD::FDIV, MVT::v4f32, Legal); setOperationAction(ISD::FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f64, Custom); } if (Subtarget.hasP8Altivec()) setOperationAction(ISD::MUL, MVT::v4i32, Legal); else setOperationAction(ISD::MUL, MVT::v4i32, Custom); if (Subtarget.isISA3_1()) { setOperationAction(ISD::MUL, MVT::v2i64, Legal); setOperationAction(ISD::MULHS, MVT::v2i64, Legal); setOperationAction(ISD::MULHU, MVT::v2i64, Legal); setOperationAction(ISD::MULHS, MVT::v4i32, Legal); setOperationAction(ISD::MULHU, MVT::v4i32, Legal); setOperationAction(ISD::UDIV, MVT::v2i64, Legal); setOperationAction(ISD::SDIV, MVT::v2i64, Legal); setOperationAction(ISD::UDIV, MVT::v4i32, Legal); setOperationAction(ISD::SDIV, MVT::v4i32, Legal); setOperationAction(ISD::UREM, MVT::v2i64, Legal); setOperationAction(ISD::SREM, MVT::v2i64, Legal); setOperationAction(ISD::UREM, MVT::v4i32, Legal); setOperationAction(ISD::SREM, MVT::v4i32, Legal); setOperationAction(ISD::UREM, MVT::v1i128, Legal); setOperationAction(ISD::SREM, MVT::v1i128, Legal); setOperationAction(ISD::UDIV, MVT::v1i128, Legal); setOperationAction(ISD::SDIV, MVT::v1i128, Legal); setOperationAction(ISD::ROTL, MVT::v1i128, Legal); } setOperationAction(ISD::MUL, MVT::v8i16, Legal); setOperationAction(ISD::MUL, MVT::v16i8, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom); // Altivec does not contain unordered floating-point compare instructions setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand); setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand); setCondCodeAction(ISD::SETO, MVT::v4f32, Expand); setCondCodeAction(ISD::SETONE, MVT::v4f32, Expand); if (Subtarget.hasVSX()) { setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2f64, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); if (Subtarget.hasP8Vector()) { setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f32, Legal); } if (Subtarget.hasDirectMove() && isPPC64) { setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v16i8, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v8i16, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Legal); setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v2i64, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v16i8, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i16, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i32, Legal); setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i64, Legal); } setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f64, Legal); // The nearbyint variants are not allowed to raise the inexact exception // so we can only code-gen them with unsafe math. if (TM.Options.UnsafeFPMath) { setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); } setOperationAction(ISD::FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Legal); setOperationAction(ISD::FRINT, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::v2f64, Legal); setOperationAction(ISD::FROUND, MVT::f64, Legal); setOperationAction(ISD::FRINT, MVT::f64, Legal); setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal); setOperationAction(ISD::FRINT, MVT::v4f32, Legal); setOperationAction(ISD::FROUND, MVT::v4f32, Legal); setOperationAction(ISD::FROUND, MVT::f32, Legal); setOperationAction(ISD::FRINT, MVT::f32, Legal); setOperationAction(ISD::MUL, MVT::v2f64, Legal); setOperationAction(ISD::FMA, MVT::v2f64, Legal); setOperationAction(ISD::FDIV, MVT::v2f64, Legal); setOperationAction(ISD::FSQRT, MVT::v2f64, Legal); // Share the Altivec comparison restrictions. setCondCodeAction(ISD::SETUO, MVT::v2f64, Expand); setCondCodeAction(ISD::SETUEQ, MVT::v2f64, Expand); setCondCodeAction(ISD::SETO, MVT::v2f64, Expand); setCondCodeAction(ISD::SETONE, MVT::v2f64, Expand); setOperationAction(ISD::LOAD, MVT::v2f64, Legal); setOperationAction(ISD::STORE, MVT::v2f64, Legal); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2f64, Custom); if (Subtarget.hasP8Vector()) addRegisterClass(MVT::f32, &PPC::VSSRCRegClass); addRegisterClass(MVT::f64, &PPC::VSFRCRegClass); addRegisterClass(MVT::v4i32, &PPC::VSRCRegClass); addRegisterClass(MVT::v4f32, &PPC::VSRCRegClass); addRegisterClass(MVT::v2f64, &PPC::VSRCRegClass); if (Subtarget.hasP8Altivec()) { setOperationAction(ISD::SHL, MVT::v2i64, Legal); setOperationAction(ISD::SRA, MVT::v2i64, Legal); setOperationAction(ISD::SRL, MVT::v2i64, Legal); // 128 bit shifts can be accomplished via 3 instructions for SHL and // SRL, but not for SRA because of the instructions available: // VS{RL} and VS{RL}O. However due to direct move costs, it's not worth // doing setOperationAction(ISD::SHL, MVT::v1i128, Expand); setOperationAction(ISD::SRL, MVT::v1i128, Expand); setOperationAction(ISD::SRA, MVT::v1i128, Expand); setOperationAction(ISD::SETCC, MVT::v2i64, Legal); } else { setOperationAction(ISD::SHL, MVT::v2i64, Expand); setOperationAction(ISD::SRA, MVT::v2i64, Expand); setOperationAction(ISD::SRL, MVT::v2i64, Expand); setOperationAction(ISD::SETCC, MVT::v2i64, Custom); // VSX v2i64 only supports non-arithmetic operations. setOperationAction(ISD::ADD, MVT::v2i64, Expand); setOperationAction(ISD::SUB, MVT::v2i64, Expand); } if (Subtarget.isISA3_1()) setOperationAction(ISD::SETCC, MVT::v1i128, Legal); else setOperationAction(ISD::SETCC, MVT::v1i128, Expand); setOperationAction(ISD::LOAD, MVT::v2i64, Promote); AddPromotedToType (ISD::LOAD, MVT::v2i64, MVT::v2f64); setOperationAction(ISD::STORE, MVT::v2i64, Promote); AddPromotedToType (ISD::STORE, MVT::v2i64, MVT::v2f64); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v2i64, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::STRICT_FP_TO_SINT, MVT::v2i64, Legal); setOperationAction(ISD::STRICT_FP_TO_UINT, MVT::v2i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::v2i64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::v2i64, Legal); // Custom handling for partial vectors of integers converted to // floating point. We already have optimal handling for v2i32 through // the DAG combine, so those aren't necessary. setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i8, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v2i16, Custom); setOperationAction(ISD::STRICT_UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i8, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v2i16, Custom); setOperationAction(ISD::STRICT_SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v2i16, Custom); setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v2i8, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v4i8, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v2i16, Custom); setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); setOperationAction(ISD::FNEG, MVT::v4f32, Legal); setOperationAction(ISD::FNEG, MVT::v2f64, Legal); setOperationAction(ISD::FABS, MVT::v4f32, Legal); setOperationAction(ISD::FABS, MVT::v2f64, Legal); setOperationAction(ISD::FCOPYSIGN, MVT::v4f32, Legal); setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Legal); setOperationAction(ISD::BUILD_VECTOR, MVT::v2i64, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v2f64, Custom); // Handle constrained floating-point operations of vector. // The predictor is `hasVSX` because altivec instruction has // no exception but VSX vector instruction has. setOperationAction(ISD::STRICT_FADD, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FSUB, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FMUL, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FDIV, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FMA, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FSQRT, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FMAXNUM, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FMINNUM, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FRINT, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FFLOOR, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FCEIL, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FTRUNC, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FROUND, MVT::v4f32, Legal); setOperationAction(ISD::STRICT_FADD, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FSUB, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FMUL, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FDIV, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FMA, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FSQRT, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FMAXNUM, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FMINNUM, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FRINT, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FFLOOR, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FCEIL, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FTRUNC, MVT::v2f64, Legal); setOperationAction(ISD::STRICT_FROUND, MVT::v2f64, Legal); addRegisterClass(MVT::v2i64, &PPC::VSRCRegClass); addRegisterClass(MVT::f128, &PPC::VRRCRegClass); for (MVT FPT : MVT::fp_valuetypes()) setLoadExtAction(ISD::EXTLOAD, MVT::f128, FPT, Expand); // Expand the SELECT to SELECT_CC setOperationAction(ISD::SELECT, MVT::f128, Expand); setTruncStoreAction(MVT::f128, MVT::f64, Expand); setTruncStoreAction(MVT::f128, MVT::f32, Expand); // No implementation for these ops for PowerPC. setOperationAction(ISD::FSINCOS, MVT::f128, Expand); setOperationAction(ISD::FSIN, MVT::f128, Expand); setOperationAction(ISD::FCOS, MVT::f128, Expand); setOperationAction(ISD::FPOW, MVT::f128, Expand); setOperationAction(ISD::FPOWI, MVT::f128, Expand); setOperationAction(ISD::FREM, MVT::f128, Expand); } if (Subtarget.hasP8Altivec()) { addRegisterClass(MVT::v2i64, &PPC::VRRCRegClass); addRegisterClass(MVT::v1i128, &PPC::VRRCRegClass); } if (Subtarget.hasP9Vector()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f32, Custom); // Test data class instructions store results in CR bits. if (Subtarget.useCRBits()) { setOperationAction(ISD::IS_FPCLASS, MVT::f32, Custom); setOperationAction(ISD::IS_FPCLASS, MVT::f64, Custom); setOperationAction(ISD::IS_FPCLASS, MVT::f128, Custom); } // 128 bit shifts can be accomplished via 3 instructions for SHL and // SRL, but not for SRA because of the instructions available: // VS{RL} and VS{RL}O. setOperationAction(ISD::SHL, MVT::v1i128, Legal); setOperationAction(ISD::SRL, MVT::v1i128, Legal); setOperationAction(ISD::SRA, MVT::v1i128, Expand); setOperationAction(ISD::FADD, MVT::f128, Legal); setOperationAction(ISD::FSUB, MVT::f128, Legal); setOperationAction(ISD::FDIV, MVT::f128, Legal); setOperationAction(ISD::FMUL, MVT::f128, Legal); setOperationAction(ISD::FP_EXTEND, MVT::f128, Legal); setOperationAction(ISD::FMA, MVT::f128, Legal); setCondCodeAction(ISD::SETULT, MVT::f128, Expand); setCondCodeAction(ISD::SETUGT, MVT::f128, Expand); setCondCodeAction(ISD::SETUEQ, MVT::f128, Expand); setCondCodeAction(ISD::SETOGE, MVT::f128, Expand); setCondCodeAction(ISD::SETOLE, MVT::f128, Expand); setCondCodeAction(ISD::SETONE, MVT::f128, Expand); setOperationAction(ISD::FTRUNC, MVT::f128, Legal); setOperationAction(ISD::FRINT, MVT::f128, Legal); setOperationAction(ISD::FFLOOR, MVT::f128, Legal); setOperationAction(ISD::FCEIL, MVT::f128, Legal); setOperationAction(ISD::FNEARBYINT, MVT::f128, Legal); setOperationAction(ISD::FROUND, MVT::f128, Legal); setOperationAction(ISD::FP_ROUND, MVT::f64, Legal); setOperationAction(ISD::FP_ROUND, MVT::f32, Legal); setOperationAction(ISD::BITCAST, MVT::i128, Custom); // Handle constrained floating-point operations of fp128 setOperationAction(ISD::STRICT_FADD, MVT::f128, Legal); setOperationAction(ISD::STRICT_FSUB, MVT::f128, Legal); setOperationAction(ISD::STRICT_FMUL, MVT::f128, Legal); setOperationAction(ISD::STRICT_FDIV, MVT::f128, Legal); setOperationAction(ISD::STRICT_FMA, MVT::f128, Legal); setOperationAction(ISD::STRICT_FSQRT, MVT::f128, Legal); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Legal); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f64, Legal); setOperationAction(ISD::STRICT_FP_ROUND, MVT::f32, Legal); setOperationAction(ISD::STRICT_FRINT, MVT::f128, Legal); setOperationAction(ISD::STRICT_FNEARBYINT, MVT::f128, Legal); setOperationAction(ISD::STRICT_FFLOOR, MVT::f128, Legal); setOperationAction(ISD::STRICT_FCEIL, MVT::f128, Legal); setOperationAction(ISD::STRICT_FTRUNC, MVT::f128, Legal); setOperationAction(ISD::STRICT_FROUND, MVT::f128, Legal); setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Custom); setOperationAction(ISD::BSWAP, MVT::v8i16, Legal); setOperationAction(ISD::BSWAP, MVT::v4i32, Legal); setOperationAction(ISD::BSWAP, MVT::v2i64, Legal); setOperationAction(ISD::BSWAP, MVT::v1i128, Legal); } else if (Subtarget.hasVSX()) { setOperationAction(ISD::LOAD, MVT::f128, Promote); setOperationAction(ISD::STORE, MVT::f128, Promote); AddPromotedToType(ISD::LOAD, MVT::f128, MVT::v4i32); AddPromotedToType(ISD::STORE, MVT::f128, MVT::v4i32); // Set FADD/FSUB as libcall to avoid the legalizer to expand the // fp_to_uint and int_to_fp. setOperationAction(ISD::FADD, MVT::f128, LibCall); setOperationAction(ISD::FSUB, MVT::f128, LibCall); setOperationAction(ISD::FMUL, MVT::f128, Expand); setOperationAction(ISD::FDIV, MVT::f128, Expand); setOperationAction(ISD::FNEG, MVT::f128, Expand); setOperationAction(ISD::FABS, MVT::f128, Expand); setOperationAction(ISD::FSQRT, MVT::f128, Expand); setOperationAction(ISD::FMA, MVT::f128, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f128, Expand); // Expand the fp_extend if the target type is fp128. setOperationAction(ISD::FP_EXTEND, MVT::f128, Expand); setOperationAction(ISD::STRICT_FP_EXTEND, MVT::f128, Expand); // Expand the fp_round if the source type is fp128. for (MVT VT : {MVT::f32, MVT::f64}) { setOperationAction(ISD::FP_ROUND, VT, Custom); setOperationAction(ISD::STRICT_FP_ROUND, VT, Custom); } setOperationAction(ISD::SETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCC, MVT::f128, Custom); setOperationAction(ISD::STRICT_FSETCCS, MVT::f128, Custom); setOperationAction(ISD::BR_CC, MVT::f128, Expand); // Lower following f128 select_cc pattern: // select_cc x, y, tv, fv, cc -> select_cc (setcc x, y, cc), 0, tv, fv, NE setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); // We need to handle f128 SELECT_CC with integer result type. setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, isPPC64 ? Custom : Expand); } if (Subtarget.hasP9Altivec()) { if (Subtarget.isISA3_1()) { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i64, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Legal); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i32, Legal); } else { setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i16, Custom); setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v16i8, Custom); } setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i32, Legal); setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i64, Legal); setOperationAction(ISD::ABDU, MVT::v16i8, Legal); setOperationAction(ISD::ABDU, MVT::v8i16, Legal); setOperationAction(ISD::ABDU, MVT::v4i32, Legal); setOperationAction(ISD::ABDS, MVT::v4i32, Legal); } if (Subtarget.hasP10Vector()) { setOperationAction(ISD::SELECT_CC, MVT::f128, Custom); } } if (Subtarget.pairedVectorMemops()) { addRegisterClass(MVT::v256i1, &PPC::VSRpRCRegClass); setOperationAction(ISD::LOAD, MVT::v256i1, Custom); setOperationAction(ISD::STORE, MVT::v256i1, Custom); } if (Subtarget.hasMMA()) { if (Subtarget.isISAFuture()) addRegisterClass(MVT::v512i1, &PPC::WACCRCRegClass); else addRegisterClass(MVT::v512i1, &PPC::UACCRCRegClass); setOperationAction(ISD::LOAD, MVT::v512i1, Custom); setOperationAction(ISD::STORE, MVT::v512i1, Custom); setOperationAction(ISD::BUILD_VECTOR, MVT::v512i1, Custom); } if (Subtarget.has64BitSupport()) setOperationAction(ISD::PREFETCH, MVT::Other, Legal); if (Subtarget.isISA3_1()) setOperationAction(ISD::SRA, MVT::v1i128, Legal); setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, isPPC64 ? Legal : Custom); if (!isPPC64) { setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand); setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand); } if (shouldInlineQuadwordAtomics()) { setOperationAction(ISD::ATOMIC_LOAD, MVT::i128, Custom); setOperationAction(ISD::ATOMIC_STORE, MVT::i128, Custom); setOperationAction(ISD::INTRINSIC_VOID, MVT::i128, Custom); } setBooleanContents(ZeroOrOneBooleanContent); if (Subtarget.hasAltivec()) { // Altivec instructions set fields to all zeros or all ones. setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); } if (shouldInlineQuadwordAtomics()) setMaxAtomicSizeInBitsSupported(128); else if (isPPC64) setMaxAtomicSizeInBitsSupported(64); else setMaxAtomicSizeInBitsSupported(32); setStackPointerRegisterToSaveRestore(isPPC64 ? PPC::X1 : PPC::R1); // We have target-specific dag combine patterns for the following nodes: setTargetDAGCombine({ISD::AND, ISD::ADD, ISD::SHL, ISD::SRA, ISD::SRL, ISD::MUL, ISD::FMA, ISD::SINT_TO_FP, ISD::BUILD_VECTOR}); if (Subtarget.hasFPCVT()) setTargetDAGCombine(ISD::UINT_TO_FP); setTargetDAGCombine({ISD::LOAD, ISD::STORE, ISD::BR_CC}); if (Subtarget.useCRBits()) setTargetDAGCombine(ISD::BRCOND); setTargetDAGCombine({ISD::BSWAP, ISD::INTRINSIC_WO_CHAIN, ISD::INTRINSIC_W_CHAIN, ISD::INTRINSIC_VOID}); setTargetDAGCombine({ISD::SIGN_EXTEND, ISD::ZERO_EXTEND, ISD::ANY_EXTEND}); setTargetDAGCombine({ISD::TRUNCATE, ISD::VECTOR_SHUFFLE}); if (Subtarget.useCRBits()) { setTargetDAGCombine({ISD::TRUNCATE, ISD::SETCC, ISD::SELECT_CC}); } setLibcallName(RTLIB::LOG_F128, "logf128"); setLibcallName(RTLIB::LOG2_F128, "log2f128"); setLibcallName(RTLIB::LOG10_F128, "log10f128"); setLibcallName(RTLIB::EXP_F128, "expf128"); setLibcallName(RTLIB::EXP2_F128, "exp2f128"); setLibcallName(RTLIB::SIN_F128, "sinf128"); setLibcallName(RTLIB::COS_F128, "cosf128"); setLibcallName(RTLIB::SINCOS_F128, "sincosf128"); setLibcallName(RTLIB::POW_F128, "powf128"); setLibcallName(RTLIB::FMIN_F128, "fminf128"); setLibcallName(RTLIB::FMAX_F128, "fmaxf128"); setLibcallName(RTLIB::REM_F128, "fmodf128"); setLibcallName(RTLIB::SQRT_F128, "sqrtf128"); setLibcallName(RTLIB::CEIL_F128, "ceilf128"); setLibcallName(RTLIB::FLOOR_F128, "floorf128"); setLibcallName(RTLIB::TRUNC_F128, "truncf128"); setLibcallName(RTLIB::ROUND_F128, "roundf128"); setLibcallName(RTLIB::LROUND_F128, "lroundf128"); setLibcallName(RTLIB::LLROUND_F128, "llroundf128"); setLibcallName(RTLIB::RINT_F128, "rintf128"); setLibcallName(RTLIB::LRINT_F128, "lrintf128"); setLibcallName(RTLIB::LLRINT_F128, "llrintf128"); setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128"); setLibcallName(RTLIB::FMA_F128, "fmaf128"); setLibcallName(RTLIB::FREXP_F128, "frexpf128"); if (Subtarget.isAIXABI()) { setLibcallName(RTLIB::MEMCPY, isPPC64 ? "___memmove64" : "___memmove"); setLibcallName(RTLIB::MEMMOVE, isPPC64 ? "___memmove64" : "___memmove"); setLibcallName(RTLIB::MEMSET, isPPC64 ? "___memset64" : "___memset"); setLibcallName(RTLIB::BZERO, isPPC64 ? "___bzero64" : "___bzero"); } // With 32 condition bits, we don't need to sink (and duplicate) compares // aggressively in CodeGenPrep. if (Subtarget.useCRBits()) { setHasMultipleConditionRegisters(); setJumpIsExpensive(); } // TODO: The default entry number is set to 64. This stops most jump table // generation on PPC. But it is good for current PPC HWs because the indirect // branch instruction mtctr to the jump table may lead to bad branch predict. // Re-evaluate this value on future HWs that can do better with mtctr. setMinimumJumpTableEntries(PPCMinimumJumpTableEntries); setMinFunctionAlignment(Align(4)); switch (Subtarget.getCPUDirective()) { default: break; case PPC::DIR_970: case PPC::DIR_A2: case PPC::DIR_E500: case PPC::DIR_E500mc: case PPC::DIR_E5500: case PPC::DIR_PWR4: case PPC::DIR_PWR5: case PPC::DIR_PWR5X: case PPC::DIR_PWR6: case PPC::DIR_PWR6X: case PPC::DIR_PWR7: case PPC::DIR_PWR8: case PPC::DIR_PWR9: case PPC::DIR_PWR10: case PPC::DIR_PWR11: case PPC::DIR_PWR_FUTURE: setPrefLoopAlignment(Align(16)); setPrefFunctionAlignment(Align(16)); break; } if (Subtarget.enableMachineScheduler()) setSchedulingPreference(Sched::Source); else setSchedulingPreference(Sched::Hybrid); computeRegisterProperties(STI.getRegisterInfo()); // The Freescale cores do better with aggressive inlining of memcpy and // friends. GCC uses same threshold of 128 bytes (= 32 word stores). if (Subtarget.getCPUDirective() == PPC::DIR_E500mc || Subtarget.getCPUDirective() == PPC::DIR_E5500) { MaxStoresPerMemset = 32; MaxStoresPerMemsetOptSize = 16; MaxStoresPerMemcpy = 32; MaxStoresPerMemcpyOptSize = 8; MaxStoresPerMemmove = 32; MaxStoresPerMemmoveOptSize = 8; } else if (Subtarget.getCPUDirective() == PPC::DIR_A2) { // The A2 also benefits from (very) aggressive inlining of memcpy and // friends. The overhead of a the function call, even when warm, can be // over one hundred cycles. MaxStoresPerMemset = 128; MaxStoresPerMemcpy = 128; MaxStoresPerMemmove = 128; MaxLoadsPerMemcmp = 128; } else { MaxLoadsPerMemcmp = 8; MaxLoadsPerMemcmpOptSize = 4; } IsStrictFPEnabled = true; // Let the subtarget (CPU) decide if a predictable select is more expensive // than the corresponding branch. This information is used in CGP to decide // when to convert selects into branches. PredictableSelectIsExpensive = Subtarget.isPredictableSelectIsExpensive(); GatherAllAliasesMaxDepth = PPCGatherAllAliasesMaxDepth; } // *********************************** NOTE ************************************ // For selecting load and store instructions, the addressing modes are defined // as ComplexPatterns in PPCInstrInfo.td, which are then utilized in the TD // patterns to match the load the store instructions. // // The TD definitions for the addressing modes correspond to their respective // SelectForm() function in PPCISelDAGToDAG.cpp. These functions rely // on SelectOptimalAddrMode(), which calls computeMOFlags() to compute the // address mode flags of a particular node. Afterwards, the computed address // flags are passed into getAddrModeForFlags() in order to retrieve the optimal // addressing mode. SelectOptimalAddrMode() then sets the Base and Displacement // accordingly, based on the preferred addressing mode. // // Within PPCISelLowering.h, there are two enums: MemOpFlags and AddrMode. // MemOpFlags contains all the possible flags that can be used to compute the // optimal addressing mode for load and store instructions. // AddrMode contains all the possible load and store addressing modes available // on Power (such as DForm, DSForm, DQForm, XForm, etc.) // // When adding new load and store instructions, it is possible that new address // flags may need to be added into MemOpFlags, and a new addressing mode will // need to be added to AddrMode. An entry of the new addressing mode (consisting // of the minimal and main distinguishing address flags for the new load/store // instructions) will need to be added into initializeAddrModeMap() below. // Finally, when adding new addressing modes, the getAddrModeForFlags() will // need to be updated to account for selecting the optimal addressing mode. // ***************************************************************************** /// Initialize the map that relates the different addressing modes of the load /// and store instructions to a set of flags. This ensures the load/store /// instruction is correctly matched during instruction selection. void PPCTargetLowering::initializeAddrModeMap() { AddrModesMap[PPC::AM_DForm] = { // LWZ, STW PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_WordInt, PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_WordInt, PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, // LBZ, LHZ, STB, STH PPC::MOF_ZExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, PPC::MOF_ZExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, PPC::MOF_ZExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, PPC::MOF_ZExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, // LHA PPC::MOF_SExt | PPC::MOF_RPlusSImm16 | PPC::MOF_SubWordInt, PPC::MOF_SExt | PPC::MOF_RPlusLo | PPC::MOF_SubWordInt, PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_SubWordInt, PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubWordInt, // LFS, LFD, STFS, STFD PPC::MOF_RPlusSImm16 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, PPC::MOF_RPlusLo | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetBeforeP9, }; AddrModesMap[PPC::AM_DSForm] = { // LWA PPC::MOF_SExt | PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_WordInt, PPC::MOF_SExt | PPC::MOF_NotAddNorCst | PPC::MOF_WordInt, PPC::MOF_SExt | PPC::MOF_AddrIsSImm32 | PPC::MOF_WordInt, // LD, STD PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_DoubleWordInt, PPC::MOF_NotAddNorCst | PPC::MOF_DoubleWordInt, PPC::MOF_AddrIsSImm32 | PPC::MOF_DoubleWordInt, // DFLOADf32, DFLOADf64, DSTOREf32, DSTOREf64 PPC::MOF_RPlusSImm16Mult4 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, PPC::MOF_NotAddNorCst | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, PPC::MOF_AddrIsSImm32 | PPC::MOF_ScalarFloat | PPC::MOF_SubtargetP9, }; AddrModesMap[PPC::AM_DQForm] = { // LXV, STXV PPC::MOF_RPlusSImm16Mult16 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, PPC::MOF_NotAddNorCst | PPC::MOF_Vector | PPC::MOF_SubtargetP9, PPC::MOF_AddrIsSImm32 | PPC::MOF_Vector | PPC::MOF_SubtargetP9, }; AddrModesMap[PPC::AM_PrefixDForm] = {PPC::MOF_RPlusSImm34 | PPC::MOF_SubtargetP10}; // TODO: Add mapping for quadword load/store. } /// getMaxByValAlign - Helper for getByValTypeAlignment to determine /// the desired ByVal argument alignment. static void getMaxByValAlign(Type *Ty, Align &MaxAlign, Align MaxMaxAlign) { if (MaxAlign == MaxMaxAlign) return; if (VectorType *VTy = dyn_cast(Ty)) { if (MaxMaxAlign >= 32 && VTy->getPrimitiveSizeInBits().getFixedValue() >= 256) MaxAlign = Align(32); else if (VTy->getPrimitiveSizeInBits().getFixedValue() >= 128 && MaxAlign < 16) MaxAlign = Align(16); } else if (ArrayType *ATy = dyn_cast(Ty)) { Align EltAlign; getMaxByValAlign(ATy->getElementType(), EltAlign, MaxMaxAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; } else if (StructType *STy = dyn_cast(Ty)) { for (auto *EltTy : STy->elements()) { Align EltAlign; getMaxByValAlign(EltTy, EltAlign, MaxMaxAlign); if (EltAlign > MaxAlign) MaxAlign = EltAlign; if (MaxAlign == MaxMaxAlign) break; } } } /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate /// function arguments in the caller parameter area. uint64_t PPCTargetLowering::getByValTypeAlignment(Type *Ty, const DataLayout &DL) const { // 16byte and wider vectors are passed on 16byte boundary. // The rest is 8 on PPC64 and 4 on PPC32 boundary. Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); if (Subtarget.hasAltivec()) getMaxByValAlign(Ty, Alignment, Align(16)); return Alignment.value(); } bool PPCTargetLowering::useSoftFloat() const { return Subtarget.useSoftFloat(); } bool PPCTargetLowering::hasSPE() const { return Subtarget.hasSPE(); } bool PPCTargetLowering::preferIncOfAddToSubOfNot(EVT VT) const { return VT.isScalarInteger(); } bool PPCTargetLowering::shallExtractConstSplatVectorElementToStore( Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const { if (!Subtarget.isPPC64() || !Subtarget.hasVSX()) return false; if (auto *VTy = dyn_cast(VectorTy)) { if (VTy->getScalarType()->isIntegerTy()) { // ElemSizeInBits 8/16 can fit in immediate field, not needed here. if (ElemSizeInBits == 32) { Index = Subtarget.isLittleEndian() ? 2 : 1; return true; } if (ElemSizeInBits == 64) { Index = Subtarget.isLittleEndian() ? 1 : 0; return true; } } } return false; } const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const { switch ((PPCISD::NodeType)Opcode) { case PPCISD::FIRST_NUMBER: break; case PPCISD::FSEL: return "PPCISD::FSEL"; case PPCISD::XSMAXC: return "PPCISD::XSMAXC"; case PPCISD::XSMINC: return "PPCISD::XSMINC"; case PPCISD::FCFID: return "PPCISD::FCFID"; case PPCISD::FCFIDU: return "PPCISD::FCFIDU"; case PPCISD::FCFIDS: return "PPCISD::FCFIDS"; case PPCISD::FCFIDUS: return "PPCISD::FCFIDUS"; case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ"; case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ"; case PPCISD::FCTIDUZ: return "PPCISD::FCTIDUZ"; case PPCISD::FCTIWUZ: return "PPCISD::FCTIWUZ"; case PPCISD::FRE: return "PPCISD::FRE"; case PPCISD::FRSQRTE: return "PPCISD::FRSQRTE"; case PPCISD::FTSQRT: return "PPCISD::FTSQRT"; case PPCISD::FSQRT: return "PPCISD::FSQRT"; case PPCISD::STFIWX: return "PPCISD::STFIWX"; case PPCISD::VPERM: return "PPCISD::VPERM"; case PPCISD::XXSPLT: return "PPCISD::XXSPLT"; case PPCISD::XXSPLTI_SP_TO_DP: return "PPCISD::XXSPLTI_SP_TO_DP"; case PPCISD::XXSPLTI32DX: return "PPCISD::XXSPLTI32DX"; case PPCISD::VECINSERT: return "PPCISD::VECINSERT"; case PPCISD::XXPERMDI: return "PPCISD::XXPERMDI"; case PPCISD::XXPERM: return "PPCISD::XXPERM"; case PPCISD::VECSHL: return "PPCISD::VECSHL"; case PPCISD::CMPB: return "PPCISD::CMPB"; case PPCISD::Hi: return "PPCISD::Hi"; case PPCISD::Lo: return "PPCISD::Lo"; case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY"; case PPCISD::ATOMIC_CMP_SWAP_8: return "PPCISD::ATOMIC_CMP_SWAP_8"; case PPCISD::ATOMIC_CMP_SWAP_16: return "PPCISD::ATOMIC_CMP_SWAP_16"; case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC"; case PPCISD::DYNAREAOFFSET: return "PPCISD::DYNAREAOFFSET"; case PPCISD::PROBED_ALLOCA: return "PPCISD::PROBED_ALLOCA"; case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg"; case PPCISD::SRL: return "PPCISD::SRL"; case PPCISD::SRA: return "PPCISD::SRA"; case PPCISD::SHL: return "PPCISD::SHL"; case PPCISD::SRA_ADDZE: return "PPCISD::SRA_ADDZE"; case PPCISD::CALL: return "PPCISD::CALL"; case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP"; case PPCISD::CALL_NOTOC: return "PPCISD::CALL_NOTOC"; case PPCISD::CALL_RM: return "PPCISD::CALL_RM"; case PPCISD::CALL_NOP_RM: return "PPCISD::CALL_NOP_RM"; case PPCISD::CALL_NOTOC_RM: return "PPCISD::CALL_NOTOC_RM"; case PPCISD::MTCTR: return "PPCISD::MTCTR"; case PPCISD::BCTRL: return "PPCISD::BCTRL"; case PPCISD::BCTRL_LOAD_TOC: return "PPCISD::BCTRL_LOAD_TOC"; case PPCISD::BCTRL_RM: return "PPCISD::BCTRL_RM"; case PPCISD::BCTRL_LOAD_TOC_RM: return "PPCISD::BCTRL_LOAD_TOC_RM"; case PPCISD::RET_GLUE: return "PPCISD::RET_GLUE"; case PPCISD::READ_TIME_BASE: return "PPCISD::READ_TIME_BASE"; case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP"; case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP"; case PPCISD::MFOCRF: return "PPCISD::MFOCRF"; case PPCISD::MFVSR: return "PPCISD::MFVSR"; case PPCISD::MTVSRA: return "PPCISD::MTVSRA"; case PPCISD::MTVSRZ: return "PPCISD::MTVSRZ"; case PPCISD::SINT_VEC_TO_FP: return "PPCISD::SINT_VEC_TO_FP"; case PPCISD::UINT_VEC_TO_FP: return "PPCISD::UINT_VEC_TO_FP"; case PPCISD::SCALAR_TO_VECTOR_PERMUTED: return "PPCISD::SCALAR_TO_VECTOR_PERMUTED"; case PPCISD::ANDI_rec_1_EQ_BIT: return "PPCISD::ANDI_rec_1_EQ_BIT"; case PPCISD::ANDI_rec_1_GT_BIT: return "PPCISD::ANDI_rec_1_GT_BIT"; case PPCISD::VCMP: return "PPCISD::VCMP"; case PPCISD::VCMP_rec: return "PPCISD::VCMP_rec"; case PPCISD::LBRX: return "PPCISD::LBRX"; case PPCISD::STBRX: return "PPCISD::STBRX"; case PPCISD::LFIWAX: return "PPCISD::LFIWAX"; case PPCISD::LFIWZX: return "PPCISD::LFIWZX"; case PPCISD::LXSIZX: return "PPCISD::LXSIZX"; case PPCISD::STXSIX: return "PPCISD::STXSIX"; case PPCISD::VEXTS: return "PPCISD::VEXTS"; case PPCISD::LXVD2X: return "PPCISD::LXVD2X"; case PPCISD::STXVD2X: return "PPCISD::STXVD2X"; case PPCISD::LOAD_VEC_BE: return "PPCISD::LOAD_VEC_BE"; case PPCISD::STORE_VEC_BE: return "PPCISD::STORE_VEC_BE"; case PPCISD::ST_VSR_SCAL_INT: return "PPCISD::ST_VSR_SCAL_INT"; case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH"; case PPCISD::BDNZ: return "PPCISD::BDNZ"; case PPCISD::BDZ: return "PPCISD::BDZ"; case PPCISD::MFFS: return "PPCISD::MFFS"; case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ"; case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN"; case PPCISD::CR6SET: return "PPCISD::CR6SET"; case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET"; case PPCISD::PPC32_GOT: return "PPCISD::PPC32_GOT"; case PPCISD::PPC32_PICGOT: return "PPCISD::PPC32_PICGOT"; case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA"; case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L"; case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS"; case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA"; case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L"; case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR"; case PPCISD::GET_TLS_MOD_AIX: return "PPCISD::GET_TLS_MOD_AIX"; case PPCISD::GET_TPOINTER: return "PPCISD::GET_TPOINTER"; case PPCISD::ADDI_TLSGD_L_ADDR: return "PPCISD::ADDI_TLSGD_L_ADDR"; case PPCISD::TLSGD_AIX: return "PPCISD::TLSGD_AIX"; case PPCISD::TLSLD_AIX: return "PPCISD::TLSLD_AIX"; case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA"; case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L"; case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR"; case PPCISD::ADDI_TLSLD_L_ADDR: return "PPCISD::ADDI_TLSLD_L_ADDR"; case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA"; case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L"; case PPCISD::PADDI_DTPREL: return "PPCISD::PADDI_DTPREL"; case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT"; case PPCISD::SC: return "PPCISD::SC"; case PPCISD::CLRBHRB: return "PPCISD::CLRBHRB"; case PPCISD::MFBHRBE: return "PPCISD::MFBHRBE"; case PPCISD::RFEBB: return "PPCISD::RFEBB"; case PPCISD::XXSWAPD: return "PPCISD::XXSWAPD"; case PPCISD::SWAP_NO_CHAIN: return "PPCISD::SWAP_NO_CHAIN"; case PPCISD::BUILD_FP128: return "PPCISD::BUILD_FP128"; case PPCISD::BUILD_SPE64: return "PPCISD::BUILD_SPE64"; case PPCISD::EXTRACT_SPE: return "PPCISD::EXTRACT_SPE"; case PPCISD::EXTSWSLI: return "PPCISD::EXTSWSLI"; case PPCISD::LD_VSX_LH: return "PPCISD::LD_VSX_LH"; case PPCISD::FP_EXTEND_HALF: return "PPCISD::FP_EXTEND_HALF"; case PPCISD::MAT_PCREL_ADDR: return "PPCISD::MAT_PCREL_ADDR"; case PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR: return "PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR"; case PPCISD::TLS_LOCAL_EXEC_MAT_ADDR: return "PPCISD::TLS_LOCAL_EXEC_MAT_ADDR"; case PPCISD::ACC_BUILD: return "PPCISD::ACC_BUILD"; case PPCISD::PAIR_BUILD: return "PPCISD::PAIR_BUILD"; case PPCISD::EXTRACT_VSX_REG: return "PPCISD::EXTRACT_VSX_REG"; case PPCISD::XXMFACC: return "PPCISD::XXMFACC"; case PPCISD::LD_SPLAT: return "PPCISD::LD_SPLAT"; case PPCISD::ZEXT_LD_SPLAT: return "PPCISD::ZEXT_LD_SPLAT"; case PPCISD::SEXT_LD_SPLAT: return "PPCISD::SEXT_LD_SPLAT"; case PPCISD::FNMSUB: return "PPCISD::FNMSUB"; case PPCISD::STRICT_FADDRTZ: return "PPCISD::STRICT_FADDRTZ"; case PPCISD::STRICT_FCTIDZ: return "PPCISD::STRICT_FCTIDZ"; case PPCISD::STRICT_FCTIWZ: return "PPCISD::STRICT_FCTIWZ"; case PPCISD::STRICT_FCTIDUZ: return "PPCISD::STRICT_FCTIDUZ"; case PPCISD::STRICT_FCTIWUZ: return "PPCISD::STRICT_FCTIWUZ"; case PPCISD::STRICT_FCFID: return "PPCISD::STRICT_FCFID"; case PPCISD::STRICT_FCFIDU: return "PPCISD::STRICT_FCFIDU"; case PPCISD::STRICT_FCFIDS: return "PPCISD::STRICT_FCFIDS"; case PPCISD::STRICT_FCFIDUS: return "PPCISD::STRICT_FCFIDUS"; case PPCISD::LXVRZX: return "PPCISD::LXVRZX"; case PPCISD::STORE_COND: return "PPCISD::STORE_COND"; } return nullptr; } EVT PPCTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &C, EVT VT) const { if (!VT.isVector()) return Subtarget.useCRBits() ? MVT::i1 : MVT::i32; return VT.changeVectorElementTypeToInteger(); } bool PPCTargetLowering::enableAggressiveFMAFusion(EVT VT) const { assert(VT.isFloatingPoint() && "Non-floating-point FMA?"); return true; } //===----------------------------------------------------------------------===// // Node matching predicates, for use by the tblgen matching code. //===----------------------------------------------------------------------===// /// isFloatingPointZero - Return true if this is 0.0 or -0.0. static bool isFloatingPointZero(SDValue Op) { if (ConstantFPSDNode *CFP = dyn_cast(Op)) return CFP->getValueAPF().isZero(); else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { // Maybe this has already been legalized into the constant pool? if (ConstantPoolSDNode *CP = dyn_cast(Op.getOperand(1))) if (const ConstantFP *CFP = dyn_cast(CP->getConstVal())) return CFP->getValueAPF().isZero(); } return false; } /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return /// true if Op is undef or if it matches the specified value. static bool isConstantOrUndef(int Op, int Val) { return Op < 0 || Op == Val; } /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUHUM instruction. /// The ShuffleKind distinguishes between big-endian operations with /// two different inputs (0), either-endian operations with two identical /// inputs (1), and little-endian operations with two different inputs (2). /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG) { bool IsLE = DAG.getDataLayout().isLittleEndian(); if (ShuffleKind == 0) { if (IsLE) return false; for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+1)) return false; } else if (ShuffleKind == 2) { if (!IsLE) return false; for (unsigned i = 0; i != 16; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2)) return false; } else if (ShuffleKind == 1) { unsigned j = IsLE ? 0 : 1; for (unsigned i = 0; i != 8; ++i) if (!isConstantOrUndef(N->getMaskElt(i), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+j)) return false; } return true; } /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUWUM instruction. /// The ShuffleKind distinguishes between big-endian operations with /// two different inputs (0), either-endian operations with two identical /// inputs (1), and little-endian operations with two different inputs (2). /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG) { bool IsLE = DAG.getDataLayout().isLittleEndian(); if (ShuffleKind == 0) { if (IsLE) return false; for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+3)) return false; } else if (ShuffleKind == 2) { if (!IsLE) return false; for (unsigned i = 0; i != 16; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+1)) return false; } else if (ShuffleKind == 1) { unsigned j = IsLE ? 0 : 2; for (unsigned i = 0; i != 8; i += 2) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1)) return false; } return true; } /// isVPKUDUMShuffleMask - Return true if this is the shuffle mask for a /// VPKUDUM instruction, AND the VPKUDUM instruction exists for the /// current subtarget. /// /// The ShuffleKind distinguishes between big-endian operations with /// two different inputs (0), either-endian operations with two identical /// inputs (1), and little-endian operations with two different inputs (2). /// For the latter, the input operands are swapped (see PPCInstrAltivec.td). bool PPC::isVPKUDUMShuffleMask(ShuffleVectorSDNode *N, unsigned ShuffleKind, SelectionDAG &DAG) { const PPCSubtarget &Subtarget = DAG.getSubtarget(); if (!Subtarget.hasP8Vector()) return false; bool IsLE = DAG.getDataLayout().isLittleEndian(); if (ShuffleKind == 0) { if (IsLE) return false; for (unsigned i = 0; i != 16; i += 4) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+4) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+5) || !isConstantOrUndef(N->getMaskElt(i+2), i*2+6) || !isConstantOrUndef(N->getMaskElt(i+3), i*2+7)) return false; } else if (ShuffleKind == 2) { if (!IsLE) return false; for (unsigned i = 0; i != 16; i += 4) if (!isConstantOrUndef(N->getMaskElt(i ), i*2) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+1) || !isConstantOrUndef(N->getMaskElt(i+2), i*2+2) || !isConstantOrUndef(N->getMaskElt(i+3), i*2+3)) return false; } else if (ShuffleKind == 1) { unsigned j = IsLE ? 0 : 4; for (unsigned i = 0; i != 8; i += 4) if (!isConstantOrUndef(N->getMaskElt(i ), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+1), i*2+j+1) || !isConstantOrUndef(N->getMaskElt(i+2), i*2+j+2) || !isConstantOrUndef(N->getMaskElt(i+3), i*2+j+3) || !isConstantOrUndef(N->getMaskElt(i+8), i*2+j) || !isConstantOrUndef(N->getMaskElt(i+9), i*2+j+1) || !isConstantOrUndef(N->getMaskElt(i+10), i*2+j+2) || !isConstantOrUndef(N->getMaskElt(i+11), i*2+j+3)) return false; } return true; } /// isVMerge - Common function, used to match vmrg* shuffles. /// static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned LHSStart, unsigned RHSStart) { if (N->getValueType(0) != MVT::v16i8) return false; assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) && "Unsupported merge size!"); for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j), LHSStart+j+i*UnitSize) || !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j), RHSStart+j+i*UnitSize)) return false; } return true; } /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for /// a VMRGL* instruction with the specified unit size (1,2 or 4 bytes). /// The ShuffleKind distinguishes between big-endian merges with two /// different inputs (0), either-endian merges with two identical inputs (1), /// and little-endian merges with two different inputs (2). For the latter, /// the input operands are swapped (see PPCInstrAltivec.td). bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG) { if (DAG.getDataLayout().isLittleEndian()) { if (ShuffleKind == 1) // unary return isVMerge(N, UnitSize, 0, 0); else if (ShuffleKind == 2) // swapped return isVMerge(N, UnitSize, 0, 16); else return false; } else { if (ShuffleKind == 1) // unary return isVMerge(N, UnitSize, 8, 8); else if (ShuffleKind == 0) // normal return isVMerge(N, UnitSize, 8, 24); else return false; } } /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for /// a VMRGH* instruction with the specified unit size (1,2 or 4 bytes). /// The ShuffleKind distinguishes between big-endian merges with two /// different inputs (0), either-endian merges with two identical inputs (1), /// and little-endian merges with two different inputs (2). For the latter, /// the input operands are swapped (see PPCInstrAltivec.td). bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize, unsigned ShuffleKind, SelectionDAG &DAG) { if (DAG.getDataLayout().isLittleEndian()) { if (ShuffleKind == 1) // unary return isVMerge(N, UnitSize, 8, 8); else if (ShuffleKind == 2) // swapped return isVMerge(N, UnitSize, 8, 24); else return false; } else { if (ShuffleKind == 1) // unary return isVMerge(N, UnitSize, 0, 0); else if (ShuffleKind == 0) // normal return isVMerge(N, UnitSize, 0, 16); else return false; } } /** * Common function used to match vmrgew and vmrgow shuffles * * The indexOffset determines whether to look for even or odd words in * the shuffle mask. This is based on the of the endianness of the target * machine. * - Little Endian: * - Use offset of 0 to check for odd elements * - Use offset of 4 to check for even elements * - Big Endian: * - Use offset of 0 to check for even elements * - Use offset of 4 to check for odd elements * A detailed description of the vector element ordering for little endian and * big endian can be found at * http://www.ibm.com/developerworks/library/l-ibm-xl-c-cpp-compiler/index.html * Targeting your applications - what little endian and big endian IBM XL C/C++ * compiler differences mean to you * * The mask to the shuffle vector instruction specifies the indices of the * elements from the two input vectors to place in the result. The elements are * numbered in array-access order, starting with the first vector. These vectors * are always of type v16i8, thus each vector will contain 16 elements of size * 8. More info on the shuffle vector can be found in the * http://llvm.org/docs/LangRef.html#shufflevector-instruction * Language Reference. * * The RHSStartValue indicates whether the same input vectors are used (unary) * or two different input vectors are used, based on the following: * - If the instruction uses the same vector for both inputs, the range of the * indices will be 0 to 15. In this case, the RHSStart value passed should * be 0. * - If the instruction has two different vectors then the range of the * indices will be 0 to 31. In this case, the RHSStart value passed should * be 16 (indices 0-15 specify elements in the first vector while indices 16 * to 31 specify elements in the second vector). * * \param[in] N The shuffle vector SD Node to analyze * \param[in] IndexOffset Specifies whether to look for even or odd elements * \param[in] RHSStartValue Specifies the starting index for the righthand input * vector to the shuffle_vector instruction * \return true iff this shuffle vector represents an even or odd word merge */ static bool isVMerge(ShuffleVectorSDNode *N, unsigned IndexOffset, unsigned RHSStartValue) { if (N->getValueType(0) != MVT::v16i8) return false; for (unsigned i = 0; i < 2; ++i) for (unsigned j = 0; j < 4; ++j) if (!isConstantOrUndef(N->getMaskElt(i*4+j), i*RHSStartValue+j+IndexOffset) || !isConstantOrUndef(N->getMaskElt(i*4+j+8), i*RHSStartValue+j+IndexOffset+8)) return false; return true; } /** * Determine if the specified shuffle mask is suitable for the vmrgew or * vmrgow instructions. * * \param[in] N The shuffle vector SD Node to analyze * \param[in] CheckEven Check for an even merge (true) or an odd merge (false) * \param[in] ShuffleKind Identify the type of merge: * - 0 = big-endian merge with two different inputs; * - 1 = either-endian merge with two identical inputs; * - 2 = little-endian merge with two different inputs (inputs are swapped for * little-endian merges). * \param[in] DAG The current SelectionDAG * \return true iff this shuffle mask */ bool PPC::isVMRGEOShuffleMask(ShuffleVectorSDNode *N, bool CheckEven, unsigned ShuffleKind, SelectionDAG &DAG) { if (DAG.getDataLayout().isLittleEndian()) { unsigned indexOffset = CheckEven ? 4 : 0; if (ShuffleKind == 1) // Unary return isVMerge(N, indexOffset, 0); else if (ShuffleKind == 2) // swapped return isVMerge(N, indexOffset, 16); else return false; } else { unsigned indexOffset = CheckEven ? 0 : 4; if (ShuffleKind == 1) // Unary return isVMerge(N, indexOffset, 0); else if (ShuffleKind == 0) // Normal return isVMerge(N, indexOffset, 16); else return false; } return false; } /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift /// amount, otherwise return -1. /// The ShuffleKind distinguishes between big-endian operations with two /// different inputs (0), either-endian operations with two identical inputs /// (1), and little-endian operations with two different inputs (2). For the /// latter, the input operands are swapped (see PPCInstrAltivec.td). int PPC::isVSLDOIShuffleMask(SDNode *N, unsigned ShuffleKind, SelectionDAG &DAG) { if (N->getValueType(0) != MVT::v16i8) return -1; ShuffleVectorSDNode *SVOp = cast(N); // Find the first non-undef value in the shuffle mask. unsigned i; for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i) /*search*/; if (i == 16) return -1; // all undef. // Otherwise, check to see if the rest of the elements are consecutively // numbered from this value. unsigned ShiftAmt = SVOp->getMaskElt(i); if (ShiftAmt < i) return -1; ShiftAmt -= i; bool isLE = DAG.getDataLayout().isLittleEndian(); if ((ShuffleKind == 0 && !isLE) || (ShuffleKind == 2 && isLE)) { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i)) return -1; } else if (ShuffleKind == 1) { // Check the rest of the elements to see if they are consecutive. for (++i; i != 16; ++i) if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15)) return -1; } else return -1; if (isLE) ShiftAmt = 16 - ShiftAmt; return ShiftAmt; } /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand /// specifies a splat of a single element that is suitable for input to /// one of the splat operations (VSPLTB/VSPLTH/VSPLTW/XXSPLTW/LXVDSX/etc.). bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) { EVT VT = N->getValueType(0); if (VT == MVT::v2i64 || VT == MVT::v2f64) return EltSize == 8 && N->getMaskElt(0) == N->getMaskElt(1); assert(VT == MVT::v16i8 && isPowerOf2_32(EltSize) && EltSize <= 8 && "Can only handle 1,2,4,8 byte element sizes"); // The consecutive indices need to specify an element, not part of two // different elements. So abandon ship early if this isn't the case. if (N->getMaskElt(0) % EltSize != 0) return false; // This is a splat operation if each element of the permute is the same, and // if the value doesn't reference the second vector. unsigned ElementBase = N->getMaskElt(0); // FIXME: Handle UNDEF elements too! if (ElementBase >= 16) return false; // Check that the indices are consecutive, in the case of a multi-byte element // splatted with a v16i8 mask. for (unsigned i = 1; i != EltSize; ++i) if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase)) return false; for (unsigned i = EltSize, e = 16; i != e; i += EltSize) { if (N->getMaskElt(i) < 0) continue; for (unsigned j = 0; j != EltSize; ++j) if (N->getMaskElt(i+j) != N->getMaskElt(j)) return false; } return true; } /// Check that the mask is shuffling N byte elements. Within each N byte /// element of the mask, the indices could be either in increasing or /// decreasing order as long as they are consecutive. /// \param[in] N the shuffle vector SD Node to analyze /// \param[in] Width the element width in bytes, could be 2/4/8/16 (HalfWord/ /// Word/DoubleWord/QuadWord). /// \param[in] StepLen the delta indices number among the N byte element, if /// the mask is in increasing/decreasing order then it is 1/-1. /// \return true iff the mask is shuffling N byte elements. static bool isNByteElemShuffleMask(ShuffleVectorSDNode *N, unsigned Width, int StepLen) { assert((Width == 2 || Width == 4 || Width == 8 || Width == 16) && "Unexpected element width."); assert((StepLen == 1 || StepLen == -1) && "Unexpected element width."); unsigned NumOfElem = 16 / Width; unsigned MaskVal[16]; // Width is never greater than 16 for (unsigned i = 0; i < NumOfElem; ++i) { MaskVal[0] = N->getMaskElt(i * Width); if ((StepLen == 1) && (MaskVal[0] % Width)) { return false; } else if ((StepLen == -1) && ((MaskVal[0] + 1) % Width)) { return false; } for (unsigned int j = 1; j < Width; ++j) { MaskVal[j] = N->getMaskElt(i * Width + j); if (MaskVal[j] != MaskVal[j-1] + StepLen) { return false; } } } return true; } bool PPC::isXXINSERTWMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, unsigned &InsertAtByte, bool &Swap, bool IsLE) { if (!isNByteElemShuffleMask(N, 4, 1)) return false; // Now we look at mask elements 0,4,8,12 unsigned M0 = N->getMaskElt(0) / 4; unsigned M1 = N->getMaskElt(4) / 4; unsigned M2 = N->getMaskElt(8) / 4; unsigned M3 = N->getMaskElt(12) / 4; unsigned LittleEndianShifts[] = { 2, 1, 0, 3 }; unsigned BigEndianShifts[] = { 3, 0, 1, 2 }; // Below, let H and L be arbitrary elements of the shuffle mask // where H is in the range [4,7] and L is in the range [0,3]. // H, 1, 2, 3 or L, 5, 6, 7 if ((M0 > 3 && M1 == 1 && M2 == 2 && M3 == 3) || (M0 < 4 && M1 == 5 && M2 == 6 && M3 == 7)) { ShiftElts = IsLE ? LittleEndianShifts[M0 & 0x3] : BigEndianShifts[M0 & 0x3]; InsertAtByte = IsLE ? 12 : 0; Swap = M0 < 4; return true; } // 0, H, 2, 3 or 4, L, 6, 7 if ((M1 > 3 && M0 == 0 && M2 == 2 && M3 == 3) || (M1 < 4 && M0 == 4 && M2 == 6 && M3 == 7)) { ShiftElts = IsLE ? LittleEndianShifts[M1 & 0x3] : BigEndianShifts[M1 & 0x3]; InsertAtByte = IsLE ? 8 : 4; Swap = M1 < 4; return true; } // 0, 1, H, 3 or 4, 5, L, 7 if ((M2 > 3 && M0 == 0 && M1 == 1 && M3 == 3) || (M2 < 4 && M0 == 4 && M1 == 5 && M3 == 7)) { ShiftElts = IsLE ? LittleEndianShifts[M2 & 0x3] : BigEndianShifts[M2 & 0x3]; InsertAtByte = IsLE ? 4 : 8; Swap = M2 < 4; return true; } // 0, 1, 2, H or 4, 5, 6, L if ((M3 > 3 && M0 == 0 && M1 == 1 && M2 == 2) || (M3 < 4 && M0 == 4 && M1 == 5 && M2 == 6)) { ShiftElts = IsLE ? LittleEndianShifts[M3 & 0x3] : BigEndianShifts[M3 & 0x3]; InsertAtByte = IsLE ? 0 : 12; Swap = M3 < 4; return true; } // If both vector operands for the shuffle are the same vector, the mask will // contain only elements from the first one and the second one will be undef. if (N->getOperand(1).isUndef()) { ShiftElts = 0; Swap = true; unsigned XXINSERTWSrcElem = IsLE ? 2 : 1; if (M0 == XXINSERTWSrcElem && M1 == 1 && M2 == 2 && M3 == 3) { InsertAtByte = IsLE ? 12 : 0; return true; } if (M0 == 0 && M1 == XXINSERTWSrcElem && M2 == 2 && M3 == 3) { InsertAtByte = IsLE ? 8 : 4; return true; } if (M0 == 0 && M1 == 1 && M2 == XXINSERTWSrcElem && M3 == 3) { InsertAtByte = IsLE ? 4 : 8; return true; } if (M0 == 0 && M1 == 1 && M2 == 2 && M3 == XXINSERTWSrcElem) { InsertAtByte = IsLE ? 0 : 12; return true; } } return false; } bool PPC::isXXSLDWIShuffleMask(ShuffleVectorSDNode *N, unsigned &ShiftElts, bool &Swap, bool IsLE) { assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); // Ensure each byte index of the word is consecutive. if (!isNByteElemShuffleMask(N, 4, 1)) return false; // Now we look at mask elements 0,4,8,12, which are the beginning of words. unsigned M0 = N->getMaskElt(0) / 4; unsigned M1 = N->getMaskElt(4) / 4; unsigned M2 = N->getMaskElt(8) / 4; unsigned M3 = N->getMaskElt(12) / 4; // If both vector operands for the shuffle are the same vector, the mask will // contain only elements from the first one and the second one will be undef. if (N->getOperand(1).isUndef()) { assert(M0 < 4 && "Indexing into an undef vector?"); if (M1 != (M0 + 1) % 4 || M2 != (M1 + 1) % 4 || M3 != (M2 + 1) % 4) return false; ShiftElts = IsLE ? (4 - M0) % 4 : M0; Swap = false; return true; } // Ensure each word index of the ShuffleVector Mask is consecutive. if (M1 != (M0 + 1) % 8 || M2 != (M1 + 1) % 8 || M3 != (M2 + 1) % 8) return false; if (IsLE) { if (M0 == 0 || M0 == 7 || M0 == 6 || M0 == 5) { // Input vectors don't need to be swapped if the leading element // of the result is one of the 3 left elements of the second vector // (or if there is no shift to be done at all). Swap = false; ShiftElts = (8 - M0) % 8; } else if (M0 == 4 || M0 == 3 || M0 == 2 || M0 == 1) { // Input vectors need to be swapped if the leading element // of the result is one of the 3 left elements of the first vector // (or if we're shifting by 4 - thereby simply swapping the vectors). Swap = true; ShiftElts = (4 - M0) % 4; } return true; } else { // BE if (M0 == 0 || M0 == 1 || M0 == 2 || M0 == 3) { // Input vectors don't need to be swapped if the leading element // of the result is one of the 4 elements of the first vector. Swap = false; ShiftElts = M0; } else if (M0 == 4 || M0 == 5 || M0 == 6 || M0 == 7) { // Input vectors need to be swapped if the leading element // of the result is one of the 4 elements of the right vector. Swap = true; ShiftElts = M0 - 4; } return true; } } bool static isXXBRShuffleMaskHelper(ShuffleVectorSDNode *N, int Width) { assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); if (!isNByteElemShuffleMask(N, Width, -1)) return false; for (int i = 0; i < 16; i += Width) if (N->getMaskElt(i) != i + Width - 1) return false; return true; } bool PPC::isXXBRHShuffleMask(ShuffleVectorSDNode *N) { return isXXBRShuffleMaskHelper(N, 2); } bool PPC::isXXBRWShuffleMask(ShuffleVectorSDNode *N) { return isXXBRShuffleMaskHelper(N, 4); } bool PPC::isXXBRDShuffleMask(ShuffleVectorSDNode *N) { return isXXBRShuffleMaskHelper(N, 8); } bool PPC::isXXBRQShuffleMask(ShuffleVectorSDNode *N) { return isXXBRShuffleMaskHelper(N, 16); } /// Can node \p N be lowered to an XXPERMDI instruction? If so, set \p Swap /// if the inputs to the instruction should be swapped and set \p DM to the /// value for the immediate. /// Specifically, set \p Swap to true only if \p N can be lowered to XXPERMDI /// AND element 0 of the result comes from the first input (LE) or second input /// (BE). Set \p DM to the calculated result (0-3) only if \p N can be lowered. /// \return true iff the given mask of shuffle node \p N is a XXPERMDI shuffle /// mask. bool PPC::isXXPERMDIShuffleMask(ShuffleVectorSDNode *N, unsigned &DM, bool &Swap, bool IsLE) { assert(N->getValueType(0) == MVT::v16i8 && "Shuffle vector expects v16i8"); // Ensure each byte index of the double word is consecutive. if (!isNByteElemShuffleMask(N, 8, 1)) return false; unsigned M0 = N->getMaskElt(0) / 8; unsigned M1 = N->getMaskElt(8) / 8; assert(((M0 | M1) < 4) && "A mask element out of bounds?"); // If both vector operands for the shuffle are the same vector, the mask will // contain only elements from the first one and the second one will be undef. if (N->getOperand(1).isUndef()) { if ((M0 | M1) < 2) { DM = IsLE ? (((~M1) & 1) << 1) + ((~M0) & 1) : (M0 << 1) + (M1 & 1); Swap = false; return true; } else return false; } if (IsLE) { if (M0 > 1 && M1 < 2) { Swap = false; } else if (M0 < 2 && M1 > 1) { M0 = (M0 + 2) % 4; M1 = (M1 + 2) % 4; Swap = true; } else return false; // Note: if control flow comes here that means Swap is already set above DM = (((~M1) & 1) << 1) + ((~M0) & 1); return true; } else { // BE if (M0 < 2 && M1 > 1) { Swap = false; } else if (M0 > 1 && M1 < 2) { M0 = (M0 + 2) % 4; M1 = (M1 + 2) % 4; Swap = true; } else return false; // Note: if control flow comes here that means Swap is already set above DM = (M0 << 1) + (M1 & 1); return true; } } /// getSplatIdxForPPCMnemonics - Return the splat index as a value that is /// appropriate for PPC mnemonics (which have a big endian bias - namely /// elements are counted from the left of the vector register). unsigned PPC::getSplatIdxForPPCMnemonics(SDNode *N, unsigned EltSize, SelectionDAG &DAG) { ShuffleVectorSDNode *SVOp = cast(N); assert(isSplatShuffleMask(SVOp, EltSize)); EVT VT = SVOp->getValueType(0); if (VT == MVT::v2i64 || VT == MVT::v2f64) return DAG.getDataLayout().isLittleEndian() ? 1 - SVOp->getMaskElt(0) : SVOp->getMaskElt(0); if (DAG.getDataLayout().isLittleEndian()) return (16 / EltSize) - 1 - (SVOp->getMaskElt(0) / EltSize); else return SVOp->getMaskElt(0) / EltSize; } /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed /// by using a vspltis[bhw] instruction of the specified element size, return /// the constant being splatted. The ByteSize field indicates the number of /// bytes of each element [124] -> [bhw]. SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { SDValue OpVal; // If ByteSize of the splat is bigger than the element size of the // build_vector, then we have a case where we are checking for a splat where // multiple elements of the buildvector are folded together into a single // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8). unsigned EltSize = 16/N->getNumOperands(); if (EltSize < ByteSize) { unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval. SDValue UniquedVals[4]; assert(Multiple > 1 && Multiple <= 4 && "How can this happen?"); // See if all of the elements in the buildvector agree across. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).isUndef()) continue; // If the element isn't a constant, bail fully out. if (!isa(N->getOperand(i))) return SDValue(); if (!UniquedVals[i&(Multiple-1)].getNode()) UniquedVals[i&(Multiple-1)] = N->getOperand(i); else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i)) return SDValue(); // no match. } // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains // either constant or undef values that are identical for each chunk. See // if these chunks can form into a larger vspltis*. // Check to see if all of the leading entries are either 0 or -1. If // neither, then this won't fit into the immediate field. bool LeadingZero = true; bool LeadingOnes = true; for (unsigned i = 0; i != Multiple-1; ++i) { if (!UniquedVals[i].getNode()) continue; // Must have been undefs. LeadingZero &= isNullConstant(UniquedVals[i]); LeadingOnes &= isAllOnesConstant(UniquedVals[i]); } // Finally, check the least significant entry. if (LeadingZero) { if (!UniquedVals[Multiple-1].getNode()) return DAG.getTargetConstant(0, SDLoc(N), MVT::i32); // 0,0,0,undef int Val = UniquedVals[Multiple - 1]->getAsZExtVal(); if (Val < 16) // 0,0,0,4 -> vspltisw(4) return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); } if (LeadingOnes) { if (!UniquedVals[Multiple-1].getNode()) return DAG.getTargetConstant(~0U, SDLoc(N), MVT::i32); // -1,-1,-1,undef int Val =cast(UniquedVals[Multiple-1])->getSExtValue(); if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2) return DAG.getTargetConstant(Val, SDLoc(N), MVT::i32); } return SDValue(); } // Check to see if this buildvec has a single non-undef value in its elements. for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { if (N->getOperand(i).isUndef()) continue; if (!OpVal.getNode()) OpVal = N->getOperand(i); else if (OpVal != N->getOperand(i)) return SDValue(); } if (!OpVal.getNode()) return SDValue(); // All UNDEF: use implicit def. unsigned ValSizeInBytes = EltSize; uint64_t Value = 0; if (ConstantSDNode *CN = dyn_cast(OpVal)) { Value = CN->getZExtValue(); } else if (ConstantFPSDNode *CN = dyn_cast(OpVal)) { assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!"); Value = llvm::bit_cast(CN->getValueAPF().convertToFloat()); } // If the splat value is larger than the element value, then we can never do // this splat. The only case that we could fit the replicated bits into our // immediate field for would be zero, and we prefer to use vxor for it. if (ValSizeInBytes < ByteSize) return SDValue(); // If the element value is larger than the splat value, check if it consists // of a repeated bit pattern of size ByteSize. if (!APInt(ValSizeInBytes * 8, Value).isSplat(ByteSize * 8)) return SDValue(); // Properly sign extend the value. int MaskVal = SignExtend32(Value, ByteSize * 8); // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros. if (MaskVal == 0) return SDValue(); // Finally, if this value fits in a 5 bit sext field, return it if (SignExtend32<5>(MaskVal) == MaskVal) return DAG.getTargetConstant(MaskVal, SDLoc(N), MVT::i32); return SDValue(); } //===----------------------------------------------------------------------===// // Addressing Mode Selection //===----------------------------------------------------------------------===// /// isIntS16Immediate - This method tests to see if the node is either a 32-bit /// or 64-bit immediate, and if the value can be accurately represented as a /// sign extension from a 16-bit value. If so, this returns true and the /// immediate. bool llvm::isIntS16Immediate(SDNode *N, int16_t &Imm) { if (!isa(N)) return false; Imm = (int16_t)N->getAsZExtVal(); if (N->getValueType(0) == MVT::i32) return Imm == (int32_t)N->getAsZExtVal(); else return Imm == (int64_t)N->getAsZExtVal(); } bool llvm::isIntS16Immediate(SDValue Op, int16_t &Imm) { return isIntS16Immediate(Op.getNode(), Imm); } /// Used when computing address flags for selecting loads and stores. /// If we have an OR, check if the LHS and RHS are provably disjoint. /// An OR of two provably disjoint values is equivalent to an ADD. /// Most PPC load/store instructions compute the effective address as a sum, /// so doing this conversion is useful. static bool provablyDisjointOr(SelectionDAG &DAG, const SDValue &N) { if (N.getOpcode() != ISD::OR) return false; KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); if (!LHSKnown.Zero.getBoolValue()) return false; KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); return (~(LHSKnown.Zero | RHSKnown.Zero) == 0); } /// SelectAddressEVXRegReg - Given the specified address, check to see if it can /// be represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressEVXRegReg(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { for (SDNode *U : N->uses()) { if (MemSDNode *Memop = dyn_cast(U)) { if (Memop->getMemoryVT() == MVT::f64) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } /// isIntS34Immediate - This method tests if value of node given can be /// accurately represented as a sign extension from a 34-bit value. If so, /// this returns true and the immediate. bool llvm::isIntS34Immediate(SDNode *N, int64_t &Imm) { if (!isa(N)) return false; Imm = (int64_t)N->getAsZExtVal(); return isInt<34>(Imm); } bool llvm::isIntS34Immediate(SDValue Op, int64_t &Imm) { return isIntS34Immediate(Op.getNode(), Imm); } /// SelectAddressRegReg - Given the specified addressed, check to see if it /// can be represented as an indexed [r+r] operation. Returns false if it /// can be more efficiently represented as [r+imm]. If \p EncodingAlignment is /// non-zero and N can be represented by a base register plus a signed 16-bit /// displacement, make a more precise judgement by checking (displacement % \p /// EncodingAlignment). bool PPCTargetLowering::SelectAddressRegReg( SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const { // If we have a PC Relative target flag don't select as [reg+reg]. It will be // a [pc+imm]. if (SelectAddressPCRel(N, Base)) return false; int16_t Imm = 0; if (N.getOpcode() == ISD::ADD) { // Is there any SPE load/store (f64), which can't handle 16bit offset? // SPE load/store can only handle 8-bit offsets. if (hasSPE() && SelectAddressEVXRegReg(N, Base, Index, DAG)) return true; if (isIntS16Immediate(N.getOperand(1), Imm) && (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) return false; // r+i if (N.getOperand(1).getOpcode() == PPCISD::Lo) return false; // r+i Base = N.getOperand(0); Index = N.getOperand(1); return true; } else if (N.getOpcode() == ISD::OR) { if (isIntS16Immediate(N.getOperand(1), Imm) && (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) return false; // r+i can fold it if we can. // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are provably // disjoint. KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); if (LHSKnown.Zero.getBoolValue()) { KnownBits RHSKnown = DAG.computeKnownBits(N.getOperand(1)); // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if (~(LHSKnown.Zero | RHSKnown.Zero) == 0) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } } } return false; } // If we happen to be doing an i64 load or store into a stack slot that has // less than a 4-byte alignment, then the frame-index elimination may need to // use an indexed load or store instruction (because the offset may not be a // multiple of 4). The extra register needed to hold the offset comes from the // register scavenger, and it is possible that the scavenger will need to use // an emergency spill slot. As a result, we need to make sure that a spill slot // is allocated when doing an i64 load/store into a less-than-4-byte-aligned // stack slot. static void fixupFuncForFI(SelectionDAG &DAG, int FrameIdx, EVT VT) { // FIXME: This does not handle the LWA case. if (VT != MVT::i64) return; // NOTE: We'll exclude negative FIs here, which come from argument // lowering, because there are no known test cases triggering this problem // using packed structures (or similar). We can remove this exclusion if // we find such a test case. The reason why this is so test-case driven is // because this entire 'fixup' is only to prevent crashes (from the // register scavenger) on not-really-valid inputs. For example, if we have: // %a = alloca i1 // %b = bitcast i1* %a to i64* // store i64* a, i64 b // then the store should really be marked as 'align 1', but is not. If it // were marked as 'align 1' then the indexed form would have been // instruction-selected initially, and the problem this 'fixup' is preventing // won't happen regardless. if (FrameIdx < 0) return; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); if (MFI.getObjectAlign(FrameIdx) >= Align(4)) return; PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setHasNonRISpills(); } /// Returns true if the address N can be represented by a base register plus /// a signed 16-bit displacement [r+imm], and if it is not better /// represented as reg+reg. If \p EncodingAlignment is non-zero, only accept /// displacements that are multiples of that value. bool PPCTargetLowering::SelectAddressRegImm( SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign EncodingAlignment) const { // FIXME dl should come from parent load or store, not from address SDLoc dl(N); // If we have a PC Relative target flag don't select as [reg+imm]. It will be // a [pc+imm]. if (SelectAddressPCRel(N, Base)) return false; // If this can be more profitably realized as r+r, fail. if (SelectAddressRegReg(N, Disp, Base, DAG, EncodingAlignment)) return false; if (N.getOpcode() == ISD::ADD) { int16_t imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } return true; // [r+i] } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) { // Match LOAD (ADD (X, Lo(G))). assert(!N.getOperand(1).getConstantOperandVal(1) && "Cannot handle constant offsets yet!"); Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); return true; // [&g+r] } } else if (N.getOpcode() == ISD::OR) { int16_t imm = 0; if (isIntS16Immediate(N.getOperand(1), imm) && (!EncodingAlignment || isAligned(*EncodingAlignment, imm))) { // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); if ((LHSKnown.Zero.getZExtValue()|~(uint64_t)imm) == ~0ULL) { // If all of the bits are known zero on the LHS or RHS, the add won't // carry. if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else { Base = N.getOperand(0); } Disp = DAG.getTargetConstant(imm, dl, N.getValueType()); return true; } } } else if (ConstantSDNode *CN = dyn_cast(N)) { // Loading from a constant address. // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0" int16_t Imm; if (isIntS16Immediate(CN, Imm) && (!EncodingAlignment || isAligned(*EncodingAlignment, Imm))) { Disp = DAG.getTargetConstant(Imm, dl, CN->getValueType(0)); Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, CN->getValueType(0)); return true; } // Handle 32-bit sext immediates with LIS + addr mode. if ((CN->getValueType(0) == MVT::i32 || (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) && (!EncodingAlignment || isAligned(*EncodingAlignment, CN->getZExtValue()))) { int Addr = (int)CN->getZExtValue(); // Otherwise, break this down into an LIS + disp. Disp = DAG.getTargetConstant((short)Addr, dl, MVT::i32); Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, dl, MVT::i32); unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0); return true; } } Disp = DAG.getTargetConstant(0, dl, getPointerTy(DAG.getDataLayout())); if (FrameIndexSDNode *FI = dyn_cast(N)) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else Base = N; return true; // [r+0] } /// Similar to the 16-bit case but for instructions that take a 34-bit /// displacement field (prefixed loads/stores). bool PPCTargetLowering::SelectAddressRegImm34(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const { // Only on 64-bit targets. if (N.getValueType() != MVT::i64) return false; SDLoc dl(N); int64_t Imm = 0; if (N.getOpcode() == ISD::ADD) { if (!isIntS34Immediate(N.getOperand(1), Imm)) return false; Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N.getOperand(0); return true; } if (N.getOpcode() == ISD::OR) { if (!isIntS34Immediate(N.getOperand(1), Imm)) return false; // If this is an or of disjoint bitfields, we can codegen this as an add // (for better address arithmetic) if the LHS and RHS of the OR are // provably disjoint. KnownBits LHSKnown = DAG.computeKnownBits(N.getOperand(0)); if ((LHSKnown.Zero.getZExtValue() | ~(uint64_t)Imm) != ~0ULL) return false; if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N.getOperand(0); Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); return true; } if (isIntS34Immediate(N, Imm)) { // If the address is a 34-bit const. Disp = DAG.getTargetConstant(Imm, dl, N.getValueType()); Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); return true; } return false; } /// SelectAddressRegRegOnly - Given the specified addressed, force it to be /// represented as an indexed [r+r] operation. bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index, SelectionDAG &DAG) const { // Check to see if we can easily represent this as an [r+r] address. This // will fail if it thinks that the address is more profitably represented as // reg+imm, e.g. where imm = 0. if (SelectAddressRegReg(N, Base, Index, DAG)) return true; // If the address is the result of an add, we will utilize the fact that the // address calculation includes an implicit add. However, we can reduce // register pressure if we do not materialize a constant just for use as the // index register. We only get rid of the add if it is not an add of a // value and a 16-bit signed constant and both have a single use. int16_t imm = 0; if (N.getOpcode() == ISD::ADD && (!isIntS16Immediate(N.getOperand(1), imm) || !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { Base = N.getOperand(0); Index = N.getOperand(1); return true; } // Otherwise, do it the hard way, using R0 as the base register. Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, N.getValueType()); Index = N; return true; } template static bool isValidPCRelNode(SDValue N) { Ty *PCRelCand = dyn_cast(N); return PCRelCand && (PPCInstrInfo::hasPCRelFlag(PCRelCand->getTargetFlags())); } /// Returns true if this address is a PC Relative address. /// PC Relative addresses are marked with the flag PPCII::MO_PCREL_FLAG /// or if the node opcode is PPCISD::MAT_PCREL_ADDR. bool PPCTargetLowering::SelectAddressPCRel(SDValue N, SDValue &Base) const { // This is a materialize PC Relative node. Always select this as PC Relative. Base = N; if (N.getOpcode() == PPCISD::MAT_PCREL_ADDR) return true; if (isValidPCRelNode(N) || isValidPCRelNode(N) || isValidPCRelNode(N) || isValidPCRelNode(N)) return true; return false; } /// Returns true if we should use a direct load into vector instruction /// (such as lxsd or lfd), instead of a load into gpr + direct move sequence. static bool usePartialVectorLoads(SDNode *N, const PPCSubtarget& ST) { // If there are any other uses other than scalar to vector, then we should // keep it as a scalar load -> direct move pattern to prevent multiple // loads. LoadSDNode *LD = dyn_cast(N); if (!LD) return false; EVT MemVT = LD->getMemoryVT(); if (!MemVT.isSimple()) return false; switch(MemVT.getSimpleVT().SimpleTy) { case MVT::i64: break; case MVT::i32: if (!ST.hasP8Vector()) return false; break; case MVT::i16: case MVT::i8: if (!ST.hasP9Vector()) return false; break; default: return false; } SDValue LoadedVal(N, 0); if (!LoadedVal.hasOneUse()) return false; for (SDNode::use_iterator UI = LD->use_begin(), UE = LD->use_end(); UI != UE; ++UI) if (UI.getUse().get().getResNo() == 0 && UI->getOpcode() != ISD::SCALAR_TO_VECTOR && UI->getOpcode() != PPCISD::SCALAR_TO_VECTOR_PERMUTED) return false; return true; } /// getPreIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if the node's address /// can be legally represented as pre-indexed load / store address. bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { if (DisablePPCPreinc) return false; bool isLoad = true; SDValue Ptr; EVT VT; Align Alignment; if (LoadSDNode *LD = dyn_cast(N)) { Ptr = LD->getBasePtr(); VT = LD->getMemoryVT(); Alignment = LD->getAlign(); } else if (StoreSDNode *ST = dyn_cast(N)) { Ptr = ST->getBasePtr(); VT = ST->getMemoryVT(); Alignment = ST->getAlign(); isLoad = false; } else return false; // Do not generate pre-inc forms for specific loads that feed scalar_to_vector // instructions because we can fold these into a more efficient instruction // instead, (such as LXSD). if (isLoad && usePartialVectorLoads(N, Subtarget)) { return false; } // PowerPC doesn't have preinc load/store instructions for vectors if (VT.isVector()) return false; if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) { // Common code will reject creating a pre-inc form if the base pointer // is a frame index, or if N is a store and the base pointer is either // the same as or a predecessor of the value being stored. Check for // those situations here, and try with swapped Base/Offset instead. bool Swap = false; if (isa(Base) || isa(Base)) Swap = true; else if (!isLoad) { SDValue Val = cast(N)->getValue(); if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode())) Swap = true; } if (Swap) std::swap(Base, Offset); AM = ISD::PRE_INC; return true; } // LDU/STU can only handle immediates that are a multiple of 4. if (VT != MVT::i64) { if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, std::nullopt)) return false; } else { // LDU/STU need an address with at least 4-byte alignment. if (Alignment < Align(4)) return false; if (!SelectAddressRegImm(Ptr, Offset, Base, DAG, Align(4))) return false; } if (LoadSDNode *LD = dyn_cast(N)) { // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of // sext i32 to i64 when addr mode is r+i. if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 && LD->getExtensionType() == ISD::SEXTLOAD && isa(Offset)) return false; } AM = ISD::PRE_INC; return true; } //===----------------------------------------------------------------------===// // LowerOperation implementation //===----------------------------------------------------------------------===// /// Return true if we should reference labels using a PICBase, set the HiOpFlags /// and LoOpFlags to the target MO flags. static void getLabelAccessInfo(bool IsPIC, const PPCSubtarget &Subtarget, unsigned &HiOpFlags, unsigned &LoOpFlags, const GlobalValue *GV = nullptr) { HiOpFlags = PPCII::MO_HA; LoOpFlags = PPCII::MO_LO; // Don't use the pic base if not in PIC relocation model. if (IsPIC) { HiOpFlags = PPCII::MO_PIC_HA_FLAG; LoOpFlags = PPCII::MO_PIC_LO_FLAG; } } static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC, SelectionDAG &DAG) { SDLoc DL(HiPart); EVT PtrVT = HiPart.getValueType(); SDValue Zero = DAG.getConstant(0, DL, PtrVT); SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero); SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero); // With PIC, the first instruction is actually "GR+hi(&G)". if (isPIC) Hi = DAG.getNode(ISD::ADD, DL, PtrVT, DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi); // Generate non-pic code that has direct accesses to the constant pool. // The address of the global is just (hi(&g)+lo(&g)). return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo); } static void setUsesTOCBasePtr(MachineFunction &MF) { PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setUsesTOCBasePtr(); } static void setUsesTOCBasePtr(SelectionDAG &DAG) { setUsesTOCBasePtr(DAG.getMachineFunction()); } SDValue PPCTargetLowering::getTOCEntry(SelectionDAG &DAG, const SDLoc &dl, SDValue GA) const { const bool Is64Bit = Subtarget.isPPC64(); EVT VT = Is64Bit ? MVT::i64 : MVT::i32; SDValue Reg = Is64Bit ? DAG.getRegister(PPC::X2, VT) : Subtarget.isAIXABI() ? DAG.getRegister(PPC::R2, VT) : DAG.getNode(PPCISD::GlobalBaseReg, dl, VT); SDValue Ops[] = { GA, Reg }; return DAG.getMemIntrinsicNode( PPCISD::TOC_ENTRY, dl, DAG.getVTList(VT, MVT::Other), Ops, VT, MachinePointerInfo::getGOT(DAG.getMachineFunction()), std::nullopt, MachineMemOperand::MOLoad); } SDValue PPCTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); ConstantPoolSDNode *CP = cast(Op); const Constant *C = CP->getConstVal(); // 64-bit SVR4 ABI and AIX ABI code are always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { if (Subtarget.isUsingPCRelativeCalls()) { SDLoc DL(CP); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue ConstPool = DAG.getTargetConstantPool( C, Ty, CP->getAlign(), CP->getOffset(), PPCII::MO_PCREL_FLAG); return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, ConstPool); } setUsesTOCBasePtr(DAG); SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0); return getTOCEntry(DAG, SDLoc(CP), GA); } unsigned MOHiFlag, MOLoFlag; bool IsPIC = isPositionIndependent(); getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); if (IsPIC && Subtarget.isSVR4ABI()) { SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), PPCII::MO_PIC_FLAG); return getTOCEntry(DAG, SDLoc(CP), GA); } SDValue CPIHi = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOHiFlag); SDValue CPILo = DAG.getTargetConstantPool(C, PtrVT, CP->getAlign(), 0, MOLoFlag); return LowerLabelRef(CPIHi, CPILo, IsPIC, DAG); } // For 64-bit PowerPC, prefer the more compact relative encodings. // This trades 32 bits per jump table entry for one or two instructions // on the jump site. unsigned PPCTargetLowering::getJumpTableEncoding() const { if (isJumpTableRelative()) return MachineJumpTableInfo::EK_LabelDifference32; return TargetLowering::getJumpTableEncoding(); } bool PPCTargetLowering::isJumpTableRelative() const { if (UseAbsoluteJumpTables) return false; if (Subtarget.isPPC64() || Subtarget.isAIXABI()) return true; return TargetLowering::isJumpTableRelative(); } SDValue PPCTargetLowering::getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const { if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) return TargetLowering::getPICJumpTableRelocBase(Table, DAG); switch (getTargetMachine().getCodeModel()) { case CodeModel::Small: case CodeModel::Medium: return TargetLowering::getPICJumpTableRelocBase(Table, DAG); default: return DAG.getNode(PPCISD::GlobalBaseReg, SDLoc(), getPointerTy(DAG.getDataLayout())); } } const MCExpr * PPCTargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const { if (!Subtarget.isPPC64() || Subtarget.isAIXABI()) return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); switch (getTargetMachine().getCodeModel()) { case CodeModel::Small: case CodeModel::Medium: return TargetLowering::getPICJumpTableRelocBaseExpr(MF, JTI, Ctx); default: return MCSymbolRefExpr::create(MF->getPICBaseSymbol(), Ctx); } } SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); JumpTableSDNode *JT = cast(Op); // isUsingPCRelativeCalls() returns true when PCRelative is enabled if (Subtarget.isUsingPCRelativeCalls()) { SDLoc DL(JT); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), Ty, PPCII::MO_PCREL_FLAG); SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); return MatAddr; } // 64-bit SVR4 ABI and AIX ABI code are always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { setUsesTOCBasePtr(DAG); SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT); return getTOCEntry(DAG, SDLoc(JT), GA); } unsigned MOHiFlag, MOLoFlag; bool IsPIC = isPositionIndependent(); getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); if (IsPIC && Subtarget.isSVR4ABI()) { SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, PPCII::MO_PIC_FLAG); return getTOCEntry(DAG, SDLoc(GA), GA); } SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag); SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag); return LowerLabelRef(JTIHi, JTILo, IsPIC, DAG); } SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); BlockAddressSDNode *BASDN = cast(Op); const BlockAddress *BA = BASDN->getBlockAddress(); // isUsingPCRelativeCalls() returns true when PCRelative is enabled if (Subtarget.isUsingPCRelativeCalls()) { SDLoc DL(BASDN); EVT Ty = getPointerTy(DAG.getDataLayout()); SDValue GA = DAG.getTargetBlockAddress(BA, Ty, BASDN->getOffset(), PPCII::MO_PCREL_FLAG); SDValue MatAddr = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); return MatAddr; } // 64-bit SVR4 ABI and AIX ABI code are always position-independent. // The actual BlockAddress is stored in the TOC. if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { setUsesTOCBasePtr(DAG); SDValue GA = DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset()); return getTOCEntry(DAG, SDLoc(BASDN), GA); } // 32-bit position-independent ELF stores the BlockAddress in the .got. if (Subtarget.is32BitELFABI() && isPositionIndependent()) return getTOCEntry( DAG, SDLoc(BASDN), DAG.getTargetBlockAddress(BA, PtrVT, BASDN->getOffset())); unsigned MOHiFlag, MOLoFlag; bool IsPIC = isPositionIndependent(); getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag); SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag); SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag); return LowerLabelRef(TgtBAHi, TgtBALo, IsPIC, DAG); } SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { if (Subtarget.isAIXABI()) return LowerGlobalTLSAddressAIX(Op, DAG); return LowerGlobalTLSAddressLinux(Op, DAG); } /// updateForAIXShLibTLSModelOpt - Helper to initialize TLS model opt settings, /// and then apply the update. static void updateForAIXShLibTLSModelOpt(TLSModel::Model &Model, SelectionDAG &DAG, const TargetMachine &TM) { // Initialize TLS model opt setting lazily: // (1) Use initial-exec for single TLS var references within current function. // (2) Use local-dynamic for multiple TLS var references within current // function. PPCFunctionInfo *FuncInfo = DAG.getMachineFunction().getInfo(); if (!FuncInfo->isAIXFuncTLSModelOptInitDone()) { SmallPtrSet TLSGV; // Iterate over all instructions within current function, collect all TLS // global variables (global variables taken as the first parameter to // Intrinsic::threadlocal_address). const Function &Func = DAG.getMachineFunction().getFunction(); for (Function::const_iterator BI = Func.begin(), BE = Func.end(); BI != BE; ++BI) for (BasicBlock::const_iterator II = BI->begin(), IE = BI->end(); II != IE; ++II) if (II->getOpcode() == Instruction::Call) if (const CallInst *CI = dyn_cast(&*II)) if (Function *CF = CI->getCalledFunction()) if (CF->isDeclaration() && CF->getIntrinsicID() == Intrinsic::threadlocal_address) if (const GlobalValue *GV = dyn_cast(II->getOperand(0))) { TLSModel::Model GVModel = TM.getTLSModel(GV); if (GVModel == TLSModel::LocalDynamic) TLSGV.insert(GV); } unsigned TLSGVCnt = TLSGV.size(); LLVM_DEBUG(dbgs() << format("LocalDynamic TLSGV count:%d\n", TLSGVCnt)); if (TLSGVCnt <= PPCAIXTLSModelOptUseIEForLDLimit) FuncInfo->setAIXFuncUseTLSIEForLD(); FuncInfo->setAIXFuncTLSModelOptInitDone(); } if (FuncInfo->isAIXFuncUseTLSIEForLD()) { LLVM_DEBUG( dbgs() << DAG.getMachineFunction().getName() << " function is using the TLS-IE model for TLS-LD access.\n"); Model = TLSModel::InitialExec; } } SDValue PPCTargetLowering::LowerGlobalTLSAddressAIX(SDValue Op, SelectionDAG &DAG) const { GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) report_fatal_error("Emulated TLS is not yet supported on AIX"); SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); bool Is64Bit = Subtarget.isPPC64(); TLSModel::Model Model = getTargetMachine().getTLSModel(GV); // Apply update to the TLS model. if (Subtarget.hasAIXShLibTLSModelOpt()) updateForAIXShLibTLSModelOpt(Model, DAG, getTargetMachine()); bool IsTLSLocalExecModel = Model == TLSModel::LocalExec; if (IsTLSLocalExecModel || Model == TLSModel::InitialExec) { bool HasAIXSmallLocalExecTLS = Subtarget.hasAIXSmallLocalExecTLS(); bool HasAIXSmallTLSGlobalAttr = false; SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_FLAG); SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); SDValue TLSReg; if (const GlobalVariable *GVar = dyn_cast(GV)) if (GVar->hasAttribute("aix-small-tls")) HasAIXSmallTLSGlobalAttr = true; if (Is64Bit) { // For local-exec and initial-exec on AIX (64-bit), the sequence generated // involves a load of the variable offset (from the TOC), followed by an // add of the loaded variable offset to R13 (the thread pointer). // This code sequence looks like: // ld reg1,var[TC](2) // add reg2, reg1, r13 // r13 contains the thread pointer TLSReg = DAG.getRegister(PPC::X13, MVT::i64); // With the -maix-small-local-exec-tls option, or with the "aix-small-tls" // global variable attribute, produce a faster access sequence for // local-exec TLS variables where the offset from the TLS base is encoded // as an immediate operand. // // We only utilize the faster local-exec access sequence when the TLS // variable has a size within the policy limit. We treat types that are // not sized or are empty as being over the policy size limit. if ((HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr) && IsTLSLocalExecModel) { Type *GVType = GV->getValueType(); if (GVType->isSized() && !GVType->isEmptyTy() && GV->getDataLayout().getTypeAllocSize(GVType) <= AIXSmallTlsPolicySizeLimit) return DAG.getNode(PPCISD::Lo, dl, PtrVT, VariableOffsetTGA, TLSReg); } } else { // For local-exec and initial-exec on AIX (32-bit), the sequence generated // involves loading the variable offset from the TOC, generating a call to // .__get_tpointer to get the thread pointer (which will be in R3), and // adding the two together: // lwz reg1,var[TC](2) // bla .__get_tpointer // add reg2, reg1, r3 TLSReg = DAG.getNode(PPCISD::GET_TPOINTER, dl, PtrVT); // We do not implement the 32-bit version of the faster access sequence // for local-exec that is controlled by the -maix-small-local-exec-tls // option, or the "aix-small-tls" global variable attribute. if (HasAIXSmallLocalExecTLS || HasAIXSmallTLSGlobalAttr) report_fatal_error("The small-local-exec TLS access sequence is " "currently only supported on AIX (64-bit mode)."); } return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, VariableOffset); } if (Model == TLSModel::LocalDynamic) { bool HasAIXSmallLocalDynamicTLS = Subtarget.hasAIXSmallLocalDynamicTLS(); // We do not implement the 32-bit version of the faster access sequence // for local-dynamic that is controlled by -maix-small-local-dynamic-tls. if (!Is64Bit && HasAIXSmallLocalDynamicTLS) report_fatal_error("The small-local-dynamic TLS access sequence is " "currently only supported on AIX (64-bit mode)."); // For local-dynamic on AIX, we need to generate one TOC entry for each // variable offset, and a single module-handle TOC entry for the entire // file. SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSLD_FLAG); SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); Module *M = DAG.getMachineFunction().getFunction().getParent(); GlobalVariable *TLSGV = dyn_cast_or_null(M->getOrInsertGlobal( StringRef("_$TLSML"), PointerType::getUnqual(*DAG.getContext()))); TLSGV->setThreadLocalMode(GlobalVariable::LocalDynamicTLSModel); assert(TLSGV && "Not able to create GV for _$TLSML."); SDValue ModuleHandleTGA = DAG.getTargetGlobalAddress(TLSGV, dl, PtrVT, 0, PPCII::MO_TLSLDM_FLAG); SDValue ModuleHandleTOC = getTOCEntry(DAG, dl, ModuleHandleTGA); SDValue ModuleHandle = DAG.getNode(PPCISD::TLSLD_AIX, dl, PtrVT, ModuleHandleTOC); // With the -maix-small-local-dynamic-tls option, produce a faster access // sequence for local-dynamic TLS variables where the offset from the // module-handle is encoded as an immediate operand. // // We only utilize the faster local-dynamic access sequence when the TLS // variable has a size within the policy limit. We treat types that are // not sized or are empty as being over the policy size limit. if (HasAIXSmallLocalDynamicTLS) { Type *GVType = GV->getValueType(); if (GVType->isSized() && !GVType->isEmptyTy() && GV->getDataLayout().getTypeAllocSize(GVType) <= AIXSmallTlsPolicySizeLimit) return DAG.getNode(PPCISD::Lo, dl, PtrVT, VariableOffsetTGA, ModuleHandle); } return DAG.getNode(ISD::ADD, dl, PtrVT, ModuleHandle, VariableOffset); } // If Local- or Initial-exec or Local-dynamic is not possible or specified, // all GlobalTLSAddress nodes are lowered using the general-dynamic model. We // need to generate two TOC entries, one for the variable offset, one for the // region handle. The global address for the TOC entry of the region handle is // created with the MO_TLSGDM_FLAG flag and the global address for the TOC // entry of the variable offset is created with MO_TLSGD_FLAG. SDValue VariableOffsetTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGD_FLAG); SDValue RegionHandleTGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TLSGDM_FLAG); SDValue VariableOffset = getTOCEntry(DAG, dl, VariableOffsetTGA); SDValue RegionHandle = getTOCEntry(DAG, dl, RegionHandleTGA); return DAG.getNode(PPCISD::TLSGD_AIX, dl, PtrVT, VariableOffset, RegionHandle); } SDValue PPCTargetLowering::LowerGlobalTLSAddressLinux(SDValue Op, SelectionDAG &DAG) const { // FIXME: TLS addresses currently use medium model code sequences, // which is the most useful form. Eventually support for small and // large models could be added if users need it, at the cost of // additional complexity. GlobalAddressSDNode *GA = cast(Op); if (DAG.getTarget().useEmulatedTLS()) return LowerToTLSEmulatedModel(GA, DAG); SDLoc dl(GA); const GlobalValue *GV = GA->getGlobal(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); bool is64bit = Subtarget.isPPC64(); const Module *M = DAG.getMachineFunction().getFunction().getParent(); PICLevel::Level picLevel = M->getPICLevel(); const TargetMachine &TM = getTargetMachine(); TLSModel::Model Model = TM.getTLSModel(GV); if (Model == TLSModel::LocalExec) { if (Subtarget.isUsingPCRelativeCalls()) { SDValue TLSReg = DAG.getRegister(PPC::X13, MVT::i64); SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_PCREL_FLAG); SDValue MatAddr = DAG.getNode(PPCISD::TLS_LOCAL_EXEC_MAT_ADDR, dl, PtrVT, TGA); return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TLSReg, MatAddr); } SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_HA); SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_TPREL_LO); SDValue TLSReg = is64bit ? DAG.getRegister(PPC::X13, MVT::i64) : DAG.getRegister(PPC::R2, MVT::i32); SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg); return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi); } if (Model == TLSModel::InitialExec) { bool IsPCRel = Subtarget.isUsingPCRelativeCalls(); SDValue TGA = DAG.getTargetGlobalAddress( GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_GOT_TPREL_PCREL_FLAG : 0); SDValue TGATLS = DAG.getTargetGlobalAddress( GV, dl, PtrVT, 0, IsPCRel ? PPCII::MO_TLS_PCREL_FLAG : PPCII::MO_TLS); SDValue TPOffset; if (IsPCRel) { SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, dl, PtrVT, TGA); TPOffset = DAG.getLoad(MVT::i64, dl, DAG.getEntryNode(), MatPCRel, MachinePointerInfo()); } else { SDValue GOTPtr; if (is64bit) { setUsesTOCBasePtr(DAG); SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); GOTPtr = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl, PtrVT, GOTReg, TGA); } else { if (!TM.isPositionIndependent()) GOTPtr = DAG.getNode(PPCISD::PPC32_GOT, dl, PtrVT); else if (picLevel == PICLevel::SmallPIC) GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); else GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); } TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl, PtrVT, TGA, GOTPtr); } return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGATLS); } if (Model == TLSModel::GeneralDynamic) { if (Subtarget.isUsingPCRelativeCalls()) { SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_GOT_TLSGD_PCREL_FLAG); return DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); } SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); SDValue GOTPtr; if (is64bit) { setUsesTOCBasePtr(DAG); SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT, GOTReg, TGA); } else { if (picLevel == PICLevel::SmallPIC) GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); else GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); } return DAG.getNode(PPCISD::ADDI_TLSGD_L_ADDR, dl, PtrVT, GOTPtr, TGA, TGA); } if (Model == TLSModel::LocalDynamic) { if (Subtarget.isUsingPCRelativeCalls()) { SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, PPCII::MO_GOT_TLSLD_PCREL_FLAG); SDValue MatPCRel = DAG.getNode(PPCISD::TLS_DYNAMIC_MAT_PCREL_ADDR, dl, PtrVT, TGA); return DAG.getNode(PPCISD::PADDI_DTPREL, dl, PtrVT, MatPCRel, TGA); } SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0); SDValue GOTPtr; if (is64bit) { setUsesTOCBasePtr(DAG); SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64); GOTPtr = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT, GOTReg, TGA); } else { if (picLevel == PICLevel::SmallPIC) GOTPtr = DAG.getNode(PPCISD::GlobalBaseReg, dl, PtrVT); else GOTPtr = DAG.getNode(PPCISD::PPC32_PICGOT, dl, PtrVT); } SDValue TLSAddr = DAG.getNode(PPCISD::ADDI_TLSLD_L_ADDR, dl, PtrVT, GOTPtr, TGA, TGA); SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT, TLSAddr, TGA); return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA); } llvm_unreachable("Unknown TLS model!"); } SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const { EVT PtrVT = Op.getValueType(); GlobalAddressSDNode *GSDN = cast(Op); SDLoc DL(GSDN); const GlobalValue *GV = GSDN->getGlobal(); // 64-bit SVR4 ABI & AIX ABI code is always position-independent. // The actual address of the GlobalValue is stored in the TOC. if (Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) { if (Subtarget.isUsingPCRelativeCalls()) { EVT Ty = getPointerTy(DAG.getDataLayout()); if (isAccessedAsGotIndirect(Op)) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), PPCII::MO_GOT_PCREL_FLAG); SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); SDValue Load = DAG.getLoad(MVT::i64, DL, DAG.getEntryNode(), MatPCRel, MachinePointerInfo()); return Load; } else { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, Ty, GSDN->getOffset(), PPCII::MO_PCREL_FLAG); return DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, Ty, GA); } } setUsesTOCBasePtr(DAG); SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset()); return getTOCEntry(DAG, DL, GA); } unsigned MOHiFlag, MOLoFlag; bool IsPIC = isPositionIndependent(); getLabelAccessInfo(IsPIC, Subtarget, MOHiFlag, MOLoFlag, GV); if (IsPIC && Subtarget.isSVR4ABI()) { SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), PPCII::MO_PIC_FLAG); return getTOCEntry(DAG, DL, GA); } SDValue GAHi = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag); SDValue GALo = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag); return LowerLabelRef(GAHi, GALo, IsPIC, DAG); } SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); ISD::CondCode CC = cast(Op.getOperand(IsStrict ? 3 : 2))->get(); SDValue LHS = Op.getOperand(IsStrict ? 1 : 0); SDValue RHS = Op.getOperand(IsStrict ? 2 : 1); SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); EVT LHSVT = LHS.getValueType(); SDLoc dl(Op); // Soften the setcc with libcall if it is fp128. if (LHSVT == MVT::f128) { assert(!Subtarget.hasP9Vector() && "SETCC for f128 is already legal under Power9!"); softenSetCCOperands(DAG, LHSVT, LHS, RHS, CC, dl, LHS, RHS, Chain, Op->getOpcode() == ISD::STRICT_FSETCCS); if (RHS.getNode()) LHS = DAG.getNode(ISD::SETCC, dl, Op.getValueType(), LHS, RHS, DAG.getCondCode(CC)); if (IsStrict) return DAG.getMergeValues({LHS, Chain}, dl); return LHS; } assert(!IsStrict && "Don't know how to handle STRICT_FSETCC!"); if (Op.getValueType() == MVT::v2i64) { // When the operands themselves are v2i64 values, we need to do something // special because VSX has no underlying comparison operations for these. if (LHS.getValueType() == MVT::v2i64) { // Equality can be handled by casting to the legal type for Altivec // comparisons, everything else needs to be expanded. if (CC != ISD::SETEQ && CC != ISD::SETNE) return SDValue(); SDValue SetCC32 = DAG.getSetCC( dl, MVT::v4i32, DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, LHS), DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, RHS), CC); int ShuffV[] = {1, 0, 3, 2}; SDValue Shuff = DAG.getVectorShuffle(MVT::v4i32, dl, SetCC32, SetCC32, ShuffV); return DAG.getBitcast(MVT::v2i64, DAG.getNode(CC == ISD::SETEQ ? ISD::AND : ISD::OR, dl, MVT::v4i32, Shuff, SetCC32)); } // We handle most of these in the usual way. return Op; } // If we're comparing for equality to zero, expose the fact that this is // implemented as a ctlz/srl pair on ppc, so that the dag combiner can // fold the new nodes. if (SDValue V = lowerCmpEqZeroToCtlzSrl(Op, DAG)) return V; if (ConstantSDNode *C = dyn_cast(RHS)) { // Leave comparisons against 0 and -1 alone for now, since they're usually // optimized. FIXME: revisit this when we can custom lower all setcc // optimizations. if (C->isAllOnes() || C->isZero()) return SDValue(); } // If we have an integer seteq/setne, turn it into a compare against zero // by xor'ing the rhs with the lhs, which is faster than setting a // condition register, reading it back out, and masking the correct bit. The // normal approach here uses sub to do this instead of xor. Using xor exposes // the result to other bit-twiddling opportunities. if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) { EVT VT = Op.getValueType(); SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, LHS, RHS); return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, dl, LHSVT), CC); } return SDValue(); } SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); EVT VT = Node->getValueType(0); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue InChain = Node->getOperand(0); SDValue VAListPtr = Node->getOperand(1); const Value *SV = cast(Node->getOperand(2))->getValue(); SDLoc dl(Node); assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only"); // gpr_index SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, VAListPtr, MachinePointerInfo(SV), MVT::i8); InChain = GprIndex.getValue(1); if (VT == MVT::i64) { // Check if GprIndex is even SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex, DAG.getConstant(1, dl, MVT::i32)); SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd, DAG.getConstant(0, dl, MVT::i32), ISD::SETNE); SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex, DAG.getConstant(1, dl, MVT::i32)); // Align GprIndex to be even if it isn't GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne, GprIndex); } // fpr index is 1 byte after gpr SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(1, dl, MVT::i32)); // fpr SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain, FprPtr, MachinePointerInfo(SV), MVT::i8); InChain = FprIndex.getValue(1); SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(8, dl, MVT::i32)); SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr, DAG.getConstant(4, dl, MVT::i32)); // areas SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr, MachinePointerInfo()); InChain = OverflowArea.getValue(1); SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr, MachinePointerInfo()); InChain = RegSaveArea.getValue(1); // select overflow_area if index > 8 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(8, dl, MVT::i32), ISD::SETLT); // adjustment constant gpr_index * 4/8 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(VT.isInteger() ? 4 : 8, dl, MVT::i32)); // OurReg = RegSaveArea + RegConstant SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea, RegConstant); // Floating types are 32 bytes into RegSaveArea if (VT.isFloatingPoint()) OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg, DAG.getConstant(32, dl, MVT::i32)); // increase {f,g}pr_index by 1 (or 2 if VT is i64) SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex, DAG.getConstant(VT == MVT::i64 ? 2 : 1, dl, MVT::i32)); InChain = DAG.getTruncStore(InChain, dl, IndexPlus1, VT.isInteger() ? VAListPtr : FprPtr, MachinePointerInfo(SV), MVT::i8); // determine if we should load from reg_save_area or overflow_area SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea); // increase overflow_area by 4/8 if gpr/fpr > 8 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea, DAG.getConstant(VT.isInteger() ? 4 : 8, dl, MVT::i32)); OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea, OverflowAreaPlusN); InChain = DAG.getTruncStore(InChain, dl, OverflowArea, OverflowAreaPtr, MachinePointerInfo(), MVT::i32); return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo()); } SDValue PPCTargetLowering::LowerVACOPY(SDValue Op, SelectionDAG &DAG) const { assert(!Subtarget.isPPC64() && "LowerVACOPY is PPC32 only"); // We have to copy the entire va_list struct: // 2*sizeof(char) + 2 Byte alignment + 2*sizeof(char*) = 12 Byte return DAG.getMemcpy(Op.getOperand(0), Op, Op.getOperand(1), Op.getOperand(2), DAG.getConstant(12, SDLoc(Op), MVT::i32), Align(8), false, true, /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo()); } SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { if (Subtarget.isAIXABI()) report_fatal_error("ADJUST_TRAMPOLINE operation is not supported on AIX."); return Op.getOperand(0); } SDValue PPCTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); PPCFunctionInfo &MFI = *MF.getInfo(); assert((Op.getOpcode() == ISD::INLINEASM || Op.getOpcode() == ISD::INLINEASM_BR) && "Expecting Inline ASM node."); // If an LR store is already known to be required then there is not point in // checking this ASM as well. if (MFI.isLRStoreRequired()) return Op; // Inline ASM nodes have an optional last operand that is an incoming Flag of // type MVT::Glue. We want to ignore this last operand if that is the case. unsigned NumOps = Op.getNumOperands(); if (Op.getOperand(NumOps - 1).getValueType() == MVT::Glue) --NumOps; // Check all operands that may contain the LR. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { const InlineAsm::Flag Flags(Op.getConstantOperandVal(i)); unsigned NumVals = Flags.getNumOperandRegisters(); ++i; // Skip the ID value. switch (Flags.getKind()) { default: llvm_unreachable("Bad flags!"); case InlineAsm::Kind::RegUse: case InlineAsm::Kind::Imm: case InlineAsm::Kind::Mem: i += NumVals; break; case InlineAsm::Kind::Clobber: case InlineAsm::Kind::RegDef: case InlineAsm::Kind::RegDefEarlyClobber: { for (; NumVals; --NumVals, ++i) { Register Reg = cast(Op.getOperand(i))->getReg(); if (Reg != PPC::LR && Reg != PPC::LR8) continue; MFI.setLRStoreRequired(); return Op; } break; } } } return Op; } SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const { if (Subtarget.isAIXABI()) report_fatal_error("INIT_TRAMPOLINE operation is not supported on AIX."); SDValue Chain = Op.getOperand(0); SDValue Trmp = Op.getOperand(1); // trampoline SDValue FPtr = Op.getOperand(2); // nested function SDValue Nest = Op.getOperand(3); // 'nest' parameter value SDLoc dl(Op); EVT PtrVT = getPointerTy(DAG.getDataLayout()); bool isPPC64 = (PtrVT == MVT::i64); Type *IntPtrTy = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; Entry.Ty = IntPtrTy; Entry.Node = Trmp; Args.push_back(Entry); // TrampSize == (isPPC64 ? 48 : 40); Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40, dl, isPPC64 ? MVT::i64 : MVT::i32); Args.push_back(Entry); Entry.Node = FPtr; Args.push_back(Entry); Entry.Node = Nest; Args.push_back(Entry); // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg) TargetLowering::CallLoweringInfo CLI(DAG); CLI.setDebugLoc(dl).setChain(Chain).setLibCallee( CallingConv::C, Type::getVoidTy(*DAG.getContext()), DAG.getExternalSymbol("__trampoline_setup", PtrVT), std::move(Args)); std::pair CallResult = LowerCallTo(CLI); return CallResult.second; } SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); PPCFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = getPointerTy(MF.getDataLayout()); SDLoc dl(Op); if (Subtarget.isPPC64() || Subtarget.isAIXABI()) { // vastart just stores the address of the VarArgsFrameIndex slot into the // memory location argument. SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), MachinePointerInfo(SV)); } // For the 32-bit SVR4 ABI we follow the layout of the va_list struct. // We suppose the given va_list is already allocated. // // typedef struct { // char gpr; /* index into the array of 8 GPRs // * stored in the register save area // * gpr=0 corresponds to r3, // * gpr=1 to r4, etc. // */ // char fpr; /* index into the array of 8 FPRs // * stored in the register save area // * fpr=0 corresponds to f1, // * fpr=1 to f2, etc. // */ // char *overflow_arg_area; // /* location on stack that holds // * the next overflow argument // */ // char *reg_save_area; // /* where r3:r10 and f1:f8 (if saved) // * are stored // */ // } va_list[1]; SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), dl, MVT::i32); SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), dl, MVT::i32); SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(), PtrVT); SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); uint64_t FrameOffset = PtrVT.getSizeInBits()/8; SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, dl, PtrVT); uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1; SDValue ConstStackOffset = DAG.getConstant(StackOffset, dl, PtrVT); uint64_t FPROffset = 1; SDValue ConstFPROffset = DAG.getConstant(FPROffset, dl, PtrVT); const Value *SV = cast(Op.getOperand(2))->getValue(); // Store first byte : number of int regs SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR, Op.getOperand(1), MachinePointerInfo(SV), MVT::i8); uint64_t nextOffset = FPROffset; SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1), ConstFPROffset); // Store second byte : number of float regs SDValue secondStore = DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr, MachinePointerInfo(SV, nextOffset), MVT::i8); nextOffset += StackOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset); // Store second word : arguments given on stack SDValue thirdStore = DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr, MachinePointerInfo(SV, nextOffset)); nextOffset += FrameOffset; nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset); // Store third word : arguments given in registers return DAG.getStore(thirdStore, dl, FR, nextPtr, MachinePointerInfo(SV, nextOffset)); } /// FPR - The set of FP registers that should be allocated for arguments /// on Darwin and AIX. static const MCPhysReg FPR[] = {PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13}; /// CalculateStackSlotSize - Calculates the size reserved for this argument on /// the stack. static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize) { unsigned ArgSize = ArgVT.getStoreSize(); if (Flags.isByVal()) ArgSize = Flags.getByValSize(); // Round up to multiples of the pointer size, except for array members, // which are always packed. if (!Flags.isInConsecutiveRegs()) ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; return ArgSize; } /// CalculateStackSlotAlignment - Calculates the alignment of this argument /// on the stack. static Align CalculateStackSlotAlignment(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize) { Align Alignment(PtrByteSize); // Altivec parameters are padded to a 16 byte boundary. if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || ArgVT == MVT::v1i128 || ArgVT == MVT::f128) Alignment = Align(16); // ByVal parameters are aligned as requested. if (Flags.isByVal()) { auto BVAlign = Flags.getNonZeroByValAlign(); if (BVAlign > PtrByteSize) { if (BVAlign.value() % PtrByteSize != 0) llvm_unreachable( "ByVal alignment is not a multiple of the pointer size"); Alignment = BVAlign; } } // Array members are always packed to their original alignment. if (Flags.isInConsecutiveRegs()) { // If the array member was split into multiple registers, the first // needs to be aligned to the size of the full type. (Except for // ppcf128, which is only aligned as its f64 components.) if (Flags.isSplit() && OrigVT != MVT::ppcf128) Alignment = Align(OrigVT.getStoreSize()); else Alignment = Align(ArgVT.getStoreSize()); } return Alignment; } /// CalculateStackSlotUsed - Return whether this argument will use its /// stack slot (instead of being passed in registers). ArgOffset, /// AvailableFPRs, and AvailableVRs must hold the current argument /// position, and will be updated to account for this argument. static bool CalculateStackSlotUsed(EVT ArgVT, EVT OrigVT, ISD::ArgFlagsTy Flags, unsigned PtrByteSize, unsigned LinkageSize, unsigned ParamAreaSize, unsigned &ArgOffset, unsigned &AvailableFPRs, unsigned &AvailableVRs) { bool UseMemory = false; // Respect alignment of argument on the stack. Align Alignment = CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); ArgOffset = alignTo(ArgOffset, Alignment); // If there's no space left in the argument save area, we must // use memory (this check also catches zero-sized arguments). if (ArgOffset >= LinkageSize + ParamAreaSize) UseMemory = true; // Allocate argument on the stack. ArgOffset += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); if (Flags.isInConsecutiveRegsLast()) ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // If we overran the argument save area, we must use memory // (this check catches arguments passed partially in memory) if (ArgOffset > LinkageSize + ParamAreaSize) UseMemory = true; // However, if the argument is actually passed in an FPR or a VR, // we don't use memory after all. if (!Flags.isByVal()) { if (ArgVT == MVT::f32 || ArgVT == MVT::f64) if (AvailableFPRs > 0) { --AvailableFPRs; return false; } if (ArgVT == MVT::v4f32 || ArgVT == MVT::v4i32 || ArgVT == MVT::v8i16 || ArgVT == MVT::v16i8 || ArgVT == MVT::v2f64 || ArgVT == MVT::v2i64 || ArgVT == MVT::v1i128 || ArgVT == MVT::f128) if (AvailableVRs > 0) { --AvailableVRs; return false; } } return UseMemory; } /// EnsureStackAlignment - Round stack frame size up from NumBytes to /// ensure minimum alignment required for target. static unsigned EnsureStackAlignment(const PPCFrameLowering *Lowering, unsigned NumBytes) { return alignTo(NumBytes, Lowering->getStackAlign()); } SDValue PPCTargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { if (Subtarget.isAIXABI()) return LowerFormalArguments_AIX(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); if (Subtarget.is64BitELFABI()) return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); assert(Subtarget.is32BitELFABI()); return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals); } SDValue PPCTargetLowering::LowerFormalArguments_32SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // 32-bit SVR4 ABI Stack Frame Layout: // +-----------------------------------+ // +--> | Back chain | // | +-----------------------------------+ // | | Floating-point register save area | // | +-----------------------------------+ // | | General register save area | // | +-----------------------------------+ // | | CR save word | // | +-----------------------------------+ // | | VRSAVE save word | // | +-----------------------------------+ // | | Alignment padding | // | +-----------------------------------+ // | | Vector register save area | // | +-----------------------------------+ // | | Local variable space | // | +-----------------------------------+ // | | Parameter list area | // | +-----------------------------------+ // | | LR save word | // | +-----------------------------------+ // SP--> +--- | Back chain | // +-----------------------------------+ // // Specifications: // System V Application Binary Interface PowerPC Processor Supplement // AltiVec Technology Programming Interface Manual MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo(); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); const Align PtrAlign(4); // Assign locations to all of the incoming arguments. SmallVector ArgLocs; PPCCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); CCInfo.AllocateStack(LinkageSize, PtrAlign); if (useSoftFloat()) CCInfo.PreAnalyzeFormalArguments(Ins); CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4); CCInfo.clearWasPPCF128(); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; // Arguments stored in registers. if (VA.isRegLoc()) { const TargetRegisterClass *RC; EVT ValVT = VA.getValVT(); switch (ValVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("ValVT not supported by formal arguments Lowering"); case MVT::i1: case MVT::i32: RC = &PPC::GPRCRegClass; break; case MVT::f32: if (Subtarget.hasP8Vector()) RC = &PPC::VSSRCRegClass; else if (Subtarget.hasSPE()) RC = &PPC::GPRCRegClass; else RC = &PPC::F4RCRegClass; break; case MVT::f64: if (Subtarget.hasVSX()) RC = &PPC::VSFRCRegClass; else if (Subtarget.hasSPE()) // SPE passes doubles in GPR pairs. RC = &PPC::GPRCRegClass; else RC = &PPC::F8RCRegClass; break; case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: RC = &PPC::VRRCRegClass; break; case MVT::v4f32: RC = &PPC::VRRCRegClass; break; case MVT::v2f64: case MVT::v2i64: RC = &PPC::VRRCRegClass; break; } SDValue ArgValue; // Transform the arguments stored in physical registers into // virtual ones. if (VA.getLocVT() == MVT::f64 && Subtarget.hasSPE()) { assert(i + 1 < e && "No second half of double precision argument"); Register RegLo = MF.addLiveIn(VA.getLocReg(), RC); Register RegHi = MF.addLiveIn(ArgLocs[++i].getLocReg(), RC); SDValue ArgValueLo = DAG.getCopyFromReg(Chain, dl, RegLo, MVT::i32); SDValue ArgValueHi = DAG.getCopyFromReg(Chain, dl, RegHi, MVT::i32); if (!Subtarget.isLittleEndian()) std::swap (ArgValueLo, ArgValueHi); ArgValue = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, ArgValueLo, ArgValueHi); } else { Register Reg = MF.addLiveIn(VA.getLocReg(), RC); ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT == MVT::i1 ? MVT::i32 : ValVT); if (ValVT == MVT::i1) ArgValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, ArgValue); } InVals.push_back(ArgValue); } else { // Argument stored in memory. assert(VA.isMemLoc()); // Get the extended size of the argument type in stack unsigned ArgSize = VA.getLocVT().getStoreSize(); // Get the actual size of the argument type unsigned ObjSize = VA.getValVT().getStoreSize(); unsigned ArgOffset = VA.getLocMemOffset(); // Stack objects in PPC32 are right justified. ArgOffset += ArgSize - ObjSize; int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, isImmutable); // Create load nodes to retrieve arguments from the stack. SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back( DAG.getLoad(VA.getValVT(), dl, Chain, FIN, MachinePointerInfo())); } } // Assign locations to all of the incoming aggregate by value arguments. // Aggregates passed by value are stored in the local variable space of the // caller's stack frame, right above the parameter list area. SmallVector ByValArgLocs; CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(), ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal); // Area that is at least reserved in the caller of this function. unsigned MinReservedArea = CCByValInfo.getStackSize(); MinReservedArea = std::max(MinReservedArea, LinkageSize); // Set the size that is at least reserved in caller of this function. Tail // call optimized function's reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. MinReservedArea = EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); FuncInfo->setMinReservedArea(MinReservedArea); SmallVector MemOps; // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. if (isVarArg) { static const MCPhysReg GPArgRegs[] = { PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10, }; const unsigned NumGPArgRegs = std::size(GPArgRegs); static const MCPhysReg FPArgRegs[] = { PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7, PPC::F8 }; unsigned NumFPArgRegs = std::size(FPArgRegs); if (useSoftFloat() || hasSPE()) NumFPArgRegs = 0; FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs)); FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs)); // Make room for NumGPArgRegs and NumFPArgRegs. int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 + NumFPArgRegs * MVT(MVT::f64).getSizeInBits()/8; FuncInfo->setVarArgsStackOffset(MFI.CreateFixedObject( PtrVT.getSizeInBits() / 8, CCInfo.getStackSize(), true)); FuncInfo->setVarArgsFrameIndex( MFI.CreateStackObject(Depth, Align(8), false)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // The fixed integer arguments of a variadic function are stored to the // VarArgsFrameIndex on the stack so that they may be loaded by // dereferencing the result of va_next. for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) { // Get an existing live-in vreg, or add a new one. Register VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]); if (!VReg) VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, dl, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6 // is set. // The double arguments are stored to the VarArgsFrameIndex // on the stack. for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) { // Get an existing live-in vreg, or add a new one. Register VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]); if (!VReg) VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); MemOps.push_back(Store); // Increment the address by eight for the next argument to store SDValue PtrOff = DAG.getConstant(MVT(MVT::f64).getSizeInBits()/8, dl, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. SDValue PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG, SDValue ArgVal, const SDLoc &dl) const { if (Flags.isSExt()) ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); else if (Flags.isZExt()) ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal, DAG.getValueType(ObjectVT)); return DAG.getNode(ISD::TRUNCATE, dl, ObjectVT, ArgVal); } SDValue PPCTargetLowering::LowerFormalArguments_64SVR4( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { // TODO: add description of PPC stack frame format, or at least some docs. // bool isELFv2ABI = Subtarget.isELFv2ABI(); bool isLittleEndian = Subtarget.isLittleEndian(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo(); assert(!(CallConv == CallingConv::Fast && isVarArg) && "fastcc not supported on varargs functions"); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Potential tail calls could cause overwriting of argument stack slots. bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); unsigned PtrByteSize = 8; unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); static const MCPhysReg GPR[] = { PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned Num_GPR_Regs = std::size(GPR); const unsigned Num_FPR_Regs = useSoftFloat() ? 0 : 13; const unsigned Num_VR_Regs = std::size(VR); // Do a first pass over the arguments to determine whether the ABI // guarantees that our caller has allocated the parameter save area // on its stack frame. In the ELFv1 ABI, this is always the case; // in the ELFv2 ABI, it is true if this is a vararg function or if // any parameter is located in a stack slot. bool HasParameterArea = !isELFv2ABI || isVarArg; unsigned ParamAreaSize = Num_GPR_Regs * PtrByteSize; unsigned NumBytes = LinkageSize; unsigned AvailableFPRs = Num_FPR_Regs; unsigned AvailableVRs = Num_VR_Regs; for (unsigned i = 0, e = Ins.size(); i != e; ++i) { if (Ins[i].Flags.isNest()) continue; if (CalculateStackSlotUsed(Ins[i].VT, Ins[i].ArgVT, Ins[i].Flags, PtrByteSize, LinkageSize, ParamAreaSize, NumBytes, AvailableFPRs, AvailableVRs)) HasParameterArea = true; } // Add DAG nodes to load the arguments or copy them out of registers. On // entry to a function on PPC, the arguments start after the linkage area, // although the first ones are often in registers. unsigned ArgOffset = LinkageSize; unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; SmallVector MemOps; Function::const_arg_iterator FuncArg = MF.getFunction().arg_begin(); unsigned CurArgIdx = 0; for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) { SDValue ArgVal; bool needsLoad = false; EVT ObjectVT = Ins[ArgNo].VT; EVT OrigVT = Ins[ArgNo].ArgVT; unsigned ObjSize = ObjectVT.getStoreSize(); unsigned ArgSize = ObjSize; ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags; if (Ins[ArgNo].isOrigArg()) { std::advance(FuncArg, Ins[ArgNo].getOrigArgIndex() - CurArgIdx); CurArgIdx = Ins[ArgNo].getOrigArgIndex(); } // We re-align the argument offset for each argument, except when using the // fast calling convention, when we need to make sure we do that only when // we'll actually use a stack slot. unsigned CurArgOffset; Align Alignment; auto ComputeArgOffset = [&]() { /* Respect alignment of argument on the stack. */ Alignment = CalculateStackSlotAlignment(ObjectVT, OrigVT, Flags, PtrByteSize); ArgOffset = alignTo(ArgOffset, Alignment); CurArgOffset = ArgOffset; }; if (CallConv != CallingConv::Fast) { ComputeArgOffset(); /* Compute GPR index associated with argument offset. */ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx = std::min(GPR_idx, Num_GPR_Regs); } // FIXME the codegen can be much improved in some cases. // We do not have to keep everything in memory. if (Flags.isByVal()) { assert(Ins[ArgNo].isOrigArg() && "Byval arguments cannot be implicit"); if (CallConv == CallingConv::Fast) ComputeArgOffset(); // ObjSize is the true size, ArgSize rounded up to multiple of registers. ObjSize = Flags.getByValSize(); ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; // Empty aggregate parameters do not take up registers. Examples: // struct { } a; // union { } b; // int c[0]; // etc. However, we have to provide a place-holder in InVals, so // pretend we have an 8-byte item at the current address for that // purpose. if (!ObjSize) { int FI = MFI.CreateFixedObject(PtrByteSize, ArgOffset, true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); continue; } // Create a stack object covering all stack doublewords occupied // by the argument. If the argument is (fully or partially) on // the stack, or if the argument is fully in registers but the // caller has allocated the parameter save anyway, we can refer // directly to the caller's stack frame. Otherwise, create a // local copy in our own frame. int FI; if (HasParameterArea || ArgSize + ArgOffset > LinkageSize + Num_GPR_Regs * PtrByteSize) FI = MFI.CreateFixedObject(ArgSize, ArgOffset, false, true); else FI = MFI.CreateStackObject(ArgSize, Alignment, false); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); // Handle aggregates smaller than 8 bytes. if (ObjSize < PtrByteSize) { // The value of the object is its address, which differs from the // address of the enclosing doubleword on big-endian systems. SDValue Arg = FIN; if (!isLittleEndian) { SDValue ArgOff = DAG.getConstant(PtrByteSize - ObjSize, dl, PtrVT); Arg = DAG.getNode(ISD::ADD, dl, ArgOff.getValueType(), Arg, ArgOff); } InVals.push_back(Arg); if (GPR_idx != Num_GPR_Regs) { Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); FuncInfo->addLiveInAttr(VReg, Flags); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), ObjSize * 8); SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Arg, MachinePointerInfo(&*FuncArg), ObjType); MemOps.push_back(Store); } // Whether we copied from a register or not, advance the offset // into the parameter save area by a full doubleword. ArgOffset += PtrByteSize; continue; } // The value of the object is its address, which is the address of // its first stack doubleword. InVals.push_back(FIN); // Store whatever pieces of the object are in registers to memory. for (unsigned j = 0; j < ArgSize; j += PtrByteSize) { if (GPR_idx == Num_GPR_Regs) break; Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); FuncInfo->addLiveInAttr(VReg, Flags); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Addr = FIN; if (j) { SDValue Off = DAG.getConstant(j, dl, PtrVT); Addr = DAG.getNode(ISD::ADD, dl, Off.getValueType(), Addr, Off); } unsigned StoreSizeInBits = std::min(PtrByteSize, (ObjSize - j)) * 8; EVT ObjType = EVT::getIntegerVT(*DAG.getContext(), StoreSizeInBits); SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, Addr, MachinePointerInfo(&*FuncArg, j), ObjType); MemOps.push_back(Store); ++GPR_idx; } ArgOffset += ArgSize; continue; } switch (ObjectVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unhandled argument type!"); case MVT::i1: case MVT::i32: case MVT::i64: if (Flags.isNest()) { // The 'nest' parameter, if any, is passed in R11. Register VReg = MF.addLiveIn(PPC::X11, &PPC::G8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); break; } // These can be scalar arguments or elements of an integer array type // passed directly. Clang may use those instead of "byval" aggregate // types to avoid forcing arguments to memory unnecessarily. if (GPR_idx != Num_GPR_Regs) { Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); FuncInfo->addLiveInAttr(VReg, Flags); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::i32 || ObjectVT == MVT::i1) // PPC64 passes i8, i16, and i32 values in i64 registers. Promote // value to MVT::i64 and then truncate to the correct register size. ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl); } else { if (CallConv == CallingConv::Fast) ComputeArgOffset(); needsLoad = true; ArgSize = PtrByteSize; } if (CallConv != CallingConv::Fast || needsLoad) ArgOffset += 8; break; case MVT::f32: case MVT::f64: // These can be scalar arguments or elements of a float array type // passed directly. The latter are used to implement ELFv2 homogenous // float aggregates. if (FPR_idx != Num_FPR_Regs) { unsigned VReg; if (ObjectVT == MVT::f32) VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasP8Vector() ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass); else VReg = MF.addLiveIn(FPR[FPR_idx], Subtarget.hasVSX() ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++FPR_idx; } else if (GPR_idx != Num_GPR_Regs && CallConv != CallingConv::Fast) { // FIXME: We may want to re-enable this for CallingConv::Fast on the P8 // once we support fp <-> gpr moves. // This can only ever happen in the presence of f32 array types, // since otherwise we never run out of FPRs before running out // of GPRs. Register VReg = MF.addLiveIn(GPR[GPR_idx++], &PPC::G8RCRegClass); FuncInfo->addLiveInAttr(VReg, Flags); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64); if (ObjectVT == MVT::f32) { if ((ArgOffset % PtrByteSize) == (isLittleEndian ? 4 : 0)) ArgVal = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgVal, DAG.getConstant(32, dl, MVT::i32)); ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal); } ArgVal = DAG.getNode(ISD::BITCAST, dl, ObjectVT, ArgVal); } else { if (CallConv == CallingConv::Fast) ComputeArgOffset(); needsLoad = true; } // When passing an array of floats, the array occupies consecutive // space in the argument area; only round up to the next doubleword // at the end of the array. Otherwise, each float takes 8 bytes. if (CallConv != CallingConv::Fast || needsLoad) { ArgSize = Flags.isInConsecutiveRegs() ? ObjSize : PtrByteSize; ArgOffset += ArgSize; if (Flags.isInConsecutiveRegsLast()) ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; } break; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2f64: case MVT::v2i64: case MVT::v1i128: case MVT::f128: // These can be scalar arguments or elements of a vector array type // passed directly. The latter are used to implement ELFv2 homogenous // vector aggregates. if (VR_idx != Num_VR_Regs) { Register VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass); ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT); ++VR_idx; } else { if (CallConv == CallingConv::Fast) ComputeArgOffset(); needsLoad = true; } if (CallConv != CallingConv::Fast || needsLoad) ArgOffset += 16; break; } // We need to load the argument to a virtual register if we determined // above that we ran out of physical registers of the appropriate type. if (needsLoad) { if (ObjSize < ArgSize && !isLittleEndian) CurArgOffset += ArgSize - ObjSize; int FI = MFI.CreateFixedObject(ObjSize, CurArgOffset, isImmutable); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo()); } InVals.push_back(ArgVal); } // Area that is at least reserved in the caller of this function. unsigned MinReservedArea; if (HasParameterArea) MinReservedArea = std::max(ArgOffset, LinkageSize + 8 * PtrByteSize); else MinReservedArea = LinkageSize; // Set the size that is at least reserved in caller of this function. Tail // call optimized functions' reserved stack space needs to be aligned so that // taking the difference between two stack areas will result in an aligned // stack. MinReservedArea = EnsureStackAlignment(Subtarget.getFrameLowering(), MinReservedArea); FuncInfo->setMinReservedArea(MinReservedArea); // If the function takes variable number of arguments, make a frame index for // the start of the first vararg value... for expansion of llvm.va_start. // On ELFv2ABI spec, it writes: // C programs that are intended to be *portable* across different compilers // and architectures must use the header file to deal with variable // argument lists. if (isVarArg && MFI.hasVAStart()) { int Depth = ArgOffset; FuncInfo->setVarArgsFrameIndex( MFI.CreateFixedObject(PtrByteSize, Depth, true)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); // If this function is vararg, store any remaining integer argument regs // to their spots on the stack so that they may be loaded by dereferencing // the result of va_next. for (GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx < Num_GPR_Regs; ++GPR_idx) { Register VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); MemOps.push_back(Store); // Increment the address by four for the next argument to store SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be /// adjusted to accommodate the arguments for the tailcall. static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall, unsigned ParamSize) { if (!isTailCall) return 0; PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo(); unsigned CallerMinReservedArea = FI->getMinReservedArea(); int SPDiff = (int)CallerMinReservedArea - (int)ParamSize; // Remember only if the new adjustment is bigger. if (SPDiff < FI->getTailCallSPDelta()) FI->setTailCallSPDelta(SPDiff); return SPDiff; } static bool isFunctionGlobalAddress(const GlobalValue *CalleeGV); static bool callsShareTOCBase(const Function *Caller, const GlobalValue *CalleeGV, const TargetMachine &TM) { // It does not make sense to call callsShareTOCBase() with a caller that // is PC Relative since PC Relative callers do not have a TOC. #ifndef NDEBUG const PPCSubtarget *STICaller = &TM.getSubtarget(*Caller); assert(!STICaller->isUsingPCRelativeCalls() && "PC Relative callers do not have a TOC and cannot share a TOC Base"); #endif // Callee is either a GlobalAddress or an ExternalSymbol. ExternalSymbols // don't have enough information to determine if the caller and callee share // the same TOC base, so we have to pessimistically assume they don't for // correctness. if (!CalleeGV) return false; // If the callee is preemptable, then the static linker will use a plt-stub // which saves the toc to the stack, and needs a nop after the call // instruction to convert to a toc-restore. if (!TM.shouldAssumeDSOLocal(CalleeGV)) return false; // Functions with PC Relative enabled may clobber the TOC in the same DSO. // We may need a TOC restore in the situation where the caller requires a // valid TOC but the callee is PC Relative and does not. const Function *F = dyn_cast(CalleeGV); const GlobalAlias *Alias = dyn_cast(CalleeGV); // If we have an Alias we can try to get the function from there. if (Alias) { const GlobalObject *GlobalObj = Alias->getAliaseeObject(); F = dyn_cast(GlobalObj); } // If we still have no valid function pointer we do not have enough // information to determine if the callee uses PC Relative calls so we must // assume that it does. if (!F) return false; // If the callee uses PC Relative we cannot guarantee that the callee won't // clobber the TOC of the caller and so we must assume that the two // functions do not share a TOC base. const PPCSubtarget *STICallee = &TM.getSubtarget(*F); if (STICallee->isUsingPCRelativeCalls()) return false; // If the GV is not a strong definition then we need to assume it can be // replaced by another function at link time. The function that replaces // it may not share the same TOC as the caller since the callee may be // replaced by a PC Relative version of the same function. if (!CalleeGV->isStrongDefinitionForLinker()) return false; // The medium and large code models are expected to provide a sufficiently // large TOC to provide all data addressing needs of a module with a // single TOC. if (CodeModel::Medium == TM.getCodeModel() || CodeModel::Large == TM.getCodeModel()) return true; // Any explicitly-specified sections and section prefixes must also match. // Also, if we're using -ffunction-sections, then each function is always in // a different section (the same is true for COMDAT functions). if (TM.getFunctionSections() || CalleeGV->hasComdat() || Caller->hasComdat() || CalleeGV->getSection() != Caller->getSection()) return false; if (const auto *F = dyn_cast(CalleeGV)) { if (F->getSectionPrefix() != Caller->getSectionPrefix()) return false; } return true; } static bool needStackSlotPassParameters(const PPCSubtarget &Subtarget, const SmallVectorImpl &Outs) { assert(Subtarget.is64BitELFABI()); const unsigned PtrByteSize = 8; const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); static const MCPhysReg GPR[] = { PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = std::size(GPR); const unsigned NumFPRs = 13; const unsigned NumVRs = std::size(VR); const unsigned ParamAreaSize = NumGPRs * PtrByteSize; unsigned NumBytes = LinkageSize; unsigned AvailableFPRs = NumFPRs; unsigned AvailableVRs = NumVRs; for (const ISD::OutputArg& Param : Outs) { if (Param.Flags.isNest()) continue; if (CalculateStackSlotUsed(Param.VT, Param.ArgVT, Param.Flags, PtrByteSize, LinkageSize, ParamAreaSize, NumBytes, AvailableFPRs, AvailableVRs)) return true; } return false; } static bool hasSameArgumentList(const Function *CallerFn, const CallBase &CB) { if (CB.arg_size() != CallerFn->arg_size()) return false; auto CalleeArgIter = CB.arg_begin(); auto CalleeArgEnd = CB.arg_end(); Function::const_arg_iterator CallerArgIter = CallerFn->arg_begin(); for (; CalleeArgIter != CalleeArgEnd; ++CalleeArgIter, ++CallerArgIter) { const Value* CalleeArg = *CalleeArgIter; const Value* CallerArg = &(*CallerArgIter); if (CalleeArg == CallerArg) continue; // e.g. @caller([4 x i64] %a, [4 x i64] %b) { // tail call @callee([4 x i64] undef, [4 x i64] %b) // } // 1st argument of callee is undef and has the same type as caller. if (CalleeArg->getType() == CallerArg->getType() && isa(CalleeArg)) continue; return false; } return true; } // Returns true if TCO is possible between the callers and callees // calling conventions. static bool areCallingConvEligibleForTCO_64SVR4(CallingConv::ID CallerCC, CallingConv::ID CalleeCC) { // Tail calls are possible with fastcc and ccc. auto isTailCallableCC = [] (CallingConv::ID CC){ return CC == CallingConv::C || CC == CallingConv::Fast; }; if (!isTailCallableCC(CallerCC) || !isTailCallableCC(CalleeCC)) return false; // We can safely tail call both fastcc and ccc callees from a c calling // convention caller. If the caller is fastcc, we may have less stack space // than a non-fastcc caller with the same signature so disable tail-calls in // that case. return CallerCC == CallingConv::C || CallerCC == CalleeCC; } bool PPCTargetLowering::IsEligibleForTailCallOptimization_64SVR4( const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, const Function *CallerFunc, bool isCalleeExternalSymbol) const { bool TailCallOpt = getTargetMachine().Options.GuaranteedTailCallOpt; if (DisableSCO && !TailCallOpt) return false; // Variadic argument functions are not supported. if (isVarArg) return false; // Check that the calling conventions are compatible for tco. if (!areCallingConvEligibleForTCO_64SVR4(CallerCC, CalleeCC)) return false; // Caller contains any byval parameter is not supported. if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) return false; // Callee contains any byval parameter is not supported, too. // Note: This is a quick work around, because in some cases, e.g. // caller's stack size > callee's stack size, we are still able to apply // sibling call optimization. For example, gcc is able to do SCO for caller1 // in the following example, but not for caller2. // struct test { // long int a; // char ary[56]; // } gTest; // __attribute__((noinline)) int callee(struct test v, struct test *b) { // b->a = v.a; // return 0; // } // void caller1(struct test a, struct test c, struct test *b) { // callee(gTest, b); } // void caller2(struct test *b) { callee(gTest, b); } if (any_of(Outs, [](const ISD::OutputArg& OA) { return OA.Flags.isByVal(); })) return false; // If callee and caller use different calling conventions, we cannot pass // parameters on stack since offsets for the parameter area may be different. if (CallerCC != CalleeCC && needStackSlotPassParameters(Subtarget, Outs)) return false; // All variants of 64-bit ELF ABIs without PC-Relative addressing require that // the caller and callee share the same TOC for TCO/SCO. If the caller and // callee potentially have different TOC bases then we cannot tail call since // we need to restore the TOC pointer after the call. // ref: https://bugzilla.mozilla.org/show_bug.cgi?id=973977 // We cannot guarantee this for indirect calls or calls to external functions. // When PC-Relative addressing is used, the concept of the TOC is no longer // applicable so this check is not required. // Check first for indirect calls. if (!Subtarget.isUsingPCRelativeCalls() && !isFunctionGlobalAddress(CalleeGV) && !isCalleeExternalSymbol) return false; // Check if we share the TOC base. if (!Subtarget.isUsingPCRelativeCalls() && !callsShareTOCBase(CallerFunc, CalleeGV, getTargetMachine())) return false; // TCO allows altering callee ABI, so we don't have to check further. if (CalleeCC == CallingConv::Fast && TailCallOpt) return true; if (DisableSCO) return false; // If callee use the same argument list that caller is using, then we can // apply SCO on this case. If it is not, then we need to check if callee needs // stack for passing arguments. // PC Relative tail calls may not have a CallBase. // If there is no CallBase we cannot verify if we have the same argument // list so assume that we don't have the same argument list. if (CB && !hasSameArgumentList(CallerFunc, *CB) && needStackSlotPassParameters(Subtarget, Outs)) return false; else if (!CB && needStackSlotPassParameters(Subtarget, Outs)) return false; return true; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool PPCTargetLowering::IsEligibleForTailCallOptimization( const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, CallingConv::ID CallerCC, bool isVarArg, const SmallVectorImpl &Ins) const { if (!getTargetMachine().Options.GuaranteedTailCallOpt) return false; // Variable argument functions are not supported. if (isVarArg) return false; if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) { // Functions containing by val parameters are not supported. if (any_of(Ins, [](const ISD::InputArg &IA) { return IA.Flags.isByVal(); })) return false; // Non-PIC/GOT tail calls are supported. if (getTargetMachine().getRelocationModel() != Reloc::PIC_) return true; // At the moment we can only do local tail calls (in same module, hidden // or protected) if we are generating PIC. if (CalleeGV) return CalleeGV->hasHiddenVisibility() || CalleeGV->hasProtectedVisibility(); } return false; } /// isCallCompatibleAddress - Return the immediate to use if the specified /// 32-bit value is representable in the immediate field of a BxA instruction. static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) { ConstantSDNode *C = dyn_cast(Op); if (!C) return nullptr; int Addr = C->getZExtValue(); if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero. SignExtend32<26>(Addr) != Addr) return nullptr; // Top 6 bits have to be sext of immediate. return DAG .getConstant( (int)C->getZExtValue() >> 2, SDLoc(Op), DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())) .getNode(); } namespace { struct TailCallArgumentInfo { SDValue Arg; SDValue FrameIdxOp; int FrameIdx = 0; TailCallArgumentInfo() = default; }; } // end anonymous namespace /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot. static void StoreTailCallArgumentsToStackSlot( SelectionDAG &DAG, SDValue Chain, const SmallVectorImpl &TailCallArgs, SmallVectorImpl &MemOpChains, const SDLoc &dl) { for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) { SDValue Arg = TailCallArgs[i].Arg; SDValue FIN = TailCallArgs[i].FrameIdxOp; int FI = TailCallArgs[i].FrameIdx; // Store relative to framepointer. MemOpChains.push_back(DAG.getStore( Chain, dl, Arg, FIN, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI))); } } /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to /// the appropriate stack slot for the tail call optimized function call. static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG, SDValue Chain, SDValue OldRetAddr, SDValue OldFP, int SPDiff, const SDLoc &dl) { if (SPDiff) { // Calculate the new stack slot for the return address. MachineFunction &MF = DAG.getMachineFunction(); const PPCSubtarget &Subtarget = MF.getSubtarget(); const PPCFrameLowering *FL = Subtarget.getFrameLowering(); bool isPPC64 = Subtarget.isPPC64(); int SlotSize = isPPC64 ? 8 : 4; int NewRetAddrLoc = SPDiff + FL->getReturnSaveOffset(); int NewRetAddr = MF.getFrameInfo().CreateFixedObject(SlotSize, NewRetAddrLoc, true); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT); Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx, MachinePointerInfo::getFixedStack(MF, NewRetAddr)); } return Chain; } /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate /// the position of the argument. static void CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64, SDValue Arg, int SPDiff, unsigned ArgOffset, SmallVectorImpl& TailCallArguments) { int Offset = ArgOffset + SPDiff; uint32_t OpSize = (Arg.getValueSizeInBits() + 7) / 8; int FI = MF.getFrameInfo().CreateFixedObject(OpSize, Offset, true); EVT VT = isPPC64 ? MVT::i64 : MVT::i32; SDValue FIN = DAG.getFrameIndex(FI, VT); TailCallArgumentInfo Info; Info.Arg = Arg; Info.FrameIdxOp = FIN; Info.FrameIdx = FI; TailCallArguments.push_back(Info); } /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address /// stack slot. Returns the chain as result and the loaded frame pointers in /// LROpOut/FPOpout. Used when tail calling. SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr( SelectionDAG &DAG, int SPDiff, SDValue Chain, SDValue &LROpOut, SDValue &FPOpOut, const SDLoc &dl) const { if (SPDiff) { // Load the LR and FP stack slot for later adjusting. EVT VT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; LROpOut = getReturnAddrFrameIndex(DAG); LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo()); Chain = SDValue(LROpOut.getNode(), 1); } return Chain; } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. /// Sometimes what we are copying is the end of a larger object, the part that /// does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), dl, MVT::i32); return DAG.getMemcpy( Chain, dl, Dst, Src, SizeNode, Flags.getNonZeroByValAlign(), false, false, /*CI=*/nullptr, std::nullopt, MachinePointerInfo(), MachinePointerInfo()); } /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of /// tail calls. static void LowerMemOpCallTo( SelectionDAG &DAG, MachineFunction &MF, SDValue Chain, SDValue Arg, SDValue PtrOff, int SPDiff, unsigned ArgOffset, bool isPPC64, bool isTailCall, bool isVector, SmallVectorImpl &MemOpChains, SmallVectorImpl &TailCallArguments, const SDLoc &dl) { EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); if (!isTailCall) { if (isVector) { SDValue StackPtr; if (isPPC64) StackPtr = DAG.getRegister(PPC::X1, MVT::i64); else StackPtr = DAG.getRegister(PPC::R1, MVT::i32); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, DAG.getConstant(ArgOffset, dl, PtrVT)); } MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); // Calculate and remember argument location. } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset, TailCallArguments); } static void PrepareTailCall(SelectionDAG &DAG, SDValue &InGlue, SDValue &Chain, const SDLoc &dl, int SPDiff, unsigned NumBytes, SDValue LROp, SDValue FPOp, SmallVectorImpl &TailCallArguments) { // Emit a sequence of copyto/copyfrom virtual registers for arguments that // might overwrite each other in case of tail call optimization. SmallVector MemOpChains2; // Do not flag preceding copytoreg stuff together with the following stuff. InGlue = SDValue(); StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments, MemOpChains2, dl); if (!MemOpChains2.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains2); // Store the return address to the appropriate stack slot. Chain = EmitTailCallStoreFPAndRetAddr(DAG, Chain, LROp, FPOp, SPDiff, dl); // Emit callseq_end just before tailcall node. Chain = DAG.getCALLSEQ_END(Chain, NumBytes, 0, InGlue, dl); InGlue = Chain.getValue(1); } // Is this global address that of a function that can be called by name? (as // opposed to something that must hold a descriptor for an indirect call). static bool isFunctionGlobalAddress(const GlobalValue *GV) { if (GV) { if (GV->isThreadLocal()) return false; return GV->getValueType()->isFunctionTy(); } return false; } SDValue PPCTargetLowering::LowerCallResult( SDValue Chain, SDValue InGlue, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { SmallVector RVLocs; CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCRetInfo.AnalyzeCallResult( Ins, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) ? RetCC_PPC_Cold : RetCC_PPC); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Val; if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue); Chain = Lo.getValue(1); InGlue = Lo.getValue(2); VA = RVLocs[++i]; // skip ahead to next loc SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InGlue); Chain = Hi.getValue(1); InGlue = Hi.getValue(2); if (!Subtarget.isLittleEndian()) std::swap (Lo, Hi); Val = DAG.getNode(PPCISD::BUILD_SPE64, dl, MVT::f64, Lo, Hi); } else { Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), InGlue); Chain = Val.getValue(1); InGlue = Val.getValue(2); } switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::AExt: Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; case CCValAssign::ZExt: Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; case CCValAssign::SExt: Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val, DAG.getValueType(VA.getValVT())); Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val); break; } InVals.push_back(Val); } return Chain; } static bool isIndirectCall(const SDValue &Callee, SelectionDAG &DAG, const PPCSubtarget &Subtarget, bool isPatchPoint) { auto *G = dyn_cast(Callee); const GlobalValue *GV = G ? G->getGlobal() : nullptr; // PatchPoint calls are not indirect. if (isPatchPoint) return false; if (isFunctionGlobalAddress(GV) || isa(Callee)) return false; // Darwin, and 32-bit ELF can use a BLA. The descriptor based ABIs can not // becuase the immediate function pointer points to a descriptor instead of // a function entry point. The ELFv2 ABI cannot use a BLA because the function // pointer immediate points to the global entry point, while the BLA would // need to jump to the local entry point (see rL211174). if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI() && isBLACompatibleAddress(Callee, DAG)) return false; return true; } // AIX and 64-bit ELF ABIs w/o PCRel require a TOC save/restore around calls. static inline bool isTOCSaveRestoreRequired(const PPCSubtarget &Subtarget) { return Subtarget.isAIXABI() || (Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()); } static unsigned getCallOpcode(PPCTargetLowering::CallFlags CFlags, const Function &Caller, const SDValue &Callee, const PPCSubtarget &Subtarget, const TargetMachine &TM, bool IsStrictFPCall = false) { if (CFlags.IsTailCall) return PPCISD::TC_RETURN; unsigned RetOpc = 0; // This is a call through a function pointer. if (CFlags.IsIndirect) { // AIX and the 64-bit ELF ABIs need to maintain the TOC pointer accross // indirect calls. The save of the caller's TOC pointer to the stack will be // inserted into the DAG as part of call lowering. The restore of the TOC // pointer is modeled by using a pseudo instruction for the call opcode that // represents the 2 instruction sequence of an indirect branch and link, // immediately followed by a load of the TOC pointer from the stack save // slot into gpr2. For 64-bit ELFv2 ABI with PCRel, do not restore the TOC // as it is not saved or used. RetOpc = isTOCSaveRestoreRequired(Subtarget) ? PPCISD::BCTRL_LOAD_TOC : PPCISD::BCTRL; } else if (Subtarget.isUsingPCRelativeCalls()) { assert(Subtarget.is64BitELFABI() && "PC Relative is only on ELF ABI."); RetOpc = PPCISD::CALL_NOTOC; } else if (Subtarget.isAIXABI() || Subtarget.is64BitELFABI()) { // The ABIs that maintain a TOC pointer accross calls need to have a nop // immediately following the call instruction if the caller and callee may // have different TOC bases. At link time if the linker determines the calls // may not share a TOC base, the call is redirected to a trampoline inserted // by the linker. The trampoline will (among other things) save the callers // TOC pointer at an ABI designated offset in the linkage area and the // linker will rewrite the nop to be a load of the TOC pointer from the // linkage area into gpr2. auto *G = dyn_cast(Callee); const GlobalValue *GV = G ? G->getGlobal() : nullptr; RetOpc = callsShareTOCBase(&Caller, GV, TM) ? PPCISD::CALL : PPCISD::CALL_NOP; } else RetOpc = PPCISD::CALL; if (IsStrictFPCall) { switch (RetOpc) { default: llvm_unreachable("Unknown call opcode"); case PPCISD::BCTRL_LOAD_TOC: RetOpc = PPCISD::BCTRL_LOAD_TOC_RM; break; case PPCISD::BCTRL: RetOpc = PPCISD::BCTRL_RM; break; case PPCISD::CALL_NOTOC: RetOpc = PPCISD::CALL_NOTOC_RM; break; case PPCISD::CALL: RetOpc = PPCISD::CALL_RM; break; case PPCISD::CALL_NOP: RetOpc = PPCISD::CALL_NOP_RM; break; } } return RetOpc; } static SDValue transformCallee(const SDValue &Callee, SelectionDAG &DAG, const SDLoc &dl, const PPCSubtarget &Subtarget) { if (!Subtarget.usesFunctionDescriptors() && !Subtarget.isELFv2ABI()) if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) return SDValue(Dest, 0); // Returns true if the callee is local, and false otherwise. auto isLocalCallee = [&]() { const GlobalAddressSDNode *G = dyn_cast(Callee); const GlobalValue *GV = G ? G->getGlobal() : nullptr; return DAG.getTarget().shouldAssumeDSOLocal(GV) && !isa_and_nonnull(GV); }; // The PLT is only used in 32-bit ELF PIC mode. Attempting to use the PLT in // a static relocation model causes some versions of GNU LD (2.17.50, at // least) to force BSS-PLT, instead of secure-PLT, even if all objects are // built with secure-PLT. bool UsePlt = Subtarget.is32BitELFABI() && !isLocalCallee() && Subtarget.getTargetMachine().getRelocationModel() == Reloc::PIC_; const auto getAIXFuncEntryPointSymbolSDNode = [&](const GlobalValue *GV) { const TargetMachine &TM = Subtarget.getTargetMachine(); const TargetLoweringObjectFile *TLOF = TM.getObjFileLowering(); MCSymbolXCOFF *S = cast(TLOF->getFunctionEntryPointSymbol(GV, TM)); MVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); return DAG.getMCSymbol(S, PtrVT); }; auto *G = dyn_cast(Callee); const GlobalValue *GV = G ? G->getGlobal() : nullptr; if (isFunctionGlobalAddress(GV)) { const GlobalValue *GV = cast(Callee)->getGlobal(); if (Subtarget.isAIXABI()) { assert(!isa(GV) && "IFunc is not supported on AIX."); return getAIXFuncEntryPointSymbolSDNode(GV); } return DAG.getTargetGlobalAddress(GV, dl, Callee.getValueType(), 0, UsePlt ? PPCII::MO_PLT : 0); } if (ExternalSymbolSDNode *S = dyn_cast(Callee)) { const char *SymName = S->getSymbol(); if (Subtarget.isAIXABI()) { // If there exists a user-declared function whose name is the same as the // ExternalSymbol's, then we pick up the user-declared version. const Module *Mod = DAG.getMachineFunction().getFunction().getParent(); if (const Function *F = dyn_cast_or_null(Mod->getNamedValue(SymName))) return getAIXFuncEntryPointSymbolSDNode(F); // On AIX, direct function calls reference the symbol for the function's // entry point, which is named by prepending a "." before the function's // C-linkage name. A Qualname is returned here because an external // function entry point is a csect with XTY_ER property. const auto getExternalFunctionEntryPointSymbol = [&](StringRef SymName) { auto &Context = DAG.getMachineFunction().getContext(); MCSectionXCOFF *Sec = Context.getXCOFFSection( (Twine(".") + Twine(SymName)).str(), SectionKind::getMetadata(), XCOFF::CsectProperties(XCOFF::XMC_PR, XCOFF::XTY_ER)); return Sec->getQualNameSymbol(); }; SymName = getExternalFunctionEntryPointSymbol(SymName)->getName().data(); } return DAG.getTargetExternalSymbol(SymName, Callee.getValueType(), UsePlt ? PPCII::MO_PLT : 0); } // No transformation needed. assert(Callee.getNode() && "What no callee?"); return Callee; } static SDValue getOutputChainFromCallSeq(SDValue CallSeqStart) { assert(CallSeqStart.getOpcode() == ISD::CALLSEQ_START && "Expected a CALLSEQ_STARTSDNode."); // The last operand is the chain, except when the node has glue. If the node // has glue, then the last operand is the glue, and the chain is the second // last operand. SDValue LastValue = CallSeqStart.getValue(CallSeqStart->getNumValues() - 1); if (LastValue.getValueType() != MVT::Glue) return LastValue; return CallSeqStart.getValue(CallSeqStart->getNumValues() - 2); } // Creates the node that moves a functions address into the count register // to prepare for an indirect call instruction. static void prepareIndirectCall(SelectionDAG &DAG, SDValue &Callee, SDValue &Glue, SDValue &Chain, const SDLoc &dl) { SDValue MTCTROps[] = {Chain, Callee, Glue}; EVT ReturnTypes[] = {MVT::Other, MVT::Glue}; Chain = DAG.getNode(PPCISD::MTCTR, dl, ReturnTypes, ArrayRef(MTCTROps, Glue.getNode() ? 3 : 2)); // The glue is the second value produced. Glue = Chain.getValue(1); } static void prepareDescriptorIndirectCall(SelectionDAG &DAG, SDValue &Callee, SDValue &Glue, SDValue &Chain, SDValue CallSeqStart, const CallBase *CB, const SDLoc &dl, bool hasNest, const PPCSubtarget &Subtarget) { // Function pointers in the 64-bit SVR4 ABI do not point to the function // entry point, but to the function descriptor (the function entry point // address is part of the function descriptor though). // The function descriptor is a three doubleword structure with the // following fields: function entry point, TOC base address and // environment pointer. // Thus for a call through a function pointer, the following actions need // to be performed: // 1. Save the TOC of the caller in the TOC save area of its stack // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()). // 2. Load the address of the function entry point from the function // descriptor. // 3. Load the TOC of the callee from the function descriptor into r2. // 4. Load the environment pointer from the function descriptor into // r11. // 5. Branch to the function entry point address. // 6. On return of the callee, the TOC of the caller needs to be // restored (this is done in FinishCall()). // // The loads are scheduled at the beginning of the call sequence, and the // register copies are flagged together to ensure that no other // operations can be scheduled in between. E.g. without flagging the // copies together, a TOC access in the caller could be scheduled between // the assignment of the callee TOC and the branch to the callee, which leads // to incorrect code. // Start by loading the function address from the descriptor. SDValue LDChain = getOutputChainFromCallSeq(CallSeqStart); auto MMOFlags = Subtarget.hasInvariantFunctionDescriptors() ? (MachineMemOperand::MODereferenceable | MachineMemOperand::MOInvariant) : MachineMemOperand::MONone; MachinePointerInfo MPI(CB ? CB->getCalledOperand() : nullptr); // Registers used in building the DAG. const MCRegister EnvPtrReg = Subtarget.getEnvironmentPointerRegister(); const MCRegister TOCReg = Subtarget.getTOCPointerRegister(); // Offsets of descriptor members. const unsigned TOCAnchorOffset = Subtarget.descriptorTOCAnchorOffset(); const unsigned EnvPtrOffset = Subtarget.descriptorEnvironmentPointerOffset(); const MVT RegVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; const Align Alignment = Subtarget.isPPC64() ? Align(8) : Align(4); // One load for the functions entry point address. SDValue LoadFuncPtr = DAG.getLoad(RegVT, dl, LDChain, Callee, MPI, Alignment, MMOFlags); // One for loading the TOC anchor for the module that contains the called // function. SDValue TOCOff = DAG.getIntPtrConstant(TOCAnchorOffset, dl); SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, Callee, TOCOff); SDValue TOCPtr = DAG.getLoad(RegVT, dl, LDChain, AddTOC, MPI.getWithOffset(TOCAnchorOffset), Alignment, MMOFlags); // One for loading the environment pointer. SDValue PtrOff = DAG.getIntPtrConstant(EnvPtrOffset, dl); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, RegVT, Callee, PtrOff); SDValue LoadEnvPtr = DAG.getLoad(RegVT, dl, LDChain, AddPtr, MPI.getWithOffset(EnvPtrOffset), Alignment, MMOFlags); // Then copy the newly loaded TOC anchor to the TOC pointer. SDValue TOCVal = DAG.getCopyToReg(Chain, dl, TOCReg, TOCPtr, Glue); Chain = TOCVal.getValue(0); Glue = TOCVal.getValue(1); // If the function call has an explicit 'nest' parameter, it takes the // place of the environment pointer. assert((!hasNest || !Subtarget.isAIXABI()) && "Nest parameter is not supported on AIX."); if (!hasNest) { SDValue EnvVal = DAG.getCopyToReg(Chain, dl, EnvPtrReg, LoadEnvPtr, Glue); Chain = EnvVal.getValue(0); Glue = EnvVal.getValue(1); } // The rest of the indirect call sequence is the same as the non-descriptor // DAG. prepareIndirectCall(DAG, LoadFuncPtr, Glue, Chain, dl); } static void buildCallOperands(SmallVectorImpl &Ops, PPCTargetLowering::CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue Glue, SDValue Chain, SDValue &Callee, int SPDiff, const PPCSubtarget &Subtarget) { const bool IsPPC64 = Subtarget.isPPC64(); // MVT for a general purpose register. const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; // First operand is always the chain. Ops.push_back(Chain); // If it's a direct call pass the callee as the second operand. if (!CFlags.IsIndirect) Ops.push_back(Callee); else { assert(!CFlags.IsPatchPoint && "Patch point calls are not indirect."); // For the TOC based ABIs, we have saved the TOC pointer to the linkage area // on the stack (this would have been done in `LowerCall_64SVR4` or // `LowerCall_AIX`). The call instruction is a pseudo instruction that // represents both the indirect branch and a load that restores the TOC // pointer from the linkage area. The operand for the TOC restore is an add // of the TOC save offset to the stack pointer. This must be the second // operand: after the chain input but before any other variadic arguments. // For 64-bit ELFv2 ABI with PCRel, do not restore the TOC as it is not // saved or used. if (isTOCSaveRestoreRequired(Subtarget)) { const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); SDValue StackPtr = DAG.getRegister(StackPtrReg, RegVT); unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); SDValue TOCOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); SDValue AddTOC = DAG.getNode(ISD::ADD, dl, RegVT, StackPtr, TOCOff); Ops.push_back(AddTOC); } // Add the register used for the environment pointer. if (Subtarget.usesFunctionDescriptors() && !CFlags.HasNest) Ops.push_back(DAG.getRegister(Subtarget.getEnvironmentPointerRegister(), RegVT)); // Add CTR register as callee so a bctr can be emitted later. if (CFlags.IsTailCall) Ops.push_back(DAG.getRegister(IsPPC64 ? PPC::CTR8 : PPC::CTR, RegVT)); } // If this is a tail call add stack pointer delta. if (CFlags.IsTailCall) Ops.push_back(DAG.getConstant(SPDiff, dl, MVT::i32)); // Add argument registers to the end of the list so that they are known live // into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); // We cannot add R2/X2 as an operand here for PATCHPOINT, because there is // no way to mark dependencies as implicit here. // We will add the R2/X2 dependency in EmitInstrWithCustomInserter. if ((Subtarget.is64BitELFABI() || Subtarget.isAIXABI()) && !CFlags.IsPatchPoint && !Subtarget.isUsingPCRelativeCalls()) Ops.push_back(DAG.getRegister(Subtarget.getTOCPointerRegister(), RegVT)); // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls if (CFlags.IsVarArg && Subtarget.is32BitELFABI()) Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32)); // Add a register mask operand representing the call-preserved registers. const TargetRegisterInfo *TRI = Subtarget.getRegisterInfo(); const uint32_t *Mask = TRI->getCallPreservedMask(DAG.getMachineFunction(), CFlags.CallConv); assert(Mask && "Missing call preserved mask for calling convention"); Ops.push_back(DAG.getRegisterMask(Mask)); // If the glue is valid, it is the last operand. if (Glue.getNode()) Ops.push_back(Glue); } SDValue PPCTargetLowering::FinishCall( CallFlags CFlags, const SDLoc &dl, SelectionDAG &DAG, SmallVector, 8> &RegsToPass, SDValue Glue, SDValue Chain, SDValue CallSeqStart, SDValue &Callee, int SPDiff, unsigned NumBytes, const SmallVectorImpl &Ins, SmallVectorImpl &InVals, const CallBase *CB) const { if ((Subtarget.is64BitELFABI() && !Subtarget.isUsingPCRelativeCalls()) || Subtarget.isAIXABI()) setUsesTOCBasePtr(DAG); unsigned CallOpc = getCallOpcode(CFlags, DAG.getMachineFunction().getFunction(), Callee, Subtarget, DAG.getTarget(), CB ? CB->isStrictFP() : false); if (!CFlags.IsIndirect) Callee = transformCallee(Callee, DAG, dl, Subtarget); else if (Subtarget.usesFunctionDescriptors()) prepareDescriptorIndirectCall(DAG, Callee, Glue, Chain, CallSeqStart, CB, dl, CFlags.HasNest, Subtarget); else prepareIndirectCall(DAG, Callee, Glue, Chain, dl); // Build the operand list for the call instruction. SmallVector Ops; buildCallOperands(Ops, CFlags, dl, DAG, RegsToPass, Glue, Chain, Callee, SPDiff, Subtarget); // Emit tail call. if (CFlags.IsTailCall) { // Indirect tail call when using PC Relative calls do not have the same // constraints. assert(((Callee.getOpcode() == ISD::Register && cast(Callee)->getReg() == PPC::CTR) || Callee.getOpcode() == ISD::TargetExternalSymbol || Callee.getOpcode() == ISD::TargetGlobalAddress || isa(Callee) || (CFlags.IsIndirect && Subtarget.isUsingPCRelativeCalls())) && "Expecting a global address, external symbol, absolute value, " "register or an indirect tail call when PC Relative calls are " "used."); // PC Relative calls also use TC_RETURN as the way to mark tail calls. assert(CallOpc == PPCISD::TC_RETURN && "Unexpected call opcode for a tail call."); DAG.getMachineFunction().getFrameInfo().setHasTailCall(); SDValue Ret = DAG.getNode(CallOpc, dl, MVT::Other, Ops); DAG.addNoMergeSiteInfo(Ret.getNode(), CFlags.NoMerge); return Ret; } std::array ReturnTypes = {{MVT::Other, MVT::Glue}}; Chain = DAG.getNode(CallOpc, dl, ReturnTypes, Ops); DAG.addNoMergeSiteInfo(Chain.getNode(), CFlags.NoMerge); Glue = Chain.getValue(1); // When performing tail call optimization the callee pops its arguments off // the stack. Account for this here so these bytes can be pushed back on in // PPCFrameLowering::eliminateCallFramePseudoInstr. int BytesCalleePops = (CFlags.CallConv == CallingConv::Fast && getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0; Chain = DAG.getCALLSEQ_END(Chain, NumBytes, BytesCalleePops, Glue, dl); Glue = Chain.getValue(1); return LowerCallResult(Chain, Glue, CFlags.CallConv, CFlags.IsVarArg, Ins, dl, DAG, InVals); } bool PPCTargetLowering::supportsTailCallFor(const CallBase *CB) const { CallingConv::ID CalleeCC = CB->getCallingConv(); const Function *CallerFunc = CB->getCaller(); CallingConv::ID CallerCC = CallerFunc->getCallingConv(); const Function *CalleeFunc = CB->getCalledFunction(); if (!CalleeFunc) return false; const GlobalValue *CalleeGV = dyn_cast(CalleeFunc); SmallVector Outs; SmallVector Ins; GetReturnInfo(CalleeCC, CalleeFunc->getReturnType(), CalleeFunc->getAttributes(), Outs, *this, CalleeFunc->getDataLayout()); return isEligibleForTCO(CalleeGV, CalleeCC, CallerCC, CB, CalleeFunc->isVarArg(), Outs, Ins, CallerFunc, false /*isCalleeExternalSymbol*/); } bool PPCTargetLowering::isEligibleForTCO( const GlobalValue *CalleeGV, CallingConv::ID CalleeCC, CallingConv::ID CallerCC, const CallBase *CB, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &Ins, const Function *CallerFunc, bool isCalleeExternalSymbol) const { if (Subtarget.useLongCalls() && !(CB && CB->isMustTailCall())) return false; if (Subtarget.isSVR4ABI() && Subtarget.isPPC64()) return IsEligibleForTailCallOptimization_64SVR4( CalleeGV, CalleeCC, CallerCC, CB, isVarArg, Outs, Ins, CallerFunc, isCalleeExternalSymbol); else return IsEligibleForTailCallOptimization(CalleeGV, CalleeCC, CallerCC, isVarArg, Ins); } SDValue PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl &InVals) const { SelectionDAG &DAG = CLI.DAG; SDLoc &dl = CLI.DL; SmallVectorImpl &Outs = CLI.Outs; SmallVectorImpl &OutVals = CLI.OutVals; SmallVectorImpl &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; bool isPatchPoint = CLI.IsPatchPoint; const CallBase *CB = CLI.CB; if (isTailCall) { MachineFunction &MF = DAG.getMachineFunction(); CallingConv::ID CallerCC = MF.getFunction().getCallingConv(); auto *G = dyn_cast(Callee); const GlobalValue *GV = G ? G->getGlobal() : nullptr; bool IsCalleeExternalSymbol = isa(Callee); isTailCall = isEligibleForTCO(GV, CallConv, CallerCC, CB, isVarArg, Outs, Ins, &(MF.getFunction()), IsCalleeExternalSymbol); if (isTailCall) { ++NumTailCalls; if (!getTargetMachine().Options.GuaranteedTailCallOpt) ++NumSiblingCalls; // PC Relative calls no longer guarantee that the callee is a Global // Address Node. The callee could be an indirect tail call in which // case the SDValue for the callee could be a load (to load the address // of a function pointer) or it may be a register copy (to move the // address of the callee from a function parameter into a virtual // register). It may also be an ExternalSymbolSDNode (ex memcopy). assert((Subtarget.isUsingPCRelativeCalls() || isa(Callee)) && "Callee should be an llvm::Function object."); LLVM_DEBUG(dbgs() << "TCO caller: " << DAG.getMachineFunction().getName() << "\nTCO callee: "); LLVM_DEBUG(Callee.dump()); } } if (!isTailCall && CB && CB->isMustTailCall()) report_fatal_error("failed to perform tail call elimination on a call " "site marked musttail"); // When long calls (i.e. indirect calls) are always used, calls are always // made via function pointer. If we have a function name, first translate it // into a pointer. if (Subtarget.useLongCalls() && isa(Callee) && !isTailCall) Callee = LowerGlobalAddress(Callee, DAG); CallFlags CFlags( CallConv, isTailCall, isVarArg, isPatchPoint, isIndirectCall(Callee, DAG, Subtarget, isPatchPoint), // hasNest Subtarget.is64BitELFABI() && any_of(Outs, [](ISD::OutputArg Arg) { return Arg.Flags.isNest(); }), CLI.NoMerge); if (Subtarget.isAIXABI()) return LowerCall_AIX(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, InVals, CB); assert(Subtarget.isSVR4ABI()); if (Subtarget.isPPC64()) return LowerCall_64SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, InVals, CB); return LowerCall_32SVR4(Chain, Callee, CFlags, Outs, OutVals, Ins, dl, DAG, InVals, CB); } SDValue PPCTargetLowering::LowerCall_32SVR4( SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const { // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description // of the 32-bit SVR4 ABI stack frame layout. const CallingConv::ID CallConv = CFlags.CallConv; const bool IsVarArg = CFlags.IsVarArg; const bool IsTailCall = CFlags.IsTailCall; assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unknown calling convention!"); const Align PtrAlign(4); MachineFunction &MF = DAG.getMachineFunction(); // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (getTargetMachine().Options.GuaranteedTailCallOpt && CallConv == CallingConv::Fast) MF.getInfo()->setHasFastCall(); // Count how many bytes are to be pushed on the stack, including the linkage // area, parameter list area and the part of the local variable space which // contains copies of aggregates which are passed by value. // Assign locations to all of the outgoing arguments. SmallVector ArgLocs; PPCCCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext()); // Reserve space for the linkage area on the stack. CCInfo.AllocateStack(Subtarget.getFrameLowering()->getLinkageSize(), PtrAlign); if (useSoftFloat()) CCInfo.PreAnalyzeCallOperands(Outs); if (IsVarArg) { // Handle fixed and variable vector arguments differently. // Fixed vector arguments go into registers as long as registers are // available. Variable vector arguments always go into memory. unsigned NumArgs = Outs.size(); for (unsigned i = 0; i != NumArgs; ++i) { MVT ArgVT = Outs[i].VT; ISD::ArgFlagsTy ArgFlags = Outs[i].Flags; bool Result; if (Outs[i].IsFixed) { Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } else { Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, CCInfo); } if (Result) { #ifndef NDEBUG errs() << "Call operand #" << i << " has unhandled type " << ArgVT << "\n"; #endif llvm_unreachable(nullptr); } } } else { // All arguments are treated the same. CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4); } CCInfo.clearWasPPCF128(); // Assign locations to all of the outgoing aggregate by value arguments. SmallVector ByValArgLocs; CCState CCByValInfo(CallConv, IsVarArg, MF, ByValArgLocs, *DAG.getContext()); // Reserve stack space for the allocations in CCInfo. CCByValInfo.AllocateStack(CCInfo.getStackSize(), PtrAlign); CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal); // Size of the linkage area, parameter list area and the part of the local // space variable where copies of aggregates which are passed by value are // stored. unsigned NumBytes = CCByValInfo.getStackSize(); // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. int SPDiff = CalculateTailCallSPDiff(DAG, IsTailCall, NumBytes); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be moved somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32); SmallVector, 8> RegsToPass; SmallVector TailCallArguments; SmallVector MemOpChains; bool seenFloatArg = false; // Walk the register/memloc assignments, inserting copies/loads. // i - Tracks the index into the list of registers allocated for the call // RealArgIdx - Tracks the index into the list of actual function arguments // j - Tracks the index into the list of byval arguments for (unsigned i = 0, RealArgIdx = 0, j = 0, e = ArgLocs.size(); i != e; ++i, ++RealArgIdx) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[RealArgIdx]; ISD::ArgFlagsTy Flags = Outs[RealArgIdx].Flags; if (Flags.isByVal()) { // Argument is an aggregate which is passed by value, thus we need to // create a copy of it in the local variable space of the current stack // frame (which is the stack frame of the caller) and pass the address of // this copy to the callee. assert((j < ByValArgLocs.size()) && "Index out of bounds!"); CCValAssign &ByValVA = ByValArgLocs[j++]; assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!"); // Memory reserved in the local variable space of the callers stack frame. unsigned LocMemOffset = ByValVA.getLocMemOffset(); SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), StackPtr, PtrOff); // Create a copy of the argument in the local area of the current // stack frame. SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // This must go outside the CALLSEQ_START..END. SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, NumBytes, 0, SDLoc(MemcpyCall)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); Chain = CallSeqStart = NewCallSeqStart; // Pass the address of the aggregate copy on the stack either in a // physical register or in the parameter list area of the current stack // frame to the callee. Arg = PtrOff; } // When useCRBits() is true, there can be i1 arguments. // It is because getRegisterType(MVT::i1) => MVT::i1, // and for other integer types getRegisterType() => MVT::i32. // Extend i1 and ensure callee will get i32. if (Arg.getValueType() == MVT::i1) Arg = DAG.getNode(Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, dl, MVT::i32, Arg); if (VA.isRegLoc()) { seenFloatArg |= VA.getLocVT().isFloatingPoint(); // Put argument in a physical register. if (Subtarget.hasSPE() && Arg.getValueType() == MVT::f64) { bool IsLE = Subtarget.isLittleEndian(); SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, DAG.getIntPtrConstant(IsLE ? 0 : 1, dl)); RegsToPass.push_back(std::make_pair(VA.getLocReg(), SVal.getValue(0))); SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, DAG.getIntPtrConstant(IsLE ? 1 : 0, dl)); RegsToPass.push_back(std::make_pair(ArgLocs[++i].getLocReg(), SVal.getValue(0))); } else RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } else { // Put argument in the parameter list area of the current stack frame. assert(VA.isMemLoc()); unsigned LocMemOffset = VA.getLocMemOffset(); if (!IsTailCall) { SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(MF.getDataLayout()), StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); } else { // Calculate and remember argument location. CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset, TailCallArguments); } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InGlue; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InGlue); InGlue = Chain.getValue(1); } // Set CR bit 6 to true if this is a vararg call with floating args passed in // registers. if (IsVarArg) { SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); SDValue Ops[] = { Chain, InGlue }; Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET, dl, VTs, ArrayRef(Ops, InGlue.getNode() ? 2 : 1)); InGlue = Chain.getValue(1); } if (IsTailCall) PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, TailCallArguments); return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, InVals, CB); } // Copy an argument into memory, being careful to do this outside the // call sequence for the call to which the argument belongs. SDValue PPCTargetLowering::createMemcpyOutsideCallSeq( SDValue Arg, SDValue PtrOff, SDValue CallSeqStart, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, const SDLoc &dl) const { SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff, CallSeqStart.getNode()->getOperand(0), Flags, DAG, dl); // The MEMCPY must go outside the CALLSEQ_START..END. int64_t FrameSize = CallSeqStart.getConstantOperandVal(1); SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall, FrameSize, 0, SDLoc(MemcpyCall)); DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode()); return NewCallSeqStart; } SDValue PPCTargetLowering::LowerCall_64SVR4( SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const { bool isELFv2ABI = Subtarget.isELFv2ABI(); bool isLittleEndian = Subtarget.isLittleEndian(); unsigned NumOps = Outs.size(); bool IsSibCall = false; bool IsFastCall = CFlags.CallConv == CallingConv::Fast; EVT PtrVT = getPointerTy(DAG.getDataLayout()); unsigned PtrByteSize = 8; MachineFunction &MF = DAG.getMachineFunction(); if (CFlags.IsTailCall && !getTargetMachine().Options.GuaranteedTailCallOpt) IsSibCall = true; // Mark this function as potentially containing a function that contains a // tail call. As a consequence the frame pointer will be used for dynamicalloc // and restoring the callers stack pointer in this functions epilog. This is // done because by tail calling the called function might overwrite the value // in this function's (MF) stack pointer stack slot 0(SP). if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) MF.getInfo()->setHasFastCall(); assert(!(IsFastCall && CFlags.IsVarArg) && "fastcc not supported on varargs functions"); // Count how many bytes are to be pushed on the stack, including the linkage // area, and parameter passing area. On ELFv1, the linkage area is 48 bytes // reserved space for [SP][CR][LR][2 x unused][TOC]; on ELFv2, the linkage // area is 32 bytes reserved space for [SP][CR][LR][TOC]. unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); unsigned NumBytes = LinkageSize; unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0; static const MCPhysReg GPR[] = { PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10, }; static const MCPhysReg VR[] = { PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13 }; const unsigned NumGPRs = std::size(GPR); const unsigned NumFPRs = useSoftFloat() ? 0 : 13; const unsigned NumVRs = std::size(VR); // On ELFv2, we can avoid allocating the parameter area if all the arguments // can be passed to the callee in registers. // For the fast calling convention, there is another check below. // Note: We should keep consistent with LowerFormalArguments_64SVR4() bool HasParameterArea = !isELFv2ABI || CFlags.IsVarArg || IsFastCall; if (!HasParameterArea) { unsigned ParamAreaSize = NumGPRs * PtrByteSize; unsigned AvailableFPRs = NumFPRs; unsigned AvailableVRs = NumVRs; unsigned NumBytesTmp = NumBytes; for (unsigned i = 0; i != NumOps; ++i) { if (Outs[i].Flags.isNest()) continue; if (CalculateStackSlotUsed(Outs[i].VT, Outs[i].ArgVT, Outs[i].Flags, PtrByteSize, LinkageSize, ParamAreaSize, NumBytesTmp, AvailableFPRs, AvailableVRs)) HasParameterArea = true; } } // When using the fast calling convention, we don't provide backing for // arguments that will be in registers. unsigned NumGPRsUsed = 0, NumFPRsUsed = 0, NumVRsUsed = 0; // Avoid allocating parameter area for fastcc functions if all the arguments // can be passed in the registers. if (IsFastCall) HasParameterArea = false; // Add up all the space actually used. for (unsigned i = 0; i != NumOps; ++i) { ISD::ArgFlagsTy Flags = Outs[i].Flags; EVT ArgVT = Outs[i].VT; EVT OrigVT = Outs[i].ArgVT; if (Flags.isNest()) continue; if (IsFastCall) { if (Flags.isByVal()) { NumGPRsUsed += (Flags.getByValSize()+7)/8; if (NumGPRsUsed > NumGPRs) HasParameterArea = true; } else { switch (ArgVT.getSimpleVT().SimpleTy) { default: llvm_unreachable("Unexpected ValueType for argument!"); case MVT::i1: case MVT::i32: case MVT::i64: if (++NumGPRsUsed <= NumGPRs) continue; break; case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2f64: case MVT::v2i64: case MVT::v1i128: case MVT::f128: if (++NumVRsUsed <= NumVRs) continue; break; case MVT::v4f32: if (++NumVRsUsed <= NumVRs) continue; break; case MVT::f32: case MVT::f64: if (++NumFPRsUsed <= NumFPRs) continue; break; } HasParameterArea = true; } } /* Respect alignment of argument on the stack. */ auto Alignement = CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); NumBytes = alignTo(NumBytes, Alignement); NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize); if (Flags.isInConsecutiveRegsLast()) NumBytes = ((NumBytes + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; } unsigned NumBytesActuallyUsed = NumBytes; // In the old ELFv1 ABI, // the prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if its varargs. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. // In the ELFv2 ABI, we allocate the parameter area iff a callee // really requires memory operands, e.g. a vararg function. if (HasParameterArea) NumBytes = std::max(NumBytes, LinkageSize + 8 * PtrByteSize); else NumBytes = LinkageSize; // Tail call needs the stack to be aligned. if (getTargetMachine().Options.GuaranteedTailCallOpt && IsFastCall) NumBytes = EnsureStackAlignment(Subtarget.getFrameLowering(), NumBytes); int SPDiff = 0; // Calculate by how many bytes the stack has to be adjusted in case of tail // call optimization. if (!IsSibCall) SPDiff = CalculateTailCallSPDiff(DAG, CFlags.IsTailCall, NumBytes); // To protect arguments on the stack from being clobbered in a tail call, // force all the loads to happen before doing any other lowering. if (CFlags.IsTailCall) Chain = DAG.getStackArgumentTokenFactor(Chain); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass if (!IsSibCall) Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); SDValue CallSeqStart = Chain; // Load the return address and frame pointer so it can be move somewhere else // later. SDValue LROp, FPOp; Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, dl); // Set up a copy of the stack pointer for use loading and storing any // arguments that may not fit in the registers available for argument // passing. SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64); // Figure out which arguments are going to go in registers, and which in // memory. Also, if this is a vararg function, floating point operations // must be stored to our stack, and loaded into integer regs as well, if // any integer regs are available for argument passing. unsigned ArgOffset = LinkageSize; SmallVector, 8> RegsToPass; SmallVector TailCallArguments; SmallVector MemOpChains; for (unsigned i = 0; i != NumOps; ++i) { SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; EVT ArgVT = Outs[i].VT; EVT OrigVT = Outs[i].ArgVT; // PtrOff will be used to store the current argument to the stack if a // register cannot be found for it. SDValue PtrOff; // We re-align the argument offset for each argument, except when using the // fast calling convention, when we need to make sure we do that only when // we'll actually use a stack slot. auto ComputePtrOff = [&]() { /* Respect alignment of argument on the stack. */ auto Alignment = CalculateStackSlotAlignment(ArgVT, OrigVT, Flags, PtrByteSize); ArgOffset = alignTo(ArgOffset, Alignment); PtrOff = DAG.getConstant(ArgOffset, dl, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); }; if (!IsFastCall) { ComputePtrOff(); /* Compute GPR index associated with argument offset. */ GPR_idx = (ArgOffset - LinkageSize) / PtrByteSize; GPR_idx = std::min(GPR_idx, NumGPRs); } // Promote integers to 64-bit values. if (Arg.getValueType() == MVT::i32 || Arg.getValueType() == MVT::i1) { // FIXME: Should this use ANY_EXTEND if neither sext nor zext? unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg); } // FIXME memcpy is used way more than necessary. Correctness first. // Note: "by value" is code for passing a structure by value, not // basic types. if (Flags.isByVal()) { // Note: Size includes alignment padding, so // struct x { short a; char b; } // will have Size = 4. With #pragma pack(1), it will have Size = 3. // These are the proper values we need for right-justifying the // aggregate in a parameter register. unsigned Size = Flags.getByValSize(); // An empty aggregate parameter takes up no storage and no // registers. if (Size == 0) continue; if (IsFastCall) ComputePtrOff(); // All aggregates smaller than 8 bytes must be passed right-justified. if (Size==1 || Size==2 || Size==4) { EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32); if (GPR_idx != NumGPRs) { SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg, MachinePointerInfo(), VT); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); ArgOffset += PtrByteSize; continue; } } if (GPR_idx == NumGPRs && Size < 8) { SDValue AddPtr = PtrOff; if (!isLittleEndian) { SDValue Const = DAG.getConstant(PtrByteSize - Size, dl, PtrOff.getValueType()); AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); } Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, CallSeqStart, Flags, DAG, dl); ArgOffset += PtrByteSize; continue; } // Copy the object to parameter save area if it can not be entirely passed // by registers. // FIXME: we only need to copy the parts which need to be passed in // parameter save area. For the parts passed by registers, we don't need // to copy them to the stack although we need to allocate space for them // in parameter save area. if ((NumGPRs - GPR_idx) * PtrByteSize < Size) Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff, CallSeqStart, Flags, DAG, dl); // When a register is available, pass a small aggregate right-justified. if (Size < 8 && GPR_idx != NumGPRs) { // The easiest way to get this right-justified in a register // is to copy the structure into the rightmost portion of a // local variable slot, then load the whole slot into the // register. // FIXME: The memcpy seems to produce pretty awful code for // small aggregates, particularly for packed ones. // FIXME: It would be preferable to use the slot in the // parameter save area instead of a new local variable. SDValue AddPtr = PtrOff; if (!isLittleEndian) { SDValue Const = DAG.getConstant(8 - Size, dl, PtrOff.getValueType()); AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const); } Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr, CallSeqStart, Flags, DAG, dl); // Load the slot into the register. SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff, MachinePointerInfo()); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); // Done with this argument. ArgOffset += PtrByteSize; continue; } // For aggregates larger than PtrByteSize, copy the pieces of the // object that fit into registers from the parameter save area. for (unsigned j=0; j gpr moves. // In the non-vararg case, this can only ever happen in the // presence of f32 array types, since otherwise we never run // out of FPRs before running out of GPRs. SDValue ArgVal; // Double values are always passed in a single GPR. if (Arg.getValueType() != MVT::f32) { ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i64, Arg); // Non-array float values are extended and passed in a GPR. } else if (!Flags.isInConsecutiveRegs()) { ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); // If we have an array of floats, we collect every odd element // together with its predecessor into one GPR. } else if (ArgOffset % PtrByteSize != 0) { SDValue Lo, Hi; Lo = DAG.getNode(ISD::BITCAST, dl, MVT::i32, OutVals[i - 1]); Hi = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); if (!isLittleEndian) std::swap(Lo, Hi); ArgVal = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); // The final element, if even, goes into the first half of a GPR. } else if (Flags.isInConsecutiveRegsLast()) { ArgVal = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg); ArgVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i64, ArgVal); if (!isLittleEndian) ArgVal = DAG.getNode(ISD::SHL, dl, MVT::i64, ArgVal, DAG.getConstant(32, dl, MVT::i32)); // Non-final even elements are skipped; they will be handled // together the with subsequent argument on the next go-around. } else ArgVal = SDValue(); if (ArgVal.getNode()) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], ArgVal)); } else { if (IsFastCall) ComputePtrOff(); // Single-precision floating-point values are mapped to the // second (rightmost) word of the stack doubleword. if (Arg.getValueType() == MVT::f32 && !isLittleEndian && !Flags.isInConsecutiveRegs()) { SDValue ConstFour = DAG.getConstant(4, dl, PtrOff.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour); } assert(HasParameterArea && "Parameter area must exist to pass an argument in memory."); LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, true, CFlags.IsTailCall, false, MemOpChains, TailCallArguments, dl); NeededLoad = true; } // When passing an array of floats, the array occupies consecutive // space in the argument area; only round up to the next doubleword // at the end of the array. Otherwise, each float takes 8 bytes. if (!IsFastCall || NeededLoad) { ArgOffset += (Arg.getValueType() == MVT::f32 && Flags.isInConsecutiveRegs()) ? 4 : 8; if (Flags.isInConsecutiveRegsLast()) ArgOffset = ((ArgOffset + PtrByteSize - 1)/PtrByteSize) * PtrByteSize; } break; } case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2f64: case MVT::v2i64: case MVT::v1i128: case MVT::f128: // These can be scalar arguments or elements of a vector array type // passed directly. The latter are used to implement ELFv2 homogenous // vector aggregates. // For a varargs call, named arguments go into VRs or on the stack as // usual; unnamed arguments always go to the stack or the corresponding // GPRs when within range. For now, we always put the value in both // locations (or even all three). if (CFlags.IsVarArg) { assert(HasParameterArea && "Parameter area must exist if we have a varargs call."); // We could elide this store in the case where the object fits // entirely in R registers. Maybe later. SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); MemOpChains.push_back(Store); if (VR_idx != NumVRs) { SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff, MachinePointerInfo()); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load)); } ArgOffset += 16; for (unsigned i=0; i<16; i+=PtrByteSize) { if (GPR_idx == NumGPRs) break; SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, DAG.getConstant(i, dl, PtrVT)); SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo()); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load)); } break; } // Non-varargs Altivec params go into VRs or on the stack. if (VR_idx != NumVRs) { RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg)); } else { if (IsFastCall) ComputePtrOff(); assert(HasParameterArea && "Parameter area must exist to pass an argument in memory."); LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset, true, CFlags.IsTailCall, true, MemOpChains, TailCallArguments, dl); if (IsFastCall) ArgOffset += 16; } if (!IsFastCall) ArgOffset += 16; break; } } assert((!HasParameterArea || NumBytesActuallyUsed == ArgOffset) && "mismatch in size of parameter area"); (void)NumBytesActuallyUsed; if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // Check if this is an indirect call (MTCTR/BCTRL). // See prepareDescriptorIndirectCall and buildCallOperands for more // information about calls through function pointers in the 64-bit SVR4 ABI. if (CFlags.IsIndirect) { // For 64-bit ELFv2 ABI with PCRel, do not save the TOC of the // caller in the TOC save area. if (isTOCSaveRestoreRequired(Subtarget)) { assert(!CFlags.IsTailCall && "Indirect tails calls not supported"); // Load r2 into a virtual register and store it to the TOC save area. setUsesTOCBasePtr(DAG); SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64); // TOC save area offset. unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo::getStack( DAG.getMachineFunction(), TOCSaveOffset)); } // In the ELFv2 ABI, R12 must contain the address of an indirect callee. // This does not mean the MTCTR instruction must use R12; it's easier // to model this as an extra parameter, so do that. if (isELFv2ABI && !CFlags.IsPatchPoint) RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee)); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InGlue; for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InGlue); InGlue = Chain.getValue(1); } if (CFlags.IsTailCall && !IsSibCall) PrepareTailCall(DAG, InGlue, Chain, dl, SPDiff, NumBytes, LROp, FPOp, TailCallArguments); return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, InVals, CB); } // Returns true when the shadow of a general purpose argument register // in the parameter save area is aligned to at least 'RequiredAlign'. static bool isGPRShadowAligned(MCPhysReg Reg, Align RequiredAlign) { assert(RequiredAlign.value() <= 16 && "Required alignment greater than stack alignment."); switch (Reg) { default: report_fatal_error("called on invalid register."); case PPC::R5: case PPC::R9: case PPC::X3: case PPC::X5: case PPC::X7: case PPC::X9: // These registers are 16 byte aligned which is the most strict aligment // we can support. return true; case PPC::R3: case PPC::R7: case PPC::X4: case PPC::X6: case PPC::X8: case PPC::X10: // The shadow of these registers in the PSA is 8 byte aligned. return RequiredAlign <= 8; case PPC::R4: case PPC::R6: case PPC::R8: case PPC::R10: return RequiredAlign <= 4; } } static bool CC_AIX(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &S) { AIXCCState &State = static_cast(S); const PPCSubtarget &Subtarget = static_cast( State.getMachineFunction().getSubtarget()); const bool IsPPC64 = Subtarget.isPPC64(); const unsigned PtrSize = IsPPC64 ? 8 : 4; const Align PtrAlign(PtrSize); const Align StackAlign(16); const MVT RegVT = IsPPC64 ? MVT::i64 : MVT::i32; if (ValVT == MVT::f128) report_fatal_error("f128 is unimplemented on AIX."); if (ArgFlags.isNest()) report_fatal_error("Nest arguments are unimplemented."); static const MCPhysReg GPR_32[] = {// 32-bit registers. PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10}; static const MCPhysReg GPR_64[] = {// 64-bit registers. PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10}; static const MCPhysReg VR[] = {// Vector registers. PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8, PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13}; const ArrayRef GPRs = IsPPC64 ? GPR_64 : GPR_32; if (ArgFlags.isByVal()) { const Align ByValAlign(ArgFlags.getNonZeroByValAlign()); if (ByValAlign > StackAlign) report_fatal_error("Pass-by-value arguments with alignment greater than " "16 are not supported."); const unsigned ByValSize = ArgFlags.getByValSize(); const Align ObjAlign = ByValAlign > PtrAlign ? ByValAlign : PtrAlign; // An empty aggregate parameter takes up no storage and no registers, // but needs a MemLoc for a stack slot for the formal arguments side. if (ByValSize == 0) { State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, State.getStackSize(), RegVT, LocInfo)); return false; } // Shadow allocate any registers that are not properly aligned. unsigned NextReg = State.getFirstUnallocated(GPRs); while (NextReg != GPRs.size() && !isGPRShadowAligned(GPRs[NextReg], ObjAlign)) { // Shadow allocate next registers since its aligment is not strict enough. unsigned Reg = State.AllocateReg(GPRs); // Allocate the stack space shadowed by said register. State.AllocateStack(PtrSize, PtrAlign); assert(Reg && "Alocating register unexpectedly failed."); (void)Reg; NextReg = State.getFirstUnallocated(GPRs); } const unsigned StackSize = alignTo(ByValSize, ObjAlign); unsigned Offset = State.AllocateStack(StackSize, ObjAlign); for (const unsigned E = Offset + StackSize; Offset < E; Offset += PtrSize) { if (unsigned Reg = State.AllocateReg(GPRs)) State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); else { State.addLoc(CCValAssign::getMem(ValNo, MVT::INVALID_SIMPLE_VALUE_TYPE, Offset, MVT::INVALID_SIMPLE_VALUE_TYPE, LocInfo)); break; } } return false; } // Arguments always reserve parameter save area. switch (ValVT.SimpleTy) { default: report_fatal_error("Unhandled value type for argument."); case MVT::i64: // i64 arguments should have been split to i32 for PPC32. assert(IsPPC64 && "PPC32 should have split i64 values."); [[fallthrough]]; case MVT::i1: case MVT::i32: { const unsigned Offset = State.AllocateStack(PtrSize, PtrAlign); // AIX integer arguments are always passed in register width. if (ValVT.getFixedSizeInBits() < RegVT.getFixedSizeInBits()) LocInfo = ArgFlags.isSExt() ? CCValAssign::LocInfo::SExt : CCValAssign::LocInfo::ZExt; if (unsigned Reg = State.AllocateReg(GPRs)) State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, RegVT, LocInfo)); else State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, RegVT, LocInfo)); return false; } case MVT::f32: case MVT::f64: { // Parameter save area (PSA) is reserved even if the float passes in fpr. const unsigned StoreSize = LocVT.getStoreSize(); // Floats are always 4-byte aligned in the PSA on AIX. // This includes f64 in 64-bit mode for ABI compatibility. const unsigned Offset = State.AllocateStack(IsPPC64 ? 8 : StoreSize, Align(4)); unsigned FReg = State.AllocateReg(FPR); if (FReg) State.addLoc(CCValAssign::getReg(ValNo, ValVT, FReg, LocVT, LocInfo)); // Reserve and initialize GPRs or initialize the PSA as required. for (unsigned I = 0; I < StoreSize; I += PtrSize) { if (unsigned Reg = State.AllocateReg(GPRs)) { assert(FReg && "An FPR should be available when a GPR is reserved."); if (State.isVarArg()) { // Successfully reserved GPRs are only initialized for vararg calls. // Custom handling is required for: // f64 in PPC32 needs to be split into 2 GPRs. // f32 in PPC64 needs to occupy only lower 32 bits of 64-bit GPR. State.addLoc( CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); } } else { // If there are insufficient GPRs, the PSA needs to be initialized. // Initialization occurs even if an FPR was initialized for // compatibility with the AIX XL compiler. The full memory for the // argument will be initialized even if a prior word is saved in GPR. // A custom memLoc is used when the argument also passes in FPR so // that the callee handling can skip over it easily. State.addLoc( FReg ? CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo) : CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); break; } } return false; } case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2i64: case MVT::v2f64: case MVT::v1i128: { const unsigned VecSize = 16; const Align VecAlign(VecSize); if (!State.isVarArg()) { // If there are vector registers remaining we don't consume any stack // space. if (unsigned VReg = State.AllocateReg(VR)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); return false; } // Vectors passed on the stack do not shadow GPRs or FPRs even though they // might be allocated in the portion of the PSA that is shadowed by the // GPRs. const unsigned Offset = State.AllocateStack(VecSize, VecAlign); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } unsigned NextRegIndex = State.getFirstUnallocated(GPRs); // Burn any underaligned registers and their shadowed stack space until // we reach the required alignment. while (NextRegIndex != GPRs.size() && !isGPRShadowAligned(GPRs[NextRegIndex], VecAlign)) { // Shadow allocate register and its stack shadow. unsigned Reg = State.AllocateReg(GPRs); State.AllocateStack(PtrSize, PtrAlign); assert(Reg && "Allocating register unexpectedly failed."); (void)Reg; NextRegIndex = State.getFirstUnallocated(GPRs); } // Vectors that are passed as fixed arguments are handled differently. // They are passed in VRs if any are available (unlike arguments passed // through ellipses) and shadow GPRs (unlike arguments to non-vaarg // functions) if (State.isFixed(ValNo)) { if (unsigned VReg = State.AllocateReg(VR)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, VReg, LocVT, LocInfo)); // Shadow allocate GPRs and stack space even though we pass in a VR. for (unsigned I = 0; I != VecSize; I += PtrSize) State.AllocateReg(GPRs); State.AllocateStack(VecSize, VecAlign); return false; } // No vector registers remain so pass on the stack. const unsigned Offset = State.AllocateStack(VecSize, VecAlign); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } // If all GPRS are consumed then we pass the argument fully on the stack. if (NextRegIndex == GPRs.size()) { const unsigned Offset = State.AllocateStack(VecSize, VecAlign); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } // Corner case for 32-bit codegen. We have 2 registers to pass the first // half of the argument, and then need to pass the remaining half on the // stack. if (GPRs[NextRegIndex] == PPC::R9) { const unsigned Offset = State.AllocateStack(VecSize, VecAlign); State.addLoc( CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); const unsigned FirstReg = State.AllocateReg(PPC::R9); const unsigned SecondReg = State.AllocateReg(PPC::R10); assert(FirstReg && SecondReg && "Allocating R9 or R10 unexpectedly failed."); State.addLoc( CCValAssign::getCustomReg(ValNo, ValVT, FirstReg, RegVT, LocInfo)); State.addLoc( CCValAssign::getCustomReg(ValNo, ValVT, SecondReg, RegVT, LocInfo)); return false; } // We have enough GPRs to fully pass the vector argument, and we have // already consumed any underaligned registers. Start with the custom // MemLoc and then the custom RegLocs. const unsigned Offset = State.AllocateStack(VecSize, VecAlign); State.addLoc( CCValAssign::getCustomMem(ValNo, ValVT, Offset, LocVT, LocInfo)); for (unsigned I = 0; I != VecSize; I += PtrSize) { const unsigned Reg = State.AllocateReg(GPRs); assert(Reg && "Failed to allocated register for vararg vector argument"); State.addLoc( CCValAssign::getCustomReg(ValNo, ValVT, Reg, RegVT, LocInfo)); } return false; } } return true; } // So far, this function is only used by LowerFormalArguments_AIX() static const TargetRegisterClass *getRegClassForSVT(MVT::SimpleValueType SVT, bool IsPPC64, bool HasP8Vector, bool HasVSX) { assert((IsPPC64 || SVT != MVT::i64) && "i64 should have been split for 32-bit codegen."); switch (SVT) { default: report_fatal_error("Unexpected value type for formal argument"); case MVT::i1: case MVT::i32: case MVT::i64: return IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; case MVT::f32: return HasP8Vector ? &PPC::VSSRCRegClass : &PPC::F4RCRegClass; case MVT::f64: return HasVSX ? &PPC::VSFRCRegClass : &PPC::F8RCRegClass; case MVT::v4f32: case MVT::v4i32: case MVT::v8i16: case MVT::v16i8: case MVT::v2i64: case MVT::v2f64: case MVT::v1i128: return &PPC::VRRCRegClass; } } static SDValue truncateScalarIntegerArg(ISD::ArgFlagsTy Flags, EVT ValVT, SelectionDAG &DAG, SDValue ArgValue, MVT LocVT, const SDLoc &dl) { assert(ValVT.isScalarInteger() && LocVT.isScalarInteger()); assert(ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits()); if (Flags.isSExt()) ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue, DAG.getValueType(ValVT)); else if (Flags.isZExt()) ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue, DAG.getValueType(ValVT)); return DAG.getNode(ISD::TRUNCATE, dl, ValVT, ArgValue); } static unsigned mapArgRegToOffsetAIX(unsigned Reg, const PPCFrameLowering *FL) { const unsigned LASize = FL->getLinkageSize(); if (PPC::GPRCRegClass.contains(Reg)) { assert(Reg >= PPC::R3 && Reg <= PPC::R10 && "Reg must be a valid argument register!"); return LASize + 4 * (Reg - PPC::R3); } if (PPC::G8RCRegClass.contains(Reg)) { assert(Reg >= PPC::X3 && Reg <= PPC::X10 && "Reg must be a valid argument register!"); return LASize + 8 * (Reg - PPC::X3); } llvm_unreachable("Only general purpose registers expected."); } // AIX ABI Stack Frame Layout: // // Low Memory +--------------------------------------------+ // SP +---> | Back chain | ---+ // | +--------------------------------------------+ | // | | Saved Condition Register | | // | +--------------------------------------------+ | // | | Saved Linkage Register | | // | +--------------------------------------------+ | Linkage Area // | | Reserved for compilers | | // | +--------------------------------------------+ | // | | Reserved for binders | | // | +--------------------------------------------+ | // | | Saved TOC pointer | ---+ // | +--------------------------------------------+ // | | Parameter save area | // | +--------------------------------------------+ // | | Alloca space | // | +--------------------------------------------+ // | | Local variable space | // | +--------------------------------------------+ // | | Float/int conversion temporary | // | +--------------------------------------------+ // | | Save area for AltiVec registers | // | +--------------------------------------------+ // | | AltiVec alignment padding | // | +--------------------------------------------+ // | | Save area for VRSAVE register | // | +--------------------------------------------+ // | | Save area for General Purpose registers | // | +--------------------------------------------+ // | | Save area for Floating Point registers | // | +--------------------------------------------+ // +---- | Back chain | // High Memory +--------------------------------------------+ // // Specifications: // AIX 7.2 Assembler Language Reference // Subroutine linkage convention SDValue PPCTargetLowering::LowerFormalArguments_AIX( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals) const { assert((CallConv == CallingConv::C || CallConv == CallingConv::Cold || CallConv == CallingConv::Fast) && "Unexpected calling convention!"); if (getTargetMachine().Options.GuaranteedTailCallOpt) report_fatal_error("Tail call support is unimplemented on AIX."); if (useSoftFloat()) report_fatal_error("Soft float support is unimplemented on AIX."); const PPCSubtarget &Subtarget = DAG.getSubtarget(); const bool IsPPC64 = Subtarget.isPPC64(); const unsigned PtrByteSize = IsPPC64 ? 8 : 4; // Assign locations to all of the incoming arguments. SmallVector ArgLocs; MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); PPCFunctionInfo *FuncInfo = MF.getInfo(); AIXCCState CCInfo(CallConv, isVarArg, MF, ArgLocs, *DAG.getContext()); const EVT PtrVT = getPointerTy(MF.getDataLayout()); // Reserve space for the linkage area on the stack. const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); CCInfo.AnalyzeFormalArguments(Ins, CC_AIX); SmallVector MemOps; for (size_t I = 0, End = ArgLocs.size(); I != End; /* No increment here */) { CCValAssign &VA = ArgLocs[I++]; MVT LocVT = VA.getLocVT(); MVT ValVT = VA.getValVT(); ISD::ArgFlagsTy Flags = Ins[VA.getValNo()].Flags; // For compatibility with the AIX XL compiler, the float args in the // parameter save area are initialized even if the argument is available // in register. The caller is required to initialize both the register // and memory, however, the callee can choose to expect it in either. // The memloc is dismissed here because the argument is retrieved from // the register. if (VA.isMemLoc() && VA.needsCustom() && ValVT.isFloatingPoint()) continue; auto HandleMemLoc = [&]() { const unsigned LocSize = LocVT.getStoreSize(); const unsigned ValSize = ValVT.getStoreSize(); assert((ValSize <= LocSize) && "Object size is larger than size of MemLoc"); int CurArgOffset = VA.getLocMemOffset(); // Objects are right-justified because AIX is big-endian. if (LocSize > ValSize) CurArgOffset += LocSize - ValSize; // Potential tail calls could cause overwriting of argument stack slots. const bool IsImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt && (CallConv == CallingConv::Fast)); int FI = MFI.CreateFixedObject(ValSize, CurArgOffset, IsImmutable); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); SDValue ArgValue = DAG.getLoad(ValVT, dl, Chain, FIN, MachinePointerInfo()); InVals.push_back(ArgValue); }; // Vector arguments to VaArg functions are passed both on the stack, and // in any available GPRs. Load the value from the stack and add the GPRs // as live ins. if (VA.isMemLoc() && VA.needsCustom()) { assert(ValVT.isVector() && "Unexpected Custom MemLoc type."); assert(isVarArg && "Only use custom memloc for vararg."); // ValNo of the custom MemLoc, so we can compare it to the ValNo of the // matching custom RegLocs. const unsigned OriginalValNo = VA.getValNo(); (void)OriginalValNo; auto HandleCustomVecRegLoc = [&]() { assert(I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && "Missing custom RegLoc."); VA = ArgLocs[I++]; assert(VA.getValVT().isVector() && "Unexpected Val type for custom RegLoc."); assert(VA.getValNo() == OriginalValNo && "ValNo mismatch between custom MemLoc and RegLoc."); MVT::SimpleValueType SVT = VA.getLocVT().SimpleTy; MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), Subtarget.hasVSX())); }; HandleMemLoc(); // In 64-bit there will be exactly 2 custom RegLocs that follow, and in // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and // R10. HandleCustomVecRegLoc(); HandleCustomVecRegLoc(); // If we are targeting 32-bit, there might be 2 extra custom RegLocs if // we passed the vector in R5, R6, R7 and R8. if (I != End && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom()) { assert(!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen."); HandleCustomVecRegLoc(); HandleCustomVecRegLoc(); } continue; } if (VA.isRegLoc()) { if (VA.getValVT().isScalarInteger()) FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); else if (VA.getValVT().isFloatingPoint() && !VA.getValVT().isVector()) { switch (VA.getValVT().SimpleTy) { default: report_fatal_error("Unhandled value type for argument."); case MVT::f32: FuncInfo->appendParameterType(PPCFunctionInfo::ShortFloatingPoint); break; case MVT::f64: FuncInfo->appendParameterType(PPCFunctionInfo::LongFloatingPoint); break; } } else if (VA.getValVT().isVector()) { switch (VA.getValVT().SimpleTy) { default: report_fatal_error("Unhandled value type for argument."); case MVT::v16i8: FuncInfo->appendParameterType(PPCFunctionInfo::VectorChar); break; case MVT::v8i16: FuncInfo->appendParameterType(PPCFunctionInfo::VectorShort); break; case MVT::v4i32: case MVT::v2i64: case MVT::v1i128: FuncInfo->appendParameterType(PPCFunctionInfo::VectorInt); break; case MVT::v4f32: case MVT::v2f64: FuncInfo->appendParameterType(PPCFunctionInfo::VectorFloat); break; } } } if (Flags.isByVal() && VA.isMemLoc()) { const unsigned Size = alignTo(Flags.getByValSize() ? Flags.getByValSize() : PtrByteSize, PtrByteSize); const int FI = MF.getFrameInfo().CreateFixedObject( Size, VA.getLocMemOffset(), /* IsImmutable */ false, /* IsAliased */ true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); continue; } if (Flags.isByVal()) { assert(VA.isRegLoc() && "MemLocs should already be handled."); const MCPhysReg ArgReg = VA.getLocReg(); const PPCFrameLowering *FL = Subtarget.getFrameLowering(); const unsigned StackSize = alignTo(Flags.getByValSize(), PtrByteSize); const int FI = MF.getFrameInfo().CreateFixedObject( StackSize, mapArgRegToOffsetAIX(ArgReg, FL), /* IsImmutable */ false, /* IsAliased */ true); SDValue FIN = DAG.getFrameIndex(FI, PtrVT); InVals.push_back(FIN); // Add live ins for all the RegLocs for the same ByVal. const TargetRegisterClass *RegClass = IsPPC64 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; auto HandleRegLoc = [&, RegClass, LocVT](const MCPhysReg PhysReg, unsigned Offset) { const Register VReg = MF.addLiveIn(PhysReg, RegClass); // Since the callers side has left justified the aggregate in the // register, we can simply store the entire register into the stack // slot. SDValue CopyFrom = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); // The store to the fixedstack object is needed becuase accessing a // field of the ByVal will use a gep and load. Ideally we will optimize // to extracting the value from the register directly, and elide the // stores when the arguments address is not taken, but that will need to // be future work. SDValue Store = DAG.getStore( CopyFrom.getValue(1), dl, CopyFrom, DAG.getObjectPtrOffset(dl, FIN, TypeSize::getFixed(Offset)), MachinePointerInfo::getFixedStack(MF, FI, Offset)); MemOps.push_back(Store); }; unsigned Offset = 0; HandleRegLoc(VA.getLocReg(), Offset); Offset += PtrByteSize; for (; Offset != StackSize && ArgLocs[I].isRegLoc(); Offset += PtrByteSize) { assert(ArgLocs[I].getValNo() == VA.getValNo() && "RegLocs should be for ByVal argument."); const CCValAssign RL = ArgLocs[I++]; HandleRegLoc(RL.getLocReg(), Offset); FuncInfo->appendParameterType(PPCFunctionInfo::FixedType); } if (Offset != StackSize) { assert(ArgLocs[I].getValNo() == VA.getValNo() && "Expected MemLoc for remaining bytes."); assert(ArgLocs[I].isMemLoc() && "Expected MemLoc for remaining bytes."); // Consume the MemLoc.The InVal has already been emitted, so nothing // more needs to be done. ++I; } continue; } if (VA.isRegLoc() && !VA.needsCustom()) { MVT::SimpleValueType SVT = ValVT.SimpleTy; Register VReg = MF.addLiveIn(VA.getLocReg(), getRegClassForSVT(SVT, IsPPC64, Subtarget.hasP8Vector(), Subtarget.hasVSX())); SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT); if (ValVT.isScalarInteger() && (ValVT.getFixedSizeInBits() < LocVT.getFixedSizeInBits())) { ArgValue = truncateScalarIntegerArg(Flags, ValVT, DAG, ArgValue, LocVT, dl); } InVals.push_back(ArgValue); continue; } if (VA.isMemLoc()) { HandleMemLoc(); continue; } } // On AIX a minimum of 8 words is saved to the parameter save area. const unsigned MinParameterSaveArea = 8 * PtrByteSize; // Area that is at least reserved in the caller of this function. unsigned CallerReservedArea = std::max( CCInfo.getStackSize(), LinkageSize + MinParameterSaveArea); // Set the size that is at least reserved in caller of this function. Tail // call optimized function's reserved stack space needs to be aligned so // that taking the difference between two stack areas will result in an // aligned stack. CallerReservedArea = EnsureStackAlignment(Subtarget.getFrameLowering(), CallerReservedArea); FuncInfo->setMinReservedArea(CallerReservedArea); if (isVarArg) { FuncInfo->setVarArgsFrameIndex( MFI.CreateFixedObject(PtrByteSize, CCInfo.getStackSize(), true)); SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); static const MCPhysReg GPR_32[] = {PPC::R3, PPC::R4, PPC::R5, PPC::R6, PPC::R7, PPC::R8, PPC::R9, PPC::R10}; static const MCPhysReg GPR_64[] = {PPC::X3, PPC::X4, PPC::X5, PPC::X6, PPC::X7, PPC::X8, PPC::X9, PPC::X10}; const unsigned NumGPArgRegs = std::size(IsPPC64 ? GPR_64 : GPR_32); // The fixed integer arguments of a variadic function are stored to the // VarArgsFrameIndex on the stack so that they may be loaded by // dereferencing the result of va_next. for (unsigned GPRIndex = (CCInfo.getStackSize() - LinkageSize) / PtrByteSize; GPRIndex < NumGPArgRegs; ++GPRIndex) { const Register VReg = IsPPC64 ? MF.addLiveIn(GPR_64[GPRIndex], &PPC::G8RCRegClass) : MF.addLiveIn(GPR_32[GPRIndex], &PPC::GPRCRegClass); SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT); SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN, MachinePointerInfo()); MemOps.push_back(Store); // Increment the address for the next argument to store. SDValue PtrOff = DAG.getConstant(PtrByteSize, dl, PtrVT); FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff); } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); return Chain; } SDValue PPCTargetLowering::LowerCall_AIX( SDValue Chain, SDValue Callee, CallFlags CFlags, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SmallVectorImpl &Ins, const SDLoc &dl, SelectionDAG &DAG, SmallVectorImpl &InVals, const CallBase *CB) const { // See PPCTargetLowering::LowerFormalArguments_AIX() for a description of the // AIX ABI stack frame layout. assert((CFlags.CallConv == CallingConv::C || CFlags.CallConv == CallingConv::Cold || CFlags.CallConv == CallingConv::Fast) && "Unexpected calling convention!"); if (CFlags.IsPatchPoint) report_fatal_error("This call type is unimplemented on AIX."); const PPCSubtarget &Subtarget = DAG.getSubtarget(); MachineFunction &MF = DAG.getMachineFunction(); SmallVector ArgLocs; AIXCCState CCInfo(CFlags.CallConv, CFlags.IsVarArg, MF, ArgLocs, *DAG.getContext()); // Reserve space for the linkage save area (LSA) on the stack. // In both PPC32 and PPC64 there are 6 reserved slots in the LSA: // [SP][CR][LR][2 x reserved][TOC]. // The LSA is 24 bytes (6x4) in PPC32 and 48 bytes (6x8) in PPC64. const unsigned LinkageSize = Subtarget.getFrameLowering()->getLinkageSize(); const bool IsPPC64 = Subtarget.isPPC64(); const EVT PtrVT = getPointerTy(DAG.getDataLayout()); const unsigned PtrByteSize = IsPPC64 ? 8 : 4; CCInfo.AllocateStack(LinkageSize, Align(PtrByteSize)); CCInfo.AnalyzeCallOperands(Outs, CC_AIX); // The prolog code of the callee may store up to 8 GPR argument registers to // the stack, allowing va_start to index over them in memory if the callee // is variadic. // Because we cannot tell if this is needed on the caller side, we have to // conservatively assume that it is needed. As such, make sure we have at // least enough stack space for the caller to store the 8 GPRs. const unsigned MinParameterSaveAreaSize = 8 * PtrByteSize; const unsigned NumBytes = std::max( LinkageSize + MinParameterSaveAreaSize, CCInfo.getStackSize()); // Adjust the stack pointer for the new arguments... // These operations are automatically eliminated by the prolog/epilog pass. Chain = DAG.getCALLSEQ_START(Chain, NumBytes, 0, dl); SDValue CallSeqStart = Chain; SmallVector, 8> RegsToPass; SmallVector MemOpChains; // Set up a copy of the stack pointer for loading and storing any // arguments that may not fit in the registers available for argument // passing. const SDValue StackPtr = IsPPC64 ? DAG.getRegister(PPC::X1, MVT::i64) : DAG.getRegister(PPC::R1, MVT::i32); for (unsigned I = 0, E = ArgLocs.size(); I != E;) { const unsigned ValNo = ArgLocs[I].getValNo(); SDValue Arg = OutVals[ValNo]; ISD::ArgFlagsTy Flags = Outs[ValNo].Flags; if (Flags.isByVal()) { const unsigned ByValSize = Flags.getByValSize(); // Nothing to do for zero-sized ByVals on the caller side. if (!ByValSize) { ++I; continue; } auto GetLoad = [&](EVT VT, unsigned LoadOffset) { return DAG.getExtLoad(ISD::ZEXTLOAD, dl, PtrVT, Chain, (LoadOffset != 0) ? DAG.getObjectPtrOffset( dl, Arg, TypeSize::getFixed(LoadOffset)) : Arg, MachinePointerInfo(), VT); }; unsigned LoadOffset = 0; // Initialize registers, which are fully occupied by the by-val argument. while (LoadOffset + PtrByteSize <= ByValSize && ArgLocs[I].isRegLoc()) { SDValue Load = GetLoad(PtrVT, LoadOffset); MemOpChains.push_back(Load.getValue(1)); LoadOffset += PtrByteSize; const CCValAssign &ByValVA = ArgLocs[I++]; assert(ByValVA.getValNo() == ValNo && "Unexpected location for pass-by-value argument."); RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), Load)); } if (LoadOffset == ByValSize) continue; // There must be one more loc to handle the remainder. assert(ArgLocs[I].getValNo() == ValNo && "Expected additional location for by-value argument."); if (ArgLocs[I].isMemLoc()) { assert(LoadOffset < ByValSize && "Unexpected memloc for by-val arg."); const CCValAssign &ByValVA = ArgLocs[I++]; ISD::ArgFlagsTy MemcpyFlags = Flags; // Only memcpy the bytes that don't pass in register. MemcpyFlags.setByValSize(ByValSize - LoadOffset); Chain = CallSeqStart = createMemcpyOutsideCallSeq( (LoadOffset != 0) ? DAG.getObjectPtrOffset( dl, Arg, TypeSize::getFixed(LoadOffset)) : Arg, DAG.getObjectPtrOffset( dl, StackPtr, TypeSize::getFixed(ByValVA.getLocMemOffset())), CallSeqStart, MemcpyFlags, DAG, dl); continue; } // Initialize the final register residue. // Any residue that occupies the final by-val arg register must be // left-justified on AIX. Loads must be a power-of-2 size and cannot be // larger than the ByValSize. For example: a 7 byte by-val arg requires 4, // 2 and 1 byte loads. const unsigned ResidueBytes = ByValSize % PtrByteSize; assert(ResidueBytes != 0 && LoadOffset + PtrByteSize > ByValSize && "Unexpected register residue for by-value argument."); SDValue ResidueVal; for (unsigned Bytes = 0; Bytes != ResidueBytes;) { const unsigned N = llvm::bit_floor(ResidueBytes - Bytes); const MVT VT = N == 1 ? MVT::i8 : ((N == 2) ? MVT::i16 : (N == 4 ? MVT::i32 : MVT::i64)); SDValue Load = GetLoad(VT, LoadOffset); MemOpChains.push_back(Load.getValue(1)); LoadOffset += N; Bytes += N; // By-val arguments are passed left-justfied in register. // Every load here needs to be shifted, otherwise a full register load // should have been used. assert(PtrVT.getSimpleVT().getSizeInBits() > (Bytes * 8) && "Unexpected load emitted during handling of pass-by-value " "argument."); unsigned NumSHLBits = PtrVT.getSimpleVT().getSizeInBits() - (Bytes * 8); EVT ShiftAmountTy = getShiftAmountTy(Load->getValueType(0), DAG.getDataLayout()); SDValue SHLAmt = DAG.getConstant(NumSHLBits, dl, ShiftAmountTy); SDValue ShiftedLoad = DAG.getNode(ISD::SHL, dl, Load.getValueType(), Load, SHLAmt); ResidueVal = ResidueVal ? DAG.getNode(ISD::OR, dl, PtrVT, ResidueVal, ShiftedLoad) : ShiftedLoad; } const CCValAssign &ByValVA = ArgLocs[I++]; RegsToPass.push_back(std::make_pair(ByValVA.getLocReg(), ResidueVal)); continue; } CCValAssign &VA = ArgLocs[I++]; const MVT LocVT = VA.getLocVT(); const MVT ValVT = VA.getValVT(); switch (VA.getLocInfo()) { default: report_fatal_error("Unexpected argument extension type."); case CCValAssign::Full: break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; } if (VA.isRegLoc() && !VA.needsCustom()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); continue; } // Vector arguments passed to VarArg functions need custom handling when // they are passed (at least partially) in GPRs. if (VA.isMemLoc() && VA.needsCustom() && ValVT.isVector()) { assert(CFlags.IsVarArg && "Custom MemLocs only used for Vector args."); // Store value to its stack slot. SDValue PtrOff = DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo()); MemOpChains.push_back(Store); const unsigned OriginalValNo = VA.getValNo(); // Then load the GPRs from the stack unsigned LoadOffset = 0; auto HandleCustomVecRegLoc = [&]() { assert(I != E && "Unexpected end of CCvalAssigns."); assert(ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && "Expected custom RegLoc."); CCValAssign RegVA = ArgLocs[I++]; assert(RegVA.getValNo() == OriginalValNo && "Custom MemLoc ValNo and custom RegLoc ValNo must match."); SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, DAG.getConstant(LoadOffset, dl, PtrVT)); SDValue Load = DAG.getLoad(PtrVT, dl, Store, Add, MachinePointerInfo()); MemOpChains.push_back(Load.getValue(1)); RegsToPass.push_back(std::make_pair(RegVA.getLocReg(), Load)); LoadOffset += PtrByteSize; }; // In 64-bit there will be exactly 2 custom RegLocs that follow, and in // in 32-bit there will be 2 custom RegLocs if we are passing in R9 and // R10. HandleCustomVecRegLoc(); HandleCustomVecRegLoc(); if (I != E && ArgLocs[I].isRegLoc() && ArgLocs[I].needsCustom() && ArgLocs[I].getValNo() == OriginalValNo) { assert(!IsPPC64 && "Only 2 custom RegLocs expected for 64-bit codegen."); HandleCustomVecRegLoc(); HandleCustomVecRegLoc(); } continue; } if (VA.isMemLoc()) { SDValue PtrOff = DAG.getConstant(VA.getLocMemOffset(), dl, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); MemOpChains.push_back( DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo())); continue; } if (!ValVT.isFloatingPoint()) report_fatal_error( "Unexpected register handling for calling convention."); // Custom handling is used for GPR initializations for vararg float // arguments. assert(VA.isRegLoc() && VA.needsCustom() && CFlags.IsVarArg && LocVT.isInteger() && "Custom register handling only expected for VarArg."); SDValue ArgAsInt = DAG.getBitcast(MVT::getIntegerVT(ValVT.getSizeInBits()), Arg); if (Arg.getValueType().getStoreSize() == LocVT.getStoreSize()) // f32 in 32-bit GPR // f64 in 64-bit GPR RegsToPass.push_back(std::make_pair(VA.getLocReg(), ArgAsInt)); else if (Arg.getValueType().getFixedSizeInBits() < LocVT.getFixedSizeInBits()) // f32 in 64-bit GPR. RegsToPass.push_back(std::make_pair( VA.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, LocVT))); else { // f64 in two 32-bit GPRs // The 2 GPRs are marked custom and expected to be adjacent in ArgLocs. assert(Arg.getValueType() == MVT::f64 && CFlags.IsVarArg && !IsPPC64 && "Unexpected custom register for argument!"); CCValAssign &GPR1 = VA; SDValue MSWAsI64 = DAG.getNode(ISD::SRL, dl, MVT::i64, ArgAsInt, DAG.getConstant(32, dl, MVT::i8)); RegsToPass.push_back(std::make_pair( GPR1.getLocReg(), DAG.getZExtOrTrunc(MSWAsI64, dl, MVT::i32))); if (I != E) { // If only 1 GPR was available, there will only be one custom GPR and // the argument will also pass in memory. CCValAssign &PeekArg = ArgLocs[I]; if (PeekArg.isRegLoc() && PeekArg.getValNo() == PeekArg.getValNo()) { assert(PeekArg.needsCustom() && "A second custom GPR is expected."); CCValAssign &GPR2 = ArgLocs[I++]; RegsToPass.push_back(std::make_pair( GPR2.getLocReg(), DAG.getZExtOrTrunc(ArgAsInt, dl, MVT::i32))); } } } } if (!MemOpChains.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); // For indirect calls, we need to save the TOC base to the stack for // restoration after the call. if (CFlags.IsIndirect) { assert(!CFlags.IsTailCall && "Indirect tail-calls not supported."); const MCRegister TOCBaseReg = Subtarget.getTOCPointerRegister(); const MCRegister StackPtrReg = Subtarget.getStackPointerRegister(); const MVT PtrVT = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; const unsigned TOCSaveOffset = Subtarget.getFrameLowering()->getTOCSaveOffset(); setUsesTOCBasePtr(DAG); SDValue Val = DAG.getCopyFromReg(Chain, dl, TOCBaseReg, PtrVT); SDValue PtrOff = DAG.getIntPtrConstant(TOCSaveOffset, dl); SDValue StackPtr = DAG.getRegister(StackPtrReg, PtrVT); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff); Chain = DAG.getStore( Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo::getStack(DAG.getMachineFunction(), TOCSaveOffset)); } // Build a sequence of copy-to-reg nodes chained together with token chain // and flag operands which copy the outgoing args into the appropriate regs. SDValue InGlue; for (auto Reg : RegsToPass) { Chain = DAG.getCopyToReg(Chain, dl, Reg.first, Reg.second, InGlue); InGlue = Chain.getValue(1); } const int SPDiff = 0; return FinishCall(CFlags, dl, DAG, RegsToPass, InGlue, Chain, CallSeqStart, Callee, SPDiff, NumBytes, Ins, InVals, CB); } bool PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF, bool isVarArg, const SmallVectorImpl &Outs, LLVMContext &Context) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); return CCInfo.CheckReturn( Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) ? RetCC_PPC_Cold : RetCC_PPC); } SDValue PPCTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl &Outs, const SmallVectorImpl &OutVals, const SDLoc &dl, SelectionDAG &DAG) const { SmallVector RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeReturn(Outs, (Subtarget.isSVR4ABI() && CallConv == CallingConv::Cold) ? RetCC_PPC_Cold : RetCC_PPC); SDValue Glue; SmallVector RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0, RealResIdx = 0; i != RVLocs.size(); ++i, ++RealResIdx) { CCValAssign &VA = RVLocs[i]; assert(VA.isRegLoc() && "Can only return in registers!"); SDValue Arg = OutVals[RealResIdx]; switch (VA.getLocInfo()) { default: llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; } if (Subtarget.hasSPE() && VA.getLocVT() == MVT::f64) { bool isLittleEndian = Subtarget.isLittleEndian(); // Legalize ret f64 -> ret 2 x i32. SDValue SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, DAG.getIntPtrConstant(isLittleEndian ? 0 : 1, dl)); Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); SVal = DAG.getNode(PPCISD::EXTRACT_SPE, dl, MVT::i32, Arg, DAG.getIntPtrConstant(isLittleEndian ? 1 : 0, dl)); Glue = Chain.getValue(1); VA = RVLocs[++i]; // skip ahead to next loc Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), SVal, Glue); } else Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Glue); Glue = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the glue if we have it. if (Glue.getNode()) RetOps.push_back(Glue); return DAG.getNode(PPCISD::RET_GLUE, dl, MVT::Other, RetOps); } SDValue PPCTargetLowering::LowerGET_DYNAMIC_AREA_OFFSET(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // Get the correct type for integers. EVT IntVT = Op.getValueType(); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue FPSIdx = getFramePointerFrameIndex(DAG); // Build a DYNAREAOFFSET node. SDValue Ops[2] = {Chain, FPSIdx}; SDVTList VTs = DAG.getVTList(IntVT); return DAG.getNode(PPCISD::DYNAREAOFFSET, dl, VTs, Ops); } SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG) const { // When we pop the dynamic allocation we need to restore the SP link. SDLoc dl(Op); // Get the correct type for pointers. EVT PtrVT = getPointerTy(DAG.getDataLayout()); // Construct the stack pointer operand. bool isPPC64 = Subtarget.isPPC64(); unsigned SP = isPPC64 ? PPC::X1 : PPC::R1; SDValue StackPtr = DAG.getRegister(SP, PtrVT); // Get the operands for the STACKRESTORE. SDValue Chain = Op.getOperand(0); SDValue SaveSP = Op.getOperand(1); // Load the old link SP. SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr, MachinePointerInfo()); // Restore the stack pointer. Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP); // Store the old link SP. return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo()); } SDValue PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = Subtarget.isPPC64(); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int RASI = FI->getReturnAddrSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!RASI) { // Find out what the fix offset of the frame pointer save area. int LROffset = Subtarget.getFrameLowering()->getReturnSaveOffset(); // Allocate the frame index for frame pointer save area. RASI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, LROffset, false); // Save the result. FI->setReturnAddrSaveIndex(RASI); } return DAG.getFrameIndex(RASI, PtrVT); } SDValue PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = Subtarget.isPPC64(); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Get current frame pointer save index. The users of this index will be // primarily DYNALLOC instructions. PPCFunctionInfo *FI = MF.getInfo(); int FPSI = FI->getFramePointerSaveIndex(); // If the frame pointer save index hasn't been defined yet. if (!FPSI) { // Find out what the fix offset of the frame pointer save area. int FPOffset = Subtarget.getFrameLowering()->getFramePointerSaveOffset(); // Allocate the frame index for frame pointer save area. FPSI = MF.getFrameInfo().CreateFixedObject(isPPC64? 8 : 4, FPOffset, true); // Save the result. FI->setFramePointerSaveIndex(FPSI); } return DAG.getFrameIndex(FPSI, PtrVT); } SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); // Get the inputs. SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); SDLoc dl(Op); // Get the correct type for pointers. EVT PtrVT = getPointerTy(DAG.getDataLayout()); // Negate the size. SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT, DAG.getConstant(0, dl, PtrVT), Size); // Construct a node for the frame pointer save index. SDValue FPSIdx = getFramePointerFrameIndex(DAG); SDValue Ops[3] = { Chain, NegSize, FPSIdx }; SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other); if (hasInlineStackProbe(MF)) return DAG.getNode(PPCISD::PROBED_ALLOCA, dl, VTs, Ops); return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops); } SDValue PPCTargetLowering::LowerEH_DWARF_CFA(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); bool isPPC64 = Subtarget.isPPC64(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); int FI = MF.getFrameInfo().CreateFixedObject(isPPC64 ? 8 : 4, 0, false); return DAG.getFrameIndex(FI, PtrVT); } SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL, DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), Op.getOperand(1)); } SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { SDLoc DL(Op); return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other, Op.getOperand(0), Op.getOperand(1)); } SDValue PPCTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType().isVector()) return LowerVectorLoad(Op, DAG); assert(Op.getValueType() == MVT::i1 && "Custom lowering only for i1 loads"); // First, load 8 bits into 32 bits, then truncate to 1 bit. SDLoc dl(Op); LoadSDNode *LD = cast(Op); SDValue Chain = LD->getChain(); SDValue BasePtr = LD->getBasePtr(); MachineMemOperand *MMO = LD->getMemOperand(); SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, dl, getPointerTy(DAG.getDataLayout()), Chain, BasePtr, MVT::i8, MMO); SDValue Result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewLD); SDValue Ops[] = { Result, SDValue(NewLD.getNode(), 1) }; return DAG.getMergeValues(Ops, dl); } SDValue PPCTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { if (Op.getOperand(1).getValueType().isVector()) return LowerVectorStore(Op, DAG); assert(Op.getOperand(1).getValueType() == MVT::i1 && "Custom lowering only for i1 stores"); // First, zero extend to 32 bits, then use a truncating store to 8 bits. SDLoc dl(Op); StoreSDNode *ST = cast(Op); SDValue Chain = ST->getChain(); SDValue BasePtr = ST->getBasePtr(); SDValue Value = ST->getValue(); MachineMemOperand *MMO = ST->getMemOperand(); Value = DAG.getNode(ISD::ZERO_EXTEND, dl, getPointerTy(DAG.getDataLayout()), Value); return DAG.getTruncStore(Chain, dl, Value, BasePtr, MVT::i8, MMO); } // FIXME: Remove this once the ANDI glue bug is fixed: SDValue PPCTargetLowering::LowerTRUNCATE(SDValue Op, SelectionDAG &DAG) const { assert(Op.getValueType() == MVT::i1 && "Custom lowering only for i1 results"); SDLoc DL(Op); return DAG.getNode(PPCISD::ANDI_rec_1_GT_BIT, DL, MVT::i1, Op.getOperand(0)); } SDValue PPCTargetLowering::LowerTRUNCATEVector(SDValue Op, SelectionDAG &DAG) const { // Implements a vector truncate that fits in a vector register as a shuffle. // We want to legalize vector truncates down to where the source fits in // a vector register (and target is therefore smaller than vector register // size). At that point legalization will try to custom lower the sub-legal // result and get here - where we can contain the truncate as a single target // operation. // For example a trunc <2 x i16> to <2 x i8> could be visualized as follows: // to // // We will implement it for big-endian ordering as this (where x denotes // undefined): // < MSB1|LSB1, MSB2|LSB2, uu, uu, uu, uu, uu, uu> to // < LSB1, LSB2, u, u, u, u, u, u, u, u, u, u, u, u, u, u> // // The same operation in little-endian ordering will be: // to // EVT TrgVT = Op.getValueType(); assert(TrgVT.isVector() && "Vector type expected."); unsigned TrgNumElts = TrgVT.getVectorNumElements(); EVT EltVT = TrgVT.getVectorElementType(); if (!isOperationCustom(Op.getOpcode(), TrgVT) || TrgVT.getSizeInBits() > 128 || !isPowerOf2_32(TrgNumElts) || !llvm::has_single_bit(EltVT.getSizeInBits())) return SDValue(); SDValue N1 = Op.getOperand(0); EVT SrcVT = N1.getValueType(); unsigned SrcSize = SrcVT.getSizeInBits(); if (SrcSize > 256 || !isPowerOf2_32(SrcVT.getVectorNumElements()) || !llvm::has_single_bit( SrcVT.getVectorElementType().getSizeInBits())) return SDValue(); if (SrcSize == 256 && SrcVT.getVectorNumElements() < 2) return SDValue(); unsigned WideNumElts = 128 / EltVT.getSizeInBits(); EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); SDLoc DL(Op); SDValue Op1, Op2; if (SrcSize == 256) { EVT VecIdxTy = getVectorIdxTy(DAG.getDataLayout()); EVT SplitVT = N1.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); unsigned SplitNumElts = SplitVT.getVectorNumElements(); Op1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, DAG.getConstant(0, DL, VecIdxTy)); Op2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, SplitVT, N1, DAG.getConstant(SplitNumElts, DL, VecIdxTy)); } else { Op1 = SrcSize == 128 ? N1 : widenVec(DAG, N1, DL); Op2 = DAG.getUNDEF(WideVT); } // First list the elements we want to keep. unsigned SizeMult = SrcSize / TrgVT.getSizeInBits(); SmallVector ShuffV; if (Subtarget.isLittleEndian()) for (unsigned i = 0; i < TrgNumElts; ++i) ShuffV.push_back(i * SizeMult); else for (unsigned i = 1; i <= TrgNumElts; ++i) ShuffV.push_back(i * SizeMult - 1); // Populate the remaining elements with undefs. for (unsigned i = TrgNumElts; i < WideNumElts; ++i) // ShuffV.push_back(i + WideNumElts); ShuffV.push_back(WideNumElts + 1); Op1 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op1); Op2 = DAG.getNode(ISD::BITCAST, DL, WideVT, Op2); return DAG.getVectorShuffle(WideVT, DL, Op1, Op2, ShuffV); } /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when /// possible. SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { ISD::CondCode CC = cast(Op.getOperand(4))->get(); EVT ResVT = Op.getValueType(); EVT CmpVT = Op.getOperand(0).getValueType(); SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue TV = Op.getOperand(2), FV = Op.getOperand(3); SDLoc dl(Op); // Without power9-vector, we don't have native instruction for f128 comparison. // Following transformation to libcall is needed for setcc: // select_cc lhs, rhs, tv, fv, cc -> select_cc (setcc cc, x, y), 0, tv, fv, NE if (!Subtarget.hasP9Vector() && CmpVT == MVT::f128) { SDValue Z = DAG.getSetCC( dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT), LHS, RHS, CC); SDValue Zero = DAG.getConstant(0, dl, Z.getValueType()); return DAG.getSelectCC(dl, Z, Zero, TV, FV, ISD::SETNE); } // Not FP, or using SPE? Not a fsel. if (!CmpVT.isFloatingPoint() || !TV.getValueType().isFloatingPoint() || Subtarget.hasSPE()) return Op; SDNodeFlags Flags = Op.getNode()->getFlags(); // We have xsmaxc[dq]p/xsminc[dq]p which are OK to emit even in the // presence of infinities. if (Subtarget.hasP9Vector() && LHS == TV && RHS == FV) { switch (CC) { default: break; case ISD::SETOGT: case ISD::SETGT: return DAG.getNode(PPCISD::XSMAXC, dl, Op.getValueType(), LHS, RHS); case ISD::SETOLT: case ISD::SETLT: return DAG.getNode(PPCISD::XSMINC, dl, Op.getValueType(), LHS, RHS); } } // We might be able to do better than this under some circumstances, but in // general, fsel-based lowering of select is a finite-math-only optimization. // For more information, see section F.3 of the 2.06 ISA specification. // With ISA 3.0 if ((!DAG.getTarget().Options.NoInfsFPMath && !Flags.hasNoInfs()) || (!DAG.getTarget().Options.NoNaNsFPMath && !Flags.hasNoNaNs()) || ResVT == MVT::f128) return Op; // If the RHS of the comparison is a 0.0, we don't need to do the // subtraction at all. SDValue Sel1; if (isFloatingPointZero(RHS)) switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETNE: std::swap(TV, FV); [[fallthrough]]; case ISD::SETEQ: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), Sel1, FV); case ISD::SETULT: case ISD::SETLT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt [[fallthrough]]; case ISD::SETOGE: case ISD::SETGE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV); case ISD::SETUGT: case ISD::SETGT: std::swap(TV, FV); // fsel is natively setge, swap operands for setlt [[fallthrough]]; case ISD::SETOLE: case ISD::SETLE: if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV); } SDValue Cmp; switch (CC) { default: break; // SETUO etc aren't handled by fsel. case ISD::SETNE: std::swap(TV, FV); [[fallthrough]]; case ISD::SETEQ: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); Sel1 = DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); if (Sel1.getValueType() == MVT::f32) // Comparison is always 64-bits Sel1 = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Sel1); return DAG.getNode(PPCISD::FSEL, dl, ResVT, DAG.getNode(ISD::FNEG, dl, MVT::f64, Cmp), Sel1, FV); case ISD::SETULT: case ISD::SETLT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOGE: case ISD::SETGE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS, Flags); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); case ISD::SETUGT: case ISD::SETGT: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV); case ISD::SETOLE: case ISD::SETLE: Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS, Flags); if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp); return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV); } return Op; } static unsigned getPPCStrictOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("No strict version of this opcode!"); case PPCISD::FCTIDZ: return PPCISD::STRICT_FCTIDZ; case PPCISD::FCTIWZ: return PPCISD::STRICT_FCTIWZ; case PPCISD::FCTIDUZ: return PPCISD::STRICT_FCTIDUZ; case PPCISD::FCTIWUZ: return PPCISD::STRICT_FCTIWUZ; case PPCISD::FCFID: return PPCISD::STRICT_FCFID; case PPCISD::FCFIDU: return PPCISD::STRICT_FCFIDU; case PPCISD::FCFIDS: return PPCISD::STRICT_FCFIDS; case PPCISD::FCFIDUS: return PPCISD::STRICT_FCFIDUS; } } static SDValue convertFPToInt(SDValue Op, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { SDLoc dl(Op); bool IsStrict = Op->isStrictFPOpcode(); bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::STRICT_FP_TO_SINT; // TODO: Any other flags to propagate? SDNodeFlags Flags; Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); // For strict nodes, source is the second operand. SDValue Src = Op.getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? Op.getOperand(0) : SDValue(); MVT DestTy = Op.getSimpleValueType(); assert(Src.getValueType().isFloatingPoint() && (DestTy == MVT::i8 || DestTy == MVT::i16 || DestTy == MVT::i32 || DestTy == MVT::i64) && "Invalid FP_TO_INT types"); if (Src.getValueType() == MVT::f32) { if (IsStrict) { Src = DAG.getNode(ISD::STRICT_FP_EXTEND, dl, DAG.getVTList(MVT::f64, MVT::Other), {Chain, Src}, Flags); Chain = Src.getValue(1); } else Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); } if ((DestTy == MVT::i8 || DestTy == MVT::i16) && Subtarget.hasP9Vector()) DestTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; unsigned Opc = ISD::DELETED_NODE; switch (DestTy.SimpleTy) { default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!"); case MVT::i32: Opc = IsSigned ? PPCISD::FCTIWZ : (Subtarget.hasFPCVT() ? PPCISD::FCTIWUZ : PPCISD::FCTIDZ); break; case MVT::i64: assert((IsSigned || Subtarget.hasFPCVT()) && "i64 FP_TO_UINT is supported only with FPCVT"); Opc = IsSigned ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; } EVT ConvTy = Src.getValueType() == MVT::f128 ? MVT::f128 : MVT::f64; SDValue Conv; if (IsStrict) { Opc = getPPCStrictOpcode(Opc); Conv = DAG.getNode(Opc, dl, DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); } else { Conv = DAG.getNode(Opc, dl, ConvTy, Src); } return Conv; } void PPCTargetLowering::LowerFP_TO_INTForReuse(SDValue Op, ReuseLoadInfo &RLI, SelectionDAG &DAG, const SDLoc &dl) const { SDValue Tmp = convertFPToInt(Op, DAG, Subtarget); bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::STRICT_FP_TO_SINT; bool IsStrict = Op->isStrictFPOpcode(); // Convert the FP value to an int value through memory. bool i32Stack = Op.getValueType() == MVT::i32 && Subtarget.hasSTFIWX() && (IsSigned || Subtarget.hasFPCVT()); SDValue FIPtr = DAG.CreateStackTemporary(i32Stack ? MVT::i32 : MVT::f64); int FI = cast(FIPtr)->getIndex(); MachinePointerInfo MPI = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); // Emit a store to the stack slot. SDValue Chain = IsStrict ? Tmp.getValue(1) : DAG.getEntryNode(); Align Alignment(DAG.getEVTAlign(Tmp.getValueType())); if (i32Stack) { MachineFunction &MF = DAG.getMachineFunction(); Alignment = Align(4); MachineMemOperand *MMO = MF.getMachineMemOperand(MPI, MachineMemOperand::MOStore, 4, Alignment); SDValue Ops[] = { Chain, Tmp, FIPtr }; Chain = DAG.getMemIntrinsicNode(PPCISD::STFIWX, dl, DAG.getVTList(MVT::Other), Ops, MVT::i32, MMO); } else Chain = DAG.getStore(Chain, dl, Tmp, FIPtr, MPI, Alignment); // Result is a load from the stack slot. If loading 4 bytes, make sure to // add in a bias on big endian. if (Op.getValueType() == MVT::i32 && !i32Stack) { FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, DAG.getConstant(4, dl, FIPtr.getValueType())); MPI = MPI.getWithOffset(Subtarget.isLittleEndian() ? 0 : 4); } RLI.Chain = Chain; RLI.Ptr = FIPtr; RLI.MPI = MPI; RLI.Alignment = Alignment; } /// Custom lowers floating point to integer conversions to use /// the direct move instructions available in ISA 2.07 to avoid the /// need for load/store combinations. SDValue PPCTargetLowering::LowerFP_TO_INTDirectMove(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const { SDValue Conv = convertFPToInt(Op, DAG, Subtarget); SDValue Mov = DAG.getNode(PPCISD::MFVSR, dl, Op.getValueType(), Conv); if (Op->isStrictFPOpcode()) return DAG.getMergeValues({Mov, Conv.getValue(1)}, dl); else return Mov; } SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const { bool IsStrict = Op->isStrictFPOpcode(); bool IsSigned = Op.getOpcode() == ISD::FP_TO_SINT || Op.getOpcode() == ISD::STRICT_FP_TO_SINT; SDValue Src = Op.getOperand(IsStrict ? 1 : 0); EVT SrcVT = Src.getValueType(); EVT DstVT = Op.getValueType(); // FP to INT conversions are legal for f128. if (SrcVT == MVT::f128) return Subtarget.hasP9Vector() ? Op : SDValue(); // Expand ppcf128 to i32 by hand for the benefit of llvm-gcc bootstrap on // PPC (the libcall is not available). if (SrcVT == MVT::ppcf128) { if (DstVT == MVT::i32) { // TODO: Conservatively pass only nofpexcept flag here. Need to check and // set other fast-math flags to FP operations in both strict and // non-strict cases. (FP_TO_SINT, FSUB) SDNodeFlags Flags; Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); if (IsSigned) { SDValue Lo, Hi; std::tie(Lo, Hi) = DAG.SplitScalar(Src, dl, MVT::f64, MVT::f64); // Add the two halves of the long double in round-to-zero mode, and use // a smaller FP_TO_SINT. if (IsStrict) { SDValue Res = DAG.getNode(PPCISD::STRICT_FADDRTZ, dl, DAG.getVTList(MVT::f64, MVT::Other), {Op.getOperand(0), Lo, Hi}, Flags); return DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, DAG.getVTList(MVT::i32, MVT::Other), {Res.getValue(1), Res}, Flags); } else { SDValue Res = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi); return DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Res); } } else { const uint64_t TwoE31[] = {0x41e0000000000000LL, 0}; APFloat APF = APFloat(APFloat::PPCDoubleDouble(), APInt(128, TwoE31)); SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT); SDValue SignMask = DAG.getConstant(0x80000000, dl, DstVT); if (IsStrict) { // Sel = Src < 0x80000000 // FltOfs = select Sel, 0.0, 0x80000000 // IntOfs = select Sel, 0, 0x80000000 // Result = fp_to_sint(Src - FltOfs) ^ IntOfs SDValue Chain = Op.getOperand(0); EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT); EVT DstSetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), DstVT); SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT, Chain, true); Chain = Sel.getValue(1); SDValue FltOfs = DAG.getSelect( dl, SrcVT, Sel, DAG.getConstantFP(0.0, dl, SrcVT), Cst); Sel = DAG.getBoolExtOrTrunc(Sel, dl, DstSetCCVT, DstVT); SDValue Val = DAG.getNode(ISD::STRICT_FSUB, dl, DAG.getVTList(SrcVT, MVT::Other), {Chain, Src, FltOfs}, Flags); Chain = Val.getValue(1); SDValue SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, DAG.getVTList(DstVT, MVT::Other), {Chain, Val}, Flags); Chain = SInt.getValue(1); SDValue IntOfs = DAG.getSelect( dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT), SignMask); SDValue Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, IntOfs); return DAG.getMergeValues({Result, Chain}, dl); } else { // X>=2^31 ? (int)(X-2^31)+0x80000000 : (int)X // FIXME: generated code sucks. SDValue True = DAG.getNode(ISD::FSUB, dl, MVT::ppcf128, Src, Cst); True = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, True); True = DAG.getNode(ISD::ADD, dl, MVT::i32, True, SignMask); SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Src); return DAG.getSelectCC(dl, Src, Cst, True, False, ISD::SETGE); } } } return SDValue(); } if (Subtarget.hasDirectMove() && Subtarget.isPPC64()) return LowerFP_TO_INTDirectMove(Op, DAG, dl); ReuseLoadInfo RLI; LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); return DAG.getLoad(Op.getValueType(), dl, RLI.Chain, RLI.Ptr, RLI.MPI, RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); } // We're trying to insert a regular store, S, and then a load, L. If the // incoming value, O, is a load, we might just be able to have our load use the // address used by O. However, we don't know if anything else will store to // that address before we can load from it. To prevent this situation, we need // to insert our load, L, into the chain as a peer of O. To do this, we give L // the same chain operand as O, we create a token factor from the chain results // of O and L, and we replace all uses of O's chain result with that token // factor (see spliceIntoChain below for this last part). bool PPCTargetLowering::canReuseLoadAddress(SDValue Op, EVT MemVT, ReuseLoadInfo &RLI, SelectionDAG &DAG, ISD::LoadExtType ET) const { // Conservatively skip reusing for constrained FP nodes. if (Op->isStrictFPOpcode()) return false; SDLoc dl(Op); bool ValidFPToUint = Op.getOpcode() == ISD::FP_TO_UINT && (Subtarget.hasFPCVT() || Op.getValueType() == MVT::i32); if (ET == ISD::NON_EXTLOAD && (ValidFPToUint || Op.getOpcode() == ISD::FP_TO_SINT) && isOperationLegalOrCustom(Op.getOpcode(), Op.getOperand(0).getValueType())) { LowerFP_TO_INTForReuse(Op, RLI, DAG, dl); return true; } LoadSDNode *LD = dyn_cast(Op); if (!LD || LD->getExtensionType() != ET || LD->isVolatile() || LD->isNonTemporal()) return false; if (LD->getMemoryVT() != MemVT) return false; // If the result of the load is an illegal type, then we can't build a // valid chain for reuse since the legalised loads and token factor node that // ties the legalised loads together uses a different output chain then the // illegal load. if (!isTypeLegal(LD->getValueType(0))) return false; RLI.Ptr = LD->getBasePtr(); if (LD->isIndexed() && !LD->getOffset().isUndef()) { assert(LD->getAddressingMode() == ISD::PRE_INC && "Non-pre-inc AM on PPC?"); RLI.Ptr = DAG.getNode(ISD::ADD, dl, RLI.Ptr.getValueType(), RLI.Ptr, LD->getOffset()); } RLI.Chain = LD->getChain(); RLI.MPI = LD->getPointerInfo(); RLI.IsDereferenceable = LD->isDereferenceable(); RLI.IsInvariant = LD->isInvariant(); RLI.Alignment = LD->getAlign(); RLI.AAInfo = LD->getAAInfo(); RLI.Ranges = LD->getRanges(); RLI.ResChain = SDValue(LD, LD->isIndexed() ? 2 : 1); return true; } // Given the head of the old chain, ResChain, insert a token factor containing // it and NewResChain, and make users of ResChain now be users of that token // factor. // TODO: Remove and use DAG::makeEquivalentMemoryOrdering() instead. void PPCTargetLowering::spliceIntoChain(SDValue ResChain, SDValue NewResChain, SelectionDAG &DAG) const { if (!ResChain) return; SDLoc dl(NewResChain); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, NewResChain, DAG.getUNDEF(MVT::Other)); assert(TF.getNode() != NewResChain.getNode() && "A new TF really is required here"); DAG.ReplaceAllUsesOfValueWith(ResChain, TF); DAG.UpdateNodeOperands(TF.getNode(), ResChain, NewResChain); } /// Analyze profitability of direct move /// prefer float load to int load plus direct move /// when there is no integer use of int load bool PPCTargetLowering::directMoveIsProfitable(const SDValue &Op) const { SDNode *Origin = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0).getNode(); if (Origin->getOpcode() != ISD::LOAD) return true; // If there is no LXSIBZX/LXSIHZX, like Power8, // prefer direct move if the memory size is 1 or 2 bytes. MachineMemOperand *MMO = cast(Origin)->getMemOperand(); if (!Subtarget.hasP9Vector() && (!MMO->getSize().hasValue() || MMO->getSize().getValue() <= 2)) return true; for (SDNode::use_iterator UI = Origin->use_begin(), UE = Origin->use_end(); UI != UE; ++UI) { // Only look at the users of the loaded value. if (UI.getUse().get().getResNo() != 0) continue; if (UI->getOpcode() != ISD::SINT_TO_FP && UI->getOpcode() != ISD::UINT_TO_FP && UI->getOpcode() != ISD::STRICT_SINT_TO_FP && UI->getOpcode() != ISD::STRICT_UINT_TO_FP) return true; } return false; } static SDValue convertIntToFP(SDValue Op, SDValue Src, SelectionDAG &DAG, const PPCSubtarget &Subtarget, SDValue Chain = SDValue()) { bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::STRICT_SINT_TO_FP; SDLoc dl(Op); // TODO: Any other flags to propagate? SDNodeFlags Flags; Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); // If we have FCFIDS, then use it when converting to single-precision. // Otherwise, convert to double-precision and then round. bool IsSingle = Op.getValueType() == MVT::f32 && Subtarget.hasFPCVT(); unsigned ConvOpc = IsSingle ? (IsSigned ? PPCISD::FCFIDS : PPCISD::FCFIDUS) : (IsSigned ? PPCISD::FCFID : PPCISD::FCFIDU); EVT ConvTy = IsSingle ? MVT::f32 : MVT::f64; if (Op->isStrictFPOpcode()) { if (!Chain) Chain = Op.getOperand(0); return DAG.getNode(getPPCStrictOpcode(ConvOpc), dl, DAG.getVTList(ConvTy, MVT::Other), {Chain, Src}, Flags); } else return DAG.getNode(ConvOpc, dl, ConvTy, Src); } /// Custom lowers integer to floating point conversions to use /// the direct move instructions available in ISA 2.07 to avoid the /// need for load/store combinations. SDValue PPCTargetLowering::LowerINT_TO_FPDirectMove(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const { assert((Op.getValueType() == MVT::f32 || Op.getValueType() == MVT::f64) && "Invalid floating point type as target of conversion"); assert(Subtarget.hasFPCVT() && "Int to FP conversions with direct moves require FPCVT"); SDValue Src = Op.getOperand(Op->isStrictFPOpcode() ? 1 : 0); bool WordInt = Src.getSimpleValueType().SimpleTy == MVT::i32; bool Signed = Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::STRICT_SINT_TO_FP; unsigned MovOpc = (WordInt && !Signed) ? PPCISD::MTVSRZ : PPCISD::MTVSRA; SDValue Mov = DAG.getNode(MovOpc, dl, MVT::f64, Src); return convertIntToFP(Op, Mov, DAG, Subtarget); } static SDValue widenVec(SelectionDAG &DAG, SDValue Vec, const SDLoc &dl) { EVT VecVT = Vec.getValueType(); assert(VecVT.isVector() && "Expected a vector type."); assert(VecVT.getSizeInBits() < 128 && "Vector is already full width."); EVT EltVT = VecVT.getVectorElementType(); unsigned WideNumElts = 128 / EltVT.getSizeInBits(); EVT WideVT = EVT::getVectorVT(*DAG.getContext(), EltVT, WideNumElts); unsigned NumConcat = WideNumElts / VecVT.getVectorNumElements(); SmallVector Ops(NumConcat); Ops[0] = Vec; SDValue UndefVec = DAG.getUNDEF(VecVT); for (unsigned i = 1; i < NumConcat; ++i) Ops[i] = UndefVec; return DAG.getNode(ISD::CONCAT_VECTORS, dl, WideVT, Ops); } SDValue PPCTargetLowering::LowerINT_TO_FPVector(SDValue Op, SelectionDAG &DAG, const SDLoc &dl) const { bool IsStrict = Op->isStrictFPOpcode(); unsigned Opc = Op.getOpcode(); SDValue Src = Op.getOperand(IsStrict ? 1 : 0); assert((Opc == ISD::UINT_TO_FP || Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_UINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP) && "Unexpected conversion type"); assert((Op.getValueType() == MVT::v2f64 || Op.getValueType() == MVT::v4f32) && "Supports conversions to v2f64/v4f32 only."); // TODO: Any other flags to propagate? SDNodeFlags Flags; Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); bool SignedConv = Opc == ISD::SINT_TO_FP || Opc == ISD::STRICT_SINT_TO_FP; bool FourEltRes = Op.getValueType() == MVT::v4f32; SDValue Wide = widenVec(DAG, Src, dl); EVT WideVT = Wide.getValueType(); unsigned WideNumElts = WideVT.getVectorNumElements(); MVT IntermediateVT = FourEltRes ? MVT::v4i32 : MVT::v2i64; SmallVector ShuffV; for (unsigned i = 0; i < WideNumElts; ++i) ShuffV.push_back(i + WideNumElts); int Stride = FourEltRes ? WideNumElts / 4 : WideNumElts / 2; int SaveElts = FourEltRes ? 4 : 2; if (Subtarget.isLittleEndian()) for (int i = 0; i < SaveElts; i++) ShuffV[i * Stride] = i; else for (int i = 1; i <= SaveElts; i++) ShuffV[i * Stride - 1] = i - 1; SDValue ShuffleSrc2 = SignedConv ? DAG.getUNDEF(WideVT) : DAG.getConstant(0, dl, WideVT); SDValue Arrange = DAG.getVectorShuffle(WideVT, dl, Wide, ShuffleSrc2, ShuffV); SDValue Extend; if (SignedConv) { Arrange = DAG.getBitcast(IntermediateVT, Arrange); EVT ExtVT = Src.getValueType(); if (Subtarget.hasP9Altivec()) ExtVT = EVT::getVectorVT(*DAG.getContext(), WideVT.getVectorElementType(), IntermediateVT.getVectorNumElements()); Extend = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, IntermediateVT, Arrange, DAG.getValueType(ExtVT)); } else Extend = DAG.getNode(ISD::BITCAST, dl, IntermediateVT, Arrange); if (IsStrict) return DAG.getNode(Opc, dl, DAG.getVTList(Op.getValueType(), MVT::Other), {Op.getOperand(0), Extend}, Flags); return DAG.getNode(Opc, dl, Op.getValueType(), Extend); } SDValue PPCTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); bool IsSigned = Op.getOpcode() == ISD::SINT_TO_FP || Op.getOpcode() == ISD::STRICT_SINT_TO_FP; bool IsStrict = Op->isStrictFPOpcode(); SDValue Src = Op.getOperand(IsStrict ? 1 : 0); SDValue Chain = IsStrict ? Op.getOperand(0) : DAG.getEntryNode(); // TODO: Any other flags to propagate? SDNodeFlags Flags; Flags.setNoFPExcept(Op->getFlags().hasNoFPExcept()); EVT InVT = Src.getValueType(); EVT OutVT = Op.getValueType(); if (OutVT.isVector() && OutVT.isFloatingPoint() && isOperationCustom(Op.getOpcode(), InVT)) return LowerINT_TO_FPVector(Op, DAG, dl); // Conversions to f128 are legal. if (Op.getValueType() == MVT::f128) return Subtarget.hasP9Vector() ? Op : SDValue(); // Don't handle ppc_fp128 here; let it be lowered to a libcall. if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) return SDValue(); if (Src.getValueType() == MVT::i1) { SDValue Sel = DAG.getNode(ISD::SELECT, dl, Op.getValueType(), Src, DAG.getConstantFP(1.0, dl, Op.getValueType()), DAG.getConstantFP(0.0, dl, Op.getValueType())); if (IsStrict) return DAG.getMergeValues({Sel, Chain}, dl); else return Sel; } // If we have direct moves, we can do all the conversion, skip the store/load // however, without FPCVT we can't do most conversions. if (Subtarget.hasDirectMove() && directMoveIsProfitable(Op) && Subtarget.isPPC64() && Subtarget.hasFPCVT()) return LowerINT_TO_FPDirectMove(Op, DAG, dl); assert((IsSigned || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT"); if (Src.getValueType() == MVT::i64) { SDValue SINT = Src; // When converting to single-precision, we actually need to convert // to double-precision first and then round to single-precision. // To avoid double-rounding effects during that operation, we have // to prepare the input operand. Bits that might be truncated when // converting to double-precision are replaced by a bit that won't // be lost at this stage, but is below the single-precision rounding // position. // // However, if -enable-unsafe-fp-math is in effect, accept double // rounding to avoid the extra overhead. if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT() && !DAG.getTarget().Options.UnsafeFPMath) { // Twiddle input to make sure the low 11 bits are zero. (If this // is the case, we are guaranteed the value will fit into the 53 bit // mantissa of an IEEE double-precision value without rounding.) // If any of those low 11 bits were not zero originally, make sure // bit 12 (value 2048) is set instead, so that the final rounding // to single-precision gets the correct result. SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64, SINT, DAG.getConstant(2047, dl, MVT::i64)); Round = DAG.getNode(ISD::ADD, dl, MVT::i64, Round, DAG.getConstant(2047, dl, MVT::i64)); Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT); Round = DAG.getNode(ISD::AND, dl, MVT::i64, Round, DAG.getConstant(-2048, dl, MVT::i64)); // However, we cannot use that value unconditionally: if the magnitude // of the input value is small, the bit-twiddling we did above might // end up visibly changing the output. Fortunately, in that case, we // don't need to twiddle bits since the original input will convert // exactly to double-precision floating-point already. Therefore, // construct a conditional to use the original value if the top 11 // bits are all sign-bit copies, and use the rounded value computed // above otherwise. SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64, SINT, DAG.getConstant(53, dl, MVT::i32)); Cond = DAG.getNode(ISD::ADD, dl, MVT::i64, Cond, DAG.getConstant(1, dl, MVT::i64)); Cond = DAG.getSetCC( dl, getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i64), Cond, DAG.getConstant(1, dl, MVT::i64), ISD::SETUGT); SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT); } ReuseLoadInfo RLI; SDValue Bits; MachineFunction &MF = DAG.getMachineFunction(); if (canReuseLoadAddress(SINT, MVT::i64, RLI, DAG)) { Bits = DAG.getLoad(MVT::f64, dl, RLI.Chain, RLI.Ptr, RLI.MPI, RLI.Alignment, RLI.MMOFlags(), RLI.AAInfo, RLI.Ranges); spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); } else if (Subtarget.hasLFIWAX() && canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::SEXTLOAD)) { MachineMemOperand *MMO = MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, RLI.Alignment, RLI.AAInfo, RLI.Ranges); SDValue Ops[] = { RLI.Chain, RLI.Ptr }; Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWAX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i32, MMO); spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); } else if (Subtarget.hasFPCVT() && canReuseLoadAddress(SINT, MVT::i32, RLI, DAG, ISD::ZEXTLOAD)) { MachineMemOperand *MMO = MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, RLI.Alignment, RLI.AAInfo, RLI.Ranges); SDValue Ops[] = { RLI.Chain, RLI.Ptr }; Bits = DAG.getMemIntrinsicNode(PPCISD::LFIWZX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i32, MMO); spliceIntoChain(RLI.ResChain, Bits.getValue(1), DAG); } else if (((Subtarget.hasLFIWAX() && SINT.getOpcode() == ISD::SIGN_EXTEND) || (Subtarget.hasFPCVT() && SINT.getOpcode() == ISD::ZERO_EXTEND)) && SINT.getOperand(0).getValueType() == MVT::i32) { MachineFrameInfo &MFI = MF.getFrameInfo(); EVT PtrVT = getPointerTy(DAG.getDataLayout()); int FrameIdx = MFI.CreateStackObject(4, Align(4), false); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Store = DAG.getStore(Chain, dl, SINT.getOperand(0), FIdx, MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), FrameIdx)); Chain = Store; assert(cast(Store)->getMemoryVT() == MVT::i32 && "Expected an i32 store"); RLI.Ptr = FIdx; RLI.Chain = Chain; RLI.MPI = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); RLI.Alignment = Align(4); MachineMemOperand *MMO = MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, RLI.Alignment, RLI.AAInfo, RLI.Ranges); SDValue Ops[] = { RLI.Chain, RLI.Ptr }; Bits = DAG.getMemIntrinsicNode(SINT.getOpcode() == ISD::ZERO_EXTEND ? PPCISD::LFIWZX : PPCISD::LFIWAX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i32, MMO); Chain = Bits.getValue(1); } else Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT); SDValue FP = convertIntToFP(Op, Bits, DAG, Subtarget, Chain); if (IsStrict) Chain = FP.getValue(1); if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { if (IsStrict) FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, DAG.getVTList(MVT::f32, MVT::Other), {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); else FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); } return FP; } assert(Src.getValueType() == MVT::i32 && "Unhandled INT_TO_FP type in custom expander!"); // Since we only generate this in 64-bit mode, we can take advantage of // 64-bit registers. In particular, sign extend the input value into the // 64-bit register with extsw, store the WHOLE 64-bit value into the stack // then lfd it and fcfid it. MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); EVT PtrVT = getPointerTy(MF.getDataLayout()); SDValue Ld; if (Subtarget.hasLFIWAX() || Subtarget.hasFPCVT()) { ReuseLoadInfo RLI; bool ReusingLoad; if (!(ReusingLoad = canReuseLoadAddress(Src, MVT::i32, RLI, DAG))) { int FrameIdx = MFI.CreateStackObject(4, Align(4), false); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Store = DAG.getStore(Chain, dl, Src, FIdx, MachinePointerInfo::getFixedStack( DAG.getMachineFunction(), FrameIdx)); Chain = Store; assert(cast(Store)->getMemoryVT() == MVT::i32 && "Expected an i32 store"); RLI.Ptr = FIdx; RLI.Chain = Chain; RLI.MPI = MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx); RLI.Alignment = Align(4); } MachineMemOperand *MMO = MF.getMachineMemOperand(RLI.MPI, MachineMemOperand::MOLoad, 4, RLI.Alignment, RLI.AAInfo, RLI.Ranges); SDValue Ops[] = { RLI.Chain, RLI.Ptr }; Ld = DAG.getMemIntrinsicNode(IsSigned ? PPCISD::LFIWAX : PPCISD::LFIWZX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i32, MMO); Chain = Ld.getValue(1); if (ReusingLoad) spliceIntoChain(RLI.ResChain, Ld.getValue(1), DAG); } else { assert(Subtarget.isPPC64() && "i32->FP without LFIWAX supported only on PPC64"); int FrameIdx = MFI.CreateStackObject(8, Align(8), false); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); SDValue Ext64 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::i64, Src); // STD the extended value into the stack slot. SDValue Store = DAG.getStore( Chain, dl, Ext64, FIdx, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); Chain = Store; // Load the value as a double. Ld = DAG.getLoad( MVT::f64, dl, Chain, FIdx, MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FrameIdx)); Chain = Ld.getValue(1); } // FCFID it and return it. SDValue FP = convertIntToFP(Op, Ld, DAG, Subtarget, Chain); if (IsStrict) Chain = FP.getValue(1); if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { if (IsStrict) FP = DAG.getNode(ISD::STRICT_FP_ROUND, dl, DAG.getVTList(MVT::f32, MVT::Other), {Chain, FP, DAG.getIntPtrConstant(0, dl)}, Flags); else FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); } return FP; } SDValue PPCTargetLowering::LowerGET_ROUNDING(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); /* The rounding mode is in bits 30:31 of FPSR, and has the following settings: 00 Round to nearest 01 Round to 0 10 Round to +inf 11 Round to -inf GET_ROUNDING, on the other hand, expects the following: -1 Undefined 0 Round to 0 1 Round to nearest 2 Round to +inf 3 Round to -inf To perform the conversion, we do: ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1)) */ MachineFunction &MF = DAG.getMachineFunction(); EVT VT = Op.getValueType(); EVT PtrVT = getPointerTy(MF.getDataLayout()); // Save FP Control Word to register SDValue Chain = Op.getOperand(0); SDValue MFFS = DAG.getNode(PPCISD::MFFS, dl, {MVT::f64, MVT::Other}, Chain); Chain = MFFS.getValue(1); SDValue CWD; if (isTypeLegal(MVT::i64)) { CWD = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, DAG.getNode(ISD::BITCAST, dl, MVT::i64, MFFS)); } else { // Save FP register to stack slot int SSFI = MF.getFrameInfo().CreateStackObject(8, Align(8), false); SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT); Chain = DAG.getStore(Chain, dl, MFFS, StackSlot, MachinePointerInfo()); // Load FP Control Word from low 32 bits of stack slot. assert(hasBigEndianPartOrdering(MVT::i64, MF.getDataLayout()) && "Stack slot adjustment is valid only on big endian subtargets!"); SDValue Four = DAG.getConstant(4, dl, PtrVT); SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four); CWD = DAG.getLoad(MVT::i32, dl, Chain, Addr, MachinePointerInfo()); Chain = CWD.getValue(1); } // Transform as necessary SDValue CWD1 = DAG.getNode(ISD::AND, dl, MVT::i32, CWD, DAG.getConstant(3, dl, MVT::i32)); SDValue CWD2 = DAG.getNode(ISD::SRL, dl, MVT::i32, DAG.getNode(ISD::AND, dl, MVT::i32, DAG.getNode(ISD::XOR, dl, MVT::i32, CWD, DAG.getConstant(3, dl, MVT::i32)), DAG.getConstant(3, dl, MVT::i32)), DAG.getConstant(1, dl, MVT::i32)); SDValue RetVal = DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2); RetVal = DAG.getNode((VT.getSizeInBits() < 16 ? ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal); return DAG.getMergeValues({RetVal, Chain}, dl); } SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); SDLoc dl(Op); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SHL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, dl, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5); SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const { EVT VT = Op.getValueType(); SDLoc dl(Op); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRL!"); // Expand into a bunch of logical ops. Note that these ops // depend on the PPC behavior for oversized shift amounts. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, dl, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5); SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6); SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); assert(Op.getNumOperands() == 3 && VT == Op.getOperand(1).getValueType() && "Unexpected SRA!"); // Expand into a bunch of logical ops, followed by a select_cc. SDValue Lo = Op.getOperand(0); SDValue Hi = Op.getOperand(1); SDValue Amt = Op.getOperand(2); EVT AmtVT = Amt.getValueType(); SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Amt); SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt); SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1); SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3); SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt, DAG.getConstant(-BitWidth, dl, AmtVT)); SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5); SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt); SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, dl, AmtVT), Tmp4, Tmp6, ISD::SETLE); SDValue OutOps[] = { OutLo, OutHi }; return DAG.getMergeValues(OutOps, dl); } SDValue PPCTargetLowering::LowerFunnelShift(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); EVT VT = Op.getValueType(); unsigned BitWidth = VT.getSizeInBits(); bool IsFSHL = Op.getOpcode() == ISD::FSHL; SDValue X = Op.getOperand(0); SDValue Y = Op.getOperand(1); SDValue Z = Op.getOperand(2); EVT AmtVT = Z.getValueType(); // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) // This is simpler than TargetLowering::expandFunnelShift because we can rely // on PowerPC shift by BW being well defined. Z = DAG.getNode(ISD::AND, dl, AmtVT, Z, DAG.getConstant(BitWidth - 1, dl, AmtVT)); SDValue SubZ = DAG.getNode(ISD::SUB, dl, AmtVT, DAG.getConstant(BitWidth, dl, AmtVT), Z); X = DAG.getNode(PPCISD::SHL, dl, VT, X, IsFSHL ? Z : SubZ); Y = DAG.getNode(PPCISD::SRL, dl, VT, Y, IsFSHL ? SubZ : Z); return DAG.getNode(ISD::OR, dl, VT, X, Y); } //===----------------------------------------------------------------------===// // Vector related lowering. // /// getCanonicalConstSplat - Build a canonical splat immediate of Val with an /// element size of SplatSize. Cast the result to VT. static SDValue getCanonicalConstSplat(uint64_t Val, unsigned SplatSize, EVT VT, SelectionDAG &DAG, const SDLoc &dl) { static const MVT VTys[] = { // canonical VT to use for each size. MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32 }; EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1]; // For a splat with all ones, turn it to vspltisb 0xFF to canonicalize. if (Val == ((1LLU << (SplatSize * 8)) - 1)) { SplatSize = 1; Val = 0xFF; } EVT CanonicalVT = VTys[SplatSize-1]; // Build a canonical splat for this value. return DAG.getBitcast(ReqVT, DAG.getConstant(Val, dl, CanonicalVT)); } /// BuildIntrinsicOp - Return a unary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op, SelectionDAG &DAG, const SDLoc &dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, dl, MVT::i32), Op); } /// BuildIntrinsicOp - Return a binary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = LHS.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, dl, MVT::i32), LHS, RHS); } /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the /// specified intrinsic ID. static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1, SDValue Op2, SelectionDAG &DAG, const SDLoc &dl, EVT DestVT = MVT::Other) { if (DestVT == MVT::Other) DestVT = Op0.getValueType(); return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, DAG.getConstant(IID, dl, MVT::i32), Op0, Op1, Op2); } /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified /// amount. The result has the specified value type. static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt, EVT VT, SelectionDAG &DAG, const SDLoc &dl) { // Force LHS/RHS to be the right type. LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS); RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS); int Ops[16]; for (unsigned i = 0; i != 16; ++i) Ops[i] = i + Amt; SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops); return DAG.getNode(ISD::BITCAST, dl, VT, T); } /// Do we have an efficient pattern in a .td file for this node? /// /// \param V - pointer to the BuildVectorSDNode being matched /// \param HasDirectMove - does this subtarget have VSR <-> GPR direct moves? /// /// There are some patterns where it is beneficial to keep a BUILD_VECTOR /// node as a BUILD_VECTOR node rather than expanding it. The patterns where /// the opposite is true (expansion is beneficial) are: /// - The node builds a vector out of integers that are not 32 or 64-bits /// - The node builds a vector out of constants /// - The node is a "load-and-splat" /// In all other cases, we will choose to keep the BUILD_VECTOR. static bool haveEfficientBuildVectorPattern(BuildVectorSDNode *V, bool HasDirectMove, bool HasP8Vector) { EVT VecVT = V->getValueType(0); bool RightType = VecVT == MVT::v2f64 || (HasP8Vector && VecVT == MVT::v4f32) || (HasDirectMove && (VecVT == MVT::v2i64 || VecVT == MVT::v4i32)); if (!RightType) return false; bool IsSplat = true; bool IsLoad = false; SDValue Op0 = V->getOperand(0); // This function is called in a block that confirms the node is not a constant // splat. So a constant BUILD_VECTOR here means the vector is built out of // different constants. if (V->isConstant()) return false; for (int i = 0, e = V->getNumOperands(); i < e; ++i) { if (V->getOperand(i).isUndef()) return false; // We want to expand nodes that represent load-and-splat even if the // loaded value is a floating point truncation or conversion to int. if (V->getOperand(i).getOpcode() == ISD::LOAD || (V->getOperand(i).getOpcode() == ISD::FP_ROUND && V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || (V->getOperand(i).getOpcode() == ISD::FP_TO_SINT && V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD) || (V->getOperand(i).getOpcode() == ISD::FP_TO_UINT && V->getOperand(i).getOperand(0).getOpcode() == ISD::LOAD)) IsLoad = true; // If the operands are different or the input is not a load and has more // uses than just this BV node, then it isn't a splat. if (V->getOperand(i) != Op0 || (!IsLoad && !V->isOnlyUserOf(V->getOperand(i).getNode()))) IsSplat = false; } return !(IsSplat && IsLoad); } // Lower BITCAST(f128, (build_pair i64, i64)) to BUILD_FP128. SDValue PPCTargetLowering::LowerBITCAST(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue Op0 = Op->getOperand(0); if (!Subtarget.isPPC64() || (Op0.getOpcode() != ISD::BUILD_PAIR) || (Op.getValueType() != MVT::f128)) return SDValue(); SDValue Lo = Op0.getOperand(0); SDValue Hi = Op0.getOperand(1); if ((Lo.getValueType() != MVT::i64) || (Hi.getValueType() != MVT::i64)) return SDValue(); if (!Subtarget.isLittleEndian()) std::swap(Lo, Hi); return DAG.getNode(PPCISD::BUILD_FP128, dl, MVT::f128, Lo, Hi); } static const SDValue *getNormalLoadInput(const SDValue &Op, bool &IsPermuted) { const SDValue *InputLoad = &Op; while (InputLoad->getOpcode() == ISD::BITCAST) InputLoad = &InputLoad->getOperand(0); if (InputLoad->getOpcode() == ISD::SCALAR_TO_VECTOR || InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED) { IsPermuted = InputLoad->getOpcode() == PPCISD::SCALAR_TO_VECTOR_PERMUTED; InputLoad = &InputLoad->getOperand(0); } if (InputLoad->getOpcode() != ISD::LOAD) return nullptr; LoadSDNode *LD = cast(*InputLoad); return ISD::isNormalLoad(LD) ? InputLoad : nullptr; } // Convert the argument APFloat to a single precision APFloat if there is no // loss in information during the conversion to single precision APFloat and the // resulting number is not a denormal number. Return true if successful. bool llvm::convertToNonDenormSingle(APFloat &ArgAPFloat) { APFloat APFloatToConvert = ArgAPFloat; bool LosesInfo = true; APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); bool Success = (!LosesInfo && !APFloatToConvert.isDenormal()); if (Success) ArgAPFloat = APFloatToConvert; return Success; } // Bitcast the argument APInt to a double and convert it to a single precision // APFloat, bitcast the APFloat to an APInt and assign it to the original // argument if there is no loss in information during the conversion from // double to single precision APFloat and the resulting number is not a denormal // number. Return true if successful. bool llvm::convertToNonDenormSingle(APInt &ArgAPInt) { double DpValue = ArgAPInt.bitsToDouble(); APFloat APFloatDp(DpValue); bool Success = convertToNonDenormSingle(APFloatDp); if (Success) ArgAPInt = APFloatDp.bitcastToAPInt(); return Success; } // Nondestructive check for convertTonNonDenormSingle. bool llvm::checkConvertToNonDenormSingle(APFloat &ArgAPFloat) { // Only convert if it loses info, since XXSPLTIDP should // handle the other case. APFloat APFloatToConvert = ArgAPFloat; bool LosesInfo = true; APFloatToConvert.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo); return (!LosesInfo && !APFloatToConvert.isDenormal()); } static bool isValidSplatLoad(const PPCSubtarget &Subtarget, const SDValue &Op, unsigned &Opcode) { LoadSDNode *InputNode = dyn_cast(Op.getOperand(0)); if (!InputNode || !Subtarget.hasVSX() || !ISD::isUNINDEXEDLoad(InputNode)) return false; EVT Ty = Op->getValueType(0); // For v2f64, v4f32 and v4i32 types, we require the load to be non-extending // as we cannot handle extending loads for these types. if ((Ty == MVT::v2f64 || Ty == MVT::v4f32 || Ty == MVT::v4i32) && ISD::isNON_EXTLoad(InputNode)) return true; EVT MemVT = InputNode->getMemoryVT(); // For v8i16 and v16i8 types, extending loads can be handled as long as the // memory VT is the same vector element VT type. // The loads feeding into the v8i16 and v16i8 types will be extending because // scalar i8/i16 are not legal types. if ((Ty == MVT::v8i16 || Ty == MVT::v16i8) && ISD::isEXTLoad(InputNode) && (MemVT == Ty.getVectorElementType())) return true; if (Ty == MVT::v2i64) { // Check the extend type, when the input type is i32, and the output vector // type is v2i64. if (MemVT == MVT::i32) { if (ISD::isZEXTLoad(InputNode)) Opcode = PPCISD::ZEXT_LD_SPLAT; if (ISD::isSEXTLoad(InputNode)) Opcode = PPCISD::SEXT_LD_SPLAT; } return true; } return false; } // If this is a case we can't handle, return null and let the default // expansion code take care of it. If we CAN select this case, and if it // selects to a single instruction, return Op. Otherwise, if we can codegen // this case more efficiently than a constant pool load, lower it to the // sequence of ops that should be used. SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); BuildVectorSDNode *BVN = dyn_cast(Op.getNode()); assert(BVN && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR"); // Check if this is a splat of a constant value. APInt APSplatBits, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; bool BVNIsConstantSplat = BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, !Subtarget.isLittleEndian()); // If it is a splat of a double, check if we can shrink it to a 32 bit // non-denormal float which when converted back to double gives us the same // double. This is to exploit the XXSPLTIDP instruction. // If we lose precision, we use XXSPLTI32DX. if (BVNIsConstantSplat && (SplatBitSize == 64) && Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { // Check the type first to short-circuit so we don't modify APSplatBits if // this block isn't executed. if ((Op->getValueType(0) == MVT::v2f64) && convertToNonDenormSingle(APSplatBits)) { SDValue SplatNode = DAG.getNode( PPCISD::XXSPLTI_SP_TO_DP, dl, MVT::v2f64, DAG.getTargetConstant(APSplatBits.getZExtValue(), dl, MVT::i32)); return DAG.getBitcast(Op.getValueType(), SplatNode); } else { // We may lose precision, so we have to use XXSPLTI32DX. uint32_t Hi = (uint32_t)((APSplatBits.getZExtValue() & 0xFFFFFFFF00000000LL) >> 32); uint32_t Lo = (uint32_t)(APSplatBits.getZExtValue() & 0xFFFFFFFF); SDValue SplatNode = DAG.getUNDEF(MVT::v2i64); if (!Hi || !Lo) // If either load is 0, then we should generate XXLXOR to set to 0. SplatNode = DAG.getTargetConstant(0, dl, MVT::v2i64); if (Hi) SplatNode = DAG.getNode( PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, DAG.getTargetConstant(0, dl, MVT::i32), DAG.getTargetConstant(Hi, dl, MVT::i32)); if (Lo) SplatNode = DAG.getNode(PPCISD::XXSPLTI32DX, dl, MVT::v2i64, SplatNode, DAG.getTargetConstant(1, dl, MVT::i32), DAG.getTargetConstant(Lo, dl, MVT::i32)); return DAG.getBitcast(Op.getValueType(), SplatNode); } } if (!BVNIsConstantSplat || SplatBitSize > 32) { unsigned NewOpcode = PPCISD::LD_SPLAT; // Handle load-and-splat patterns as we have instructions that will do this // in one go. if (DAG.isSplatValue(Op, true) && isValidSplatLoad(Subtarget, Op, NewOpcode)) { const SDValue *InputLoad = &Op.getOperand(0); LoadSDNode *LD = cast(*InputLoad); // If the input load is an extending load, it will be an i32 -> i64 // extending load and isValidSplatLoad() will update NewOpcode. unsigned MemorySize = LD->getMemoryVT().getScalarSizeInBits(); unsigned ElementSize = MemorySize * ((NewOpcode == PPCISD::LD_SPLAT) ? 1 : 2); assert(((ElementSize == 2 * MemorySize) ? (NewOpcode == PPCISD::ZEXT_LD_SPLAT || NewOpcode == PPCISD::SEXT_LD_SPLAT) : (NewOpcode == PPCISD::LD_SPLAT)) && "Unmatched element size and opcode!\n"); // Checking for a single use of this load, we have to check for vector // width (128 bits) / ElementSize uses (since each operand of the // BUILD_VECTOR is a separate use of the value. unsigned NumUsesOfInputLD = 128 / ElementSize; for (SDValue BVInOp : Op->ops()) if (BVInOp.isUndef()) NumUsesOfInputLD--; // Exclude somes case where LD_SPLAT is worse than scalar_to_vector: // Below cases should also happen for "lfiwzx/lfiwax + LE target + index // 1" and "lxvrhx + BE target + index 7" and "lxvrbx + BE target + index // 15", but function IsValidSplatLoad() now will only return true when // the data at index 0 is not nullptr. So we will not get into trouble for // these cases. // // case 1 - lfiwzx/lfiwax // 1.1: load result is i32 and is sign/zero extend to i64; // 1.2: build a v2i64 vector type with above loaded value; // 1.3: the vector has only one value at index 0, others are all undef; // 1.4: on BE target, so that lfiwzx/lfiwax does not need any permute. if (NumUsesOfInputLD == 1 && (Op->getValueType(0) == MVT::v2i64 && NewOpcode != PPCISD::LD_SPLAT && !Subtarget.isLittleEndian() && Subtarget.hasVSX() && Subtarget.hasLFIWAX())) return SDValue(); // case 2 - lxvr[hb]x // 2.1: load result is at most i16; // 2.2: build a vector with above loaded value; // 2.3: the vector has only one value at index 0, others are all undef; // 2.4: on LE target, so that lxvr[hb]x does not need any permute. if (NumUsesOfInputLD == 1 && Subtarget.isLittleEndian() && Subtarget.isISA3_1() && ElementSize <= 16) return SDValue(); assert(NumUsesOfInputLD > 0 && "No uses of input LD of a build_vector?"); if (InputLoad->getNode()->hasNUsesOfValue(NumUsesOfInputLD, 0) && Subtarget.hasVSX()) { SDValue Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr DAG.getValueType(Op.getValueType()) // VT }; SDValue LdSplt = DAG.getMemIntrinsicNode( NewOpcode, dl, DAG.getVTList(Op.getValueType(), MVT::Other), Ops, LD->getMemoryVT(), LD->getMemOperand()); // Replace all uses of the output chain of the original load with the // output chain of the new load. DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); return LdSplt; } } // In 64BIT mode BUILD_VECTOR nodes that are not constant splats of up to // 32-bits can be lowered to VSX instructions under certain conditions. // Without VSX, there is no pattern more efficient than expanding the node. if (Subtarget.hasVSX() && Subtarget.isPPC64() && haveEfficientBuildVectorPattern(BVN, Subtarget.hasDirectMove(), Subtarget.hasP8Vector())) return Op; return SDValue(); } uint64_t SplatBits = APSplatBits.getZExtValue(); uint64_t SplatUndef = APSplatUndef.getZExtValue(); unsigned SplatSize = SplatBitSize / 8; // First, handle single instruction cases. // All zeros? if (SplatBits == 0) { // Canonicalize all zero vectors to be v4i32. if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) { SDValue Z = DAG.getConstant(0, dl, MVT::v4i32); Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z); } return Op; } // We have XXSPLTIW for constant splats four bytes wide. // Given vector length is a multiple of 4, 2-byte splats can be replaced // with 4-byte splats. We replicate the SplatBits in case of 2-byte splat to // make a 4-byte splat element. For example: 2-byte splat of 0xABAB can be // turned into a 4-byte splat of 0xABABABAB. if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 2) return getCanonicalConstSplat(SplatBits | (SplatBits << 16), SplatSize * 2, Op.getValueType(), DAG, dl); if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector() && SplatSize == 4) return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, dl); // We have XXSPLTIB for constant splats one byte wide. if (Subtarget.hasP9Vector() && SplatSize == 1) return getCanonicalConstSplat(SplatBits, SplatSize, Op.getValueType(), DAG, dl); // If the sign extended value is in the range [-16,15], use VSPLTI[bhw]. int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >> (32-SplatBitSize)); if (SextVal >= -16 && SextVal <= 15) return getCanonicalConstSplat(SextVal, SplatSize, Op.getValueType(), DAG, dl); // Two instruction sequences. // If this value is in the range [-32,30] and is even, use: // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2) // If this value is in the range [17,31] and is odd, use: // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16) // If this value is in the range [-31,-17] and is odd, use: // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16) // Note the last two are three-instruction sequences. if (SextVal >= -32 && SextVal <= 31) { // To avoid having these optimizations undone by constant folding, // we convert to a pseudo that will be expanded later into one of // the above forms. SDValue Elt = DAG.getConstant(SextVal, dl, MVT::i32); EVT VT = (SplatSize == 1 ? MVT::v16i8 : (SplatSize == 2 ? MVT::v8i16 : MVT::v4i32)); SDValue EltSize = DAG.getConstant(SplatSize, dl, MVT::i32); SDValue RetVal = DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize); if (VT == Op.getValueType()) return RetVal; else return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), RetVal); } // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important // for fneg/fabs. if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) { // Make -1 and vspltisw -1: SDValue OnesV = getCanonicalConstSplat(-1, 4, MVT::v4i32, DAG, dl); // Make the VSLW intrinsic, computing 0x8000_0000. SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV, OnesV, DAG, dl); // xor by OnesV to invert it. Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // Check to see if this is a wide variety of vsplti*, binop self cases. static const signed char SplatCsts[] = { -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7, -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16 }; for (unsigned idx = 0; idx < std::size(SplatCsts); ++idx) { // Indirect through the SplatCsts array so that we favor 'vsplti -1' for // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1' int i = SplatCsts[idx]; // Figure out what shift amount will be used by altivec if shifted by i in // this splat size. unsigned TypeShiftAmt = i & (SplatBitSize-1); // vsplti + shl self. if (SextVal == (int)((unsigned)i << TypeShiftAmt)) { SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0, Intrinsic::ppc_altivec_vslw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // vsplti + srl self. if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) { SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0, Intrinsic::ppc_altivec_vsrw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // vsplti + rol self. if (SextVal == (int)(((unsigned)i << TypeShiftAmt) | ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) { SDValue Res = getCanonicalConstSplat(i, SplatSize, MVT::Other, DAG, dl); static const unsigned IIDs[] = { // Intrinsic to use for each size. Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0, Intrinsic::ppc_altivec_vrlw }; Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res); } // t = vsplti c, result = vsldoi t, t, 1 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) { SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); unsigned Amt = Subtarget.isLittleEndian() ? 15 : 1; return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 2 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) { SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); unsigned Amt = Subtarget.isLittleEndian() ? 14 : 2; return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); } // t = vsplti c, result = vsldoi t, t, 3 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) { SDValue T = getCanonicalConstSplat(i, SplatSize, MVT::v16i8, DAG, dl); unsigned Amt = Subtarget.isLittleEndian() ? 13 : 3; return BuildVSLDOI(T, T, Amt, Op.getValueType(), DAG, dl); } } return SDValue(); } /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit /// the specified operations to build the shuffle. static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, SDValue RHS, SelectionDAG &DAG, const SDLoc &dl) { unsigned OpNum = (PFEntry >> 26) & 0x0F; unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); enum { OP_COPY = 0, // Copy, used for things like to say it is <0,1,2,3> OP_VMRGHW, OP_VMRGLW, OP_VSPLTISW0, OP_VSPLTISW1, OP_VSPLTISW2, OP_VSPLTISW3, OP_VSLDOI4, OP_VSLDOI8, OP_VSLDOI12 }; if (OpNum == OP_COPY) { if (LHSID == (1*9+2)*9+3) return LHS; assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); return RHS; } SDValue OpLHS, OpRHS; OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); int ShufIdxs[16]; switch (OpNum) { default: llvm_unreachable("Unknown i32 permute!"); case OP_VMRGHW: ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3; ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19; ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7; ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23; break; case OP_VMRGLW: ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11; ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27; ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15; ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31; break; case OP_VSPLTISW0: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+0; break; case OP_VSPLTISW1: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+4; break; case OP_VSPLTISW2: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+8; break; case OP_VSPLTISW3: for (unsigned i = 0; i != 16; ++i) ShufIdxs[i] = (i&3)+12; break; case OP_VSLDOI4: return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI8: return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl); case OP_VSLDOI12: return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl); } EVT VT = OpLHS.getValueType(); OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS); OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS); SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs); return DAG.getNode(ISD::BITCAST, dl, VT, T); } /// lowerToVINSERTB - Return the SDValue if this VECTOR_SHUFFLE can be handled /// by the VINSERTB instruction introduced in ISA 3.0, else just return default /// SDValue. SDValue PPCTargetLowering::lowerToVINSERTB(ShuffleVectorSDNode *N, SelectionDAG &DAG) const { const unsigned BytesInVector = 16; bool IsLE = Subtarget.isLittleEndian(); SDLoc dl(N); SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); unsigned ShiftElts = 0, InsertAtByte = 0; bool Swap = false; // Shifts required to get the byte we want at element 7. unsigned LittleEndianShifts[] = {8, 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9}; unsigned BigEndianShifts[] = {9, 10, 11, 12, 13, 14, 15, 0, 1, 2, 3, 4, 5, 6, 7, 8}; ArrayRef Mask = N->getMask(); int OriginalOrder[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}; // For each mask element, find out if we're just inserting something // from V2 into V1 or vice versa. // Possible permutations inserting an element from V2 into V1: // X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 // 0, X, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 // ... // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, X // Inserting from V1 into V2 will be similar, except mask range will be // [16,31]. bool FoundCandidate = false; // If both vector operands for the shuffle are the same vector, the mask // will contain only elements from the first one and the second one will be // undef. unsigned VINSERTBSrcElem = IsLE ? 8 : 7; // Go through the mask of half-words to find an element that's being moved // from one vector to the other. for (unsigned i = 0; i < BytesInVector; ++i) { unsigned CurrentElement = Mask[i]; // If 2nd operand is undefined, we should only look for element 7 in the // Mask. if (V2.isUndef() && CurrentElement != VINSERTBSrcElem) continue; bool OtherElementsInOrder = true; // Examine the other elements in the Mask to see if they're in original // order. for (unsigned j = 0; j < BytesInVector; ++j) { if (j == i) continue; // If CurrentElement is from V1 [0,15], then we the rest of the Mask to be // from V2 [16,31] and vice versa. Unless the 2nd operand is undefined, // in which we always assume we're always picking from the 1st operand. int MaskOffset = (!V2.isUndef() && CurrentElement < BytesInVector) ? BytesInVector : 0; if (Mask[j] != OriginalOrder[j] + MaskOffset) { OtherElementsInOrder = false; break; } } // If other elements are in original order, we record the number of shifts // we need to get the element we want into element 7. Also record which byte // in the vector we should insert into. if (OtherElementsInOrder) { // If 2nd operand is undefined, we assume no shifts and no swapping. if (V2.isUndef()) { ShiftElts = 0; Swap = false; } else { // Only need the last 4-bits for shifts because operands will be swapped if CurrentElement is >= 2^4. ShiftElts = IsLE ? LittleEndianShifts[CurrentElement & 0xF] : BigEndianShifts[CurrentElement & 0xF]; Swap = CurrentElement < BytesInVector; } InsertAtByte = IsLE ? BytesInVector - (i + 1) : i; FoundCandidate = true; break; } } if (!FoundCandidate) return SDValue(); // Candidate found, construct the proper SDAG sequence with VINSERTB, // optionally with VECSHL if shift is required. if (Swap) std::swap(V1, V2); if (V2.isUndef()) V2 = V1; if (ShiftElts) { SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, DAG.getConstant(ShiftElts, dl, MVT::i32)); return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, Shl, DAG.getConstant(InsertAtByte, dl, MVT::i32)); } return DAG.getNode(PPCISD::VECINSERT, dl, MVT::v16i8, V1, V2, DAG.getConstant(InsertAtByte, dl, MVT::i32)); } /// lowerToVINSERTH - Return the SDValue if this VECTOR_SHUFFLE can be handled /// by the VINSERTH instruction introduced in ISA 3.0, else just return default /// SDValue. SDValue PPCTargetLowering::lowerToVINSERTH(ShuffleVectorSDNode *N, SelectionDAG &DAG) const { const unsigned NumHalfWords = 8; const unsigned BytesInVector = NumHalfWords * 2; // Check that the shuffle is on half-words. if (!isNByteElemShuffleMask(N, 2, 1)) return SDValue(); bool IsLE = Subtarget.isLittleEndian(); SDLoc dl(N); SDValue V1 = N->getOperand(0); SDValue V2 = N->getOperand(1); unsigned ShiftElts = 0, InsertAtByte = 0; bool Swap = false; // Shifts required to get the half-word we want at element 3. unsigned LittleEndianShifts[] = {4, 3, 2, 1, 0, 7, 6, 5}; unsigned BigEndianShifts[] = {5, 6, 7, 0, 1, 2, 3, 4}; uint32_t Mask = 0; uint32_t OriginalOrderLow = 0x1234567; uint32_t OriginalOrderHigh = 0x89ABCDEF; // Now we look at mask elements 0,2,4,6,8,10,12,14. Pack the mask into a // 32-bit space, only need 4-bit nibbles per element. for (unsigned i = 0; i < NumHalfWords; ++i) { unsigned MaskShift = (NumHalfWords - 1 - i) * 4; Mask |= ((uint32_t)(N->getMaskElt(i * 2) / 2) << MaskShift); } // For each mask element, find out if we're just inserting something // from V2 into V1 or vice versa. Possible permutations inserting an element // from V2 into V1: // X, 1, 2, 3, 4, 5, 6, 7 // 0, X, 2, 3, 4, 5, 6, 7 // 0, 1, X, 3, 4, 5, 6, 7 // 0, 1, 2, X, 4, 5, 6, 7 // 0, 1, 2, 3, X, 5, 6, 7 // 0, 1, 2, 3, 4, X, 6, 7 // 0, 1, 2, 3, 4, 5, X, 7 // 0, 1, 2, 3, 4, 5, 6, X // Inserting from V1 into V2 will be similar, except mask range will be [8,15]. bool FoundCandidate = false; // Go through the mask of half-words to find an element that's being moved // from one vector to the other. for (unsigned i = 0; i < NumHalfWords; ++i) { unsigned MaskShift = (NumHalfWords - 1 - i) * 4; uint32_t MaskOneElt = (Mask >> MaskShift) & 0xF; uint32_t MaskOtherElts = ~(0xF << MaskShift); uint32_t TargetOrder = 0x0; // If both vector operands for the shuffle are the same vector, the mask // will contain only elements from the first one and the second one will be // undef. if (V2.isUndef()) { ShiftElts = 0; unsigned VINSERTHSrcElem = IsLE ? 4 : 3; TargetOrder = OriginalOrderLow; Swap = false; // Skip if not the correct element or mask of other elements don't equal // to our expected order. if (MaskOneElt == VINSERTHSrcElem && (Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; FoundCandidate = true; break; } } else { // If both operands are defined. // Target order is [8,15] if the current mask is between [0,7]. TargetOrder = (MaskOneElt < NumHalfWords) ? OriginalOrderHigh : OriginalOrderLow; // Skip if mask of other elements don't equal our expected order. if ((Mask & MaskOtherElts) == (TargetOrder & MaskOtherElts)) { // We only need the last 3 bits for the number of shifts. ShiftElts = IsLE ? LittleEndianShifts[MaskOneElt & 0x7] : BigEndianShifts[MaskOneElt & 0x7]; InsertAtByte = IsLE ? BytesInVector - (i + 1) * 2 : i * 2; Swap = MaskOneElt < NumHalfWords; FoundCandidate = true; break; } } } if (!FoundCandidate) return SDValue(); // Candidate found, construct the proper SDAG sequence with VINSERTH, // optionally with VECSHL if shift is required. if (Swap) std::swap(V1, V2); if (V2.isUndef()) V2 = V1; SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); if (ShiftElts) { // Double ShiftElts because we're left shifting on v16i8 type. SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v16i8, V2, V2, DAG.getConstant(2 * ShiftElts, dl, MVT::i32)); SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, Shl); SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, DAG.getConstant(InsertAtByte, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); } SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V2); SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v8i16, Conv1, Conv2, DAG.getConstant(InsertAtByte, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); } /// lowerToXXSPLTI32DX - Return the SDValue if this VECTOR_SHUFFLE can be /// handled by the XXSPLTI32DX instruction introduced in ISA 3.1, otherwise /// return the default SDValue. SDValue PPCTargetLowering::lowerToXXSPLTI32DX(ShuffleVectorSDNode *SVN, SelectionDAG &DAG) const { // The LHS and RHS may be bitcasts to v16i8 as we canonicalize shuffles // to v16i8. Peek through the bitcasts to get the actual operands. SDValue LHS = peekThroughBitcasts(SVN->getOperand(0)); SDValue RHS = peekThroughBitcasts(SVN->getOperand(1)); auto ShuffleMask = SVN->getMask(); SDValue VecShuffle(SVN, 0); SDLoc DL(SVN); // Check that we have a four byte shuffle. if (!isNByteElemShuffleMask(SVN, 4, 1)) return SDValue(); // Canonicalize the RHS being a BUILD_VECTOR when lowering to xxsplti32dx. if (RHS->getOpcode() != ISD::BUILD_VECTOR) { std::swap(LHS, RHS); VecShuffle = peekThroughBitcasts(DAG.getCommutedVectorShuffle(*SVN)); ShuffleVectorSDNode *CommutedSV = dyn_cast(VecShuffle); if (!CommutedSV) return SDValue(); ShuffleMask = CommutedSV->getMask(); } // Ensure that the RHS is a vector of constants. BuildVectorSDNode *BVN = dyn_cast(RHS.getNode()); if (!BVN) return SDValue(); // Check if RHS is a splat of 4-bytes (or smaller). APInt APSplatValue, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; if (!BVN->isConstantSplat(APSplatValue, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, !Subtarget.isLittleEndian()) || SplatBitSize > 32) return SDValue(); // Check that the shuffle mask matches the semantics of XXSPLTI32DX. // The instruction splats a constant C into two words of the source vector // producing { C, Unchanged, C, Unchanged } or { Unchanged, C, Unchanged, C }. // Thus we check that the shuffle mask is the equivalent of // <0, [4-7], 2, [4-7]> or <[4-7], 1, [4-7], 3> respectively. // Note: the check above of isNByteElemShuffleMask() ensures that the bytes // within each word are consecutive, so we only need to check the first byte. SDValue Index; bool IsLE = Subtarget.isLittleEndian(); if ((ShuffleMask[0] == 0 && ShuffleMask[8] == 8) && (ShuffleMask[4] % 4 == 0 && ShuffleMask[12] % 4 == 0 && ShuffleMask[4] > 15 && ShuffleMask[12] > 15)) Index = DAG.getTargetConstant(IsLE ? 0 : 1, DL, MVT::i32); else if ((ShuffleMask[4] == 4 && ShuffleMask[12] == 12) && (ShuffleMask[0] % 4 == 0 && ShuffleMask[8] % 4 == 0 && ShuffleMask[0] > 15 && ShuffleMask[8] > 15)) Index = DAG.getTargetConstant(IsLE ? 1 : 0, DL, MVT::i32); else return SDValue(); // If the splat is narrower than 32-bits, we need to get the 32-bit value // for XXSPLTI32DX. unsigned SplatVal = APSplatValue.getZExtValue(); for (; SplatBitSize < 32; SplatBitSize <<= 1) SplatVal |= (SplatVal << SplatBitSize); SDValue SplatNode = DAG.getNode( PPCISD::XXSPLTI32DX, DL, MVT::v2i64, DAG.getBitcast(MVT::v2i64, LHS), Index, DAG.getTargetConstant(SplatVal, DL, MVT::i32)); return DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, SplatNode); } /// LowerROTL - Custom lowering for ROTL(v1i128) to vector_shuffle(v16i8). /// We lower ROTL(v1i128) to vector_shuffle(v16i8) only if shift amount is /// a multiple of 8. Otherwise convert it to a scalar rotation(i128) /// i.e (or (shl x, C1), (srl x, 128-C1)). SDValue PPCTargetLowering::LowerROTL(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::ROTL && "Should only be called for ISD::ROTL"); assert(Op.getValueType() == MVT::v1i128 && "Only set v1i128 as custom, other type shouldn't reach here!"); SDLoc dl(Op); SDValue N0 = peekThroughBitcasts(Op.getOperand(0)); SDValue N1 = peekThroughBitcasts(Op.getOperand(1)); unsigned SHLAmt = N1.getConstantOperandVal(0); if (SHLAmt % 8 == 0) { std::array Mask; std::iota(Mask.begin(), Mask.end(), 0); std::rotate(Mask.begin(), Mask.begin() + SHLAmt / 8, Mask.end()); if (SDValue Shuffle = DAG.getVectorShuffle(MVT::v16i8, dl, DAG.getBitcast(MVT::v16i8, N0), DAG.getUNDEF(MVT::v16i8), Mask)) return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, Shuffle); } SDValue ArgVal = DAG.getBitcast(MVT::i128, N0); SDValue SHLOp = DAG.getNode(ISD::SHL, dl, MVT::i128, ArgVal, DAG.getConstant(SHLAmt, dl, MVT::i32)); SDValue SRLOp = DAG.getNode(ISD::SRL, dl, MVT::i128, ArgVal, DAG.getConstant(128 - SHLAmt, dl, MVT::i32)); SDValue OROp = DAG.getNode(ISD::OR, dl, MVT::i128, SHLOp, SRLOp); return DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, OROp); } /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this /// is a shuffle we can handle in a single instruction, return it. Otherwise, /// return the code it can be lowered into. Worst case, it can always be /// lowered into a vperm. SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); ShuffleVectorSDNode *SVOp = cast(Op); // Any nodes that were combined in the target-independent combiner prior // to vector legalization will not be sent to the target combine. Try to // combine it here. if (SDValue NewShuffle = combineVectorShuffle(SVOp, DAG)) { if (!isa(NewShuffle)) return NewShuffle; Op = NewShuffle; SVOp = cast(Op); V1 = Op.getOperand(0); V2 = Op.getOperand(1); } EVT VT = Op.getValueType(); bool isLittleEndian = Subtarget.isLittleEndian(); unsigned ShiftElts, InsertAtByte; bool Swap = false; // If this is a load-and-splat, we can do that with a single instruction // in some cases. However if the load has multiple uses, we don't want to // combine it because that will just produce multiple loads. bool IsPermutedLoad = false; const SDValue *InputLoad = getNormalLoadInput(V1, IsPermutedLoad); if (InputLoad && Subtarget.hasVSX() && V2.isUndef() && (PPC::isSplatShuffleMask(SVOp, 4) || PPC::isSplatShuffleMask(SVOp, 8)) && InputLoad->hasOneUse()) { bool IsFourByte = PPC::isSplatShuffleMask(SVOp, 4); int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, IsFourByte ? 4 : 8, DAG); // The splat index for permuted loads will be in the left half of the vector // which is strictly wider than the loaded value by 8 bytes. So we need to // adjust the splat index to point to the correct address in memory. if (IsPermutedLoad) { assert((isLittleEndian || IsFourByte) && "Unexpected size for permuted load on big endian target"); SplatIdx += IsFourByte ? 2 : 1; assert((SplatIdx < (IsFourByte ? 4 : 2)) && "Splat of a value outside of the loaded memory"); } LoadSDNode *LD = cast(*InputLoad); // For 4-byte load-and-splat, we need Power9. if ((IsFourByte && Subtarget.hasP9Vector()) || !IsFourByte) { uint64_t Offset = 0; if (IsFourByte) Offset = isLittleEndian ? (3 - SplatIdx) * 4 : SplatIdx * 4; else Offset = isLittleEndian ? (1 - SplatIdx) * 8 : SplatIdx * 8; // If the width of the load is the same as the width of the splat, // loading with an offset would load the wrong memory. if (LD->getValueType(0).getSizeInBits() == (IsFourByte ? 32 : 64)) Offset = 0; SDValue BasePtr = LD->getBasePtr(); if (Offset != 0) BasePtr = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), BasePtr, DAG.getIntPtrConstant(Offset, dl)); SDValue Ops[] = { LD->getChain(), // Chain BasePtr, // BasePtr DAG.getValueType(Op.getValueType()) // VT }; SDVTList VTL = DAG.getVTList(IsFourByte ? MVT::v4i32 : MVT::v2i64, MVT::Other); SDValue LdSplt = DAG.getMemIntrinsicNode(PPCISD::LD_SPLAT, dl, VTL, Ops, LD->getMemoryVT(), LD->getMemOperand()); DAG.ReplaceAllUsesOfValueWith(InputLoad->getValue(1), LdSplt.getValue(1)); if (LdSplt.getValueType() != SVOp->getValueType(0)) LdSplt = DAG.getBitcast(SVOp->getValueType(0), LdSplt); return LdSplt; } } // All v2i64 and v2f64 shuffles are legal if (VT == MVT::v2i64 || VT == MVT::v2f64) return Op; if (Subtarget.hasP9Vector() && PPC::isXXINSERTWMask(SVOp, ShiftElts, InsertAtByte, Swap, isLittleEndian)) { if (V2.isUndef()) V2 = V1; else if (Swap) std::swap(V1, V2); SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2); if (ShiftElts) { SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv2, Conv2, DAG.getConstant(ShiftElts, dl, MVT::i32)); SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Shl, DAG.getConstant(InsertAtByte, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); } SDValue Ins = DAG.getNode(PPCISD::VECINSERT, dl, MVT::v4i32, Conv1, Conv2, DAG.getConstant(InsertAtByte, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Ins); } if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { SDValue SplatInsertNode; if ((SplatInsertNode = lowerToXXSPLTI32DX(SVOp, DAG))) return SplatInsertNode; } if (Subtarget.hasP9Altivec()) { SDValue NewISDNode; if ((NewISDNode = lowerToVINSERTH(SVOp, DAG))) return NewISDNode; if ((NewISDNode = lowerToVINSERTB(SVOp, DAG))) return NewISDNode; } if (Subtarget.hasVSX() && PPC::isXXSLDWIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { if (Swap) std::swap(V1, V2); SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V2.isUndef() ? V1 : V2); SDValue Shl = DAG.getNode(PPCISD::VECSHL, dl, MVT::v4i32, Conv1, Conv2, DAG.getConstant(ShiftElts, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Shl); } if (Subtarget.hasVSX() && PPC::isXXPERMDIShuffleMask(SVOp, ShiftElts, Swap, isLittleEndian)) { if (Swap) std::swap(V1, V2); SDValue Conv1 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); SDValue Conv2 = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V2.isUndef() ? V1 : V2); SDValue PermDI = DAG.getNode(PPCISD::XXPERMDI, dl, MVT::v2i64, Conv1, Conv2, DAG.getConstant(ShiftElts, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, PermDI); } if (Subtarget.hasP9Vector()) { if (PPC::isXXBRHShuffleMask(SVOp)) { SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, V1); SDValue ReveHWord = DAG.getNode(ISD::BSWAP, dl, MVT::v8i16, Conv); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveHWord); } else if (PPC::isXXBRWShuffleMask(SVOp)) { SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); SDValue ReveWord = DAG.getNode(ISD::BSWAP, dl, MVT::v4i32, Conv); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveWord); } else if (PPC::isXXBRDShuffleMask(SVOp)) { SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2i64, V1); SDValue ReveDWord = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Conv); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveDWord); } else if (PPC::isXXBRQShuffleMask(SVOp)) { SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v1i128, V1); SDValue ReveQWord = DAG.getNode(ISD::BSWAP, dl, MVT::v1i128, Conv); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, ReveQWord); } } if (Subtarget.hasVSX()) { if (V2.isUndef() && PPC::isSplatShuffleMask(SVOp, 4)) { int SplatIdx = PPC::getSplatIdxForPPCMnemonics(SVOp, 4, DAG); SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, V1); SDValue Splat = DAG.getNode(PPCISD::XXSPLT, dl, MVT::v4i32, Conv, DAG.getConstant(SplatIdx, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Splat); } // Left shifts of 8 bytes are actually swaps. Convert accordingly. if (V2.isUndef() && PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) == 8) { SDValue Conv = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, V1); SDValue Swap = DAG.getNode(PPCISD::SWAP_NO_CHAIN, dl, MVT::v2f64, Conv); return DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, Swap); } } // Cases that are handled by instructions that take permute immediates // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be // selected by the instruction selector. if (V2.isUndef()) { if (PPC::isSplatShuffleMask(SVOp, 1) || PPC::isSplatShuffleMask(SVOp, 2) || PPC::isSplatShuffleMask(SVOp, 4) || PPC::isVPKUWUMShuffleMask(SVOp, 1, DAG) || PPC::isVPKUHUMShuffleMask(SVOp, 1, DAG) || PPC::isVSLDOIShuffleMask(SVOp, 1, DAG) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, 1, DAG) || PPC::isVMRGLShuffleMask(SVOp, 2, 1, DAG) || PPC::isVMRGLShuffleMask(SVOp, 4, 1, DAG) || PPC::isVMRGHShuffleMask(SVOp, 1, 1, DAG) || PPC::isVMRGHShuffleMask(SVOp, 2, 1, DAG) || PPC::isVMRGHShuffleMask(SVOp, 4, 1, DAG) || (Subtarget.hasP8Altivec() && ( PPC::isVPKUDUMShuffleMask(SVOp, 1, DAG) || PPC::isVMRGEOShuffleMask(SVOp, true, 1, DAG) || PPC::isVMRGEOShuffleMask(SVOp, false, 1, DAG)))) { return Op; } } // Altivec has a variety of "shuffle immediates" that take two vector inputs // and produce a fixed permutation. If any of these match, do not lower to // VPERM. unsigned int ShuffleKind = isLittleEndian ? 2 : 0; if (PPC::isVPKUWUMShuffleMask(SVOp, ShuffleKind, DAG) || PPC::isVPKUHUMShuffleMask(SVOp, ShuffleKind, DAG) || PPC::isVSLDOIShuffleMask(SVOp, ShuffleKind, DAG) != -1 || PPC::isVMRGLShuffleMask(SVOp, 1, ShuffleKind, DAG) || PPC::isVMRGLShuffleMask(SVOp, 2, ShuffleKind, DAG) || PPC::isVMRGLShuffleMask(SVOp, 4, ShuffleKind, DAG) || PPC::isVMRGHShuffleMask(SVOp, 1, ShuffleKind, DAG) || PPC::isVMRGHShuffleMask(SVOp, 2, ShuffleKind, DAG) || PPC::isVMRGHShuffleMask(SVOp, 4, ShuffleKind, DAG) || (Subtarget.hasP8Altivec() && ( PPC::isVPKUDUMShuffleMask(SVOp, ShuffleKind, DAG) || PPC::isVMRGEOShuffleMask(SVOp, true, ShuffleKind, DAG) || PPC::isVMRGEOShuffleMask(SVOp, false, ShuffleKind, DAG)))) return Op; // Check to see if this is a shuffle of 4-byte values. If so, we can use our // perfect shuffle table to emit an optimal matching sequence. ArrayRef PermMask = SVOp->getMask(); if (!DisablePerfectShuffle && !isLittleEndian) { unsigned PFIndexes[4]; bool isFourElementShuffle = true; for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number unsigned EltNo = 8; // Start out undef. for (unsigned j = 0; j != 4; ++j) { // Intra-element byte. if (PermMask[i * 4 + j] < 0) continue; // Undef, ignore it. unsigned ByteSource = PermMask[i * 4 + j]; if ((ByteSource & 3) != j) { isFourElementShuffle = false; break; } if (EltNo == 8) { EltNo = ByteSource / 4; } else if (EltNo != ByteSource / 4) { isFourElementShuffle = false; break; } } PFIndexes[i] = EltNo; } // If this shuffle can be expressed as a shuffle of 4-byte elements, use the // perfect shuffle vector to determine if it is cost effective to do this as // discrete instructions, or whether we should use a vperm. // For now, we skip this for little endian until such time as we have a // little-endian perfect shuffle table. if (isFourElementShuffle) { // Compute the index in the perfect shuffle table. unsigned PFTableIndex = PFIndexes[0] * 9 * 9 * 9 + PFIndexes[1] * 9 * 9 + PFIndexes[2] * 9 + PFIndexes[3]; unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; unsigned Cost = (PFEntry >> 30); // Determining when to avoid vperm is tricky. Many things affect the cost // of vperm, particularly how many times the perm mask needs to be // computed. For example, if the perm mask can be hoisted out of a loop or // is already used (perhaps because there are multiple permutes with the // same shuffle mask?) the vperm has a cost of 1. OTOH, hoisting the // permute mask out of the loop requires an extra register. // // As a compromise, we only emit discrete instructions if the shuffle can // be generated in 3 or fewer operations. When we have loop information // available, if this block is within a loop, we should avoid using vperm // for 3-operation perms and use a constant pool load instead. if (Cost < 3) return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); } } // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant // vector that will get spilled to the constant pool. if (V2.isUndef()) V2 = V1; return LowerVPERM(Op, DAG, PermMask, VT, V1, V2); } SDValue PPCTargetLowering::LowerVPERM(SDValue Op, SelectionDAG &DAG, ArrayRef PermMask, EVT VT, SDValue V1, SDValue V2) const { unsigned Opcode = PPCISD::VPERM; EVT ValType = V1.getValueType(); SDLoc dl(Op); bool NeedSwap = false; bool isLittleEndian = Subtarget.isLittleEndian(); bool isPPC64 = Subtarget.isPPC64(); if (Subtarget.hasVSX() && Subtarget.hasP9Vector() && (V1->hasOneUse() || V2->hasOneUse())) { LLVM_DEBUG(dbgs() << "At least one of two input vectors are dead - using " "XXPERM instead\n"); Opcode = PPCISD::XXPERM; // The second input to XXPERM is also an output so if the second input has // multiple uses then copying is necessary, as a result we want the // single-use operand to be used as the second input to prevent copying. if ((!isLittleEndian && !V2->hasOneUse() && V1->hasOneUse()) || (isLittleEndian && !V1->hasOneUse() && V2->hasOneUse())) { std::swap(V1, V2); NeedSwap = !NeedSwap; } } // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except // that it is in input element units, not in bytes. Convert now. // For little endian, the order of the input vectors is reversed, and // the permutation mask is complemented with respect to 31. This is // necessary to produce proper semantics with the big-endian-based vperm // instruction. EVT EltVT = V1.getValueType().getVectorElementType(); unsigned BytesPerElement = EltVT.getSizeInBits() / 8; bool V1HasXXSWAPD = V1->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; bool V2HasXXSWAPD = V2->getOperand(0)->getOpcode() == PPCISD::XXSWAPD; /* Vectors will be appended like so: [ V1 | v2 ] XXSWAPD on V1: [ A | B | C | D ] -> [ C | D | A | B ] 0-3 4-7 8-11 12-15 0-3 4-7 8-11 12-15 i.e. index of A, B += 8, and index of C, D -= 8. XXSWAPD on V2: [ E | F | G | H ] -> [ G | H | E | F ] 16-19 20-23 24-27 28-31 16-19 20-23 24-27 28-31 i.e. index of E, F += 8, index of G, H -= 8 Swap V1 and V2: [ V1 | V2 ] -> [ V2 | V1 ] 0-15 16-31 0-15 16-31 i.e. index of V1 += 16, index of V2 -= 16 */ SmallVector ResultMask; for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) { unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i]; if (V1HasXXSWAPD) { if (SrcElt < 8) SrcElt += 8; else if (SrcElt < 16) SrcElt -= 8; } if (V2HasXXSWAPD) { if (SrcElt > 23) SrcElt -= 8; else if (SrcElt > 15) SrcElt += 8; } if (NeedSwap) { if (SrcElt < 16) SrcElt += 16; else SrcElt -= 16; } for (unsigned j = 0; j != BytesPerElement; ++j) if (isLittleEndian) ResultMask.push_back( DAG.getConstant(31 - (SrcElt * BytesPerElement + j), dl, MVT::i32)); else ResultMask.push_back( DAG.getConstant(SrcElt * BytesPerElement + j, dl, MVT::i32)); } if (V1HasXXSWAPD) { dl = SDLoc(V1->getOperand(0)); V1 = V1->getOperand(0)->getOperand(1); } if (V2HasXXSWAPD) { dl = SDLoc(V2->getOperand(0)); V2 = V2->getOperand(0)->getOperand(1); } if (isPPC64 && (V1HasXXSWAPD || V2HasXXSWAPD)) { if (ValType != MVT::v2f64) V1 = DAG.getBitcast(MVT::v2f64, V1); if (V2.getValueType() != MVT::v2f64) V2 = DAG.getBitcast(MVT::v2f64, V2); } ShufflesHandledWithVPERM++; SDValue VPermMask = DAG.getBuildVector(MVT::v16i8, dl, ResultMask); LLVM_DEBUG({ ShuffleVectorSDNode *SVOp = cast(Op); if (Opcode == PPCISD::XXPERM) { dbgs() << "Emitting a XXPERM for the following shuffle:\n"; } else { dbgs() << "Emitting a VPERM for the following shuffle:\n"; } SVOp->dump(); dbgs() << "With the following permute control vector:\n"; VPermMask.dump(); }); if (Opcode == PPCISD::XXPERM) VPermMask = DAG.getBitcast(MVT::v4i32, VPermMask); // Only need to place items backwards in LE, // the mask was properly calculated. if (isLittleEndian) std::swap(V1, V2); SDValue VPERMNode = DAG.getNode(Opcode, dl, V1.getValueType(), V1, V2, VPermMask); VPERMNode = DAG.getBitcast(ValType, VPERMNode); return VPERMNode; } /// getVectorCompareInfo - Given an intrinsic, return false if it is not a /// vector comparison. If it is, return true and fill in Opc/isDot with /// information about the intrinsic. static bool getVectorCompareInfo(SDValue Intrin, int &CompareOpc, bool &isDot, const PPCSubtarget &Subtarget) { unsigned IntrinsicID = Intrin.getConstantOperandVal(0); CompareOpc = -1; isDot = false; switch (IntrinsicID) { default: return false; // Comparison predicates. case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = true; break; case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = true; break; case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = true; break; case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = true; break; case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = true; break; case Intrinsic::ppc_altivec_vcmpequd_p: if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { CompareOpc = 199; isDot = true; } else return false; break; case Intrinsic::ppc_altivec_vcmpneb_p: case Intrinsic::ppc_altivec_vcmpneh_p: case Intrinsic::ppc_altivec_vcmpnew_p: case Intrinsic::ppc_altivec_vcmpnezb_p: case Intrinsic::ppc_altivec_vcmpnezh_p: case Intrinsic::ppc_altivec_vcmpnezw_p: if (Subtarget.hasP9Altivec()) { switch (IntrinsicID) { default: llvm_unreachable("Unknown comparison intrinsic."); case Intrinsic::ppc_altivec_vcmpneb_p: CompareOpc = 7; break; case Intrinsic::ppc_altivec_vcmpneh_p: CompareOpc = 71; break; case Intrinsic::ppc_altivec_vcmpnew_p: CompareOpc = 135; break; case Intrinsic::ppc_altivec_vcmpnezb_p: CompareOpc = 263; break; case Intrinsic::ppc_altivec_vcmpnezh_p: CompareOpc = 327; break; case Intrinsic::ppc_altivec_vcmpnezw_p: CompareOpc = 391; break; } isDot = true; } else return false; break; case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtsd_p: if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { CompareOpc = 967; isDot = true; } else return false; break; case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = true; break; case Intrinsic::ppc_altivec_vcmpgtud_p: if (Subtarget.hasVSX() || Subtarget.hasP8Altivec()) { CompareOpc = 711; isDot = true; } else return false; break; case Intrinsic::ppc_altivec_vcmpequq: case Intrinsic::ppc_altivec_vcmpgtsq: case Intrinsic::ppc_altivec_vcmpgtuq: if (!Subtarget.isISA3_1()) return false; switch (IntrinsicID) { default: llvm_unreachable("Unknown comparison intrinsic."); case Intrinsic::ppc_altivec_vcmpequq: CompareOpc = 455; break; case Intrinsic::ppc_altivec_vcmpgtsq: CompareOpc = 903; break; case Intrinsic::ppc_altivec_vcmpgtuq: CompareOpc = 647; break; } break; // VSX predicate comparisons use the same infrastructure case Intrinsic::ppc_vsx_xvcmpeqdp_p: case Intrinsic::ppc_vsx_xvcmpgedp_p: case Intrinsic::ppc_vsx_xvcmpgtdp_p: case Intrinsic::ppc_vsx_xvcmpeqsp_p: case Intrinsic::ppc_vsx_xvcmpgesp_p: case Intrinsic::ppc_vsx_xvcmpgtsp_p: if (Subtarget.hasVSX()) { switch (IntrinsicID) { case Intrinsic::ppc_vsx_xvcmpeqdp_p: CompareOpc = 99; break; case Intrinsic::ppc_vsx_xvcmpgedp_p: CompareOpc = 115; break; case Intrinsic::ppc_vsx_xvcmpgtdp_p: CompareOpc = 107; break; case Intrinsic::ppc_vsx_xvcmpeqsp_p: CompareOpc = 67; break; case Intrinsic::ppc_vsx_xvcmpgesp_p: CompareOpc = 83; break; case Intrinsic::ppc_vsx_xvcmpgtsp_p: CompareOpc = 75; break; } isDot = true; } else return false; break; // Normal Comparisons. case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; break; case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; break; case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; break; case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; break; case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; break; case Intrinsic::ppc_altivec_vcmpequd: if (Subtarget.hasP8Altivec()) CompareOpc = 199; else return false; break; case Intrinsic::ppc_altivec_vcmpneb: case Intrinsic::ppc_altivec_vcmpneh: case Intrinsic::ppc_altivec_vcmpnew: case Intrinsic::ppc_altivec_vcmpnezb: case Intrinsic::ppc_altivec_vcmpnezh: case Intrinsic::ppc_altivec_vcmpnezw: if (Subtarget.hasP9Altivec()) switch (IntrinsicID) { default: llvm_unreachable("Unknown comparison intrinsic."); case Intrinsic::ppc_altivec_vcmpneb: CompareOpc = 7; break; case Intrinsic::ppc_altivec_vcmpneh: CompareOpc = 71; break; case Intrinsic::ppc_altivec_vcmpnew: CompareOpc = 135; break; case Intrinsic::ppc_altivec_vcmpnezb: CompareOpc = 263; break; case Intrinsic::ppc_altivec_vcmpnezh: CompareOpc = 327; break; case Intrinsic::ppc_altivec_vcmpnezw: CompareOpc = 391; break; } else return false; break; case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; break; case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; break; case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; break; case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; break; case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; break; case Intrinsic::ppc_altivec_vcmpgtsd: if (Subtarget.hasP8Altivec()) CompareOpc = 967; else return false; break; case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; break; case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; break; case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; break; case Intrinsic::ppc_altivec_vcmpgtud: if (Subtarget.hasP8Altivec()) CompareOpc = 711; else return false; break; case Intrinsic::ppc_altivec_vcmpequq_p: case Intrinsic::ppc_altivec_vcmpgtsq_p: case Intrinsic::ppc_altivec_vcmpgtuq_p: if (!Subtarget.isISA3_1()) return false; switch (IntrinsicID) { default: llvm_unreachable("Unknown comparison intrinsic."); case Intrinsic::ppc_altivec_vcmpequq_p: CompareOpc = 455; break; case Intrinsic::ppc_altivec_vcmpgtsq_p: CompareOpc = 903; break; case Intrinsic::ppc_altivec_vcmpgtuq_p: CompareOpc = 647; break; } isDot = true; break; } return true; } /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom /// lower, do it, otherwise return null. SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { unsigned IntrinsicID = Op.getConstantOperandVal(0); SDLoc dl(Op); switch (IntrinsicID) { case Intrinsic::thread_pointer: // Reads the thread pointer register, used for __builtin_thread_pointer. if (Subtarget.isPPC64()) return DAG.getRegister(PPC::X13, MVT::i64); return DAG.getRegister(PPC::R2, MVT::i32); case Intrinsic::ppc_rldimi: { assert(Subtarget.isPPC64() && "rldimi is only available in 64-bit!"); SDValue Src = Op.getOperand(1); APInt Mask = Op.getConstantOperandAPInt(4); if (Mask.isZero()) return Op.getOperand(2); if (Mask.isAllOnes()) return DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, Op.getOperand(3)); uint64_t SH = Op.getConstantOperandVal(3); unsigned MB = 0, ME = 0; if (!isRunOfOnes64(Mask.getZExtValue(), MB, ME)) report_fatal_error("invalid rldimi mask!"); // rldimi requires ME=63-SH, otherwise rotation is needed before rldimi. if (ME < 63 - SH) { Src = DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, DAG.getConstant(ME + SH + 1, dl, MVT::i32)); } else if (ME > 63 - SH) { Src = DAG.getNode(ISD::ROTL, dl, MVT::i64, Src, DAG.getConstant(ME + SH - 63, dl, MVT::i32)); } return SDValue( DAG.getMachineNode(PPC::RLDIMI, dl, MVT::i64, {Op.getOperand(2), Src, DAG.getTargetConstant(63 - ME, dl, MVT::i32), DAG.getTargetConstant(MB, dl, MVT::i32)}), 0); } case Intrinsic::ppc_rlwimi: { APInt Mask = Op.getConstantOperandAPInt(4); if (Mask.isZero()) return Op.getOperand(2); if (Mask.isAllOnes()) return DAG.getNode(ISD::ROTL, dl, MVT::i32, Op.getOperand(1), Op.getOperand(3)); unsigned MB = 0, ME = 0; if (!isRunOfOnes(Mask.getZExtValue(), MB, ME)) report_fatal_error("invalid rlwimi mask!"); return SDValue(DAG.getMachineNode( PPC::RLWIMI, dl, MVT::i32, {Op.getOperand(2), Op.getOperand(1), Op.getOperand(3), DAG.getTargetConstant(MB, dl, MVT::i32), DAG.getTargetConstant(ME, dl, MVT::i32)}), 0); } case Intrinsic::ppc_rlwnm: { if (Op.getConstantOperandVal(3) == 0) return DAG.getConstant(0, dl, MVT::i32); unsigned MB = 0, ME = 0; if (!isRunOfOnes(Op.getConstantOperandVal(3), MB, ME)) report_fatal_error("invalid rlwnm mask!"); return SDValue( DAG.getMachineNode(PPC::RLWNM, dl, MVT::i32, {Op.getOperand(1), Op.getOperand(2), DAG.getTargetConstant(MB, dl, MVT::i32), DAG.getTargetConstant(ME, dl, MVT::i32)}), 0); } case Intrinsic::ppc_mma_disassemble_acc: { if (Subtarget.isISAFuture()) { EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; SDValue WideVec = SDValue(DAG.getMachineNode(PPC::DMXXEXTFDMR512, dl, ReturnTypes, Op.getOperand(1)), 0); SmallVector RetOps; SDValue Value = SDValue(WideVec.getNode(), 0); SDValue Value2 = SDValue(WideVec.getNode(), 1); SDValue Extract; Extract = DAG.getNode( PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Subtarget.isLittleEndian() ? Value2 : Value, DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, dl, getPointerTy(DAG.getDataLayout()))); RetOps.push_back(Extract); Extract = DAG.getNode( PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Subtarget.isLittleEndian() ? Value2 : Value, DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, dl, getPointerTy(DAG.getDataLayout()))); RetOps.push_back(Extract); Extract = DAG.getNode( PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Subtarget.isLittleEndian() ? Value : Value2, DAG.getConstant(Subtarget.isLittleEndian() ? 1 : 0, dl, getPointerTy(DAG.getDataLayout()))); RetOps.push_back(Extract); Extract = DAG.getNode( PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Subtarget.isLittleEndian() ? Value : Value2, DAG.getConstant(Subtarget.isLittleEndian() ? 0 : 1, dl, getPointerTy(DAG.getDataLayout()))); RetOps.push_back(Extract); return DAG.getMergeValues(RetOps, dl); } [[fallthrough]]; } case Intrinsic::ppc_vsx_disassemble_pair: { int NumVecs = 2; SDValue WideVec = Op.getOperand(1); if (IntrinsicID == Intrinsic::ppc_mma_disassemble_acc) { NumVecs = 4; WideVec = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, WideVec); } SmallVector RetOps; for (int VecNo = 0; VecNo < NumVecs; VecNo++) { SDValue Extract = DAG.getNode( PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, WideVec, DAG.getConstant(Subtarget.isLittleEndian() ? NumVecs - 1 - VecNo : VecNo, dl, getPointerTy(DAG.getDataLayout()))); RetOps.push_back(Extract); } return DAG.getMergeValues(RetOps, dl); } case Intrinsic::ppc_mma_xxmfacc: case Intrinsic::ppc_mma_xxmtacc: { // Allow pre-isa-future subtargets to lower as normal. if (!Subtarget.isISAFuture()) return SDValue(); // The intrinsics for xxmtacc and xxmfacc take one argument of // type v512i1, for future cpu the corresponding wacc instruction // dmxx[inst|extf]dmr512 is always generated for type v512i1, negating // the need to produce the xxm[t|f]acc. SDValue WideVec = Op.getOperand(1); DAG.ReplaceAllUsesWith(Op, WideVec); return SDValue(); } case Intrinsic::ppc_unpack_longdouble: { auto *Idx = dyn_cast(Op.getOperand(2)); assert(Idx && (Idx->getSExtValue() == 0 || Idx->getSExtValue() == 1) && "Argument of long double unpack must be 0 or 1!"); return DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::f64, Op.getOperand(1), DAG.getConstant(!!(Idx->getSExtValue()), dl, Idx->getValueType(0))); } case Intrinsic::ppc_compare_exp_lt: case Intrinsic::ppc_compare_exp_gt: case Intrinsic::ppc_compare_exp_eq: case Intrinsic::ppc_compare_exp_uo: { unsigned Pred; switch (IntrinsicID) { case Intrinsic::ppc_compare_exp_lt: Pred = PPC::PRED_LT; break; case Intrinsic::ppc_compare_exp_gt: Pred = PPC::PRED_GT; break; case Intrinsic::ppc_compare_exp_eq: Pred = PPC::PRED_EQ; break; case Intrinsic::ppc_compare_exp_uo: Pred = PPC::PRED_UN; break; } return SDValue( DAG.getMachineNode( PPC::SELECT_CC_I4, dl, MVT::i32, {SDValue(DAG.getMachineNode(PPC::XSCMPEXPDP, dl, MVT::i32, Op.getOperand(1), Op.getOperand(2)), 0), DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), DAG.getTargetConstant(Pred, dl, MVT::i32)}), 0); } case Intrinsic::ppc_test_data_class: { EVT OpVT = Op.getOperand(1).getValueType(); unsigned CmprOpc = OpVT == MVT::f128 ? PPC::XSTSTDCQP : (OpVT == MVT::f64 ? PPC::XSTSTDCDP : PPC::XSTSTDCSP); return SDValue( DAG.getMachineNode( PPC::SELECT_CC_I4, dl, MVT::i32, {SDValue(DAG.getMachineNode(CmprOpc, dl, MVT::i32, Op.getOperand(2), Op.getOperand(1)), 0), DAG.getConstant(1, dl, MVT::i32), DAG.getConstant(0, dl, MVT::i32), DAG.getTargetConstant(PPC::PRED_EQ, dl, MVT::i32)}), 0); } case Intrinsic::ppc_fnmsub: { EVT VT = Op.getOperand(1).getValueType(); if (!Subtarget.hasVSX() || (!Subtarget.hasFloat128() && VT == MVT::f128)) return DAG.getNode( ISD::FNEG, dl, VT, DAG.getNode(ISD::FMA, dl, VT, Op.getOperand(1), Op.getOperand(2), DAG.getNode(ISD::FNEG, dl, VT, Op.getOperand(3)))); return DAG.getNode(PPCISD::FNMSUB, dl, VT, Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); } case Intrinsic::ppc_convert_f128_to_ppcf128: case Intrinsic::ppc_convert_ppcf128_to_f128: { RTLIB::Libcall LC = IntrinsicID == Intrinsic::ppc_convert_ppcf128_to_f128 ? RTLIB::CONVERT_PPCF128_F128 : RTLIB::CONVERT_F128_PPCF128; MakeLibCallOptions CallOptions; std::pair Result = makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(1), CallOptions, dl, SDValue()); return Result.first; } case Intrinsic::ppc_maxfe: case Intrinsic::ppc_maxfl: case Intrinsic::ppc_maxfs: case Intrinsic::ppc_minfe: case Intrinsic::ppc_minfl: case Intrinsic::ppc_minfs: { EVT VT = Op.getValueType(); assert( all_of(Op->ops().drop_front(4), [VT](const SDUse &Use) { return Use.getValueType() == VT; }) && "ppc_[max|min]f[e|l|s] must have uniform type arguments"); (void)VT; ISD::CondCode CC = ISD::SETGT; if (IntrinsicID == Intrinsic::ppc_minfe || IntrinsicID == Intrinsic::ppc_minfl || IntrinsicID == Intrinsic::ppc_minfs) CC = ISD::SETLT; unsigned I = Op.getNumOperands() - 2, Cnt = I; SDValue Res = Op.getOperand(I); for (--I; Cnt != 0; --Cnt, I = (--I == 0 ? (Op.getNumOperands() - 1) : I)) { Res = DAG.getSelectCC(dl, Res, Op.getOperand(I), Res, Op.getOperand(I), CC); } return Res; } } // If this is a lowered altivec predicate compare, CompareOpc is set to the // opcode number of the comparison. int CompareOpc; bool isDot; if (!getVectorCompareInfo(Op, CompareOpc, isDot, Subtarget)) return SDValue(); // Don't custom lower most intrinsics. // If this is a non-dot comparison, make the VCMP node and we are done. if (!isDot) { SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(), Op.getOperand(1), Op.getOperand(2), DAG.getConstant(CompareOpc, dl, MVT::i32)); return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp); } // Create the PPCISD altivec 'dot' comparison node. SDValue Ops[] = { Op.getOperand(2), // LHS Op.getOperand(3), // RHS DAG.getConstant(CompareOpc, dl, MVT::i32) }; EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue }; SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); // Now that we have the comparison, emit a copy from the CR to a GPR. // This is flagged to the above dot comparison. SDValue Flags = DAG.getNode(PPCISD::MFOCRF, dl, MVT::i32, DAG.getRegister(PPC::CR6, MVT::i32), CompNode.getValue(1)); // Unpack the result based on how the target uses it. unsigned BitNo; // Bit # of CR6. bool InvertBit; // Invert result? switch (Op.getConstantOperandVal(1)) { default: // Can't happen, don't crash on invalid number though. case 0: // Return the value of the EQ bit of CR6. BitNo = 0; InvertBit = false; break; case 1: // Return the inverted value of the EQ bit of CR6. BitNo = 0; InvertBit = true; break; case 2: // Return the value of the LT bit of CR6. BitNo = 2; InvertBit = false; break; case 3: // Return the inverted value of the LT bit of CR6. BitNo = 2; InvertBit = true; break; } // Shift the bit into the low position. Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags, DAG.getConstant(8 - (3 - BitNo), dl, MVT::i32)); // Isolate the bit. Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags, DAG.getConstant(1, dl, MVT::i32)); // If we are supposed to, toggle the bit. if (InvertBit) Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags, DAG.getConstant(1, dl, MVT::i32)); return Flags; } SDValue PPCTargetLowering::LowerINTRINSIC_VOID(SDValue Op, SelectionDAG &DAG) const { // SelectionDAGBuilder::visitTargetIntrinsic may insert one extra chain to // the beginning of the argument list. int ArgStart = isa(Op.getOperand(0)) ? 0 : 1; SDLoc DL(Op); switch (Op.getConstantOperandVal(ArgStart)) { case Intrinsic::ppc_cfence: { assert(ArgStart == 1 && "llvm.ppc.cfence must carry a chain argument."); SDValue Val = Op.getOperand(ArgStart + 1); EVT Ty = Val.getValueType(); if (Ty == MVT::i128) { // FIXME: Testing one of two paired registers is sufficient to guarantee // ordering? Val = DAG.getNode(ISD::TRUNCATE, DL, MVT::i64, Val); } unsigned Opcode = Subtarget.isPPC64() ? PPC::CFENCE8 : PPC::CFENCE; EVT FTy = Subtarget.isPPC64() ? MVT::i64 : MVT::i32; return SDValue( DAG.getMachineNode(Opcode, DL, MVT::Other, DAG.getNode(ISD::ANY_EXTEND, DL, FTy, Val), Op.getOperand(0)), 0); } default: break; } return SDValue(); } // Lower scalar BSWAP64 to xxbrd. SDValue PPCTargetLowering::LowerBSWAP(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); if (!Subtarget.isPPC64()) return Op; // MTVSRDD Op = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v2i64, Op.getOperand(0), Op.getOperand(0)); // XXBRD Op = DAG.getNode(ISD::BSWAP, dl, MVT::v2i64, Op); // MFVSRD int VectorIndex = 0; if (Subtarget.isLittleEndian()) VectorIndex = 1; Op = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Op, DAG.getTargetConstant(VectorIndex, dl, MVT::i32)); return Op; } // ATOMIC_CMP_SWAP for i8/i16 needs to zero-extend its input since it will be // compared to a value that is atomically loaded (atomic loads zero-extend). SDValue PPCTargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::ATOMIC_CMP_SWAP && "Expecting an atomic compare-and-swap here."); SDLoc dl(Op); auto *AtomicNode = cast(Op.getNode()); EVT MemVT = AtomicNode->getMemoryVT(); if (MemVT.getSizeInBits() >= 32) return Op; SDValue CmpOp = Op.getOperand(2); // If this is already correctly zero-extended, leave it alone. auto HighBits = APInt::getHighBitsSet(32, 32 - MemVT.getSizeInBits()); if (DAG.MaskedValueIsZero(CmpOp, HighBits)) return Op; // Clear the high bits of the compare operand. unsigned MaskVal = (1 << MemVT.getSizeInBits()) - 1; SDValue NewCmpOp = DAG.getNode(ISD::AND, dl, MVT::i32, CmpOp, DAG.getConstant(MaskVal, dl, MVT::i32)); // Replace the existing compare operand with the properly zero-extended one. SmallVector Ops; for (int i = 0, e = AtomicNode->getNumOperands(); i < e; i++) Ops.push_back(AtomicNode->getOperand(i)); Ops[2] = NewCmpOp; MachineMemOperand *MMO = AtomicNode->getMemOperand(); SDVTList Tys = DAG.getVTList(MVT::i32, MVT::Other); auto NodeTy = (MemVT == MVT::i8) ? PPCISD::ATOMIC_CMP_SWAP_8 : PPCISD::ATOMIC_CMP_SWAP_16; return DAG.getMemIntrinsicNode(NodeTy, dl, Tys, Ops, MemVT, MMO); } SDValue PPCTargetLowering::LowerATOMIC_LOAD_STORE(SDValue Op, SelectionDAG &DAG) const { AtomicSDNode *N = cast(Op.getNode()); EVT MemVT = N->getMemoryVT(); assert(MemVT.getSimpleVT() == MVT::i128 && "Expect quadword atomic operations"); SDLoc dl(N); unsigned Opc = N->getOpcode(); switch (Opc) { case ISD::ATOMIC_LOAD: { // Lower quadword atomic load to int_ppc_atomic_load_i128 which will be // lowered to ppc instructions by pattern matching instruction selector. SDVTList Tys = DAG.getVTList(MVT::i64, MVT::i64, MVT::Other); SmallVector Ops{ N->getOperand(0), DAG.getConstant(Intrinsic::ppc_atomic_load_i128, dl, MVT::i32)}; for (int I = 1, E = N->getNumOperands(); I < E; ++I) Ops.push_back(N->getOperand(I)); SDValue LoadedVal = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, Tys, Ops, MemVT, N->getMemOperand()); SDValue ValLo = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal); SDValue ValHi = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i128, LoadedVal.getValue(1)); ValHi = DAG.getNode(ISD::SHL, dl, MVT::i128, ValHi, DAG.getConstant(64, dl, MVT::i32)); SDValue Val = DAG.getNode(ISD::OR, dl, {MVT::i128, MVT::Other}, {ValLo, ValHi}); return DAG.getNode(ISD::MERGE_VALUES, dl, {MVT::i128, MVT::Other}, {Val, LoadedVal.getValue(2)}); } case ISD::ATOMIC_STORE: { // Lower quadword atomic store to int_ppc_atomic_store_i128 which will be // lowered to ppc instructions by pattern matching instruction selector. SDVTList Tys = DAG.getVTList(MVT::Other); SmallVector Ops{ N->getOperand(0), DAG.getConstant(Intrinsic::ppc_atomic_store_i128, dl, MVT::i32)}; SDValue Val = N->getOperand(1); SDValue ValLo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, Val); SDValue ValHi = DAG.getNode(ISD::SRL, dl, MVT::i128, Val, DAG.getConstant(64, dl, MVT::i32)); ValHi = DAG.getNode(ISD::TRUNCATE, dl, MVT::i64, ValHi); Ops.push_back(ValLo); Ops.push_back(ValHi); Ops.push_back(N->getOperand(2)); return DAG.getMemIntrinsicNode(ISD::INTRINSIC_VOID, dl, Tys, Ops, MemVT, N->getMemOperand()); } default: llvm_unreachable("Unexpected atomic opcode"); } } static SDValue getDataClassTest(SDValue Op, FPClassTest Mask, const SDLoc &Dl, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { assert(Mask <= fcAllFlags && "Invalid fp_class flags!"); enum DataClassMask { DC_NAN = 1 << 6, DC_NEG_INF = 1 << 4, DC_POS_INF = 1 << 5, DC_NEG_ZERO = 1 << 2, DC_POS_ZERO = 1 << 3, DC_NEG_SUBNORM = 1, DC_POS_SUBNORM = 1 << 1, }; EVT VT = Op.getValueType(); unsigned TestOp = VT == MVT::f128 ? PPC::XSTSTDCQP : VT == MVT::f64 ? PPC::XSTSTDCDP : PPC::XSTSTDCSP; if (Mask == fcAllFlags) return DAG.getBoolConstant(true, Dl, MVT::i1, VT); if (Mask == 0) return DAG.getBoolConstant(false, Dl, MVT::i1, VT); // When it's cheaper or necessary to test reverse flags. if ((Mask & fcNormal) == fcNormal || Mask == ~fcQNan || Mask == ~fcSNan) { SDValue Rev = getDataClassTest(Op, ~Mask, Dl, DAG, Subtarget); return DAG.getNOT(Dl, Rev, MVT::i1); } // Power doesn't support testing whether a value is 'normal'. Test the rest // first, and test if it's 'not not-normal' with expected sign. if (Mask & fcNormal) { SDValue Rev(DAG.getMachineNode( TestOp, Dl, MVT::i32, DAG.getTargetConstant(DC_NAN | DC_NEG_INF | DC_POS_INF | DC_NEG_ZERO | DC_POS_ZERO | DC_NEG_SUBNORM | DC_POS_SUBNORM, Dl, MVT::i32), Op), 0); // Sign are stored in CR bit 0, result are in CR bit 2. SDValue Sign( DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, DAG.getTargetConstant(PPC::sub_lt, Dl, MVT::i32)), 0); SDValue Normal(DAG.getNOT( Dl, SDValue(DAG.getMachineNode( TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, Rev, DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 0), MVT::i1)); if (Mask & fcPosNormal) Sign = DAG.getNOT(Dl, Sign, MVT::i1); SDValue Result = DAG.getNode(ISD::AND, Dl, MVT::i1, Sign, Normal); if (Mask == fcPosNormal || Mask == fcNegNormal) return Result; return DAG.getNode( ISD::OR, Dl, MVT::i1, getDataClassTest(Op, Mask & ~fcNormal, Dl, DAG, Subtarget), Result); } // The instruction doesn't differentiate between signaling or quiet NaN. Test // the rest first, and test if it 'is NaN and is signaling/quiet'. if ((Mask & fcNan) == fcQNan || (Mask & fcNan) == fcSNan) { bool IsQuiet = Mask & fcQNan; SDValue NanCheck = getDataClassTest(Op, fcNan, Dl, DAG, Subtarget); // Quietness is determined by the first bit in fraction field. uint64_t QuietMask = 0; SDValue HighWord; if (VT == MVT::f128) { HighWord = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, DAG.getBitcast(MVT::v4i32, Op), DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 3 : 0, Dl)); QuietMask = 0x8000; } else if (VT == MVT::f64) { if (Subtarget.isPPC64()) { HighWord = DAG.getNode(ISD::EXTRACT_ELEMENT, Dl, MVT::i32, DAG.getBitcast(MVT::i64, Op), DAG.getConstant(1, Dl, MVT::i32)); } else { SDValue Vec = DAG.getBitcast( MVT::v4i32, DAG.getNode(ISD::SCALAR_TO_VECTOR, Dl, MVT::v2f64, Op)); HighWord = DAG.getNode( ISD::EXTRACT_VECTOR_ELT, Dl, MVT::i32, Vec, DAG.getVectorIdxConstant(Subtarget.isLittleEndian() ? 1 : 0, Dl)); } QuietMask = 0x80000; } else if (VT == MVT::f32) { HighWord = DAG.getBitcast(MVT::i32, Op); QuietMask = 0x400000; } SDValue NanRes = DAG.getSetCC( Dl, MVT::i1, DAG.getNode(ISD::AND, Dl, MVT::i32, HighWord, DAG.getConstant(QuietMask, Dl, MVT::i32)), DAG.getConstant(0, Dl, MVT::i32), IsQuiet ? ISD::SETNE : ISD::SETEQ); NanRes = DAG.getNode(ISD::AND, Dl, MVT::i1, NanCheck, NanRes); if (Mask == fcQNan || Mask == fcSNan) return NanRes; return DAG.getNode(ISD::OR, Dl, MVT::i1, getDataClassTest(Op, Mask & ~fcNan, Dl, DAG, Subtarget), NanRes); } unsigned NativeMask = 0; if ((Mask & fcNan) == fcNan) NativeMask |= DC_NAN; if (Mask & fcNegInf) NativeMask |= DC_NEG_INF; if (Mask & fcPosInf) NativeMask |= DC_POS_INF; if (Mask & fcNegZero) NativeMask |= DC_NEG_ZERO; if (Mask & fcPosZero) NativeMask |= DC_POS_ZERO; if (Mask & fcNegSubnormal) NativeMask |= DC_NEG_SUBNORM; if (Mask & fcPosSubnormal) NativeMask |= DC_POS_SUBNORM; return SDValue( DAG.getMachineNode( TargetOpcode::EXTRACT_SUBREG, Dl, MVT::i1, SDValue(DAG.getMachineNode( TestOp, Dl, MVT::i32, DAG.getTargetConstant(NativeMask, Dl, MVT::i32), Op), 0), DAG.getTargetConstant(PPC::sub_eq, Dl, MVT::i32)), 0); } SDValue PPCTargetLowering::LowerIS_FPCLASS(SDValue Op, SelectionDAG &DAG) const { assert(Subtarget.hasP9Vector() && "Test data class requires Power9"); SDValue LHS = Op.getOperand(0); uint64_t RHSC = Op.getConstantOperandVal(1); SDLoc Dl(Op); FPClassTest Category = static_cast(RHSC); return getDataClassTest(LHS, Category, Dl, DAG, Subtarget); } SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); // Create a stack slot that is 16-byte aligned. MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); int FrameIdx = MFI.CreateStackObject(16, Align(16), false); EVT PtrVT = getPointerTy(DAG.getDataLayout()); SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT); // Store the input value into Value#0 of the stack slot. SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Op.getOperand(0), FIdx, MachinePointerInfo()); // Load it out. return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo()); } SDValue PPCTargetLowering::LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::INSERT_VECTOR_ELT && "Should only be called for ISD::INSERT_VECTOR_ELT"); ConstantSDNode *C = dyn_cast(Op.getOperand(2)); EVT VT = Op.getValueType(); SDLoc dl(Op); SDValue V1 = Op.getOperand(0); SDValue V2 = Op.getOperand(1); if (VT == MVT::v2f64 && C) return Op; if (Subtarget.hasP9Vector()) { // A f32 load feeding into a v4f32 insert_vector_elt is handled in this way // because on P10, it allows this specific insert_vector_elt load pattern to // utilize the refactored load and store infrastructure in order to exploit // prefixed loads. // On targets with inexpensive direct moves (Power9 and up), a // (insert_vector_elt v4f32:$vec, (f32 load)) is always better as an integer // load since a single precision load will involve conversion to double // precision on the load followed by another conversion to single precision. if ((VT == MVT::v4f32) && (V2.getValueType() == MVT::f32) && (isa(V2))) { SDValue BitcastVector = DAG.getBitcast(MVT::v4i32, V1); SDValue BitcastLoad = DAG.getBitcast(MVT::i32, V2); SDValue InsVecElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v4i32, BitcastVector, BitcastLoad, Op.getOperand(2)); return DAG.getBitcast(MVT::v4f32, InsVecElt); } } if (Subtarget.isISA3_1()) { if ((VT == MVT::v2i64 || VT == MVT::v2f64) && !Subtarget.isPPC64()) return SDValue(); // On P10, we have legal lowering for constant and variable indices for // all vectors. if (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v2i64 || VT == MVT::v4f32 || VT == MVT::v2f64) return Op; } // Before P10, we have legal lowering for constant indices but not for // variable ones. if (!C) return SDValue(); // We can use MTVSRZ + VECINSERT for v8i16 and v16i8 types. if (VT == MVT::v8i16 || VT == MVT::v16i8) { SDValue Mtvsrz = DAG.getNode(PPCISD::MTVSRZ, dl, VT, V2); unsigned BytesInEachElement = VT.getVectorElementType().getSizeInBits() / 8; unsigned InsertAtElement = C->getZExtValue(); unsigned InsertAtByte = InsertAtElement * BytesInEachElement; if (Subtarget.isLittleEndian()) { InsertAtByte = (16 - BytesInEachElement) - InsertAtByte; } return DAG.getNode(PPCISD::VECINSERT, dl, VT, V1, Mtvsrz, DAG.getConstant(InsertAtByte, dl, MVT::i32)); } return Op; } SDValue PPCTargetLowering::LowerVectorLoad(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); LoadSDNode *LN = cast(Op.getNode()); SDValue LoadChain = LN->getChain(); SDValue BasePtr = LN->getBasePtr(); EVT VT = Op.getValueType(); if (VT != MVT::v256i1 && VT != MVT::v512i1) return Op; // Type v256i1 is used for pairs and v512i1 is used for accumulators. // Here we create 2 or 4 v16i8 loads to load the pair or accumulator value in // 2 or 4 vsx registers. assert((VT != MVT::v512i1 || Subtarget.hasMMA()) && "Type unsupported without MMA"); assert((VT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && "Type unsupported without paired vector support"); Align Alignment = LN->getAlign(); SmallVector Loads; SmallVector LoadChains; unsigned NumVecs = VT.getSizeInBits() / 128; for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { SDValue Load = DAG.getLoad(MVT::v16i8, dl, LoadChain, BasePtr, LN->getPointerInfo().getWithOffset(Idx * 16), commonAlignment(Alignment, Idx * 16), LN->getMemOperand()->getFlags(), LN->getAAInfo()); BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getConstant(16, dl, BasePtr.getValueType())); Loads.push_back(Load); LoadChains.push_back(Load.getValue(1)); } if (Subtarget.isLittleEndian()) { std::reverse(Loads.begin(), Loads.end()); std::reverse(LoadChains.begin(), LoadChains.end()); } SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains); SDValue Value = DAG.getNode(VT == MVT::v512i1 ? PPCISD::ACC_BUILD : PPCISD::PAIR_BUILD, dl, VT, Loads); SDValue RetOps[] = {Value, TF}; return DAG.getMergeValues(RetOps, dl); } SDValue PPCTargetLowering::LowerVectorStore(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); StoreSDNode *SN = cast(Op.getNode()); SDValue StoreChain = SN->getChain(); SDValue BasePtr = SN->getBasePtr(); SDValue Value = SN->getValue(); SDValue Value2 = SN->getValue(); EVT StoreVT = Value.getValueType(); if (StoreVT != MVT::v256i1 && StoreVT != MVT::v512i1) return Op; // Type v256i1 is used for pairs and v512i1 is used for accumulators. // Here we create 2 or 4 v16i8 stores to store the pair or accumulator // underlying registers individually. assert((StoreVT != MVT::v512i1 || Subtarget.hasMMA()) && "Type unsupported without MMA"); assert((StoreVT != MVT::v256i1 || Subtarget.pairedVectorMemops()) && "Type unsupported without paired vector support"); Align Alignment = SN->getAlign(); SmallVector Stores; unsigned NumVecs = 2; if (StoreVT == MVT::v512i1) { if (Subtarget.isISAFuture()) { EVT ReturnTypes[] = {MVT::v256i1, MVT::v256i1}; MachineSDNode *ExtNode = DAG.getMachineNode( PPC::DMXXEXTFDMR512, dl, ReturnTypes, Op.getOperand(1)); Value = SDValue(ExtNode, 0); Value2 = SDValue(ExtNode, 1); } else Value = DAG.getNode(PPCISD::XXMFACC, dl, MVT::v512i1, Value); NumVecs = 4; } for (unsigned Idx = 0; Idx < NumVecs; ++Idx) { unsigned VecNum = Subtarget.isLittleEndian() ? NumVecs - 1 - Idx : Idx; SDValue Elt; if (Subtarget.isISAFuture()) { VecNum = Subtarget.isLittleEndian() ? 1 - (Idx % 2) : (Idx % 2); Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Idx > 1 ? Value2 : Value, DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); } else Elt = DAG.getNode(PPCISD::EXTRACT_VSX_REG, dl, MVT::v16i8, Value, DAG.getConstant(VecNum, dl, getPointerTy(DAG.getDataLayout()))); SDValue Store = DAG.getStore(StoreChain, dl, Elt, BasePtr, SN->getPointerInfo().getWithOffset(Idx * 16), commonAlignment(Alignment, Idx * 16), SN->getMemOperand()->getFlags(), SN->getAAInfo()); BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getConstant(16, dl, BasePtr.getValueType())); Stores.push_back(Store); } SDValue TF = DAG.getTokenFactor(dl, Stores); return TF; } SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); if (Op.getValueType() == MVT::v4i32) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); SDValue Zero = getCanonicalConstSplat(0, 1, MVT::v4i32, DAG, dl); // +16 as shift amt. SDValue Neg16 = getCanonicalConstSplat(-16, 4, MVT::v4i32, DAG, dl); SDValue RHSSwap = // = vrlw RHS, 16 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl); // Shrinkify inputs to v8i16. LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS); RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS); RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap); // Low parts multiplied together, generating 32-bit results (we ignore the // top parts). SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh, LHS, RHS, DAG, dl, MVT::v4i32); SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm, LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32); // Shift the high parts up 16 bits. HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG, dl); return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd); } else if (Op.getValueType() == MVT::v16i8) { SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1); bool isLittleEndian = Subtarget.isLittleEndian(); // Multiply the even 8-bit parts, producing 16-bit sums. SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub, LHS, RHS, DAG, dl, MVT::v8i16); EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts); // Multiply the odd 8-bit parts, producing 16-bit sums. SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub, LHS, RHS, DAG, dl, MVT::v8i16); OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts); // Merge the results together. Because vmuleub and vmuloub are // instructions with a big-endian bias, we must reverse the // element numbering and reverse the meaning of "odd" and "even" // when generating little endian code. int Ops[16]; for (unsigned i = 0; i != 8; ++i) { if (isLittleEndian) { Ops[i*2 ] = 2*i; Ops[i*2+1] = 2*i+16; } else { Ops[i*2 ] = 2*i+1; Ops[i*2+1] = 2*i+1+16; } } if (isLittleEndian) return DAG.getVectorShuffle(MVT::v16i8, dl, OddParts, EvenParts, Ops); else return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops); } else { llvm_unreachable("Unknown mul to lower!"); } } SDValue PPCTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { bool IsStrict = Op->isStrictFPOpcode(); if (Op.getOperand(IsStrict ? 1 : 0).getValueType() == MVT::f128 && !Subtarget.hasP9Vector()) return SDValue(); return Op; } // Custom lowering for fpext vf32 to v2f64 SDValue PPCTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { assert(Op.getOpcode() == ISD::FP_EXTEND && "Should only be called for ISD::FP_EXTEND"); // FIXME: handle extends from half precision float vectors on P9. // We only want to custom lower an extend from v2f32 to v2f64. if (Op.getValueType() != MVT::v2f64 || Op.getOperand(0).getValueType() != MVT::v2f32) return SDValue(); SDLoc dl(Op); SDValue Op0 = Op.getOperand(0); switch (Op0.getOpcode()) { default: return SDValue(); case ISD::EXTRACT_SUBVECTOR: { assert(Op0.getNumOperands() == 2 && isa(Op0->getOperand(1)) && "Node should have 2 operands with second one being a constant!"); if (Op0.getOperand(0).getValueType() != MVT::v4f32) return SDValue(); // Custom lower is only done for high or low doubleword. int Idx = Op0.getConstantOperandVal(1); if (Idx % 2 != 0) return SDValue(); // Since input is v4f32, at this point Idx is either 0 or 2. // Shift to get the doubleword position we want. int DWord = Idx >> 1; // High and low word positions are different on little endian. if (Subtarget.isLittleEndian()) DWord ^= 0x1; return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, Op0.getOperand(0), DAG.getConstant(DWord, dl, MVT::i32)); } case ISD::FADD: case ISD::FMUL: case ISD::FSUB: { SDValue NewLoad[2]; for (unsigned i = 0, ie = Op0.getNumOperands(); i != ie; ++i) { // Ensure both input are loads. SDValue LdOp = Op0.getOperand(i); if (LdOp.getOpcode() != ISD::LOAD) return SDValue(); // Generate new load node. LoadSDNode *LD = cast(LdOp); SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; NewLoad[i] = DAG.getMemIntrinsicNode( PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, LD->getMemoryVT(), LD->getMemOperand()); } SDValue NewOp = DAG.getNode(Op0.getOpcode(), SDLoc(Op0), MVT::v4f32, NewLoad[0], NewLoad[1], Op0.getNode()->getFlags()); return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewOp, DAG.getConstant(0, dl, MVT::i32)); } case ISD::LOAD: { LoadSDNode *LD = cast(Op0); SDValue LoadOps[] = {LD->getChain(), LD->getBasePtr()}; SDValue NewLd = DAG.getMemIntrinsicNode( PPCISD::LD_VSX_LH, dl, DAG.getVTList(MVT::v4f32, MVT::Other), LoadOps, LD->getMemoryVT(), LD->getMemOperand()); return DAG.getNode(PPCISD::FP_EXTEND_HALF, dl, MVT::v2f64, NewLd, DAG.getConstant(0, dl, MVT::i32)); } } llvm_unreachable("ERROR:Should return for all cases within swtich."); } /// LowerOperation - Provide custom lowering hooks for some operations. /// SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Wasn't expecting to be able to lower this!"); case ISD::FPOW: return lowerPow(Op, DAG); case ISD::FSIN: return lowerSin(Op, DAG); case ISD::FCOS: return lowerCos(Op, DAG); case ISD::FLOG: return lowerLog(Op, DAG); case ISD::FLOG10: return lowerLog10(Op, DAG); case ISD::FEXP: return lowerExp(Op, DAG); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG); case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); case ISD::JumpTable: return LowerJumpTable(Op, DAG); case ISD::STRICT_FSETCC: case ISD::STRICT_FSETCCS: case ISD::SETCC: return LowerSETCC(Op, DAG); case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG); case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG); case ISD::INLINEASM: case ISD::INLINEASM_BR: return LowerINLINEASM(Op, DAG); // Variable argument lowering. case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::VAARG: return LowerVAARG(Op, DAG); case ISD::VACOPY: return LowerVACOPY(Op, DAG); case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::GET_DYNAMIC_AREA_OFFSET: return LowerGET_DYNAMIC_AREA_OFFSET(Op, DAG); // Exception handling lowering. case ISD::EH_DWARF_CFA: return LowerEH_DWARF_CFA(Op, DAG); case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG); case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG); case ISD::LOAD: return LowerLOAD(Op, DAG); case ISD::STORE: return LowerSTORE(Op, DAG); case ISD::TRUNCATE: return LowerTRUNCATE(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::STRICT_FP_TO_UINT: case ISD::STRICT_FP_TO_SINT: case ISD::FP_TO_UINT: case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG, SDLoc(Op)); case ISD::STRICT_UINT_TO_FP: case ISD::STRICT_SINT_TO_FP: case ISD::UINT_TO_FP: case ISD::SINT_TO_FP: return LowerINT_TO_FP(Op, DAG); case ISD::GET_ROUNDING: return LowerGET_ROUNDING(Op, DAG); // Lower 64-bit shifts. case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG); case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG); case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG); case ISD::FSHL: return LowerFunnelShift(Op, DAG); case ISD::FSHR: return LowerFunnelShift(Op, DAG); // Vector-related lowering. case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG); case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG); case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); case ISD::MUL: return LowerMUL(Op, DAG); case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); case ISD::STRICT_FP_ROUND: case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); case ISD::ROTL: return LowerROTL(Op, DAG); // For counter-based loop handling. case ISD::INTRINSIC_W_CHAIN: return SDValue(); case ISD::BITCAST: return LowerBITCAST(Op, DAG); // Frame & Return address. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); case ISD::BSWAP: return LowerBSWAP(Op, DAG); case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG); case ISD::ATOMIC_STORE: return LowerATOMIC_LOAD_STORE(Op, DAG); case ISD::IS_FPCLASS: return LowerIS_FPCLASS(Op, DAG); } } void PPCTargetLowering::ReplaceNodeResults(SDNode *N, SmallVectorImpl&Results, SelectionDAG &DAG) const { SDLoc dl(N); switch (N->getOpcode()) { default: llvm_unreachable("Do not know how to custom type legalize this operation!"); case ISD::ATOMIC_LOAD: { SDValue Res = LowerATOMIC_LOAD_STORE(SDValue(N, 0), DAG); Results.push_back(Res); Results.push_back(Res.getValue(1)); break; } case ISD::READCYCLECOUNTER: { SDVTList VTs = DAG.getVTList(MVT::i32, MVT::i32, MVT::Other); SDValue RTB = DAG.getNode(PPCISD::READ_TIME_BASE, dl, VTs, N->getOperand(0)); Results.push_back( DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, RTB, RTB.getValue(1))); Results.push_back(RTB.getValue(2)); break; } case ISD::INTRINSIC_W_CHAIN: { if (N->getConstantOperandVal(1) != Intrinsic::loop_decrement) break; assert(N->getValueType(0) == MVT::i1 && "Unexpected result type for CTR decrement intrinsic"); EVT SVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), N->getValueType(0)); SDVTList VTs = DAG.getVTList(SVT, MVT::Other); SDValue NewInt = DAG.getNode(N->getOpcode(), dl, VTs, N->getOperand(0), N->getOperand(1)); Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, NewInt)); Results.push_back(NewInt.getValue(1)); break; } case ISD::INTRINSIC_WO_CHAIN: { switch (N->getConstantOperandVal(0)) { case Intrinsic::ppc_pack_longdouble: Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128, N->getOperand(2), N->getOperand(1))); break; case Intrinsic::ppc_maxfe: case Intrinsic::ppc_minfe: case Intrinsic::ppc_fnmsub: case Intrinsic::ppc_convert_f128_to_ppcf128: Results.push_back(LowerINTRINSIC_WO_CHAIN(SDValue(N, 0), DAG)); break; } break; } case ISD::VAARG: { if (!Subtarget.isSVR4ABI() || Subtarget.isPPC64()) return; EVT VT = N->getValueType(0); if (VT == MVT::i64) { SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG); Results.push_back(NewNode); Results.push_back(NewNode.getValue(1)); } return; } case ISD::STRICT_FP_TO_SINT: case ISD::STRICT_FP_TO_UINT: case ISD::FP_TO_SINT: case ISD::FP_TO_UINT: { // LowerFP_TO_INT() can only handle f32 and f64. if (N->getOperand(N->isStrictFPOpcode() ? 1 : 0).getValueType() == MVT::ppcf128) return; SDValue LoweredValue = LowerFP_TO_INT(SDValue(N, 0), DAG, dl); Results.push_back(LoweredValue); if (N->isStrictFPOpcode()) Results.push_back(LoweredValue.getValue(1)); return; } case ISD::TRUNCATE: { if (!N->getValueType(0).isVector()) return; SDValue Lowered = LowerTRUNCATEVector(SDValue(N, 0), DAG); if (Lowered) Results.push_back(Lowered); return; } case ISD::FSHL: case ISD::FSHR: // Don't handle funnel shifts here. return; case ISD::BITCAST: // Don't handle bitcast here. return; case ISD::FP_EXTEND: SDValue Lowered = LowerFP_EXTEND(SDValue(N, 0), DAG); if (Lowered) Results.push_back(Lowered); return; } } //===----------------------------------------------------------------------===// // Other Lowering Code //===----------------------------------------------------------------------===// static Instruction *callIntrinsic(IRBuilderBase &Builder, Intrinsic::ID Id) { Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Function *Func = Intrinsic::getDeclaration(M, Id); return Builder.CreateCall(Func, {}); } // The mappings for emitLeading/TrailingFence is taken from // http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html Instruction *PPCTargetLowering::emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (Ord == AtomicOrdering::SequentiallyConsistent) return callIntrinsic(Builder, Intrinsic::ppc_sync); if (isReleaseOrStronger(Ord)) return callIntrinsic(Builder, Intrinsic::ppc_lwsync); return nullptr; } Instruction *PPCTargetLowering::emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const { if (Inst->hasAtomicLoad() && isAcquireOrStronger(Ord)) { // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html and // http://www.rdrop.com/users/paulmck/scalability/paper/N2745r.2011.03.04a.html // and http://www.cl.cam.ac.uk/~pes20/cppppc/ for justification. if (isa(Inst)) return Builder.CreateCall( Intrinsic::getDeclaration( Builder.GetInsertBlock()->getParent()->getParent(), Intrinsic::ppc_cfence, {Inst->getType()}), {Inst}); // FIXME: Can use isync for rmw operation. return callIntrinsic(Builder, Intrinsic::ppc_lwsync); } return nullptr; } MachineBasicBlock * PPCTargetLowering::EmitAtomicBinary(MachineInstr &MI, MachineBasicBlock *BB, unsigned AtomicSize, unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const TargetInstrInfo *TII = Subtarget.getInstrInfo(); auto LoadMnemonic = PPC::LDARX; auto StoreMnemonic = PPC::STDCX; switch (AtomicSize) { default: llvm_unreachable("Unexpected size of atomic entity"); case 1: LoadMnemonic = PPC::LBARX; StoreMnemonic = PPC::STBCX; assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); break; case 2: LoadMnemonic = PPC::LHARX; StoreMnemonic = PPC::STHCX; assert(Subtarget.hasPartwordAtomics() && "Call this only with size >=4"); break; case 4: LoadMnemonic = PPC::LWARX; StoreMnemonic = PPC::STWCX; break; case 8: LoadMnemonic = PPC::LDARX; StoreMnemonic = PPC::STDCX; break; } const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction *F = BB->getParent(); MachineFunction::iterator It = ++BB->getIterator(); Register dest = MI.getOperand(0).getReg(); Register ptrA = MI.getOperand(1).getReg(); Register ptrB = MI.getOperand(2).getReg(); Register incr = MI.getOperand(3).getReg(); DebugLoc dl = MI.getDebugLoc(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); if (CmpOpcode) F->insert(It, loop2MBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register TmpReg = (!BinOpcode) ? incr : RegInfo.createVirtualRegister( AtomicSize == 8 ? &PPC::G8RCRegClass : &PPC::GPRCRegClass); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // loopMBB: // l[wd]arx dest, ptr // add r0, dest, incr // st[wd]cx. r0, ptr // bne- loopMBB // fallthrough --> exitMBB // For max/min... // loopMBB: // l[wd]arx dest, ptr // cmpl?[wd] dest, incr // bgt exitMBB // loop2MBB: // st[wd]cx. dest, ptr // bne- loopMBB // fallthrough --> exitMBB BB = loopMBB; BuildMI(BB, dl, TII->get(LoadMnemonic), dest) .addReg(ptrA).addReg(ptrB); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest); if (CmpOpcode) { Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); // Signed comparisons of byte or halfword values must be sign-extended. if (CmpOpcode == PPC::CMPW && AtomicSize < 4) { Register ExtReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); BuildMI(BB, dl, TII->get(AtomicSize == 1 ? PPC::EXTSB : PPC::EXTSH), ExtReg).addReg(dest); BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ExtReg).addReg(incr); } else BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(dest).addReg(incr); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(CmpPred) .addReg(CrReg) .addMBB(exitMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); BB = loop2MBB; } BuildMI(BB, dl, TII->get(StoreMnemonic)) .addReg(TmpReg).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; return BB; } static bool isSignExtended(MachineInstr &MI, const PPCInstrInfo *TII) { switch(MI.getOpcode()) { default: return false; case PPC::COPY: return TII->isSignExtended(MI.getOperand(1).getReg(), &MI.getMF()->getRegInfo()); case PPC::LHA: case PPC::LHA8: case PPC::LHAU: case PPC::LHAU8: case PPC::LHAUX: case PPC::LHAUX8: case PPC::LHAX: case PPC::LHAX8: case PPC::LWA: case PPC::LWAUX: case PPC::LWAX: case PPC::LWAX_32: case PPC::LWA_32: case PPC::PLHA: case PPC::PLHA8: case PPC::PLHA8pc: case PPC::PLHApc: case PPC::PLWA: case PPC::PLWA8: case PPC::PLWA8pc: case PPC::PLWApc: case PPC::EXTSB: case PPC::EXTSB8: case PPC::EXTSB8_32_64: case PPC::EXTSB8_rec: case PPC::EXTSB_rec: case PPC::EXTSH: case PPC::EXTSH8: case PPC::EXTSH8_32_64: case PPC::EXTSH8_rec: case PPC::EXTSH_rec: case PPC::EXTSW: case PPC::EXTSWSLI: case PPC::EXTSWSLI_32_64: case PPC::EXTSWSLI_32_64_rec: case PPC::EXTSWSLI_rec: case PPC::EXTSW_32: case PPC::EXTSW_32_64: case PPC::EXTSW_32_64_rec: case PPC::EXTSW_rec: case PPC::SRAW: case PPC::SRAWI: case PPC::SRAWI_rec: case PPC::SRAW_rec: return true; } return false; } MachineBasicBlock *PPCTargetLowering::EmitPartwordAtomicBinary( MachineInstr &MI, MachineBasicBlock *BB, bool is8bit, // operation unsigned BinOpcode, unsigned CmpOpcode, unsigned CmpPred) const { // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. const PPCInstrInfo *TII = Subtarget.getInstrInfo(); // If this is a signed comparison and the value being compared is not known // to be sign extended, sign extend it here. DebugLoc dl = MI.getDebugLoc(); MachineFunction *F = BB->getParent(); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register incr = MI.getOperand(3).getReg(); bool IsSignExtended = incr.isVirtual() && isSignExtended(*RegInfo.getVRegDef(incr), TII); if (CmpOpcode == PPC::CMPW && !IsSignExtended) { Register ValueReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); BuildMI(*BB, MI, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueReg) .addReg(MI.getOperand(3).getReg()); MI.getOperand(3).setReg(ValueReg); incr = ValueReg; } // If we support part-word atomic mnemonics, just use them if (Subtarget.hasPartwordAtomics()) return EmitAtomicBinary(MI, BB, is8bit ? 1 : 2, BinOpcode, CmpOpcode, CmpPred); // In 64 bit mode we have to use 64 bits for addresses, even though the // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address // registers without caring whether they're 32 or 64, but here we're // doing actual arithmetic on the addresses. bool is64bit = Subtarget.isPPC64(); bool isLittleEndian = Subtarget.isLittleEndian(); unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); Register dest = MI.getOperand(0).getReg(); Register ptrA = MI.getOperand(1).getReg(); Register ptrB = MI.getOperand(2).getReg(); MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = CmpOpcode ? F->CreateMachineBasicBlock(LLVM_BB) : nullptr; MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loopMBB); if (CmpOpcode) F->insert(It, loop2MBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register PtrReg = RegInfo.createVirtualRegister(RC); Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); Register ShiftReg = isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); Register Incr2Reg = RegInfo.createVirtualRegister(GPRC); Register MaskReg = RegInfo.createVirtualRegister(GPRC); Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); Register Tmp3Reg = RegInfo.createVirtualRegister(GPRC); Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); Register SrwDestReg = RegInfo.createVirtualRegister(GPRC); Register Ptr1Reg; Register TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(GPRC); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loopMBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw incr2, incr, shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // loopMBB: // lwarx tmpDest, ptr // add tmp, tmpDest, incr2 // andc tmp2, tmpDest, mask // and tmp3, tmp, mask // or tmp4, tmp3, tmp2 // stwcx. tmp4, ptr // bne- loopMBB // fallthrough --> exitMBB // srw SrwDest, tmpDest, shift // rlwinm SrwDest, SrwDest, 0, 24 [16], 31 if (ptrA != ZeroReg) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA) .addReg(ptrB); } else { Ptr1Reg = ptrB; } // We need use 32-bit subregister to avoid mismatch register class in 64-bit // mode. BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) .addImm(3) .addImm(27) .addImm(is8bit ? 28 : 27); if (!isLittleEndian) BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) .addReg(Shift1Reg) .addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg) .addImm(0) .addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg) .addImm(0) .addImm(0) .addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg).addReg(incr).addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) .addReg(Mask3Reg) .addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg) .addReg(ShiftReg); BB = loopMBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(ZeroReg) .addReg(PtrReg); if (BinOpcode) BuildMI(BB, dl, TII->get(BinOpcode), TmpReg) .addReg(Incr2Reg) .addReg(TmpDestReg); BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) .addReg(TmpDestReg) .addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::AND), Tmp3Reg).addReg(TmpReg).addReg(MaskReg); if (CmpOpcode) { // For unsigned comparisons, we can directly compare the shifted values. // For signed comparisons we shift and sign extend. Register SReg = RegInfo.createVirtualRegister(GPRC); Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); BuildMI(BB, dl, TII->get(PPC::AND), SReg) .addReg(TmpDestReg) .addReg(MaskReg); unsigned ValueReg = SReg; unsigned CmpReg = Incr2Reg; if (CmpOpcode == PPC::CMPW) { ValueReg = RegInfo.createVirtualRegister(GPRC); BuildMI(BB, dl, TII->get(PPC::SRW), ValueReg) .addReg(SReg) .addReg(ShiftReg); Register ValueSReg = RegInfo.createVirtualRegister(GPRC); BuildMI(BB, dl, TII->get(is8bit ? PPC::EXTSB : PPC::EXTSH), ValueSReg) .addReg(ValueReg); ValueReg = ValueSReg; CmpReg = incr; } BuildMI(BB, dl, TII->get(CmpOpcode), CrReg).addReg(ValueReg).addReg(CmpReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(CmpPred) .addReg(CrReg) .addMBB(exitMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); BB = loop2MBB; } BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg).addReg(Tmp3Reg).addReg(Tmp2Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)) .addReg(Tmp4Reg) .addReg(ZeroReg) .addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(PPC::CR0) .addMBB(loopMBB); BB->addSuccessor(loopMBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; // Since the shift amount is not a constant, we need to clear // the upper bits with a separate RLWINM. BuildMI(*BB, BB->begin(), dl, TII->get(PPC::RLWINM), dest) .addReg(SrwDestReg) .addImm(0) .addImm(is8bit ? 24 : 16) .addImm(31); BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), SrwDestReg) .addReg(TmpDestReg) .addReg(ShiftReg); return BB; } llvm::MachineBasicBlock * PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr &MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); const PPCRegisterInfo *TRI = Subtarget.getRegisterInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator I = ++MBB->getIterator(); Register DstReg = MI.getOperand(0).getReg(); const TargetRegisterClass *RC = MRI.getRegClass(DstReg); assert(TRI->isTypeLegalForClass(*RC, MVT::i32) && "Invalid destination!"); Register mainDstReg = MRI.createVirtualRegister(RC); Register restoreDstReg = MRI.createVirtualRegister(RC); MVT PVT = getPointerTy(MF->getDataLayout()); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); // For v = setjmp(buf), we generate // // thisMBB: // SjLjSetup mainMBB // bl mainMBB // v_restore = 1 // b sinkMBB // // mainMBB: // buf[LabelOffset] = LR // v_main = 0 // // sinkMBB: // v = phi(main, restore) // MachineBasicBlock *thisMBB = MBB; MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB); MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB); MF->insert(I, mainMBB); MF->insert(I, sinkMBB); MachineInstrBuilder MIB; // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(MBB); // Note that the structure of the jmp_buf used here is not compatible // with that used by libc, and is not designed to be. Specifically, it // stores only those 'reserved' registers that LLVM does not otherwise // understand how to spill. Also, by convention, by the time this // intrinsic is called, Clang has already stored the frame address in the // first slot of the buffer and stack address in the third. Following the // X86 target code, we'll store the jump address in the second slot. We also // need to save the TOC pointer (R2) to handle jumps between shared // libraries, and that will be stored in the fourth slot. The thread // identifier (R13) is not affected. // thisMBB: const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t TOCOffset = 3 * PVT.getStoreSize(); const int64_t BPOffset = 4 * PVT.getStoreSize(); // Prepare IP either in reg. const TargetRegisterClass *PtrRC = getRegClassFor(PVT); Register LabelReg = MRI.createVirtualRegister(PtrRC); Register BufReg = MI.getOperand(1).getReg(); if (Subtarget.is64BitELFABI()) { setUsesTOCBasePtr(*MBB->getParent()); MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD)) .addReg(PPC::X2) .addImm(TOCOffset) .addReg(BufReg) .cloneMemRefs(MI); } // Naked functions never have a base pointer, and so we use r1. For all // other functions, this decision must be delayed until during PEI. unsigned BaseReg; if (MF->getFunction().hasFnAttribute(Attribute::Naked)) BaseReg = Subtarget.isPPC64() ? PPC::X1 : PPC::R1; else BaseReg = Subtarget.isPPC64() ? PPC::BP8 : PPC::BP; MIB = BuildMI(*thisMBB, MI, DL, TII->get(Subtarget.isPPC64() ? PPC::STD : PPC::STW)) .addReg(BaseReg) .addImm(BPOffset) .addReg(BufReg) .cloneMemRefs(MI); // Setup MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCLalways)).addMBB(mainMBB); MIB.addRegMask(TRI->getNoPreservedMask()); BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1); MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup)) .addMBB(mainMBB); MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB); thisMBB->addSuccessor(mainMBB, BranchProbability::getZero()); thisMBB->addSuccessor(sinkMBB, BranchProbability::getOne()); // mainMBB: // mainDstReg = 0 MIB = BuildMI(mainMBB, DL, TII->get(Subtarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg); // Store IP if (Subtarget.isPPC64()) { MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD)) .addReg(LabelReg) .addImm(LabelOffset) .addReg(BufReg); } else { MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW)) .addReg(LabelReg) .addImm(LabelOffset) .addReg(BufReg); } MIB.cloneMemRefs(MI); BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0); mainMBB->addSuccessor(sinkMBB); // sinkMBB: BuildMI(*sinkMBB, sinkMBB->begin(), DL, TII->get(PPC::PHI), DstReg) .addReg(mainDstReg).addMBB(mainMBB) .addReg(restoreDstReg).addMBB(thisMBB); MI.eraseFromParent(); return sinkMBB; } MachineBasicBlock * PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr &MI, MachineBasicBlock *MBB) const { DebugLoc DL = MI.getDebugLoc(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); MachineFunction *MF = MBB->getParent(); MachineRegisterInfo &MRI = MF->getRegInfo(); MVT PVT = getPointerTy(MF->getDataLayout()); assert((PVT == MVT::i64 || PVT == MVT::i32) && "Invalid Pointer Size!"); const TargetRegisterClass *RC = (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; Register Tmp = MRI.createVirtualRegister(RC); // Since FP is only updated here but NOT referenced, it's treated as GPR. unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31; unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1; unsigned BP = (PVT == MVT::i64) ? PPC::X30 : (Subtarget.isSVR4ABI() && isPositionIndependent() ? PPC::R29 : PPC::R30); MachineInstrBuilder MIB; const int64_t LabelOffset = 1 * PVT.getStoreSize(); const int64_t SPOffset = 2 * PVT.getStoreSize(); const int64_t TOCOffset = 3 * PVT.getStoreSize(); const int64_t BPOffset = 4 * PVT.getStoreSize(); Register BufReg = MI.getOperand(0).getReg(); // Reload FP (the jumped-to function may not have had a // frame pointer, and if so, then its r31 will be restored // as necessary). if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP) .addImm(0) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP) .addImm(0) .addReg(BufReg); } MIB.cloneMemRefs(MI); // Reload IP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp) .addImm(LabelOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp) .addImm(LabelOffset) .addReg(BufReg); } MIB.cloneMemRefs(MI); // Reload SP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP) .addImm(SPOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP) .addImm(SPOffset) .addReg(BufReg); } MIB.cloneMemRefs(MI); // Reload BP if (PVT == MVT::i64) { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), BP) .addImm(BPOffset) .addReg(BufReg); } else { MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), BP) .addImm(BPOffset) .addReg(BufReg); } MIB.cloneMemRefs(MI); // Reload TOC if (PVT == MVT::i64 && Subtarget.isSVR4ABI()) { setUsesTOCBasePtr(*MBB->getParent()); MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2) .addImm(TOCOffset) .addReg(BufReg) .cloneMemRefs(MI); } // Jump BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp); BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR)); MI.eraseFromParent(); return MBB; } bool PPCTargetLowering::hasInlineStackProbe(const MachineFunction &MF) const { // If the function specifically requests inline stack probes, emit them. if (MF.getFunction().hasFnAttribute("probe-stack")) return MF.getFunction().getFnAttribute("probe-stack").getValueAsString() == "inline-asm"; return false; } unsigned PPCTargetLowering::getStackProbeSize(const MachineFunction &MF) const { const TargetFrameLowering *TFI = Subtarget.getFrameLowering(); unsigned StackAlign = TFI->getStackAlignment(); assert(StackAlign >= 1 && isPowerOf2_32(StackAlign) && "Unexpected stack alignment"); // The default stack probe size is 4096 if the function has no // stack-probe-size attribute. const Function &Fn = MF.getFunction(); unsigned StackProbeSize = Fn.getFnAttributeAsParsedInteger("stack-probe-size", 4096); // Round down to the stack alignment. StackProbeSize &= ~(StackAlign - 1); return StackProbeSize ? StackProbeSize : StackAlign; } // Lower dynamic stack allocation with probing. `emitProbedAlloca` is splitted // into three phases. In the first phase, it uses pseudo instruction // PREPARE_PROBED_ALLOCA to get the future result of actual FramePointer and // FinalStackPtr. In the second phase, it generates a loop for probing blocks. // At last, it uses pseudo instruction DYNAREAOFFSET to get the future result of // MaxCallFrameSize so that it can calculate correct data area pointer. MachineBasicBlock * PPCTargetLowering::emitProbedAlloca(MachineInstr &MI, MachineBasicBlock *MBB) const { const bool isPPC64 = Subtarget.isPPC64(); MachineFunction *MF = MBB->getParent(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); DebugLoc DL = MI.getDebugLoc(); const unsigned ProbeSize = getStackProbeSize(*MF); const BasicBlock *ProbedBB = MBB->getBasicBlock(); MachineRegisterInfo &MRI = MF->getRegInfo(); // The CFG of probing stack looks as // +-----+ // | MBB | // +--+--+ // | // +----v----+ // +--->+ TestMBB +---+ // | +----+----+ | // | | | // | +-----v----+ | // +---+ BlockMBB | | // +----------+ | // | // +---------+ | // | TailMBB +<--+ // +---------+ // In MBB, calculate previous frame pointer and final stack pointer. // In TestMBB, test if sp is equal to final stack pointer, if so, jump to // TailMBB. In BlockMBB, update the sp atomically and jump back to TestMBB. // TailMBB is spliced via \p MI. MachineBasicBlock *TestMBB = MF->CreateMachineBasicBlock(ProbedBB); MachineBasicBlock *TailMBB = MF->CreateMachineBasicBlock(ProbedBB); MachineBasicBlock *BlockMBB = MF->CreateMachineBasicBlock(ProbedBB); MachineFunction::iterator MBBIter = ++MBB->getIterator(); MF->insert(MBBIter, TestMBB); MF->insert(MBBIter, BlockMBB); MF->insert(MBBIter, TailMBB); const TargetRegisterClass *G8RC = &PPC::G8RCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register DstReg = MI.getOperand(0).getReg(); Register NegSizeReg = MI.getOperand(1).getReg(); Register SPReg = isPPC64 ? PPC::X1 : PPC::R1; Register FinalStackPtr = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); Register FramePointer = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); Register ActualNegSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); // Since value of NegSizeReg might be realigned in prologepilog, insert a // PREPARE_PROBED_ALLOCA pseudo instruction to get actual FramePointer and // NegSize. unsigned ProbeOpc; if (!MRI.hasOneNonDBGUse(NegSizeReg)) ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_64 : PPC::PREPARE_PROBED_ALLOCA_32; else // By introducing PREPARE_PROBED_ALLOCA_NEGSIZE_OPT, ActualNegSizeReg // and NegSizeReg will be allocated in the same phyreg to avoid // redundant copy when NegSizeReg has only one use which is current MI and // will be replaced by PREPARE_PROBED_ALLOCA then. ProbeOpc = isPPC64 ? PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_64 : PPC::PREPARE_PROBED_ALLOCA_NEGSIZE_SAME_REG_32; BuildMI(*MBB, {MI}, DL, TII->get(ProbeOpc), FramePointer) .addDef(ActualNegSizeReg) .addReg(NegSizeReg) .add(MI.getOperand(2)) .add(MI.getOperand(3)); // Calculate final stack pointer, which equals to SP + ActualNegSize. BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), FinalStackPtr) .addReg(SPReg) .addReg(ActualNegSizeReg); // Materialize a scratch register for update. int64_t NegProbeSize = -(int64_t)ProbeSize; assert(isInt<32>(NegProbeSize) && "Unhandled probe size!"); Register ScratchReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); if (!isInt<16>(NegProbeSize)) { Register TempReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LIS8 : PPC::LIS), TempReg) .addImm(NegProbeSize >> 16); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::ORI8 : PPC::ORI), ScratchReg) .addReg(TempReg) .addImm(NegProbeSize & 0xFFFF); } else BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::LI8 : PPC::LI), ScratchReg) .addImm(NegProbeSize); { // Probing leading residual part. Register Div = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::DIVD : PPC::DIVW), Div) .addReg(ActualNegSizeReg) .addReg(ScratchReg); Register Mul = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::MULLD : PPC::MULLW), Mul) .addReg(Div) .addReg(ScratchReg); Register NegMod = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::SUBF8 : PPC::SUBF), NegMod) .addReg(Mul) .addReg(ActualNegSizeReg); BuildMI(*MBB, {MI}, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) .addReg(FramePointer) .addReg(SPReg) .addReg(NegMod); } { // Remaining part should be multiple of ProbeSize. Register CmpResult = MRI.createVirtualRegister(&PPC::CRRCRegClass); BuildMI(TestMBB, DL, TII->get(isPPC64 ? PPC::CMPD : PPC::CMPW), CmpResult) .addReg(SPReg) .addReg(FinalStackPtr); BuildMI(TestMBB, DL, TII->get(PPC::BCC)) .addImm(PPC::PRED_EQ) .addReg(CmpResult) .addMBB(TailMBB); TestMBB->addSuccessor(BlockMBB); TestMBB->addSuccessor(TailMBB); } { // Touch the block. // |P...|P...|P... BuildMI(BlockMBB, DL, TII->get(isPPC64 ? PPC::STDUX : PPC::STWUX), SPReg) .addReg(FramePointer) .addReg(SPReg) .addReg(ScratchReg); BuildMI(BlockMBB, DL, TII->get(PPC::B)).addMBB(TestMBB); BlockMBB->addSuccessor(TestMBB); } // Calculation of MaxCallFrameSize is deferred to prologepilog, use // DYNAREAOFFSET pseudo instruction to get the future result. Register MaxCallFrameSizeReg = MRI.createVirtualRegister(isPPC64 ? G8RC : GPRC); BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::DYNAREAOFFSET8 : PPC::DYNAREAOFFSET), MaxCallFrameSizeReg) .add(MI.getOperand(2)) .add(MI.getOperand(3)); BuildMI(TailMBB, DL, TII->get(isPPC64 ? PPC::ADD8 : PPC::ADD4), DstReg) .addReg(SPReg) .addReg(MaxCallFrameSizeReg); // Splice instructions after MI to TailMBB. TailMBB->splice(TailMBB->end(), MBB, std::next(MachineBasicBlock::iterator(MI)), MBB->end()); TailMBB->transferSuccessorsAndUpdatePHIs(MBB); MBB->addSuccessor(TestMBB); // Delete the pseudo instruction. MI.eraseFromParent(); ++NumDynamicAllocaProbed; return TailMBB; } static bool IsSelectCC(MachineInstr &MI) { switch (MI.getOpcode()) { case PPC::SELECT_CC_I4: case PPC::SELECT_CC_I8: case PPC::SELECT_CC_F4: case PPC::SELECT_CC_F8: case PPC::SELECT_CC_F16: case PPC::SELECT_CC_VRRC: case PPC::SELECT_CC_VSFRC: case PPC::SELECT_CC_VSSRC: case PPC::SELECT_CC_VSRC: case PPC::SELECT_CC_SPE4: case PPC::SELECT_CC_SPE: return true; default: return false; } } static bool IsSelect(MachineInstr &MI) { switch (MI.getOpcode()) { case PPC::SELECT_I4: case PPC::SELECT_I8: case PPC::SELECT_F4: case PPC::SELECT_F8: case PPC::SELECT_F16: case PPC::SELECT_SPE: case PPC::SELECT_SPE4: case PPC::SELECT_VRRC: case PPC::SELECT_VSFRC: case PPC::SELECT_VSSRC: case PPC::SELECT_VSRC: return true; default: return false; } } MachineBasicBlock * PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *BB) const { if (MI.getOpcode() == TargetOpcode::STACKMAP || MI.getOpcode() == TargetOpcode::PATCHPOINT) { if (Subtarget.is64BitELFABI() && MI.getOpcode() == TargetOpcode::PATCHPOINT && !Subtarget.isUsingPCRelativeCalls()) { // Call lowering should have added an r2 operand to indicate a dependence // on the TOC base pointer value. It can't however, because there is no // way to mark the dependence as implicit there, and so the stackmap code // will confuse it with a regular operand. Instead, add the dependence // here. MI.addOperand(MachineOperand::CreateReg(PPC::X2, false, true)); } return emitPatchPoint(MI, BB); } if (MI.getOpcode() == PPC::EH_SjLj_SetJmp32 || MI.getOpcode() == PPC::EH_SjLj_SetJmp64) { return emitEHSjLjSetJmp(MI, BB); } else if (MI.getOpcode() == PPC::EH_SjLj_LongJmp32 || MI.getOpcode() == PPC::EH_SjLj_LongJmp64) { return emitEHSjLjLongJmp(MI, BB); } const TargetInstrInfo *TII = Subtarget.getInstrInfo(); // To "insert" these instructions we actually have to insert their // control-flow patterns. const BasicBlock *LLVM_BB = BB->getBasicBlock(); MachineFunction::iterator It = ++BB->getIterator(); MachineFunction *F = BB->getParent(); MachineRegisterInfo &MRI = F->getRegInfo(); if (Subtarget.hasISEL() && (MI.getOpcode() == PPC::SELECT_CC_I4 || MI.getOpcode() == PPC::SELECT_CC_I8 || MI.getOpcode() == PPC::SELECT_I4 || MI.getOpcode() == PPC::SELECT_I8)) { SmallVector Cond; if (MI.getOpcode() == PPC::SELECT_CC_I4 || MI.getOpcode() == PPC::SELECT_CC_I8) Cond.push_back(MI.getOperand(4)); else Cond.push_back(MachineOperand::CreateImm(PPC::PRED_BIT_SET)); Cond.push_back(MI.getOperand(1)); DebugLoc dl = MI.getDebugLoc(); TII->insertSelect(*BB, MI, dl, MI.getOperand(0).getReg(), Cond, MI.getOperand(2).getReg(), MI.getOperand(3).getReg()); } else if (IsSelectCC(MI) || IsSelect(MI)) { // The incoming instruction knows the destination vreg to set, the // condition code register to branch on, the true/false values to // select between, and a branch opcode to use. // thisMBB: // ... // TrueVal = ... // cmpTY ccX, r1, r2 // bCC sinkMBB // fallthrough --> copy0MBB MachineBasicBlock *thisMBB = BB; MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); DebugLoc dl = MI.getDebugLoc(); F->insert(It, copy0MBB); F->insert(It, sinkMBB); // Set the call frame size on entry to the new basic blocks. // See https://reviews.llvm.org/D156113. unsigned CallFrameSize = TII->getCallFrameSizeAt(MI); copy0MBB->setCallFrameSize(CallFrameSize); sinkMBB->setCallFrameSize(CallFrameSize); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); // Next, add the true and fallthrough blocks as its successors. BB->addSuccessor(copy0MBB); BB->addSuccessor(sinkMBB); if (IsSelect(MI)) { BuildMI(BB, dl, TII->get(PPC::BC)) .addReg(MI.getOperand(1).getReg()) .addMBB(sinkMBB); } else { unsigned SelectPred = MI.getOperand(4).getImm(); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(SelectPred) .addReg(MI.getOperand(1).getReg()) .addMBB(sinkMBB); } // copy0MBB: // %FalseValue = ... // # fallthrough to sinkMBB BB = copy0MBB; // Update machine-CFG edges BB->addSuccessor(sinkMBB); // sinkMBB: // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] // ... BB = sinkMBB; BuildMI(*BB, BB->begin(), dl, TII->get(PPC::PHI), MI.getOperand(0).getReg()) .addReg(MI.getOperand(3).getReg()) .addMBB(copy0MBB) .addReg(MI.getOperand(2).getReg()) .addMBB(thisMBB); } else if (MI.getOpcode() == PPC::ReadTB) { // To read the 64-bit time-base register on a 32-bit target, we read the // two halves. Should the counter have wrapped while it was being read, we // need to try again. // ... // readLoop: // mfspr Rx,TBU # load from TBU // mfspr Ry,TB # load from TB // mfspr Rz,TBU # load from TBU // cmpw crX,Rx,Rz # check if 'old'='new' // bne readLoop # branch if they're not equal // ... MachineBasicBlock *readMBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); DebugLoc dl = MI.getDebugLoc(); F->insert(It, readMBB); F->insert(It, sinkMBB); // Transfer the remainder of BB and its successor edges to sinkMBB. sinkMBB->splice(sinkMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); sinkMBB->transferSuccessorsAndUpdatePHIs(BB); BB->addSuccessor(readMBB); BB = readMBB; MachineRegisterInfo &RegInfo = F->getRegInfo(); Register ReadAgainReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass); Register LoReg = MI.getOperand(0).getReg(); Register HiReg = MI.getOperand(1).getReg(); BuildMI(BB, dl, TII->get(PPC::MFSPR), HiReg).addImm(269); BuildMI(BB, dl, TII->get(PPC::MFSPR), LoReg).addImm(268); BuildMI(BB, dl, TII->get(PPC::MFSPR), ReadAgainReg).addImm(269); Register CmpReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); BuildMI(BB, dl, TII->get(PPC::CMPW), CmpReg) .addReg(HiReg) .addReg(ReadAgainReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(CmpReg) .addMBB(readMBB); BB->addSuccessor(readMBB); BB->addSuccessor(sinkMBB); } else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::ADD4); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_ADD_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::ADD8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::AND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_AND_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::AND8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::OR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_OR_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::OR8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::XOR); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_XOR_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::XOR8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::NAND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::NAND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::NAND); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_NAND_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::NAND8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I32) BB = EmitAtomicBinary(MI, BB, 4, PPC::SUBF); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_SUB_I64) BB = EmitAtomicBinary(MI, BB, 8, PPC::SUBF8); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I32) BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MIN_I64) BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I32) BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_MAX_I64) BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPD, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I32) BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMIN_I64) BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_LT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0, PPC::CMPLW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0, PPC::CMPLW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I32) BB = EmitAtomicBinary(MI, BB, 4, 0, PPC::CMPLW, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_LOAD_UMAX_I64) BB = EmitAtomicBinary(MI, BB, 8, 0, PPC::CMPLD, PPC::PRED_GT); else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I8) BB = EmitPartwordAtomicBinary(MI, BB, true, 0); else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I16) BB = EmitPartwordAtomicBinary(MI, BB, false, 0); else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I32) BB = EmitAtomicBinary(MI, BB, 4, 0); else if (MI.getOpcode() == PPC::ATOMIC_SWAP_I64) BB = EmitAtomicBinary(MI, BB, 8, 0); else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 || MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64 || (Subtarget.hasPartwordAtomics() && MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8) || (Subtarget.hasPartwordAtomics() && MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16)) { bool is64bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I64; auto LoadMnemonic = PPC::LDARX; auto StoreMnemonic = PPC::STDCX; switch (MI.getOpcode()) { default: llvm_unreachable("Compare and swap of unknown size"); case PPC::ATOMIC_CMP_SWAP_I8: LoadMnemonic = PPC::LBARX; StoreMnemonic = PPC::STBCX; assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); break; case PPC::ATOMIC_CMP_SWAP_I16: LoadMnemonic = PPC::LHARX; StoreMnemonic = PPC::STHCX; assert(Subtarget.hasPartwordAtomics() && "No support partword atomics."); break; case PPC::ATOMIC_CMP_SWAP_I32: LoadMnemonic = PPC::LWARX; StoreMnemonic = PPC::STWCX; break; case PPC::ATOMIC_CMP_SWAP_I64: LoadMnemonic = PPC::LDARX; StoreMnemonic = PPC::STDCX; break; } MachineRegisterInfo &RegInfo = F->getRegInfo(); Register dest = MI.getOperand(0).getReg(); Register ptrA = MI.getOperand(1).getReg(); Register ptrB = MI.getOperand(2).getReg(); Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); Register oldval = MI.getOperand(3).getReg(); Register newval = MI.getOperand(4).getReg(); DebugLoc dl = MI.getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // loop1MBB: // l[bhwd]arx dest, ptr // cmp[wd] dest, oldval // bne- exitBB // loop2MBB: // st[bhwd]cx. newval, ptr // bne- loopMBB // b exitBB // exitBB: BB = loop1MBB; BuildMI(BB, dl, TII->get(LoadMnemonic), dest).addReg(ptrA).addReg(ptrB); BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), CrReg) .addReg(dest) .addReg(oldval); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(CrReg) .addMBB(exitMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(StoreMnemonic)) .addReg(newval) .addReg(ptrA) .addReg(ptrB); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(PPC::CR0) .addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; } else if (MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 || MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) { // We must use 64-bit registers for addresses when targeting 64-bit, // since we're actually doing arithmetic on them. Other registers // can be 32-bit. bool is64bit = Subtarget.isPPC64(); bool isLittleEndian = Subtarget.isLittleEndian(); bool is8bit = MI.getOpcode() == PPC::ATOMIC_CMP_SWAP_I8; Register dest = MI.getOperand(0).getReg(); Register ptrA = MI.getOperand(1).getReg(); Register ptrB = MI.getOperand(2).getReg(); Register oldval = MI.getOperand(3).getReg(); Register newval = MI.getOperand(4).getReg(); DebugLoc dl = MI.getDebugLoc(); MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB); MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB); F->insert(It, loop1MBB); F->insert(It, loop2MBB); F->insert(It, exitMBB); exitMBB->splice(exitMBB->begin(), BB, std::next(MachineBasicBlock::iterator(MI)), BB->end()); exitMBB->transferSuccessorsAndUpdatePHIs(BB); MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = is64bit ? &PPC::G8RCRegClass : &PPC::GPRCRegClass; const TargetRegisterClass *GPRC = &PPC::GPRCRegClass; Register PtrReg = RegInfo.createVirtualRegister(RC); Register Shift1Reg = RegInfo.createVirtualRegister(GPRC); Register ShiftReg = isLittleEndian ? Shift1Reg : RegInfo.createVirtualRegister(GPRC); Register NewVal2Reg = RegInfo.createVirtualRegister(GPRC); Register NewVal3Reg = RegInfo.createVirtualRegister(GPRC); Register OldVal2Reg = RegInfo.createVirtualRegister(GPRC); Register OldVal3Reg = RegInfo.createVirtualRegister(GPRC); Register MaskReg = RegInfo.createVirtualRegister(GPRC); Register Mask2Reg = RegInfo.createVirtualRegister(GPRC); Register Mask3Reg = RegInfo.createVirtualRegister(GPRC); Register Tmp2Reg = RegInfo.createVirtualRegister(GPRC); Register Tmp4Reg = RegInfo.createVirtualRegister(GPRC); Register TmpDestReg = RegInfo.createVirtualRegister(GPRC); Register Ptr1Reg; Register TmpReg = RegInfo.createVirtualRegister(GPRC); Register ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO; Register CrReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); // thisMBB: // ... // fallthrough --> loopMBB BB->addSuccessor(loop1MBB); // The 4-byte load must be aligned, while a char or short may be // anywhere in the word. Hence all this nasty bookkeeping code. // add ptr1, ptrA, ptrB [copy if ptrA==0] // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27] // xori shift, shift1, 24 [16] // rlwinm ptr, ptr1, 0, 0, 29 // slw newval2, newval, shift // slw oldval2, oldval,shift // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535] // slw mask, mask2, shift // and newval3, newval2, mask // and oldval3, oldval2, mask // loop1MBB: // lwarx tmpDest, ptr // and tmp, tmpDest, mask // cmpw tmp, oldval3 // bne- exitBB // loop2MBB: // andc tmp2, tmpDest, mask // or tmp4, tmp2, newval3 // stwcx. tmp4, ptr // bne- loop1MBB // b exitBB // exitBB: // srw dest, tmpDest, shift if (ptrA != ZeroReg) { Ptr1Reg = RegInfo.createVirtualRegister(RC); BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg) .addReg(ptrA) .addReg(ptrB); } else { Ptr1Reg = ptrB; } // We need use 32-bit subregister to avoid mismatch register class in 64-bit // mode. BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg) .addReg(Ptr1Reg, 0, is64bit ? PPC::sub_32 : 0) .addImm(3) .addImm(27) .addImm(is8bit ? 28 : 27); if (!isLittleEndian) BuildMI(BB, dl, TII->get(PPC::XORI), ShiftReg) .addReg(Shift1Reg) .addImm(is8bit ? 24 : 16); if (is64bit) BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg) .addReg(Ptr1Reg) .addImm(0) .addImm(61); else BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg) .addReg(Ptr1Reg) .addImm(0) .addImm(0) .addImm(29); BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg) .addReg(newval) .addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg) .addReg(oldval) .addReg(ShiftReg); if (is8bit) BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255); else { BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0); BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg) .addReg(Mask3Reg) .addImm(65535); } BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg) .addReg(Mask2Reg) .addReg(ShiftReg); BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg) .addReg(NewVal2Reg) .addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg) .addReg(OldVal2Reg) .addReg(MaskReg); BB = loop1MBB; BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg) .addReg(ZeroReg) .addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::AND), TmpReg) .addReg(TmpDestReg) .addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::CMPW), CrReg) .addReg(TmpReg) .addReg(OldVal3Reg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(CrReg) .addMBB(exitMBB); BB->addSuccessor(loop2MBB); BB->addSuccessor(exitMBB); BB = loop2MBB; BuildMI(BB, dl, TII->get(PPC::ANDC), Tmp2Reg) .addReg(TmpDestReg) .addReg(MaskReg); BuildMI(BB, dl, TII->get(PPC::OR), Tmp4Reg) .addReg(Tmp2Reg) .addReg(NewVal3Reg); BuildMI(BB, dl, TII->get(PPC::STWCX)) .addReg(Tmp4Reg) .addReg(ZeroReg) .addReg(PtrReg); BuildMI(BB, dl, TII->get(PPC::BCC)) .addImm(PPC::PRED_NE) .addReg(PPC::CR0) .addMBB(loop1MBB); BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB); BB->addSuccessor(loop1MBB); BB->addSuccessor(exitMBB); // exitMBB: // ... BB = exitMBB; BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest) .addReg(TmpReg) .addReg(ShiftReg); } else if (MI.getOpcode() == PPC::FADDrtz) { // This pseudo performs an FADD with rounding mode temporarily forced // to round-to-zero. We emit this via custom inserter since the FPSCR // is not modeled at the SelectionDAG level. Register Dest = MI.getOperand(0).getReg(); Register Src1 = MI.getOperand(1).getReg(); Register Src2 = MI.getOperand(2).getReg(); DebugLoc dl = MI.getDebugLoc(); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); // Save FPSCR value. BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg); // Set rounding mode to round-to-zero. BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)) .addImm(31) .addReg(PPC::RM, RegState::ImplicitDefine); BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)) .addImm(30) .addReg(PPC::RM, RegState::ImplicitDefine); // Perform addition. auto MIB = BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest) .addReg(Src1) .addReg(Src2); if (MI.getFlag(MachineInstr::NoFPExcept)) MIB.setMIFlag(MachineInstr::NoFPExcept); // Restore FPSCR value. BuildMI(*BB, MI, dl, TII->get(PPC::MTFSFb)).addImm(1).addReg(MFFSReg); } else if (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT || MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) { unsigned Opcode = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8 || MI.getOpcode() == PPC::ANDI_rec_1_GT_BIT8) ? PPC::ANDI8_rec : PPC::ANDI_rec; bool IsEQ = (MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT || MI.getOpcode() == PPC::ANDI_rec_1_EQ_BIT8); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register Dest = RegInfo.createVirtualRegister( Opcode == PPC::ANDI_rec ? &PPC::GPRCRegClass : &PPC::G8RCRegClass); DebugLoc Dl = MI.getDebugLoc(); BuildMI(*BB, MI, Dl, TII->get(Opcode), Dest) .addReg(MI.getOperand(1).getReg()) .addImm(1); BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) .addReg(IsEQ ? PPC::CR0EQ : PPC::CR0GT); } else if (MI.getOpcode() == PPC::TCHECK_RET) { DebugLoc Dl = MI.getDebugLoc(); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register CRReg = RegInfo.createVirtualRegister(&PPC::CRRCRegClass); BuildMI(*BB, MI, Dl, TII->get(PPC::TCHECK), CRReg); BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) .addReg(CRReg); } else if (MI.getOpcode() == PPC::TBEGIN_RET) { DebugLoc Dl = MI.getDebugLoc(); unsigned Imm = MI.getOperand(1).getImm(); BuildMI(*BB, MI, Dl, TII->get(PPC::TBEGIN)).addImm(Imm); BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::COPY), MI.getOperand(0).getReg()) .addReg(PPC::CR0EQ); } else if (MI.getOpcode() == PPC::SETRNDi) { DebugLoc dl = MI.getDebugLoc(); Register OldFPSCRReg = MI.getOperand(0).getReg(); // Save FPSCR value. if (MRI.use_empty(OldFPSCRReg)) BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); else BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); // The floating point rounding mode is in the bits 62:63 of FPCSR, and has // the following settings: // 00 Round to nearest // 01 Round to 0 // 10 Round to +inf // 11 Round to -inf // When the operand is immediate, using the two least significant bits of // the immediate to set the bits 62:63 of FPSCR. unsigned Mode = MI.getOperand(1).getImm(); BuildMI(*BB, MI, dl, TII->get((Mode & 1) ? PPC::MTFSB1 : PPC::MTFSB0)) .addImm(31) .addReg(PPC::RM, RegState::ImplicitDefine); BuildMI(*BB, MI, dl, TII->get((Mode & 2) ? PPC::MTFSB1 : PPC::MTFSB0)) .addImm(30) .addReg(PPC::RM, RegState::ImplicitDefine); } else if (MI.getOpcode() == PPC::SETRND) { DebugLoc dl = MI.getDebugLoc(); // Copy register from F8RCRegClass::SrcReg to G8RCRegClass::DestReg // or copy register from G8RCRegClass::SrcReg to F8RCRegClass::DestReg. // If the target doesn't have DirectMove, we should use stack to do the // conversion, because the target doesn't have the instructions like mtvsrd // or mfvsrd to do this conversion directly. auto copyRegFromG8RCOrF8RC = [&] (unsigned DestReg, unsigned SrcReg) { if (Subtarget.hasDirectMove()) { BuildMI(*BB, MI, dl, TII->get(TargetOpcode::COPY), DestReg) .addReg(SrcReg); } else { // Use stack to do the register copy. unsigned StoreOp = PPC::STD, LoadOp = PPC::LFD; MachineRegisterInfo &RegInfo = F->getRegInfo(); const TargetRegisterClass *RC = RegInfo.getRegClass(SrcReg); if (RC == &PPC::F8RCRegClass) { // Copy register from F8RCRegClass to G8RCRegclass. assert((RegInfo.getRegClass(DestReg) == &PPC::G8RCRegClass) && "Unsupported RegClass."); StoreOp = PPC::STFD; LoadOp = PPC::LD; } else { // Copy register from G8RCRegClass to F8RCRegclass. assert((RegInfo.getRegClass(SrcReg) == &PPC::G8RCRegClass) && (RegInfo.getRegClass(DestReg) == &PPC::F8RCRegClass) && "Unsupported RegClass."); } MachineFrameInfo &MFI = F->getFrameInfo(); int FrameIdx = MFI.CreateStackObject(8, Align(8), false); MachineMemOperand *MMOStore = F->getMachineMemOperand( MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), MachineMemOperand::MOStore, MFI.getObjectSize(FrameIdx), MFI.getObjectAlign(FrameIdx)); // Store the SrcReg into the stack. BuildMI(*BB, MI, dl, TII->get(StoreOp)) .addReg(SrcReg) .addImm(0) .addFrameIndex(FrameIdx) .addMemOperand(MMOStore); MachineMemOperand *MMOLoad = F->getMachineMemOperand( MachinePointerInfo::getFixedStack(*F, FrameIdx, 0), MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIdx), MFI.getObjectAlign(FrameIdx)); // Load from the stack where SrcReg is stored, and save to DestReg, // so we have done the RegClass conversion from RegClass::SrcReg to // RegClass::DestReg. BuildMI(*BB, MI, dl, TII->get(LoadOp), DestReg) .addImm(0) .addFrameIndex(FrameIdx) .addMemOperand(MMOLoad); } }; Register OldFPSCRReg = MI.getOperand(0).getReg(); // Save FPSCR value. BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), OldFPSCRReg); // When the operand is gprc register, use two least significant bits of the // register and mtfsf instruction to set the bits 62:63 of FPSCR. // // copy OldFPSCRTmpReg, OldFPSCRReg // (INSERT_SUBREG ExtSrcReg, (IMPLICIT_DEF ImDefReg), SrcOp, 1) // rldimi NewFPSCRTmpReg, ExtSrcReg, OldFPSCRReg, 0, 62 // copy NewFPSCRReg, NewFPSCRTmpReg // mtfsf 255, NewFPSCRReg MachineOperand SrcOp = MI.getOperand(1); MachineRegisterInfo &RegInfo = F->getRegInfo(); Register OldFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); copyRegFromG8RCOrF8RC(OldFPSCRTmpReg, OldFPSCRReg); Register ImDefReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); Register ExtSrcReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); // The first operand of INSERT_SUBREG should be a register which has // subregisters, we only care about its RegClass, so we should use an // IMPLICIT_DEF register. BuildMI(*BB, MI, dl, TII->get(TargetOpcode::IMPLICIT_DEF), ImDefReg); BuildMI(*BB, MI, dl, TII->get(PPC::INSERT_SUBREG), ExtSrcReg) .addReg(ImDefReg) .add(SrcOp) .addImm(1); Register NewFPSCRTmpReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass); BuildMI(*BB, MI, dl, TII->get(PPC::RLDIMI), NewFPSCRTmpReg) .addReg(OldFPSCRTmpReg) .addReg(ExtSrcReg) .addImm(0) .addImm(62); Register NewFPSCRReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass); copyRegFromG8RCOrF8RC(NewFPSCRReg, NewFPSCRTmpReg); // The mask 255 means that put the 32:63 bits of NewFPSCRReg to the 32:63 // bits of FPSCR. BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)) .addImm(255) .addReg(NewFPSCRReg) .addImm(0) .addImm(0); } else if (MI.getOpcode() == PPC::SETFLM) { DebugLoc Dl = MI.getDebugLoc(); // Result of setflm is previous FPSCR content, so we need to save it first. Register OldFPSCRReg = MI.getOperand(0).getReg(); if (MRI.use_empty(OldFPSCRReg)) BuildMI(*BB, MI, Dl, TII->get(TargetOpcode::IMPLICIT_DEF), OldFPSCRReg); else BuildMI(*BB, MI, Dl, TII->get(PPC::MFFS), OldFPSCRReg); // Put bits in 32:63 to FPSCR. Register NewFPSCRReg = MI.getOperand(1).getReg(); BuildMI(*BB, MI, Dl, TII->get(PPC::MTFSF)) .addImm(255) .addReg(NewFPSCRReg) .addImm(0) .addImm(0); } else if (MI.getOpcode() == PPC::PROBED_ALLOCA_32 || MI.getOpcode() == PPC::PROBED_ALLOCA_64) { return emitProbedAlloca(MI, BB); } else if (MI.getOpcode() == PPC::SPLIT_QUADWORD) { DebugLoc DL = MI.getDebugLoc(); Register Src = MI.getOperand(2).getReg(); Register Lo = MI.getOperand(0).getReg(); Register Hi = MI.getOperand(1).getReg(); BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) .addDef(Lo) .addUse(Src, 0, PPC::sub_gp8_x1); BuildMI(*BB, MI, DL, TII->get(TargetOpcode::COPY)) .addDef(Hi) .addUse(Src, 0, PPC::sub_gp8_x0); } else if (MI.getOpcode() == PPC::LQX_PSEUDO || MI.getOpcode() == PPC::STQX_PSEUDO) { DebugLoc DL = MI.getDebugLoc(); // Ptr is used as the ptr_rc_no_r0 part // of LQ/STQ's memory operand and adding result of RA and RB, // so it has to be g8rc_and_g8rc_nox0. Register Ptr = F->getRegInfo().createVirtualRegister(&PPC::G8RC_and_G8RC_NOX0RegClass); Register Val = MI.getOperand(0).getReg(); Register RA = MI.getOperand(1).getReg(); Register RB = MI.getOperand(2).getReg(); BuildMI(*BB, MI, DL, TII->get(PPC::ADD8), Ptr).addReg(RA).addReg(RB); BuildMI(*BB, MI, DL, MI.getOpcode() == PPC::LQX_PSEUDO ? TII->get(PPC::LQ) : TII->get(PPC::STQ)) .addReg(Val, MI.getOpcode() == PPC::LQX_PSEUDO ? RegState::Define : 0) .addImm(0) .addReg(Ptr); } else { llvm_unreachable("Unexpected instr type to insert"); } MI.eraseFromParent(); // The pseudo instruction is gone now. return BB; } //===----------------------------------------------------------------------===// // Target Optimization Hooks //===----------------------------------------------------------------------===// static int getEstimateRefinementSteps(EVT VT, const PPCSubtarget &Subtarget) { // For the estimates, convergence is quadratic, so we essentially double the // number of digits correct after every iteration. For both FRE and FRSQRTE, // the minimum architected relative accuracy is 2^-5. When hasRecipPrec(), // this is 2^-14. IEEE float has 23 digits and double has 52 digits. int RefinementSteps = Subtarget.hasRecipPrec() ? 1 : 3; if (VT.getScalarType() == MVT::f64) RefinementSteps++; return RefinementSteps; } SDValue PPCTargetLowering::getSqrtInputTest(SDValue Op, SelectionDAG &DAG, const DenormalMode &Mode) const { // We only have VSX Vector Test for software Square Root. EVT VT = Op.getValueType(); if (!isTypeLegal(MVT::i1) || (VT != MVT::f64 && ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX()))) return TargetLowering::getSqrtInputTest(Op, DAG, Mode); SDLoc DL(Op); // The output register of FTSQRT is CR field. SDValue FTSQRT = DAG.getNode(PPCISD::FTSQRT, DL, MVT::i32, Op); // ftsqrt BF,FRB // Let e_b be the unbiased exponent of the double-precision // floating-point operand in register FRB. // fe_flag is set to 1 if either of the following conditions occurs. // - The double-precision floating-point operand in register FRB is a zero, // a NaN, or an infinity, or a negative value. // - e_b is less than or equal to -970. // Otherwise fe_flag is set to 0. // Both VSX and non-VSX versions would set EQ bit in the CR if the number is // not eligible for iteration. (zero/negative/infinity/nan or unbiased // exponent is less than -970) SDValue SRIdxVal = DAG.getTargetConstant(PPC::sub_eq, DL, MVT::i32); return SDValue(DAG.getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL, MVT::i1, FTSQRT, SRIdxVal), 0); } SDValue PPCTargetLowering::getSqrtResultForDenormInput(SDValue Op, SelectionDAG &DAG) const { // We only have VSX Vector Square Root. EVT VT = Op.getValueType(); if (VT != MVT::f64 && ((VT != MVT::v2f64 && VT != MVT::v4f32) || !Subtarget.hasVSX())) return TargetLowering::getSqrtResultForDenormInput(Op, DAG); return DAG.getNode(PPCISD::FSQRT, SDLoc(Op), VT, Op); } SDValue PPCTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const { EVT VT = Operand.getValueType(); if ((VT == MVT::f32 && Subtarget.hasFRSQRTES()) || (VT == MVT::f64 && Subtarget.hasFRSQRTE()) || (VT == MVT::v4f32 && Subtarget.hasAltivec()) || (VT == MVT::v2f64 && Subtarget.hasVSX())) { if (RefinementSteps == ReciprocalEstimate::Unspecified) RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); // The Newton-Raphson computation with a single constant does not provide // enough accuracy on some CPUs. UseOneConstNR = !Subtarget.needsTwoConstNR(); return DAG.getNode(PPCISD::FRSQRTE, SDLoc(Operand), VT, Operand); } return SDValue(); } SDValue PPCTargetLowering::getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const { EVT VT = Operand.getValueType(); if ((VT == MVT::f32 && Subtarget.hasFRES()) || (VT == MVT::f64 && Subtarget.hasFRE()) || (VT == MVT::v4f32 && Subtarget.hasAltivec()) || (VT == MVT::v2f64 && Subtarget.hasVSX())) { if (RefinementSteps == ReciprocalEstimate::Unspecified) RefinementSteps = getEstimateRefinementSteps(VT, Subtarget); return DAG.getNode(PPCISD::FRE, SDLoc(Operand), VT, Operand); } return SDValue(); } unsigned PPCTargetLowering::combineRepeatedFPDivisors() const { // Note: This functionality is used only when unsafe-fp-math is enabled, and // on cores with reciprocal estimates (which are used when unsafe-fp-math is // enabled for division), this functionality is redundant with the default // combiner logic (once the division -> reciprocal/multiply transformation // has taken place). As a result, this matters more for older cores than for // newer ones. // Combine multiple FDIVs with the same divisor into multiple FMULs by the // reciprocal if there are two or more FDIVs (for embedded cores with only // one FP pipeline) for three or more FDIVs (for generic OOO cores). switch (Subtarget.getCPUDirective()) { default: return 3; case PPC::DIR_440: case PPC::DIR_A2: case PPC::DIR_E500: case PPC::DIR_E500mc: case PPC::DIR_E5500: return 2; } } // isConsecutiveLSLoc needs to work even if all adds have not yet been // collapsed, and so we need to look through chains of them. static void getBaseWithConstantOffset(SDValue Loc, SDValue &Base, int64_t& Offset, SelectionDAG &DAG) { if (DAG.isBaseWithConstantOffset(Loc)) { Base = Loc.getOperand(0); Offset += cast(Loc.getOperand(1))->getSExtValue(); // The base might itself be a base plus an offset, and if so, accumulate // that as well. getBaseWithConstantOffset(Loc.getOperand(0), Base, Offset, DAG); } } static bool isConsecutiveLSLoc(SDValue Loc, EVT VT, LSBaseSDNode *Base, unsigned Bytes, int Dist, SelectionDAG &DAG) { if (VT.getSizeInBits() / 8 != Bytes) return false; SDValue BaseLoc = Base->getBasePtr(); if (Loc.getOpcode() == ISD::FrameIndex) { if (BaseLoc.getOpcode() != ISD::FrameIndex) return false; const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); int FI = cast(Loc)->getIndex(); int BFI = cast(BaseLoc)->getIndex(); int FS = MFI.getObjectSize(FI); int BFS = MFI.getObjectSize(BFI); if (FS != BFS || FS != (int)Bytes) return false; return MFI.getObjectOffset(FI) == (MFI.getObjectOffset(BFI) + Dist*Bytes); } SDValue Base1 = Loc, Base2 = BaseLoc; int64_t Offset1 = 0, Offset2 = 0; getBaseWithConstantOffset(Loc, Base1, Offset1, DAG); getBaseWithConstantOffset(BaseLoc, Base2, Offset2, DAG); if (Base1 == Base2 && Offset1 == (Offset2 + Dist * Bytes)) return true; const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const GlobalValue *GV1 = nullptr; const GlobalValue *GV2 = nullptr; Offset1 = 0; Offset2 = 0; bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1); bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2); if (isGA1 && isGA2 && GV1 == GV2) return Offset1 == (Offset2 + Dist*Bytes); return false; } // Like SelectionDAG::isConsecutiveLoad, but also works for stores, and does // not enforce equality of the chain operands. static bool isConsecutiveLS(SDNode *N, LSBaseSDNode *Base, unsigned Bytes, int Dist, SelectionDAG &DAG) { if (LSBaseSDNode *LS = dyn_cast(N)) { EVT VT = LS->getMemoryVT(); SDValue Loc = LS->getBasePtr(); return isConsecutiveLSLoc(Loc, VT, Base, Bytes, Dist, DAG); } if (N->getOpcode() == ISD::INTRINSIC_W_CHAIN) { EVT VT; switch (N->getConstantOperandVal(1)) { default: return false; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvw4x_be: VT = MVT::v4i32; break; case Intrinsic::ppc_vsx_lxvd2x: case Intrinsic::ppc_vsx_lxvd2x_be: VT = MVT::v2f64; break; case Intrinsic::ppc_altivec_lvebx: VT = MVT::i8; break; case Intrinsic::ppc_altivec_lvehx: VT = MVT::i16; break; case Intrinsic::ppc_altivec_lvewx: VT = MVT::i32; break; } return isConsecutiveLSLoc(N->getOperand(2), VT, Base, Bytes, Dist, DAG); } if (N->getOpcode() == ISD::INTRINSIC_VOID) { EVT VT; switch (N->getConstantOperandVal(1)) { default: return false; case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: case Intrinsic::ppc_vsx_stxvw4x: VT = MVT::v4i32; break; case Intrinsic::ppc_vsx_stxvd2x: VT = MVT::v2f64; break; case Intrinsic::ppc_vsx_stxvw4x_be: VT = MVT::v4i32; break; case Intrinsic::ppc_vsx_stxvd2x_be: VT = MVT::v2f64; break; case Intrinsic::ppc_altivec_stvebx: VT = MVT::i8; break; case Intrinsic::ppc_altivec_stvehx: VT = MVT::i16; break; case Intrinsic::ppc_altivec_stvewx: VT = MVT::i32; break; } return isConsecutiveLSLoc(N->getOperand(3), VT, Base, Bytes, Dist, DAG); } return false; } // Return true is there is a nearyby consecutive load to the one provided // (regardless of alignment). We search up and down the chain, looking though // token factors and other loads (but nothing else). As a result, a true result // indicates that it is safe to create a new consecutive load adjacent to the // load provided. static bool findConsecutiveLoad(LoadSDNode *LD, SelectionDAG &DAG) { SDValue Chain = LD->getChain(); EVT VT = LD->getMemoryVT(); SmallSet LoadRoots; SmallVector Queue(1, Chain.getNode()); SmallSet Visited; // First, search up the chain, branching to follow all token-factor operands. // If we find a consecutive load, then we're done, otherwise, record all // nodes just above the top-level loads and token factors. while (!Queue.empty()) { SDNode *ChainNext = Queue.pop_back_val(); if (!Visited.insert(ChainNext).second) continue; if (MemSDNode *ChainLD = dyn_cast(ChainNext)) { if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) return true; if (!Visited.count(ChainLD->getChain().getNode())) Queue.push_back(ChainLD->getChain().getNode()); } else if (ChainNext->getOpcode() == ISD::TokenFactor) { for (const SDUse &O : ChainNext->ops()) if (!Visited.count(O.getNode())) Queue.push_back(O.getNode()); } else LoadRoots.insert(ChainNext); } // Second, search down the chain, starting from the top-level nodes recorded // in the first phase. These top-level nodes are the nodes just above all // loads and token factors. Starting with their uses, recursively look though // all loads (just the chain uses) and token factors to find a consecutive // load. Visited.clear(); Queue.clear(); for (SDNode *I : LoadRoots) { Queue.push_back(I); while (!Queue.empty()) { SDNode *LoadRoot = Queue.pop_back_val(); if (!Visited.insert(LoadRoot).second) continue; if (MemSDNode *ChainLD = dyn_cast(LoadRoot)) if (isConsecutiveLS(ChainLD, LD, VT.getStoreSize(), 1, DAG)) return true; for (SDNode *U : LoadRoot->uses()) if (((isa(U) && cast(U)->getChain().getNode() == LoadRoot) || U->getOpcode() == ISD::TokenFactor) && !Visited.count(U)) Queue.push_back(U); } } return false; } /// This function is called when we have proved that a SETCC node can be replaced /// by subtraction (and other supporting instructions) so that the result of /// comparison is kept in a GPR instead of CR. This function is purely for /// codegen purposes and has some flags to guide the codegen process. static SDValue generateEquivalentSub(SDNode *N, int Size, bool Complement, bool Swap, SDLoc &DL, SelectionDAG &DAG) { assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); // Zero extend the operands to the largest legal integer. Originally, they // must be of a strictly smaller size. auto Op0 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(0), DAG.getConstant(Size, DL, MVT::i32)); auto Op1 = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, N->getOperand(1), DAG.getConstant(Size, DL, MVT::i32)); // Swap if needed. Depends on the condition code. if (Swap) std::swap(Op0, Op1); // Subtract extended integers. auto SubNode = DAG.getNode(ISD::SUB, DL, MVT::i64, Op0, Op1); // Move the sign bit to the least significant position and zero out the rest. // Now the least significant bit carries the result of original comparison. auto Shifted = DAG.getNode(ISD::SRL, DL, MVT::i64, SubNode, DAG.getConstant(Size - 1, DL, MVT::i32)); auto Final = Shifted; // Complement the result if needed. Based on the condition code. if (Complement) Final = DAG.getNode(ISD::XOR, DL, MVT::i64, Shifted, DAG.getConstant(1, DL, MVT::i64)); return DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Final); } SDValue PPCTargetLowering::ConvertSETCCToSubtract(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::SETCC && "ISD::SETCC Expected."); SelectionDAG &DAG = DCI.DAG; SDLoc DL(N); // Size of integers being compared has a critical role in the following // analysis, so we prefer to do this when all types are legal. if (!DCI.isAfterLegalizeDAG()) return SDValue(); // If all users of SETCC extend its value to a legal integer type // then we replace SETCC with a subtraction for (const SDNode *U : N->uses()) if (U->getOpcode() != ISD::ZERO_EXTEND) return SDValue(); ISD::CondCode CC = cast(N->getOperand(2))->get(); auto OpSize = N->getOperand(0).getValueSizeInBits(); unsigned Size = DAG.getDataLayout().getLargestLegalIntTypeSizeInBits(); if (OpSize < Size) { switch (CC) { default: break; case ISD::SETULT: return generateEquivalentSub(N, Size, false, false, DL, DAG); case ISD::SETULE: return generateEquivalentSub(N, Size, true, true, DL, DAG); case ISD::SETUGT: return generateEquivalentSub(N, Size, false, true, DL, DAG); case ISD::SETUGE: return generateEquivalentSub(N, Size, true, false, DL, DAG); } } return SDValue(); } SDValue PPCTargetLowering::DAGCombineTruncBoolExt(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); assert(Subtarget.useCRBits() && "Expecting to be tracking CR bits"); // If we're tracking CR bits, we need to be careful that we don't have: // trunc(binary-ops(zext(x), zext(y))) // or // trunc(binary-ops(binary-ops(zext(x), zext(y)), ...) // such that we're unnecessarily moving things into GPRs when it would be // better to keep them in CR bits. // Note that trunc here can be an actual i1 trunc, or can be the effective // truncation that comes from a setcc or select_cc. if (N->getOpcode() == ISD::TRUNCATE && N->getValueType(0) != MVT::i1) return SDValue(); if (N->getOperand(0).getValueType() != MVT::i32 && N->getOperand(0).getValueType() != MVT::i64) return SDValue(); if (N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) { // If we're looking at a comparison, then we need to make sure that the // high bits (all except for the first) don't matter the result. ISD::CondCode CC = cast(N->getOperand( N->getOpcode() == ISD::SETCC ? 2 : 4))->get(); unsigned OpBits = N->getOperand(0).getValueSizeInBits(); if (ISD::isSignedIntSetCC(CC)) { if (DAG.ComputeNumSignBits(N->getOperand(0)) != OpBits || DAG.ComputeNumSignBits(N->getOperand(1)) != OpBits) return SDValue(); } else if (ISD::isUnsignedIntSetCC(CC)) { if (!DAG.MaskedValueIsZero(N->getOperand(0), APInt::getHighBitsSet(OpBits, OpBits-1)) || !DAG.MaskedValueIsZero(N->getOperand(1), APInt::getHighBitsSet(OpBits, OpBits-1))) return (N->getOpcode() == ISD::SETCC ? ConvertSETCCToSubtract(N, DCI) : SDValue()); } else { // This is neither a signed nor an unsigned comparison, just make sure // that the high bits are equal. KnownBits Op1Known = DAG.computeKnownBits(N->getOperand(0)); KnownBits Op2Known = DAG.computeKnownBits(N->getOperand(1)); // We don't really care about what is known about the first bit (if // anything), so pretend that it is known zero for both to ensure they can // be compared as constants. Op1Known.Zero.setBit(0); Op1Known.One.clearBit(0); Op2Known.Zero.setBit(0); Op2Known.One.clearBit(0); if (!Op1Known.isConstant() || !Op2Known.isConstant() || Op1Known.getConstant() != Op2Known.getConstant()) return SDValue(); } } // We now know that the higher-order bits are irrelevant, we just need to // make sure that all of the intermediate operations are bit operations, and // all inputs are extensions. if (N->getOperand(0).getOpcode() != ISD::AND && N->getOperand(0).getOpcode() != ISD::OR && N->getOperand(0).getOpcode() != ISD::XOR && N->getOperand(0).getOpcode() != ISD::SELECT && N->getOperand(0).getOpcode() != ISD::SELECT_CC && N->getOperand(0).getOpcode() != ISD::TRUNCATE && N->getOperand(0).getOpcode() != ISD::SIGN_EXTEND && N->getOperand(0).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(0).getOpcode() != ISD::ANY_EXTEND) return SDValue(); if ((N->getOpcode() == ISD::SETCC || N->getOpcode() == ISD::SELECT_CC) && N->getOperand(1).getOpcode() != ISD::AND && N->getOperand(1).getOpcode() != ISD::OR && N->getOperand(1).getOpcode() != ISD::XOR && N->getOperand(1).getOpcode() != ISD::SELECT && N->getOperand(1).getOpcode() != ISD::SELECT_CC && N->getOperand(1).getOpcode() != ISD::TRUNCATE && N->getOperand(1).getOpcode() != ISD::SIGN_EXTEND && N->getOperand(1).getOpcode() != ISD::ZERO_EXTEND && N->getOperand(1).getOpcode() != ISD::ANY_EXTEND) return SDValue(); SmallVector Inputs; SmallVector BinOps, PromOps; SmallPtrSet Visited; for (unsigned i = 0; i < 2; ++i) { if (((N->getOperand(i).getOpcode() == ISD::SIGN_EXTEND || N->getOperand(i).getOpcode() == ISD::ZERO_EXTEND || N->getOperand(i).getOpcode() == ISD::ANY_EXTEND) && N->getOperand(i).getOperand(0).getValueType() == MVT::i1) || isa(N->getOperand(i))) Inputs.push_back(N->getOperand(i)); else BinOps.push_back(N->getOperand(i)); if (N->getOpcode() == ISD::TRUNCATE) break; } // Visit all inputs, collect all binary operations (and, or, xor and // select) that are all fed by extensions. while (!BinOps.empty()) { SDValue BinOp = BinOps.pop_back_val(); if (!Visited.insert(BinOp.getNode()).second) continue; PromOps.push_back(BinOp); for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { // The condition of the select is not promoted. if (BinOp.getOpcode() == ISD::SELECT && i == 0) continue; if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) continue; if (((BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) && BinOp.getOperand(i).getOperand(0).getValueType() == MVT::i1) || isa(BinOp.getOperand(i))) { Inputs.push_back(BinOp.getOperand(i)); } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || BinOp.getOperand(i).getOpcode() == ISD::OR || BinOp.getOperand(i).getOpcode() == ISD::XOR || BinOp.getOperand(i).getOpcode() == ISD::SELECT || BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC || BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || BinOp.getOperand(i).getOpcode() == ISD::SIGN_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ZERO_EXTEND || BinOp.getOperand(i).getOpcode() == ISD::ANY_EXTEND) { BinOps.push_back(BinOp.getOperand(i)); } else { // We have an input that is not an extension or another binary // operation; we'll abort this transformation. return SDValue(); } } } // Make sure that this is a self-contained cluster of operations (which // is not quite the same thing as saying that everything has only one // use). for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa(Inputs[i])) continue; for (const SDNode *User : Inputs[i].getNode()->uses()) { if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == Inputs[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == Inputs[i] || User->getOperand(1) == Inputs[i]) return SDValue(); } } } for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { for (const SDNode *User : PromOps[i].getNode()->uses()) { if (User != N && !Visited.count(User)) return SDValue(); // Make sure that we're not going to promote the non-output-value // operand(s) or SELECT or SELECT_CC. // FIXME: Although we could sometimes handle this, and it does occur in // practice that one of the condition inputs to the select is also one of // the outputs, we currently can't deal with this. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == PromOps[i]) return SDValue(); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == PromOps[i] || User->getOperand(1) == PromOps[i]) return SDValue(); } } } // Replace all inputs with the extension operand. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { // Constants may have users outside the cluster of to-be-promoted nodes, // and so we need to replace those as we do the promotions. if (isa(Inputs[i])) continue; else DAG.ReplaceAllUsesOfValueWith(Inputs[i], Inputs[i].getOperand(0)); } std::list PromOpHandles; for (auto &PromOp : PromOps) PromOpHandles.emplace_back(PromOp); // Replace all operations (these are all the same, but have a different // (i1) return type). DAG.getNode will validate that the types of // a binary operator match, so go through the list in reverse so that // we've likely promoted both operands first. Any intermediate truncations or // extensions disappear. while (!PromOpHandles.empty()) { SDValue PromOp = PromOpHandles.back().getValue(); PromOpHandles.pop_back(); if (PromOp.getOpcode() == ISD::TRUNCATE || PromOp.getOpcode() == ISD::SIGN_EXTEND || PromOp.getOpcode() == ISD::ZERO_EXTEND || PromOp.getOpcode() == ISD::ANY_EXTEND) { if (!isa(PromOp.getOperand(0)) && PromOp.getOperand(0).getValueType() != MVT::i1) { // The operand is not yet ready (see comment below). PromOpHandles.emplace_front(PromOp); continue; } SDValue RepValue = PromOp.getOperand(0); if (isa(RepValue)) RepValue = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, RepValue); DAG.ReplaceAllUsesOfValueWith(PromOp, RepValue); continue; } unsigned C; switch (PromOp.getOpcode()) { default: C = 0; break; case ISD::SELECT: C = 1; break; case ISD::SELECT_CC: C = 2; break; } if ((!isa(PromOp.getOperand(C)) && PromOp.getOperand(C).getValueType() != MVT::i1) || (!isa(PromOp.getOperand(C+1)) && PromOp.getOperand(C+1).getValueType() != MVT::i1)) { // The to-be-promoted operands of this node have not yet been // promoted (this should be rare because we're going through the // list backward, but if one of the operands has several users in // this cluster of to-be-promoted nodes, it is possible). PromOpHandles.emplace_front(PromOp); continue; } SmallVector Ops(PromOp.getNode()->op_begin(), PromOp.getNode()->op_end()); // If there are any constant inputs, make sure they're replaced now. for (unsigned i = 0; i < 2; ++i) if (isa(Ops[C+i])) Ops[C+i] = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ops[C+i]); DAG.ReplaceAllUsesOfValueWith(PromOp, DAG.getNode(PromOp.getOpcode(), dl, MVT::i1, Ops)); } // Now we're left with the initial truncation itself. if (N->getOpcode() == ISD::TRUNCATE) return N->getOperand(0); // Otherwise, this is a comparison. The operands to be compared have just // changed type (to i1), but everything else is the same. return SDValue(N, 0); } SDValue PPCTargetLowering::DAGCombineExtBoolTrunc(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); // If we're tracking CR bits, we need to be careful that we don't have: // zext(binary-ops(trunc(x), trunc(y))) // or // zext(binary-ops(binary-ops(trunc(x), trunc(y)), ...) // such that we're unnecessarily moving things into CR bits that can more // efficiently stay in GPRs. Note that if we're not certain that the high // bits are set as required by the final extension, we still may need to do // some masking to get the proper behavior. // This same functionality is important on PPC64 when dealing with // 32-to-64-bit extensions; these occur often when 32-bit values are used as // the return values of functions. Because it is so similar, it is handled // here as well. if (N->getValueType(0) != MVT::i32 && N->getValueType(0) != MVT::i64) return SDValue(); if (!((N->getOperand(0).getValueType() == MVT::i1 && Subtarget.useCRBits()) || (N->getOperand(0).getValueType() == MVT::i32 && Subtarget.isPPC64()))) return SDValue(); if (N->getOperand(0).getOpcode() != ISD::AND && N->getOperand(0).getOpcode() != ISD::OR && N->getOperand(0).getOpcode() != ISD::XOR && N->getOperand(0).getOpcode() != ISD::SELECT && N->getOperand(0).getOpcode() != ISD::SELECT_CC) return SDValue(); SmallVector Inputs; SmallVector BinOps(1, N->getOperand(0)), PromOps; SmallPtrSet Visited; // Visit all inputs, collect all binary operations (and, or, xor and // select) that are all fed by truncations. while (!BinOps.empty()) { SDValue BinOp = BinOps.pop_back_val(); if (!Visited.insert(BinOp.getNode()).second) continue; PromOps.push_back(BinOp); for (unsigned i = 0, ie = BinOp.getNumOperands(); i != ie; ++i) { // The condition of the select is not promoted. if (BinOp.getOpcode() == ISD::SELECT && i == 0) continue; if (BinOp.getOpcode() == ISD::SELECT_CC && i != 2 && i != 3) continue; if (BinOp.getOperand(i).getOpcode() == ISD::TRUNCATE || isa(BinOp.getOperand(i))) { Inputs.push_back(BinOp.getOperand(i)); } else if (BinOp.getOperand(i).getOpcode() == ISD::AND || BinOp.getOperand(i).getOpcode() == ISD::OR || BinOp.getOperand(i).getOpcode() == ISD::XOR || BinOp.getOperand(i).getOpcode() == ISD::SELECT || BinOp.getOperand(i).getOpcode() == ISD::SELECT_CC) { BinOps.push_back(BinOp.getOperand(i)); } else { // We have an input that is not a truncation or another binary // operation; we'll abort this transformation. return SDValue(); } } } // The operands of a select that must be truncated when the select is // promoted because the operand is actually part of the to-be-promoted set. DenseMap SelectTruncOp[2]; // Make sure that this is a self-contained cluster of operations (which // is not quite the same thing as saying that everything has only one // use). for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa(Inputs[i])) continue; for (SDNode *User : Inputs[i].getNode()->uses()) { if (User != N && !Visited.count(User)) return SDValue(); // If we're going to promote the non-output-value operand(s) or SELECT or // SELECT_CC, record them for truncation. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == Inputs[i]) SelectTruncOp[0].insert(std::make_pair(User, User->getOperand(0).getValueType())); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == Inputs[i]) SelectTruncOp[0].insert(std::make_pair(User, User->getOperand(0).getValueType())); if (User->getOperand(1) == Inputs[i]) SelectTruncOp[1].insert(std::make_pair(User, User->getOperand(1).getValueType())); } } } for (unsigned i = 0, ie = PromOps.size(); i != ie; ++i) { for (SDNode *User : PromOps[i].getNode()->uses()) { if (User != N && !Visited.count(User)) return SDValue(); // If we're going to promote the non-output-value operand(s) or SELECT or // SELECT_CC, record them for truncation. if (User->getOpcode() == ISD::SELECT) { if (User->getOperand(0) == PromOps[i]) SelectTruncOp[0].insert(std::make_pair(User, User->getOperand(0).getValueType())); } else if (User->getOpcode() == ISD::SELECT_CC) { if (User->getOperand(0) == PromOps[i]) SelectTruncOp[0].insert(std::make_pair(User, User->getOperand(0).getValueType())); if (User->getOperand(1) == PromOps[i]) SelectTruncOp[1].insert(std::make_pair(User, User->getOperand(1).getValueType())); } } } unsigned PromBits = N->getOperand(0).getValueSizeInBits(); bool ReallyNeedsExt = false; if (N->getOpcode() != ISD::ANY_EXTEND) { // If all of the inputs are not already sign/zero extended, then // we'll still need to do that at the end. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { if (isa(Inputs[i])) continue; unsigned OpBits = Inputs[i].getOperand(0).getValueSizeInBits(); assert(PromBits < OpBits && "Truncation not to a smaller bit count?"); if ((N->getOpcode() == ISD::ZERO_EXTEND && !DAG.MaskedValueIsZero(Inputs[i].getOperand(0), APInt::getHighBitsSet(OpBits, OpBits-PromBits))) || (N->getOpcode() == ISD::SIGN_EXTEND && DAG.ComputeNumSignBits(Inputs[i].getOperand(0)) < (OpBits-(PromBits-1)))) { ReallyNeedsExt = true; break; } } } // Replace all inputs, either with the truncation operand, or a // truncation or extension to the final output type. for (unsigned i = 0, ie = Inputs.size(); i != ie; ++i) { // Constant inputs need to be replaced with the to-be-promoted nodes that // use them because they might have users outside of the cluster of // promoted nodes. if (isa(Inputs[i])) continue; SDValue InSrc = Inputs[i].getOperand(0); if (Inputs[i].getValueType() == N->getValueType(0)) DAG.ReplaceAllUsesOfValueWith(Inputs[i], InSrc); else if (N->getOpcode() == ISD::SIGN_EXTEND) DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getSExtOrTrunc(InSrc, dl, N->getValueType(0))); else if (N->getOpcode() == ISD::ZERO_EXTEND) DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getZExtOrTrunc(InSrc, dl, N->getValueType(0))); else DAG.ReplaceAllUsesOfValueWith(Inputs[i], DAG.getAnyExtOrTrunc(InSrc, dl, N->getValueType(0))); } std::list PromOpHandles; for (auto &PromOp : PromOps) PromOpHandles.emplace_back(PromOp); // Replace all operations (these are all the same, but have a different // (promoted) return type). DAG.getNode will validate that the types of // a binary operator match, so go through the list in reverse so that // we've likely promoted both operands first. while (!PromOpHandles.empty()) { SDValue PromOp = PromOpHandles.back().getValue(); PromOpHandles.pop_back(); unsigned C; switch (PromOp.getOpcode()) { default: C = 0; break; case ISD::SELECT: C = 1; break; case ISD::SELECT_CC: C = 2; break; } if ((!isa(PromOp.getOperand(C)) && PromOp.getOperand(C).getValueType() != N->getValueType(0)) || (!isa(PromOp.getOperand(C+1)) && PromOp.getOperand(C+1).getValueType() != N->getValueType(0))) { // The to-be-promoted operands of this node have not yet been // promoted (this should be rare because we're going through the // list backward, but if one of the operands has several users in // this cluster of to-be-promoted nodes, it is possible). PromOpHandles.emplace_front(PromOp); continue; } // For SELECT and SELECT_CC nodes, we do a similar check for any // to-be-promoted comparison inputs. if (PromOp.getOpcode() == ISD::SELECT || PromOp.getOpcode() == ISD::SELECT_CC) { if ((SelectTruncOp[0].count(PromOp.getNode()) && PromOp.getOperand(0).getValueType() != N->getValueType(0)) || (SelectTruncOp[1].count(PromOp.getNode()) && PromOp.getOperand(1).getValueType() != N->getValueType(0))) { PromOpHandles.emplace_front(PromOp); continue; } } SmallVector Ops(PromOp.getNode()->op_begin(), PromOp.getNode()->op_end()); // If this node has constant inputs, then they'll need to be promoted here. for (unsigned i = 0; i < 2; ++i) { if (!isa(Ops[C+i])) continue; if (Ops[C+i].getValueType() == N->getValueType(0)) continue; if (N->getOpcode() == ISD::SIGN_EXTEND) Ops[C+i] = DAG.getSExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); else if (N->getOpcode() == ISD::ZERO_EXTEND) Ops[C+i] = DAG.getZExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); else Ops[C+i] = DAG.getAnyExtOrTrunc(Ops[C+i], dl, N->getValueType(0)); } // If we've promoted the comparison inputs of a SELECT or SELECT_CC, // truncate them again to the original value type. if (PromOp.getOpcode() == ISD::SELECT || PromOp.getOpcode() == ISD::SELECT_CC) { auto SI0 = SelectTruncOp[0].find(PromOp.getNode()); if (SI0 != SelectTruncOp[0].end()) Ops[0] = DAG.getNode(ISD::TRUNCATE, dl, SI0->second, Ops[0]); auto SI1 = SelectTruncOp[1].find(PromOp.getNode()); if (SI1 != SelectTruncOp[1].end()) Ops[1] = DAG.getNode(ISD::TRUNCATE, dl, SI1->second, Ops[1]); } DAG.ReplaceAllUsesOfValueWith(PromOp, DAG.getNode(PromOp.getOpcode(), dl, N->getValueType(0), Ops)); } // Now we're left with the initial extension itself. if (!ReallyNeedsExt) return N->getOperand(0); // To zero extend, just mask off everything except for the first bit (in the // i1 case). if (N->getOpcode() == ISD::ZERO_EXTEND) return DAG.getNode(ISD::AND, dl, N->getValueType(0), N->getOperand(0), DAG.getConstant(APInt::getLowBitsSet( N->getValueSizeInBits(0), PromBits), dl, N->getValueType(0))); assert(N->getOpcode() == ISD::SIGN_EXTEND && "Invalid extension type"); EVT ShiftAmountTy = getShiftAmountTy(N->getValueType(0), DAG.getDataLayout()); SDValue ShiftCst = DAG.getConstant(N->getValueSizeInBits(0) - PromBits, dl, ShiftAmountTy); return DAG.getNode( ISD::SRA, dl, N->getValueType(0), DAG.getNode(ISD::SHL, dl, N->getValueType(0), N->getOperand(0), ShiftCst), ShiftCst); } SDValue PPCTargetLowering::combineSetCC(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::SETCC && "Should be called with a SETCC node"); ISD::CondCode CC = cast(N->getOperand(2))->get(); if (CC == ISD::SETNE || CC == ISD::SETEQ) { SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); // If there is a '0 - y' pattern, canonicalize the pattern to the RHS. if (LHS.getOpcode() == ISD::SUB && isNullConstant(LHS.getOperand(0)) && LHS.hasOneUse()) std::swap(LHS, RHS); // x == 0-y --> x+y == 0 // x != 0-y --> x+y != 0 if (RHS.getOpcode() == ISD::SUB && isNullConstant(RHS.getOperand(0)) && RHS.hasOneUse()) { SDLoc DL(N); SelectionDAG &DAG = DCI.DAG; EVT VT = N->getValueType(0); EVT OpVT = LHS.getValueType(); SDValue Add = DAG.getNode(ISD::ADD, DL, OpVT, LHS, RHS.getOperand(1)); return DAG.getSetCC(DL, VT, Add, DAG.getConstant(0, DL, OpVT), CC); } } return DAGCombineTruncBoolExt(N, DCI); } // Is this an extending load from an f32 to an f64? static bool isFPExtLoad(SDValue Op) { if (LoadSDNode *LD = dyn_cast(Op.getNode())) return LD->getExtensionType() == ISD::EXTLOAD && Op.getValueType() == MVT::f64; return false; } /// Reduces the number of fp-to-int conversion when building a vector. /// /// If this vector is built out of floating to integer conversions, /// transform it to a vector built out of floating point values followed by a /// single floating to integer conversion of the vector. /// Namely (build_vector (fptosi $A), (fptosi $B), ...) /// becomes (fptosi (build_vector ($A, $B, ...))) SDValue PPCTargetLowering:: combineElementTruncationToVectorTruncation(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node"); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); SDValue FirstInput = N->getOperand(0); assert(FirstInput.getOpcode() == PPCISD::MFVSR && "The input operand must be an fp-to-int conversion."); // This combine happens after legalization so the fp_to_[su]i nodes are // already converted to PPCSISD nodes. unsigned FirstConversion = FirstInput.getOperand(0).getOpcode(); if (FirstConversion == PPCISD::FCTIDZ || FirstConversion == PPCISD::FCTIDUZ || FirstConversion == PPCISD::FCTIWZ || FirstConversion == PPCISD::FCTIWUZ) { bool IsSplat = true; bool Is32Bit = FirstConversion == PPCISD::FCTIWZ || FirstConversion == PPCISD::FCTIWUZ; EVT SrcVT = FirstInput.getOperand(0).getValueType(); SmallVector Ops; EVT TargetVT = N->getValueType(0); for (int i = 0, e = N->getNumOperands(); i < e; ++i) { SDValue NextOp = N->getOperand(i); if (NextOp.getOpcode() != PPCISD::MFVSR) return SDValue(); unsigned NextConversion = NextOp.getOperand(0).getOpcode(); if (NextConversion != FirstConversion) return SDValue(); // If we are converting to 32-bit integers, we need to add an FP_ROUND. // This is not valid if the input was originally double precision. It is // also not profitable to do unless this is an extending load in which // case doing this combine will allow us to combine consecutive loads. if (Is32Bit && !isFPExtLoad(NextOp.getOperand(0).getOperand(0))) return SDValue(); if (N->getOperand(i) != FirstInput) IsSplat = false; } // If this is a splat, we leave it as-is since there will be only a single // fp-to-int conversion followed by a splat of the integer. This is better // for 32-bit and smaller ints and neutral for 64-bit ints. if (IsSplat) return SDValue(); // Now that we know we have the right type of node, get its operands for (int i = 0, e = N->getNumOperands(); i < e; ++i) { SDValue In = N->getOperand(i).getOperand(0); if (Is32Bit) { // For 32-bit values, we need to add an FP_ROUND node (if we made it // here, we know that all inputs are extending loads so this is safe). if (In.isUndef()) Ops.push_back(DAG.getUNDEF(SrcVT)); else { SDValue Trunc = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, In.getOperand(0), DAG.getIntPtrConstant(1, dl, /*isTarget=*/true)); Ops.push_back(Trunc); } } else Ops.push_back(In.isUndef() ? DAG.getUNDEF(SrcVT) : In.getOperand(0)); } unsigned Opcode; if (FirstConversion == PPCISD::FCTIDZ || FirstConversion == PPCISD::FCTIWZ) Opcode = ISD::FP_TO_SINT; else Opcode = ISD::FP_TO_UINT; EVT NewVT = TargetVT == MVT::v2i64 ? MVT::v2f64 : MVT::v4f32; SDValue BV = DAG.getBuildVector(NewVT, dl, Ops); return DAG.getNode(Opcode, dl, TargetVT, BV); } return SDValue(); } /// Reduce the number of loads when building a vector. /// /// Building a vector out of multiple loads can be converted to a load /// of the vector type if the loads are consecutive. If the loads are /// consecutive but in descending order, a shuffle is added at the end /// to reorder the vector. static SDValue combineBVOfConsecutiveLoads(SDNode *N, SelectionDAG &DAG) { assert(N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node"); SDLoc dl(N); // Return early for non byte-sized type, as they can't be consecutive. if (!N->getValueType(0).getVectorElementType().isByteSized()) return SDValue(); bool InputsAreConsecutiveLoads = true; bool InputsAreReverseConsecutive = true; unsigned ElemSize = N->getValueType(0).getScalarType().getStoreSize(); SDValue FirstInput = N->getOperand(0); bool IsRoundOfExtLoad = false; LoadSDNode *FirstLoad = nullptr; if (FirstInput.getOpcode() == ISD::FP_ROUND && FirstInput.getOperand(0).getOpcode() == ISD::LOAD) { FirstLoad = cast(FirstInput.getOperand(0)); IsRoundOfExtLoad = FirstLoad->getExtensionType() == ISD::EXTLOAD; } // Not a build vector of (possibly fp_rounded) loads. if ((!IsRoundOfExtLoad && FirstInput.getOpcode() != ISD::LOAD) || N->getNumOperands() == 1) return SDValue(); if (!IsRoundOfExtLoad) FirstLoad = cast(FirstInput); SmallVector InputLoads; InputLoads.push_back(FirstLoad); for (int i = 1, e = N->getNumOperands(); i < e; ++i) { // If any inputs are fp_round(extload), they all must be. if (IsRoundOfExtLoad && N->getOperand(i).getOpcode() != ISD::FP_ROUND) return SDValue(); SDValue NextInput = IsRoundOfExtLoad ? N->getOperand(i).getOperand(0) : N->getOperand(i); if (NextInput.getOpcode() != ISD::LOAD) return SDValue(); SDValue PreviousInput = IsRoundOfExtLoad ? N->getOperand(i-1).getOperand(0) : N->getOperand(i-1); LoadSDNode *LD1 = cast(PreviousInput); LoadSDNode *LD2 = cast(NextInput); // If any inputs are fp_round(extload), they all must be. if (IsRoundOfExtLoad && LD2->getExtensionType() != ISD::EXTLOAD) return SDValue(); // We only care about regular loads. The PPC-specific load intrinsics // will not lead to a merge opportunity. if (!DAG.areNonVolatileConsecutiveLoads(LD2, LD1, ElemSize, 1)) InputsAreConsecutiveLoads = false; if (!DAG.areNonVolatileConsecutiveLoads(LD1, LD2, ElemSize, 1)) InputsAreReverseConsecutive = false; // Exit early if the loads are neither consecutive nor reverse consecutive. if (!InputsAreConsecutiveLoads && !InputsAreReverseConsecutive) return SDValue(); InputLoads.push_back(LD2); } assert(!(InputsAreConsecutiveLoads && InputsAreReverseConsecutive) && "The loads cannot be both consecutive and reverse consecutive."); SDValue WideLoad; SDValue ReturnSDVal; if (InputsAreConsecutiveLoads) { assert(FirstLoad && "Input needs to be a LoadSDNode."); WideLoad = DAG.getLoad(N->getValueType(0), dl, FirstLoad->getChain(), FirstLoad->getBasePtr(), FirstLoad->getPointerInfo(), FirstLoad->getAlign()); ReturnSDVal = WideLoad; } else if (InputsAreReverseConsecutive) { LoadSDNode *LastLoad = InputLoads.back(); assert(LastLoad && "Input needs to be a LoadSDNode."); WideLoad = DAG.getLoad(N->getValueType(0), dl, LastLoad->getChain(), LastLoad->getBasePtr(), LastLoad->getPointerInfo(), LastLoad->getAlign()); SmallVector Ops; for (int i = N->getNumOperands() - 1; i >= 0; i--) Ops.push_back(i); ReturnSDVal = DAG.getVectorShuffle(N->getValueType(0), dl, WideLoad, DAG.getUNDEF(N->getValueType(0)), Ops); } else return SDValue(); for (auto *LD : InputLoads) DAG.makeEquivalentMemoryOrdering(LD, WideLoad); return ReturnSDVal; } // This function adds the required vector_shuffle needed to get // the elements of the vector extract in the correct position // as specified by the CorrectElems encoding. static SDValue addShuffleForVecExtend(SDNode *N, SelectionDAG &DAG, SDValue Input, uint64_t Elems, uint64_t CorrectElems) { SDLoc dl(N); unsigned NumElems = Input.getValueType().getVectorNumElements(); SmallVector ShuffleMask(NumElems, -1); // Knowing the element indices being extracted from the original // vector and the order in which they're being inserted, just put // them at element indices required for the instruction. for (unsigned i = 0; i < N->getNumOperands(); i++) { if (DAG.getDataLayout().isLittleEndian()) ShuffleMask[CorrectElems & 0xF] = Elems & 0xF; else ShuffleMask[(CorrectElems & 0xF0) >> 4] = (Elems & 0xF0) >> 4; CorrectElems = CorrectElems >> 8; Elems = Elems >> 8; } SDValue Shuffle = DAG.getVectorShuffle(Input.getValueType(), dl, Input, DAG.getUNDEF(Input.getValueType()), ShuffleMask); EVT VT = N->getValueType(0); SDValue Conv = DAG.getBitcast(VT, Shuffle); EVT ExtVT = EVT::getVectorVT(*DAG.getContext(), Input.getValueType().getVectorElementType(), VT.getVectorNumElements()); return DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, VT, Conv, DAG.getValueType(ExtVT)); } // Look for build vector patterns where input operands come from sign // extended vector_extract elements of specific indices. If the correct indices // aren't used, add a vector shuffle to fix up the indices and create // SIGN_EXTEND_INREG node which selects the vector sign extend instructions // during instruction selection. static SDValue combineBVOfVecSExt(SDNode *N, SelectionDAG &DAG) { // This array encodes the indices that the vector sign extend instructions // extract from when extending from one type to another for both BE and LE. // The right nibble of each byte corresponds to the LE incides. // and the left nibble of each byte corresponds to the BE incides. // For example: 0x3074B8FC byte->word // For LE: the allowed indices are: 0x0,0x4,0x8,0xC // For BE: the allowed indices are: 0x3,0x7,0xB,0xF // For example: 0x000070F8 byte->double word // For LE: the allowed indices are: 0x0,0x8 // For BE: the allowed indices are: 0x7,0xF uint64_t TargetElems[] = { 0x3074B8FC, // b->w 0x000070F8, // b->d 0x10325476, // h->w 0x00003074, // h->d 0x00001032, // w->d }; uint64_t Elems = 0; int Index; SDValue Input; auto isSExtOfVecExtract = [&](SDValue Op) -> bool { if (!Op) return false; if (Op.getOpcode() != ISD::SIGN_EXTEND && Op.getOpcode() != ISD::SIGN_EXTEND_INREG) return false; // A SIGN_EXTEND_INREG might be fed by an ANY_EXTEND to produce a value // of the right width. SDValue Extract = Op.getOperand(0); if (Extract.getOpcode() == ISD::ANY_EXTEND) Extract = Extract.getOperand(0); if (Extract.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return false; ConstantSDNode *ExtOp = dyn_cast(Extract.getOperand(1)); if (!ExtOp) return false; Index = ExtOp->getZExtValue(); if (Input && Input != Extract.getOperand(0)) return false; if (!Input) Input = Extract.getOperand(0); Elems = Elems << 8; Index = DAG.getDataLayout().isLittleEndian() ? Index : Index << 4; Elems |= Index; return true; }; // If the build vector operands aren't sign extended vector extracts, // of the same input vector, then return. for (unsigned i = 0; i < N->getNumOperands(); i++) { if (!isSExtOfVecExtract(N->getOperand(i))) { return SDValue(); } } // If the vector extract indices are not correct, add the appropriate // vector_shuffle. int TgtElemArrayIdx; int InputSize = Input.getValueType().getScalarSizeInBits(); int OutputSize = N->getValueType(0).getScalarSizeInBits(); if (InputSize + OutputSize == 40) TgtElemArrayIdx = 0; else if (InputSize + OutputSize == 72) TgtElemArrayIdx = 1; else if (InputSize + OutputSize == 48) TgtElemArrayIdx = 2; else if (InputSize + OutputSize == 80) TgtElemArrayIdx = 3; else if (InputSize + OutputSize == 96) TgtElemArrayIdx = 4; else return SDValue(); uint64_t CorrectElems = TargetElems[TgtElemArrayIdx]; CorrectElems = DAG.getDataLayout().isLittleEndian() ? CorrectElems & 0x0F0F0F0F0F0F0F0F : CorrectElems & 0xF0F0F0F0F0F0F0F0; if (Elems != CorrectElems) { return addShuffleForVecExtend(N, DAG, Input, Elems, CorrectElems); } // Regular lowering will catch cases where a shuffle is not needed. return SDValue(); } // Look for the pattern of a load from a narrow width to i128, feeding // into a BUILD_VECTOR of v1i128. Replace this sequence with a PPCISD node // (LXVRZX). This node represents a zero extending load that will be matched // to the Load VSX Vector Rightmost instructions. static SDValue combineBVZEXTLOAD(SDNode *N, SelectionDAG &DAG) { SDLoc DL(N); // This combine is only eligible for a BUILD_VECTOR of v1i128. if (N->getValueType(0) != MVT::v1i128) return SDValue(); SDValue Operand = N->getOperand(0); // Proceed with the transformation if the operand to the BUILD_VECTOR // is a load instruction. if (Operand.getOpcode() != ISD::LOAD) return SDValue(); auto *LD = cast(Operand); EVT MemoryType = LD->getMemoryVT(); // This transformation is only valid if the we are loading either a byte, // halfword, word, or doubleword. bool ValidLDType = MemoryType == MVT::i8 || MemoryType == MVT::i16 || MemoryType == MVT::i32 || MemoryType == MVT::i64; // Ensure that the load from the narrow width is being zero extended to i128. if (!ValidLDType || (LD->getExtensionType() != ISD::ZEXTLOAD && LD->getExtensionType() != ISD::EXTLOAD)) return SDValue(); SDValue LoadOps[] = { LD->getChain(), LD->getBasePtr(), DAG.getIntPtrConstant(MemoryType.getScalarSizeInBits(), DL)}; return DAG.getMemIntrinsicNode(PPCISD::LXVRZX, DL, DAG.getVTList(MVT::v1i128, MVT::Other), LoadOps, MemoryType, LD->getMemOperand()); } SDValue PPCTargetLowering::DAGCombineBuildVector(SDNode *N, DAGCombinerInfo &DCI) const { assert(N->getOpcode() == ISD::BUILD_VECTOR && "Should be called with a BUILD_VECTOR node"); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); if (!Subtarget.hasVSX()) return SDValue(); // The target independent DAG combiner will leave a build_vector of // float-to-int conversions intact. We can generate MUCH better code for // a float-to-int conversion of a vector of floats. SDValue FirstInput = N->getOperand(0); if (FirstInput.getOpcode() == PPCISD::MFVSR) { SDValue Reduced = combineElementTruncationToVectorTruncation(N, DCI); if (Reduced) return Reduced; } // If we're building a vector out of consecutive loads, just load that // vector type. SDValue Reduced = combineBVOfConsecutiveLoads(N, DAG); if (Reduced) return Reduced; // If we're building a vector out of extended elements from another vector // we have P9 vector integer extend instructions. The code assumes legal // input types (i.e. it can't handle things like v4i16) so do not run before // legalization. if (Subtarget.hasP9Altivec() && !DCI.isBeforeLegalize()) { Reduced = combineBVOfVecSExt(N, DAG); if (Reduced) return Reduced; } // On Power10, the Load VSX Vector Rightmost instructions can be utilized // if this is a BUILD_VECTOR of v1i128, and if the operand to the BUILD_VECTOR // is a load from to i128. if (Subtarget.isISA3_1()) { SDValue BVOfZLoad = combineBVZEXTLOAD(N, DAG); if (BVOfZLoad) return BVOfZLoad; } if (N->getValueType(0) != MVT::v2f64) return SDValue(); // Looking for: // (build_vector ([su]int_to_fp (extractelt 0)), [su]int_to_fp (extractelt 1)) if (FirstInput.getOpcode() != ISD::SINT_TO_FP && FirstInput.getOpcode() != ISD::UINT_TO_FP) return SDValue(); if (N->getOperand(1).getOpcode() != ISD::SINT_TO_FP && N->getOperand(1).getOpcode() != ISD::UINT_TO_FP) return SDValue(); if (FirstInput.getOpcode() != N->getOperand(1).getOpcode()) return SDValue(); SDValue Ext1 = FirstInput.getOperand(0); SDValue Ext2 = N->getOperand(1).getOperand(0); if(Ext1.getOpcode() != ISD::EXTRACT_VECTOR_ELT || Ext2.getOpcode() != ISD::EXTRACT_VECTOR_ELT) return SDValue(); ConstantSDNode *Ext1Op = dyn_cast(Ext1.getOperand(1)); ConstantSDNode *Ext2Op = dyn_cast(Ext2.getOperand(1)); if (!Ext1Op || !Ext2Op) return SDValue(); if (Ext1.getOperand(0).getValueType() != MVT::v4i32 || Ext1.getOperand(0) != Ext2.getOperand(0)) return SDValue(); int FirstElem = Ext1Op->getZExtValue(); int SecondElem = Ext2Op->getZExtValue(); int SubvecIdx; if (FirstElem == 0 && SecondElem == 1) SubvecIdx = Subtarget.isLittleEndian() ? 1 : 0; else if (FirstElem == 2 && SecondElem == 3) SubvecIdx = Subtarget.isLittleEndian() ? 0 : 1; else return SDValue(); SDValue SrcVec = Ext1.getOperand(0); auto NodeType = (N->getOperand(1).getOpcode() == ISD::SINT_TO_FP) ? PPCISD::SINT_VEC_TO_FP : PPCISD::UINT_VEC_TO_FP; return DAG.getNode(NodeType, dl, MVT::v2f64, SrcVec, DAG.getIntPtrConstant(SubvecIdx, dl)); } SDValue PPCTargetLowering::combineFPToIntToFP(SDNode *N, DAGCombinerInfo &DCI) const { assert((N->getOpcode() == ISD::SINT_TO_FP || N->getOpcode() == ISD::UINT_TO_FP) && "Need an int -> FP conversion node here"); if (useSoftFloat() || !Subtarget.has64BitSupport()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); SDValue Op(N, 0); // Don't handle ppc_fp128 here or conversions that are out-of-range capable // from the hardware. if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64) return SDValue(); if (!Op.getOperand(0).getValueType().isSimple()) return SDValue(); if (Op.getOperand(0).getValueType().getSimpleVT() <= MVT(MVT::i1) || Op.getOperand(0).getValueType().getSimpleVT() > MVT(MVT::i64)) return SDValue(); SDValue FirstOperand(Op.getOperand(0)); bool SubWordLoad = FirstOperand.getOpcode() == ISD::LOAD && (FirstOperand.getValueType() == MVT::i8 || FirstOperand.getValueType() == MVT::i16); if (Subtarget.hasP9Vector() && Subtarget.hasP9Altivec() && SubWordLoad) { bool Signed = N->getOpcode() == ISD::SINT_TO_FP; bool DstDouble = Op.getValueType() == MVT::f64; unsigned ConvOp = Signed ? (DstDouble ? PPCISD::FCFID : PPCISD::FCFIDS) : (DstDouble ? PPCISD::FCFIDU : PPCISD::FCFIDUS); SDValue WidthConst = DAG.getIntPtrConstant(FirstOperand.getValueType() == MVT::i8 ? 1 : 2, dl, false); LoadSDNode *LDN = cast(FirstOperand.getNode()); SDValue Ops[] = { LDN->getChain(), LDN->getBasePtr(), WidthConst }; SDValue Ld = DAG.getMemIntrinsicNode(PPCISD::LXSIZX, dl, DAG.getVTList(MVT::f64, MVT::Other), Ops, MVT::i8, LDN->getMemOperand()); DAG.makeEquivalentMemoryOrdering(LDN, Ld); // For signed conversion, we need to sign-extend the value in the VSR if (Signed) { SDValue ExtOps[] = { Ld, WidthConst }; SDValue Ext = DAG.getNode(PPCISD::VEXTS, dl, MVT::f64, ExtOps); return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ext); } else return DAG.getNode(ConvOp, dl, DstDouble ? MVT::f64 : MVT::f32, Ld); } // For i32 intermediate values, unfortunately, the conversion functions // leave the upper 32 bits of the value are undefined. Within the set of // scalar instructions, we have no method for zero- or sign-extending the // value. Thus, we cannot handle i32 intermediate values here. if (Op.getOperand(0).getValueType() == MVT::i32) return SDValue(); assert((Op.getOpcode() == ISD::SINT_TO_FP || Subtarget.hasFPCVT()) && "UINT_TO_FP is supported only with FPCVT"); // If we have FCFIDS, then use it when converting to single-precision. // Otherwise, convert to double-precision and then round. unsigned FCFOp = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDUS : PPCISD::FCFIDS) : (Op.getOpcode() == ISD::UINT_TO_FP ? PPCISD::FCFIDU : PPCISD::FCFID); MVT FCFTy = (Subtarget.hasFPCVT() && Op.getValueType() == MVT::f32) ? MVT::f32 : MVT::f64; // If we're converting from a float, to an int, and back to a float again, // then we don't need the store/load pair at all. if ((Op.getOperand(0).getOpcode() == ISD::FP_TO_UINT && Subtarget.hasFPCVT()) || (Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT)) { SDValue Src = Op.getOperand(0).getOperand(0); if (Src.getValueType() == MVT::f32) { Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src); DCI.AddToWorklist(Src.getNode()); } else if (Src.getValueType() != MVT::f64) { // Make sure that we don't pick up a ppc_fp128 source value. return SDValue(); } unsigned FCTOp = Op.getOperand(0).getOpcode() == ISD::FP_TO_SINT ? PPCISD::FCTIDZ : PPCISD::FCTIDUZ; SDValue Tmp = DAG.getNode(FCTOp, dl, MVT::f64, Src); SDValue FP = DAG.getNode(FCFOp, dl, FCFTy, Tmp); if (Op.getValueType() == MVT::f32 && !Subtarget.hasFPCVT()) { FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0, dl, /*isTarget=*/true)); DCI.AddToWorklist(FP.getNode()); } return FP; } return SDValue(); } // expandVSXLoadForLE - Convert VSX loads (which may be intrinsics for // builtins) into loads with swaps. SDValue PPCTargetLowering::expandVSXLoadForLE(SDNode *N, DAGCombinerInfo &DCI) const { // Delay VSX load for LE combine until after LegalizeOps to prioritize other // load combines. if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); SDValue Chain; SDValue Base; MachineMemOperand *MMO; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode for little endian VSX load"); case ISD::LOAD: { LoadSDNode *LD = cast(N); Chain = LD->getChain(); Base = LD->getBasePtr(); MMO = LD->getMemOperand(); // If the MMO suggests this isn't a load of a full vector, leave // things alone. For a built-in, we have to make the change for // correctness, so if there is a size problem that will be a bug. if (!MMO->getSize().hasValue() || MMO->getSize().getValue() < 16) return SDValue(); break; } case ISD::INTRINSIC_W_CHAIN: { MemIntrinsicSDNode *Intrin = cast(N); Chain = Intrin->getChain(); // Similarly to the store case below, Intrin->getBasePtr() doesn't get // us what we want. Get operand 2 instead. Base = Intrin->getOperand(2); MMO = Intrin->getMemOperand(); break; } } MVT VecTy = N->getValueType(0).getSimpleVT(); SDValue LoadOps[] = { Chain, Base }; SDValue Load = DAG.getMemIntrinsicNode(PPCISD::LXVD2X, dl, DAG.getVTList(MVT::v2f64, MVT::Other), LoadOps, MVT::v2f64, MMO); DCI.AddToWorklist(Load.getNode()); Chain = Load.getValue(1); SDValue Swap = DAG.getNode( PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Load); DCI.AddToWorklist(Swap.getNode()); // Add a bitcast if the resulting load type doesn't match v2f64. if (VecTy != MVT::v2f64) { SDValue N = DAG.getNode(ISD::BITCAST, dl, VecTy, Swap); DCI.AddToWorklist(N.getNode()); // Package {bitcast value, swap's chain} to match Load's shape. return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(VecTy, MVT::Other), N, Swap.getValue(1)); } return Swap; } // expandVSXStoreForLE - Convert VSX stores (which may be intrinsics for // builtins) into stores with swaps. SDValue PPCTargetLowering::expandVSXStoreForLE(SDNode *N, DAGCombinerInfo &DCI) const { // Delay VSX store for LE combine until after LegalizeOps to prioritize other // store combines. if (DCI.isBeforeLegalizeOps()) return SDValue(); SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); SDValue Chain; SDValue Base; unsigned SrcOpnd; MachineMemOperand *MMO; switch (N->getOpcode()) { default: llvm_unreachable("Unexpected opcode for little endian VSX store"); case ISD::STORE: { StoreSDNode *ST = cast(N); Chain = ST->getChain(); Base = ST->getBasePtr(); MMO = ST->getMemOperand(); SrcOpnd = 1; // If the MMO suggests this isn't a store of a full vector, leave // things alone. For a built-in, we have to make the change for // correctness, so if there is a size problem that will be a bug. if (!MMO->getSize().hasValue() || MMO->getSize().getValue() < 16) return SDValue(); break; } case ISD::INTRINSIC_VOID: { MemIntrinsicSDNode *Intrin = cast(N); Chain = Intrin->getChain(); // Intrin->getBasePtr() oddly does not get what we want. Base = Intrin->getOperand(3); MMO = Intrin->getMemOperand(); SrcOpnd = 2; break; } } SDValue Src = N->getOperand(SrcOpnd); MVT VecTy = Src.getValueType().getSimpleVT(); // All stores are done as v2f64 and possible bit cast. if (VecTy != MVT::v2f64) { Src = DAG.getNode(ISD::BITCAST, dl, MVT::v2f64, Src); DCI.AddToWorklist(Src.getNode()); } SDValue Swap = DAG.getNode(PPCISD::XXSWAPD, dl, DAG.getVTList(MVT::v2f64, MVT::Other), Chain, Src); DCI.AddToWorklist(Swap.getNode()); Chain = Swap.getValue(1); SDValue StoreOps[] = { Chain, Swap, Base }; SDValue Store = DAG.getMemIntrinsicNode(PPCISD::STXVD2X, dl, DAG.getVTList(MVT::Other), StoreOps, VecTy, MMO); DCI.AddToWorklist(Store.getNode()); return Store; } // Handle DAG combine for STORE (FP_TO_INT F). SDValue PPCTargetLowering::combineStoreFPToInt(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); unsigned Opcode = N->getOperand(1).getOpcode(); (void)Opcode; bool Strict = N->getOperand(1)->isStrictFPOpcode(); assert((Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) && "Not a FP_TO_INT Instruction!"); SDValue Val = N->getOperand(1).getOperand(Strict ? 1 : 0); EVT Op1VT = N->getOperand(1).getValueType(); EVT ResVT = Val.getValueType(); if (!Subtarget.hasVSX() || !Subtarget.hasFPCVT() || !isTypeLegal(ResVT)) return SDValue(); // Only perform combine for conversion to i64/i32 or power9 i16/i8. bool ValidTypeForStoreFltAsInt = (Op1VT == MVT::i32 || (Op1VT == MVT::i64 && Subtarget.isPPC64()) || (Subtarget.hasP9Vector() && (Op1VT == MVT::i16 || Op1VT == MVT::i8))); // TODO: Lower conversion from f128 on all VSX targets if (ResVT == MVT::ppcf128 || (ResVT == MVT::f128 && !Subtarget.hasP9Vector())) return SDValue(); if ((Op1VT != MVT::i64 && !Subtarget.hasP8Vector()) || cast(N)->isTruncatingStore() || !ValidTypeForStoreFltAsInt) return SDValue(); Val = convertFPToInt(N->getOperand(1), DAG, Subtarget); // Set number of bytes being converted. unsigned ByteSize = Op1VT.getScalarSizeInBits() / 8; SDValue Ops[] = {N->getOperand(0), Val, N->getOperand(2), DAG.getIntPtrConstant(ByteSize, dl, false), DAG.getValueType(Op1VT)}; Val = DAG.getMemIntrinsicNode(PPCISD::ST_VSR_SCAL_INT, dl, DAG.getVTList(MVT::Other), Ops, cast(N)->getMemoryVT(), cast(N)->getMemOperand()); return Val; } static bool isAlternatingShuffMask(const ArrayRef &Mask, int NumElts) { // Check that the source of the element keeps flipping // (i.e. Mask[i] < NumElts -> Mask[i+i] >= NumElts). bool PrevElemFromFirstVec = Mask[0] < NumElts; for (int i = 1, e = Mask.size(); i < e; i++) { if (PrevElemFromFirstVec && Mask[i] < NumElts) return false; if (!PrevElemFromFirstVec && Mask[i] >= NumElts) return false; PrevElemFromFirstVec = !PrevElemFromFirstVec; } return true; } static bool isSplatBV(SDValue Op) { if (Op.getOpcode() != ISD::BUILD_VECTOR) return false; SDValue FirstOp; // Find first non-undef input. for (int i = 0, e = Op.getNumOperands(); i < e; i++) { FirstOp = Op.getOperand(i); if (!FirstOp.isUndef()) break; } // All inputs are undef or the same as the first non-undef input. for (int i = 1, e = Op.getNumOperands(); i < e; i++) if (Op.getOperand(i) != FirstOp && !Op.getOperand(i).isUndef()) return false; return true; } static SDValue isScalarToVec(SDValue Op) { if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) return Op; if (Op.getOpcode() != ISD::BITCAST) return SDValue(); Op = Op.getOperand(0); if (Op.getOpcode() == ISD::SCALAR_TO_VECTOR) return Op; return SDValue(); } // Fix up the shuffle mask to account for the fact that the result of // scalar_to_vector is not in lane zero. This just takes all values in // the ranges specified by the min/max indices and adds the number of // elements required to ensure each element comes from the respective // position in the valid lane. // On little endian, that's just the corresponding element in the other // half of the vector. On big endian, it is in the same half but right // justified rather than left justified in that half. static void fixupShuffleMaskForPermutedSToV(SmallVectorImpl &ShuffV, int LHSMaxIdx, int RHSMinIdx, int RHSMaxIdx, int HalfVec, unsigned ValidLaneWidth, const PPCSubtarget &Subtarget) { for (int i = 0, e = ShuffV.size(); i < e; i++) { int Idx = ShuffV[i]; if ((Idx >= 0 && Idx < LHSMaxIdx) || (Idx >= RHSMinIdx && Idx < RHSMaxIdx)) ShuffV[i] += Subtarget.isLittleEndian() ? HalfVec : HalfVec - ValidLaneWidth; } } // Replace a SCALAR_TO_VECTOR with a SCALAR_TO_VECTOR_PERMUTED except if // the original is: // ( (scalar_to_vector (Ty (extract_elt %a, C)))) // In such a case, just change the shuffle mask to extract the element // from the permuted index. static SDValue getSToVPermuted(SDValue OrigSToV, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { SDLoc dl(OrigSToV); EVT VT = OrigSToV.getValueType(); assert(OrigSToV.getOpcode() == ISD::SCALAR_TO_VECTOR && "Expecting a SCALAR_TO_VECTOR here"); SDValue Input = OrigSToV.getOperand(0); if (Input.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { ConstantSDNode *Idx = dyn_cast(Input.getOperand(1)); SDValue OrigVector = Input.getOperand(0); // Can't handle non-const element indices or different vector types // for the input to the extract and the output of the scalar_to_vector. if (Idx && VT == OrigVector.getValueType()) { unsigned NumElts = VT.getVectorNumElements(); assert( NumElts > 1 && "Cannot produce a permuted scalar_to_vector for one element vector"); SmallVector NewMask(NumElts, -1); unsigned ResultInElt = NumElts / 2; ResultInElt -= Subtarget.isLittleEndian() ? 0 : 1; NewMask[ResultInElt] = Idx->getZExtValue(); return DAG.getVectorShuffle(VT, dl, OrigVector, OrigVector, NewMask); } } return DAG.getNode(PPCISD::SCALAR_TO_VECTOR_PERMUTED, dl, VT, OrigSToV.getOperand(0)); } // On little endian subtargets, combine shuffles such as: // vector_shuffle<16,1,17,3,18,5,19,7,20,9,21,11,22,13,23,15>, , %b // into: // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7>, , %b // because the latter can be matched to a single instruction merge. // Furthermore, SCALAR_TO_VECTOR on little endian always involves a permute // to put the value into element zero. Adjust the shuffle mask so that the // vector can remain in permuted form (to prevent a swap prior to a shuffle). // On big endian targets, this is still useful for SCALAR_TO_VECTOR // nodes with elements smaller than doubleword because all the ways // of getting scalar data into a vector register put the value in the // rightmost element of the left half of the vector. SDValue PPCTargetLowering::combineVectorShuffle(ShuffleVectorSDNode *SVN, SelectionDAG &DAG) const { SDValue LHS = SVN->getOperand(0); SDValue RHS = SVN->getOperand(1); auto Mask = SVN->getMask(); int NumElts = LHS.getValueType().getVectorNumElements(); SDValue Res(SVN, 0); SDLoc dl(SVN); bool IsLittleEndian = Subtarget.isLittleEndian(); // On big endian targets this is only useful for subtargets with direct moves. // On little endian targets it would be useful for all subtargets with VSX. // However adding special handling for LE subtargets without direct moves // would be wasted effort since the minimum arch for LE is ISA 2.07 (Power8) // which includes direct moves. if (!Subtarget.hasDirectMove()) return Res; // If this is not a shuffle of a shuffle and the first element comes from // the second vector, canonicalize to the commuted form. This will make it // more likely to match one of the single instruction patterns. if (Mask[0] >= NumElts && LHS.getOpcode() != ISD::VECTOR_SHUFFLE && RHS.getOpcode() != ISD::VECTOR_SHUFFLE) { std::swap(LHS, RHS); Res = DAG.getCommutedVectorShuffle(*SVN); Mask = cast(Res)->getMask(); } // Adjust the shuffle mask if either input vector comes from a // SCALAR_TO_VECTOR and keep the respective input vector in permuted // form (to prevent the need for a swap). SmallVector ShuffV(Mask); SDValue SToVLHS = isScalarToVec(LHS); SDValue SToVRHS = isScalarToVec(RHS); if (SToVLHS || SToVRHS) { // FIXME: If both LHS and RHS are SCALAR_TO_VECTOR, but are not the // same type and have differing element sizes, then do not perform // the following transformation. The current transformation for // SCALAR_TO_VECTOR assumes that both input vectors have the same // element size. This will be updated in the future to account for // differing sizes of the LHS and RHS. if (SToVLHS && SToVRHS && (SToVLHS.getValueType().getScalarSizeInBits() != SToVRHS.getValueType().getScalarSizeInBits())) return Res; int NumEltsIn = SToVLHS ? SToVLHS.getValueType().getVectorNumElements() : SToVRHS.getValueType().getVectorNumElements(); int NumEltsOut = ShuffV.size(); // The width of the "valid lane" (i.e. the lane that contains the value that // is vectorized) needs to be expressed in terms of the number of elements // of the shuffle. It is thereby the ratio of the values before and after // any bitcast. unsigned ValidLaneWidth = SToVLHS ? SToVLHS.getValueType().getScalarSizeInBits() / LHS.getValueType().getScalarSizeInBits() : SToVRHS.getValueType().getScalarSizeInBits() / RHS.getValueType().getScalarSizeInBits(); // Initially assume that neither input is permuted. These will be adjusted // accordingly if either input is. int LHSMaxIdx = -1; int RHSMinIdx = -1; int RHSMaxIdx = -1; int HalfVec = LHS.getValueType().getVectorNumElements() / 2; // Get the permuted scalar to vector nodes for the source(s) that come from // ISD::SCALAR_TO_VECTOR. // On big endian systems, this only makes sense for element sizes smaller // than 64 bits since for 64-bit elements, all instructions already put // the value into element zero. Since scalar size of LHS and RHS may differ // after isScalarToVec, this should be checked using their own sizes. if (SToVLHS) { if (!IsLittleEndian && SToVLHS.getValueType().getScalarSizeInBits() >= 64) return Res; // Set up the values for the shuffle vector fixup. LHSMaxIdx = NumEltsOut / NumEltsIn; SToVLHS = getSToVPermuted(SToVLHS, DAG, Subtarget); if (SToVLHS.getValueType() != LHS.getValueType()) SToVLHS = DAG.getBitcast(LHS.getValueType(), SToVLHS); LHS = SToVLHS; } if (SToVRHS) { if (!IsLittleEndian && SToVRHS.getValueType().getScalarSizeInBits() >= 64) return Res; RHSMinIdx = NumEltsOut; RHSMaxIdx = NumEltsOut / NumEltsIn + RHSMinIdx; SToVRHS = getSToVPermuted(SToVRHS, DAG, Subtarget); if (SToVRHS.getValueType() != RHS.getValueType()) SToVRHS = DAG.getBitcast(RHS.getValueType(), SToVRHS); RHS = SToVRHS; } // Fix up the shuffle mask to reflect where the desired element actually is. // The minimum and maximum indices that correspond to element zero for both // the LHS and RHS are computed and will control which shuffle mask entries // are to be changed. For example, if the RHS is permuted, any shuffle mask // entries in the range [RHSMinIdx,RHSMaxIdx) will be adjusted. fixupShuffleMaskForPermutedSToV(ShuffV, LHSMaxIdx, RHSMinIdx, RHSMaxIdx, HalfVec, ValidLaneWidth, Subtarget); Res = DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); // We may have simplified away the shuffle. We won't be able to do anything // further with it here. if (!isa(Res)) return Res; Mask = cast(Res)->getMask(); } SDValue TheSplat = IsLittleEndian ? RHS : LHS; // The common case after we commuted the shuffle is that the RHS is a splat // and we have elements coming in from the splat at indices that are not // conducive to using a merge. // Example: // vector_shuffle<0,17,1,19,2,21,3,23,4,25,5,27,6,29,7,31> t1, if (!isSplatBV(TheSplat)) return Res; // We are looking for a mask such that all even elements are from // one vector and all odd elements from the other. if (!isAlternatingShuffMask(Mask, NumElts)) return Res; // Adjust the mask so we are pulling in the same index from the splat // as the index from the interesting vector in consecutive elements. if (IsLittleEndian) { // Example (even elements from first vector): // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> t1, if (Mask[0] < NumElts) for (int i = 1, e = Mask.size(); i < e; i += 2) { if (ShuffV[i] < 0) continue; // If element from non-splat is undef, pick first element from splat. ShuffV[i] = (ShuffV[i - 1] >= 0 ? ShuffV[i - 1] : 0) + NumElts; } // Example (odd elements from first vector): // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> t1, else for (int i = 0, e = Mask.size(); i < e; i += 2) { if (ShuffV[i] < 0) continue; // If element from non-splat is undef, pick first element from splat. ShuffV[i] = (ShuffV[i + 1] >= 0 ? ShuffV[i + 1] : 0) + NumElts; } } else { // Example (even elements from first vector): // vector_shuffle<0,16,1,17,2,18,3,19,4,20,5,21,6,22,7,23> , t1 if (Mask[0] < NumElts) for (int i = 0, e = Mask.size(); i < e; i += 2) { if (ShuffV[i] < 0) continue; // If element from non-splat is undef, pick first element from splat. ShuffV[i] = ShuffV[i + 1] >= 0 ? ShuffV[i + 1] - NumElts : 0; } // Example (odd elements from first vector): // vector_shuffle<16,0,17,1,18,2,19,3,20,4,21,5,22,6,23,7> , t1 else for (int i = 1, e = Mask.size(); i < e; i += 2) { if (ShuffV[i] < 0) continue; // If element from non-splat is undef, pick first element from splat. ShuffV[i] = ShuffV[i - 1] >= 0 ? ShuffV[i - 1] - NumElts : 0; } } // If the RHS has undefs, we need to remove them since we may have created // a shuffle that adds those instead of the splat value. SDValue SplatVal = cast(TheSplat.getNode())->getSplatValue(); TheSplat = DAG.getSplatBuildVector(TheSplat.getValueType(), dl, SplatVal); if (IsLittleEndian) RHS = TheSplat; else LHS = TheSplat; return DAG.getVectorShuffle(SVN->getValueType(0), dl, LHS, RHS, ShuffV); } SDValue PPCTargetLowering::combineVReverseMemOP(ShuffleVectorSDNode *SVN, LSBaseSDNode *LSBase, DAGCombinerInfo &DCI) const { assert((ISD::isNormalLoad(LSBase) || ISD::isNormalStore(LSBase)) && "Not a reverse memop pattern!"); auto IsElementReverse = [](const ShuffleVectorSDNode *SVN) -> bool { auto Mask = SVN->getMask(); int i = 0; auto I = Mask.rbegin(); auto E = Mask.rend(); for (; I != E; ++I) { if (*I != i) return false; i++; } return true; }; SelectionDAG &DAG = DCI.DAG; EVT VT = SVN->getValueType(0); if (!isTypeLegal(VT) || !Subtarget.isLittleEndian() || !Subtarget.hasVSX()) return SDValue(); // Before P9, we have PPCVSXSwapRemoval pass to hack the element order. // See comment in PPCVSXSwapRemoval.cpp. // It is conflict with PPCVSXSwapRemoval opt. So we don't do it. if (!Subtarget.hasP9Vector()) return SDValue(); if(!IsElementReverse(SVN)) return SDValue(); if (LSBase->getOpcode() == ISD::LOAD) { // If the load return value 0 has more than one user except the // shufflevector instruction, it is not profitable to replace the // shufflevector with a reverse load. for (SDNode::use_iterator UI = LSBase->use_begin(), UE = LSBase->use_end(); UI != UE; ++UI) if (UI.getUse().getResNo() == 0 && UI->getOpcode() != ISD::VECTOR_SHUFFLE) return SDValue(); SDLoc dl(LSBase); SDValue LoadOps[] = {LSBase->getChain(), LSBase->getBasePtr()}; return DAG.getMemIntrinsicNode( PPCISD::LOAD_VEC_BE, dl, DAG.getVTList(VT, MVT::Other), LoadOps, LSBase->getMemoryVT(), LSBase->getMemOperand()); } if (LSBase->getOpcode() == ISD::STORE) { // If there are other uses of the shuffle, the swap cannot be avoided. // Forcing the use of an X-Form (since swapped stores only have // X-Forms) without removing the swap is unprofitable. if (!SVN->hasOneUse()) return SDValue(); SDLoc dl(LSBase); SDValue StoreOps[] = {LSBase->getChain(), SVN->getOperand(0), LSBase->getBasePtr()}; return DAG.getMemIntrinsicNode( PPCISD::STORE_VEC_BE, dl, DAG.getVTList(MVT::Other), StoreOps, LSBase->getMemoryVT(), LSBase->getMemOperand()); } llvm_unreachable("Expected a load or store node here"); } static bool isStoreConditional(SDValue Intrin, unsigned &StoreWidth) { unsigned IntrinsicID = Intrin.getConstantOperandVal(1); if (IntrinsicID == Intrinsic::ppc_stdcx) StoreWidth = 8; else if (IntrinsicID == Intrinsic::ppc_stwcx) StoreWidth = 4; else if (IntrinsicID == Intrinsic::ppc_sthcx) StoreWidth = 2; else if (IntrinsicID == Intrinsic::ppc_stbcx) StoreWidth = 1; else return false; return true; } SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; SDLoc dl(N); switch (N->getOpcode()) { default: break; case ISD::ADD: return combineADD(N, DCI); case ISD::AND: { // We don't want (and (zext (shift...)), C) if C fits in the width of the // original input as that will prevent us from selecting optimal rotates. // This only matters if the input to the extend is i32 widened to i64. SDValue Op1 = N->getOperand(0); SDValue Op2 = N->getOperand(1); if ((Op1.getOpcode() != ISD::ZERO_EXTEND && Op1.getOpcode() != ISD::ANY_EXTEND) || !isa(Op2) || N->getValueType(0) != MVT::i64 || Op1.getOperand(0).getValueType() != MVT::i32) break; SDValue NarrowOp = Op1.getOperand(0); if (NarrowOp.getOpcode() != ISD::SHL && NarrowOp.getOpcode() != ISD::SRL && NarrowOp.getOpcode() != ISD::ROTL && NarrowOp.getOpcode() != ISD::ROTR) break; uint64_t Imm = Op2->getAsZExtVal(); // Make sure that the constant is narrow enough to fit in the narrow type. if (!isUInt<32>(Imm)) break; SDValue ConstOp = DAG.getConstant(Imm, dl, MVT::i32); SDValue NarrowAnd = DAG.getNode(ISD::AND, dl, MVT::i32, NarrowOp, ConstOp); return DAG.getZExtOrTrunc(NarrowAnd, dl, N->getValueType(0)); } case ISD::SHL: return combineSHL(N, DCI); case ISD::SRA: return combineSRA(N, DCI); case ISD::SRL: return combineSRL(N, DCI); case ISD::MUL: return combineMUL(N, DCI); case ISD::FMA: case PPCISD::FNMSUB: return combineFMALike(N, DCI); case PPCISD::SHL: if (isNullConstant(N->getOperand(0))) // 0 << V -> 0. return N->getOperand(0); break; case PPCISD::SRL: if (isNullConstant(N->getOperand(0))) // 0 >>u V -> 0. return N->getOperand(0); break; case PPCISD::SRA: if (ConstantSDNode *C = dyn_cast(N->getOperand(0))) { if (C->isZero() || // 0 >>s V -> 0. C->isAllOnes()) // -1 >>s V -> -1. return N->getOperand(0); } break; case ISD::SIGN_EXTEND: case ISD::ZERO_EXTEND: case ISD::ANY_EXTEND: return DAGCombineExtBoolTrunc(N, DCI); case ISD::TRUNCATE: return combineTRUNCATE(N, DCI); case ISD::SETCC: if (SDValue CSCC = combineSetCC(N, DCI)) return CSCC; [[fallthrough]]; case ISD::SELECT_CC: return DAGCombineTruncBoolExt(N, DCI); case ISD::SINT_TO_FP: case ISD::UINT_TO_FP: return combineFPToIntToFP(N, DCI); case ISD::VECTOR_SHUFFLE: if (ISD::isNormalLoad(N->getOperand(0).getNode())) { LSBaseSDNode* LSBase = cast(N->getOperand(0)); return combineVReverseMemOP(cast(N), LSBase, DCI); } return combineVectorShuffle(cast(N), DCI.DAG); case ISD::STORE: { EVT Op1VT = N->getOperand(1).getValueType(); unsigned Opcode = N->getOperand(1).getOpcode(); if (Opcode == ISD::FP_TO_SINT || Opcode == ISD::FP_TO_UINT || Opcode == ISD::STRICT_FP_TO_SINT || Opcode == ISD::STRICT_FP_TO_UINT) { SDValue Val = combineStoreFPToInt(N, DCI); if (Val) return Val; } if (Opcode == ISD::VECTOR_SHUFFLE && ISD::isNormalStore(N)) { ShuffleVectorSDNode *SVN = cast(N->getOperand(1)); SDValue Val= combineVReverseMemOP(SVN, cast(N), DCI); if (Val) return Val; } // Turn STORE (BSWAP) -> sthbrx/stwbrx. if (cast(N)->isUnindexed() && Opcode == ISD::BSWAP && N->getOperand(1).getNode()->hasOneUse() && (Op1VT == MVT::i32 || Op1VT == MVT::i16 || (Subtarget.hasLDBRX() && Subtarget.isPPC64() && Op1VT == MVT::i64))) { // STBRX can only handle simple types and it makes no sense to store less // two bytes in byte-reversed order. EVT mVT = cast(N)->getMemoryVT(); if (mVT.isExtended() || mVT.getSizeInBits() < 16) break; SDValue BSwapOp = N->getOperand(1).getOperand(0); // Do an any-extend to 32-bits if this is a half-word input. if (BSwapOp.getValueType() == MVT::i16) BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp); // If the type of BSWAP operand is wider than stored memory width // it need to be shifted to the right side before STBRX. if (Op1VT.bitsGT(mVT)) { int Shift = Op1VT.getSizeInBits() - mVT.getSizeInBits(); BSwapOp = DAG.getNode(ISD::SRL, dl, Op1VT, BSwapOp, DAG.getConstant(Shift, dl, MVT::i32)); // Need to truncate if this is a bswap of i64 stored as i32/i16. if (Op1VT == MVT::i64) BSwapOp = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, BSwapOp); } SDValue Ops[] = { N->getOperand(0), BSwapOp, N->getOperand(2), DAG.getValueType(mVT) }; return DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other), Ops, cast(N)->getMemoryVT(), cast(N)->getMemOperand()); } // STORE Constant:i32<0> -> STORE Constant:i64<0> // So it can increase the chance of CSE constant construction. if (Subtarget.isPPC64() && !DCI.isBeforeLegalize() && isa(N->getOperand(1)) && Op1VT == MVT::i32) { // Need to sign-extended to 64-bits to handle negative values. EVT MemVT = cast(N)->getMemoryVT(); uint64_t Val64 = SignExtend64(N->getConstantOperandVal(1), MemVT.getSizeInBits()); SDValue Const64 = DAG.getConstant(Val64, dl, MVT::i64); // DAG.getTruncStore() can't be used here because it doesn't accept // the general (base + offset) addressing mode. // So we use UpdateNodeOperands and setTruncatingStore instead. DAG.UpdateNodeOperands(N, N->getOperand(0), Const64, N->getOperand(2), N->getOperand(3)); cast(N)->setTruncatingStore(true); return SDValue(N, 0); } // For little endian, VSX stores require generating xxswapd/lxvd2x. // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. if (Op1VT.isSimple()) { MVT StoreVT = Op1VT.getSimpleVT(); if (Subtarget.needsSwapsForVSXMemOps() && (StoreVT == MVT::v2f64 || StoreVT == MVT::v2i64 || StoreVT == MVT::v4f32 || StoreVT == MVT::v4i32)) return expandVSXStoreForLE(N, DCI); } break; } case ISD::LOAD: { LoadSDNode *LD = cast(N); EVT VT = LD->getValueType(0); // For little endian, VSX loads require generating lxvd2x/xxswapd. // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. if (VT.isSimple()) { MVT LoadVT = VT.getSimpleVT(); if (Subtarget.needsSwapsForVSXMemOps() && (LoadVT == MVT::v2f64 || LoadVT == MVT::v2i64 || LoadVT == MVT::v4f32 || LoadVT == MVT::v4i32)) return expandVSXLoadForLE(N, DCI); } // We sometimes end up with a 64-bit integer load, from which we extract // two single-precision floating-point numbers. This happens with // std::complex, and other similar structures, because of the way we // canonicalize structure copies. However, if we lack direct moves, // then the final bitcasts from the extracted integer values to the // floating-point numbers turn into store/load pairs. Even with direct moves, // just loading the two floating-point numbers is likely better. auto ReplaceTwoFloatLoad = [&]() { if (VT != MVT::i64) return false; if (LD->getExtensionType() != ISD::NON_EXTLOAD || LD->isVolatile()) return false; // We're looking for a sequence like this: // t13: i64,ch = load t0, t6, undef:i64 // t16: i64 = srl t13, Constant:i32<32> // t17: i32 = truncate t16 // t18: f32 = bitcast t17 // t19: i32 = truncate t13 // t20: f32 = bitcast t19 if (!LD->hasNUsesOfValue(2, 0)) return false; auto UI = LD->use_begin(); while (UI.getUse().getResNo() != 0) ++UI; SDNode *Trunc = *UI++; while (UI.getUse().getResNo() != 0) ++UI; SDNode *RightShift = *UI; if (Trunc->getOpcode() != ISD::TRUNCATE) std::swap(Trunc, RightShift); if (Trunc->getOpcode() != ISD::TRUNCATE || Trunc->getValueType(0) != MVT::i32 || !Trunc->hasOneUse()) return false; if (RightShift->getOpcode() != ISD::SRL || !isa(RightShift->getOperand(1)) || RightShift->getConstantOperandVal(1) != 32 || !RightShift->hasOneUse()) return false; SDNode *Trunc2 = *RightShift->use_begin(); if (Trunc2->getOpcode() != ISD::TRUNCATE || Trunc2->getValueType(0) != MVT::i32 || !Trunc2->hasOneUse()) return false; SDNode *Bitcast = *Trunc->use_begin(); SDNode *Bitcast2 = *Trunc2->use_begin(); if (Bitcast->getOpcode() != ISD::BITCAST || Bitcast->getValueType(0) != MVT::f32) return false; if (Bitcast2->getOpcode() != ISD::BITCAST || Bitcast2->getValueType(0) != MVT::f32) return false; if (Subtarget.isLittleEndian()) std::swap(Bitcast, Bitcast2); // Bitcast has the second float (in memory-layout order) and Bitcast2 // has the first one. SDValue BasePtr = LD->getBasePtr(); if (LD->isIndexed()) { assert(LD->getAddressingMode() == ISD::PRE_INC && "Non-pre-inc AM on PPC?"); BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, LD->getOffset()); } auto MMOFlags = LD->getMemOperand()->getFlags() & ~MachineMemOperand::MOVolatile; SDValue FloatLoad = DAG.getLoad(MVT::f32, dl, LD->getChain(), BasePtr, LD->getPointerInfo(), LD->getAlign(), MMOFlags, LD->getAAInfo()); SDValue AddPtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(4, dl)); SDValue FloatLoad2 = DAG.getLoad( MVT::f32, dl, SDValue(FloatLoad.getNode(), 1), AddPtr, LD->getPointerInfo().getWithOffset(4), commonAlignment(LD->getAlign(), 4), MMOFlags, LD->getAAInfo()); if (LD->isIndexed()) { // Note that DAGCombine should re-form any pre-increment load(s) from // what is produced here if that makes sense. DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), BasePtr); } DCI.CombineTo(Bitcast2, FloatLoad); DCI.CombineTo(Bitcast, FloatLoad2); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, LD->isIndexed() ? 2 : 1), SDValue(FloatLoad2.getNode(), 1)); return true; }; if (ReplaceTwoFloatLoad()) return SDValue(N, 0); EVT MemVT = LD->getMemoryVT(); Type *Ty = MemVT.getTypeForEVT(*DAG.getContext()); Align ABIAlignment = DAG.getDataLayout().getABITypeAlign(Ty); if (LD->isUnindexed() && VT.isVector() && ((Subtarget.hasAltivec() && ISD::isNON_EXTLoad(N) && // P8 and later hardware should just use LOAD. !Subtarget.hasP8Vector() && (VT == MVT::v16i8 || VT == MVT::v8i16 || VT == MVT::v4i32 || VT == MVT::v4f32))) && LD->getAlign() < ABIAlignment) { // This is a type-legal unaligned Altivec load. SDValue Chain = LD->getChain(); SDValue Ptr = LD->getBasePtr(); bool isLittleEndian = Subtarget.isLittleEndian(); // This implements the loading of unaligned vectors as described in // the venerable Apple Velocity Engine overview. Specifically: // https://developer.apple.com/hardwaredrivers/ve/alignment.html // https://developer.apple.com/hardwaredrivers/ve/code_optimization.html // // The general idea is to expand a sequence of one or more unaligned // loads into an alignment-based permutation-control instruction (lvsl // or lvsr), a series of regular vector loads (which always truncate // their input address to an aligned address), and a series of // permutations. The results of these permutations are the requested // loaded values. The trick is that the last "extra" load is not taken // from the address you might suspect (sizeof(vector) bytes after the // last requested load), but rather sizeof(vector) - 1 bytes after the // last requested vector. The point of this is to avoid a page fault if // the base address happened to be aligned. This works because if the // base address is aligned, then adding less than a full vector length // will cause the last vector in the sequence to be (re)loaded. // Otherwise, the next vector will be fetched as you might suspect was // necessary. // We might be able to reuse the permutation generation from // a different base address offset from this one by an aligned amount. // The INTRINSIC_WO_CHAIN DAG combine will attempt to perform this // optimization later. Intrinsic::ID Intr, IntrLD, IntrPerm; MVT PermCntlTy, PermTy, LDTy; Intr = isLittleEndian ? Intrinsic::ppc_altivec_lvsr : Intrinsic::ppc_altivec_lvsl; IntrLD = Intrinsic::ppc_altivec_lvx; IntrPerm = Intrinsic::ppc_altivec_vperm; PermCntlTy = MVT::v16i8; PermTy = MVT::v4i32; LDTy = MVT::v4i32; SDValue PermCntl = BuildIntrinsicOp(Intr, Ptr, DAG, dl, PermCntlTy); // Create the new MMO for the new base load. It is like the original MMO, // but represents an area in memory almost twice the vector size centered // on the original address. If the address is unaligned, we might start // reading up to (sizeof(vector)-1) bytes below the address of the // original unaligned load. MachineFunction &MF = DAG.getMachineFunction(); MachineMemOperand *BaseMMO = MF.getMachineMemOperand(LD->getMemOperand(), -(int64_t)MemVT.getStoreSize()+1, 2*MemVT.getStoreSize()-1); // Create the new base load. SDValue LDXIntID = DAG.getTargetConstant(IntrLD, dl, getPointerTy(MF.getDataLayout())); SDValue BaseLoadOps[] = { Chain, LDXIntID, Ptr }; SDValue BaseLoad = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, DAG.getVTList(PermTy, MVT::Other), BaseLoadOps, LDTy, BaseMMO); // Note that the value of IncOffset (which is provided to the next // load's pointer info offset value, and thus used to calculate the // alignment), and the value of IncValue (which is actually used to // increment the pointer value) are different! This is because we // require the next load to appear to be aligned, even though it // is actually offset from the base pointer by a lesser amount. int IncOffset = VT.getSizeInBits() / 8; int IncValue = IncOffset; // Walk (both up and down) the chain looking for another load at the real // (aligned) offset (the alignment of the other load does not matter in // this case). If found, then do not use the offset reduction trick, as // that will prevent the loads from being later combined (as they would // otherwise be duplicates). if (!findConsecutiveLoad(LD, DAG)) --IncValue; SDValue Increment = DAG.getConstant(IncValue, dl, getPointerTy(MF.getDataLayout())); Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); MachineMemOperand *ExtraMMO = MF.getMachineMemOperand(LD->getMemOperand(), 1, 2*MemVT.getStoreSize()-1); SDValue ExtraLoadOps[] = { Chain, LDXIntID, Ptr }; SDValue ExtraLoad = DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, dl, DAG.getVTList(PermTy, MVT::Other), ExtraLoadOps, LDTy, ExtraMMO); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, BaseLoad.getValue(1), ExtraLoad.getValue(1)); // Because vperm has a big-endian bias, we must reverse the order // of the input vectors and complement the permute control vector // when generating little endian code. We have already handled the // latter by using lvsr instead of lvsl, so just reverse BaseLoad // and ExtraLoad here. SDValue Perm; if (isLittleEndian) Perm = BuildIntrinsicOp(IntrPerm, ExtraLoad, BaseLoad, PermCntl, DAG, dl); else Perm = BuildIntrinsicOp(IntrPerm, BaseLoad, ExtraLoad, PermCntl, DAG, dl); if (VT != PermTy) Perm = Subtarget.hasAltivec() ? DAG.getNode(ISD::BITCAST, dl, VT, Perm) : DAG.getNode(ISD::FP_ROUND, dl, VT, Perm, DAG.getTargetConstant(1, dl, MVT::i64)); // second argument is 1 because this rounding // is always exact. // The output of the permutation is our loaded result, the TokenFactor is // our new chain. DCI.CombineTo(N, Perm, TF); return SDValue(N, 0); } } break; case ISD::INTRINSIC_WO_CHAIN: { bool isLittleEndian = Subtarget.isLittleEndian(); unsigned IID = N->getConstantOperandVal(0); Intrinsic::ID Intr = (isLittleEndian ? Intrinsic::ppc_altivec_lvsr : Intrinsic::ppc_altivec_lvsl); if (IID == Intr && N->getOperand(1)->getOpcode() == ISD::ADD) { SDValue Add = N->getOperand(1); int Bits = 4 /* 16 byte alignment */; if (DAG.MaskedValueIsZero(Add->getOperand(1), APInt::getAllOnes(Bits /* alignment */) .zext(Add.getScalarValueSizeInBits()))) { SDNode *BasePtr = Add->getOperand(0).getNode(); for (SDNode *U : BasePtr->uses()) { if (U->getOpcode() == ISD::INTRINSIC_WO_CHAIN && U->getConstantOperandVal(0) == IID) { // We've found another LVSL/LVSR, and this address is an aligned // multiple of that one. The results will be the same, so use the // one we've just found instead. return SDValue(U, 0); } } } if (isa(Add->getOperand(1))) { SDNode *BasePtr = Add->getOperand(0).getNode(); for (SDNode *U : BasePtr->uses()) { if (U->getOpcode() == ISD::ADD && isa(U->getOperand(1)) && (Add->getConstantOperandVal(1) - U->getConstantOperandVal(1)) % (1ULL << Bits) == 0) { SDNode *OtherAdd = U; for (SDNode *V : OtherAdd->uses()) { if (V->getOpcode() == ISD::INTRINSIC_WO_CHAIN && V->getConstantOperandVal(0) == IID) { return SDValue(V, 0); } } } } } } // Combine vmaxsw/h/b(a, a's negation) to abs(a) // Expose the vabsduw/h/b opportunity for down stream if (!DCI.isAfterLegalizeDAG() && Subtarget.hasP9Altivec() && (IID == Intrinsic::ppc_altivec_vmaxsw || IID == Intrinsic::ppc_altivec_vmaxsh || IID == Intrinsic::ppc_altivec_vmaxsb)) { SDValue V1 = N->getOperand(1); SDValue V2 = N->getOperand(2); if ((V1.getSimpleValueType() == MVT::v4i32 || V1.getSimpleValueType() == MVT::v8i16 || V1.getSimpleValueType() == MVT::v16i8) && V1.getSimpleValueType() == V2.getSimpleValueType()) { // (0-a, a) if (V1.getOpcode() == ISD::SUB && ISD::isBuildVectorAllZeros(V1.getOperand(0).getNode()) && V1.getOperand(1) == V2) { return DAG.getNode(ISD::ABS, dl, V2.getValueType(), V2); } // (a, 0-a) if (V2.getOpcode() == ISD::SUB && ISD::isBuildVectorAllZeros(V2.getOperand(0).getNode()) && V2.getOperand(1) == V1) { return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); } // (x-y, y-x) if (V1.getOpcode() == ISD::SUB && V2.getOpcode() == ISD::SUB && V1.getOperand(0) == V2.getOperand(1) && V1.getOperand(1) == V2.getOperand(0)) { return DAG.getNode(ISD::ABS, dl, V1.getValueType(), V1); } } } } break; case ISD::INTRINSIC_W_CHAIN: switch (N->getConstantOperandVal(1)) { default: break; case Intrinsic::ppc_altivec_vsum4sbs: case Intrinsic::ppc_altivec_vsum4shs: case Intrinsic::ppc_altivec_vsum4ubs: { // These sum-across intrinsics only have a chain due to the side effect // that they may set the SAT bit. If we know the SAT bit will not be set // for some inputs, we can replace any uses of their chain with the // input chain. if (BuildVectorSDNode *BVN = dyn_cast(N->getOperand(3))) { APInt APSplatBits, APSplatUndef; unsigned SplatBitSize; bool HasAnyUndefs; bool BVNIsConstantSplat = BVN->isConstantSplat( APSplatBits, APSplatUndef, SplatBitSize, HasAnyUndefs, 0, !Subtarget.isLittleEndian()); // If the constant splat vector is 0, the SAT bit will not be set. if (BVNIsConstantSplat && APSplatBits == 0) DAG.ReplaceAllUsesOfValueWith(SDValue(N, 1), N->getOperand(0)); } return SDValue(); } case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvd2x: // For little endian, VSX loads require generating lxvd2x/xxswapd. // Not needed on ISA 3.0 based CPUs since we have a non-permuting load. if (Subtarget.needsSwapsForVSXMemOps()) return expandVSXLoadForLE(N, DCI); break; } break; case ISD::INTRINSIC_VOID: // For little endian, VSX stores require generating xxswapd/stxvd2x. // Not needed on ISA 3.0 based CPUs since we have a non-permuting store. if (Subtarget.needsSwapsForVSXMemOps()) { switch (N->getConstantOperandVal(1)) { default: break; case Intrinsic::ppc_vsx_stxvw4x: case Intrinsic::ppc_vsx_stxvd2x: return expandVSXStoreForLE(N, DCI); } } break; case ISD::BSWAP: { // Turn BSWAP (LOAD) -> lhbrx/lwbrx. // For subtargets without LDBRX, we can still do better than the default // expansion even for 64-bit BSWAP (LOAD). bool Is64BitBswapOn64BitTgt = Subtarget.isPPC64() && N->getValueType(0) == MVT::i64; bool IsSingleUseNormalLd = ISD::isNormalLoad(N->getOperand(0).getNode()) && N->getOperand(0).hasOneUse(); if (IsSingleUseNormalLd && (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 || (Subtarget.hasLDBRX() && Is64BitBswapOn64BitTgt))) { SDValue Load = N->getOperand(0); LoadSDNode *LD = cast(Load); // Create the byte-swapping load. SDValue Ops[] = { LD->getChain(), // Chain LD->getBasePtr(), // Ptr DAG.getValueType(N->getValueType(0)) // VT }; SDValue BSLoad = DAG.getMemIntrinsicNode(PPCISD::LBRX, dl, DAG.getVTList(N->getValueType(0) == MVT::i64 ? MVT::i64 : MVT::i32, MVT::Other), Ops, LD->getMemoryVT(), LD->getMemOperand()); // If this is an i16 load, insert the truncate. SDValue ResVal = BSLoad; if (N->getValueType(0) == MVT::i16) ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad); // First, combine the bswap away. This makes the value produced by the // load dead. DCI.CombineTo(N, ResVal); // Next, combine the load away, we give it a bogus result value but a real // chain result. The result value is dead because the bswap is dead. DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1)); // Return N so it doesn't get rechecked! return SDValue(N, 0); } // Convert this to two 32-bit bswap loads and a BUILD_PAIR. Do this only // before legalization so that the BUILD_PAIR is handled correctly. if (!DCI.isBeforeLegalize() || !Is64BitBswapOn64BitTgt || !IsSingleUseNormalLd) return SDValue(); LoadSDNode *LD = cast(N->getOperand(0)); // Can't split volatile or atomic loads. if (!LD->isSimple()) return SDValue(); SDValue BasePtr = LD->getBasePtr(); SDValue Lo = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, LD->getPointerInfo(), LD->getAlign()); Lo = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Lo); BasePtr = DAG.getNode(ISD::ADD, dl, BasePtr.getValueType(), BasePtr, DAG.getIntPtrConstant(4, dl)); MachineMemOperand *NewMMO = DAG.getMachineFunction().getMachineMemOperand( LD->getMemOperand(), 4, 4); SDValue Hi = DAG.getLoad(MVT::i32, dl, LD->getChain(), BasePtr, NewMMO); Hi = DAG.getNode(ISD::BSWAP, dl, MVT::i32, Hi); SDValue Res; if (Subtarget.isLittleEndian()) Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Hi, Lo); else Res = DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Hi.getOperand(0).getValue(1), Lo.getOperand(0).getValue(1)); DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), TF); return Res; } case PPCISD::VCMP: // If a VCMP_rec node already exists with exactly the same operands as this // node, use its result instead of this node (VCMP_rec computes both a CR6 // and a normal output). // if (!N->getOperand(0).hasOneUse() && !N->getOperand(1).hasOneUse() && !N->getOperand(2).hasOneUse()) { // Scan all of the users of the LHS, looking for VCMP_rec's that match. SDNode *VCMPrecNode = nullptr; SDNode *LHSN = N->getOperand(0).getNode(); for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end(); UI != E; ++UI) if (UI->getOpcode() == PPCISD::VCMP_rec && UI->getOperand(1) == N->getOperand(1) && UI->getOperand(2) == N->getOperand(2) && UI->getOperand(0) == N->getOperand(0)) { VCMPrecNode = *UI; break; } // If there is no VCMP_rec node, or if the flag value has a single use, // don't transform this. if (!VCMPrecNode || VCMPrecNode->hasNUsesOfValue(0, 1)) break; // Look at the (necessarily single) use of the flag value. If it has a // chain, this transformation is more complex. Note that multiple things // could use the value result, which we should ignore. SDNode *FlagUser = nullptr; for (SDNode::use_iterator UI = VCMPrecNode->use_begin(); FlagUser == nullptr; ++UI) { assert(UI != VCMPrecNode->use_end() && "Didn't find user!"); SDNode *User = *UI; for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { if (User->getOperand(i) == SDValue(VCMPrecNode, 1)) { FlagUser = User; break; } } } // If the user is a MFOCRF instruction, we know this is safe. // Otherwise we give up for right now. if (FlagUser->getOpcode() == PPCISD::MFOCRF) return SDValue(VCMPrecNode, 0); } break; case ISD::BR_CC: { // If this is a branch on an altivec predicate comparison, lower this so // that we don't have to do a MFOCRF: instead, branch directly on CR6. This // lowering is done pre-legalize, because the legalizer lowers the predicate // compare down to code that is difficult to reassemble. // This code also handles branches that depend on the result of a store // conditional. ISD::CondCode CC = cast(N->getOperand(1))->get(); SDValue LHS = N->getOperand(2), RHS = N->getOperand(3); int CompareOpc; bool isDot; if (!isa(RHS) || (CC != ISD::SETEQ && CC != ISD::SETNE)) break; // Since we are doing this pre-legalize, the RHS can be a constant of // arbitrary bitwidth which may cause issues when trying to get the value // from the underlying APInt. auto RHSAPInt = RHS->getAsAPIntVal(); if (!RHSAPInt.isIntN(64)) break; unsigned Val = RHSAPInt.getZExtValue(); auto isImpossibleCompare = [&]() { // If this is a comparison against something other than 0/1, then we know // that the condition is never/always true. if (Val != 0 && Val != 1) { if (CC == ISD::SETEQ) // Cond never true, remove branch. return N->getOperand(0); // Always !=, turn it into an unconditional branch. return DAG.getNode(ISD::BR, dl, MVT::Other, N->getOperand(0), N->getOperand(4)); } return SDValue(); }; // Combine branches fed by store conditional instructions (st[bhwd]cx). unsigned StoreWidth = 0; if (LHS.getOpcode() == ISD::INTRINSIC_W_CHAIN && isStoreConditional(LHS, StoreWidth)) { if (SDValue Impossible = isImpossibleCompare()) return Impossible; PPC::Predicate CompOpc; // eq 0 => ne // ne 0 => eq // eq 1 => eq // ne 1 => ne if (Val == 0) CompOpc = CC == ISD::SETEQ ? PPC::PRED_NE : PPC::PRED_EQ; else CompOpc = CC == ISD::SETEQ ? PPC::PRED_EQ : PPC::PRED_NE; SDValue Ops[] = {LHS.getOperand(0), LHS.getOperand(2), LHS.getOperand(3), DAG.getConstant(StoreWidth, dl, MVT::i32)}; auto *MemNode = cast(LHS); SDValue ConstSt = DAG.getMemIntrinsicNode( PPCISD::STORE_COND, dl, DAG.getVTList(MVT::i32, MVT::Other, MVT::Glue), Ops, MemNode->getMemoryVT(), MemNode->getMemOperand()); SDValue InChain; // Unchain the branch from the original store conditional. if (N->getOperand(0) == LHS.getValue(1)) InChain = LHS.getOperand(0); else if (N->getOperand(0).getOpcode() == ISD::TokenFactor) { SmallVector InChains; SDValue InTF = N->getOperand(0); for (int i = 0, e = InTF.getNumOperands(); i < e; i++) if (InTF.getOperand(i) != LHS.getValue(1)) InChains.push_back(InTF.getOperand(i)); InChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, InChains); } return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, InChain, DAG.getConstant(CompOpc, dl, MVT::i32), DAG.getRegister(PPC::CR0, MVT::i32), N->getOperand(4), ConstSt.getValue(2)); } if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN && getVectorCompareInfo(LHS, CompareOpc, isDot, Subtarget)) { assert(isDot && "Can't compare against a vector result!"); if (SDValue Impossible = isImpossibleCompare()) return Impossible; bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0); // Create the PPCISD altivec 'dot' comparison node. SDValue Ops[] = { LHS.getOperand(2), // LHS of compare LHS.getOperand(3), // RHS of compare DAG.getConstant(CompareOpc, dl, MVT::i32) }; EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue }; SDValue CompNode = DAG.getNode(PPCISD::VCMP_rec, dl, VTs, Ops); // Unpack the result based on how the target uses it. PPC::Predicate CompOpc; switch (LHS.getConstantOperandVal(1)) { default: // Can't happen, don't crash on invalid number though. case 0: // Branch on the value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE; break; case 1: // Branch on the inverted value of the EQ bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ; break; case 2: // Branch on the value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE; break; case 3: // Branch on the inverted value of the LT bit of CR6. CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT; break; } return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0), DAG.getConstant(CompOpc, dl, MVT::i32), DAG.getRegister(PPC::CR6, MVT::i32), N->getOperand(4), CompNode.getValue(1)); } break; } case ISD::BUILD_VECTOR: return DAGCombineBuildVector(N, DCI); } return SDValue(); } SDValue PPCTargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl &Created) const { // fold (sdiv X, pow2) EVT VT = N->getValueType(0); if (VT == MVT::i64 && !Subtarget.isPPC64()) return SDValue(); if ((VT != MVT::i32 && VT != MVT::i64) || !(Divisor.isPowerOf2() || Divisor.isNegatedPowerOf2())) return SDValue(); SDLoc DL(N); SDValue N0 = N->getOperand(0); bool IsNegPow2 = Divisor.isNegatedPowerOf2(); unsigned Lg2 = (IsNegPow2 ? -Divisor : Divisor).countr_zero(); SDValue ShiftAmt = DAG.getConstant(Lg2, DL, VT); SDValue Op = DAG.getNode(PPCISD::SRA_ADDZE, DL, VT, N0, ShiftAmt); Created.push_back(Op.getNode()); if (IsNegPow2) { Op = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Op); Created.push_back(Op.getNode()); } return Op; } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// void PPCTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { Known.resetAll(); switch (Op.getOpcode()) { default: break; case PPCISD::LBRX: { // lhbrx is known to have the top bits cleared out. if (cast(Op.getOperand(2))->getVT() == MVT::i16) Known.Zero = 0xFFFF0000; break; } case ISD::INTRINSIC_WO_CHAIN: { switch (Op.getConstantOperandVal(0)) { default: break; case Intrinsic::ppc_altivec_vcmpbfp_p: case Intrinsic::ppc_altivec_vcmpeqfp_p: case Intrinsic::ppc_altivec_vcmpequb_p: case Intrinsic::ppc_altivec_vcmpequh_p: case Intrinsic::ppc_altivec_vcmpequw_p: case Intrinsic::ppc_altivec_vcmpequd_p: case Intrinsic::ppc_altivec_vcmpequq_p: case Intrinsic::ppc_altivec_vcmpgefp_p: case Intrinsic::ppc_altivec_vcmpgtfp_p: case Intrinsic::ppc_altivec_vcmpgtsb_p: case Intrinsic::ppc_altivec_vcmpgtsh_p: case Intrinsic::ppc_altivec_vcmpgtsw_p: case Intrinsic::ppc_altivec_vcmpgtsd_p: case Intrinsic::ppc_altivec_vcmpgtsq_p: case Intrinsic::ppc_altivec_vcmpgtub_p: case Intrinsic::ppc_altivec_vcmpgtuh_p: case Intrinsic::ppc_altivec_vcmpgtuw_p: case Intrinsic::ppc_altivec_vcmpgtud_p: case Intrinsic::ppc_altivec_vcmpgtuq_p: Known.Zero = ~1U; // All bits but the low one are known to be zero. break; } break; } case ISD::INTRINSIC_W_CHAIN: { switch (Op.getConstantOperandVal(1)) { default: break; case Intrinsic::ppc_load2r: // Top bits are cleared for load2r (which is the same as lhbrx). Known.Zero = 0xFFFF0000; break; } break; } } } Align PPCTargetLowering::getPrefLoopAlignment(MachineLoop *ML) const { switch (Subtarget.getCPUDirective()) { default: break; case PPC::DIR_970: case PPC::DIR_PWR4: case PPC::DIR_PWR5: case PPC::DIR_PWR5X: case PPC::DIR_PWR6: case PPC::DIR_PWR6X: case PPC::DIR_PWR7: case PPC::DIR_PWR8: case PPC::DIR_PWR9: case PPC::DIR_PWR10: case PPC::DIR_PWR11: case PPC::DIR_PWR_FUTURE: { if (!ML) break; if (!DisableInnermostLoopAlign32) { // If the nested loop is an innermost loop, prefer to a 32-byte alignment, // so that we can decrease cache misses and branch-prediction misses. // Actual alignment of the loop will depend on the hotness check and other // logic in alignBlocks. if (ML->getLoopDepth() > 1 && ML->getSubLoops().empty()) return Align(32); } const PPCInstrInfo *TII = Subtarget.getInstrInfo(); // For small loops (between 5 and 8 instructions), align to a 32-byte // boundary so that the entire loop fits in one instruction-cache line. uint64_t LoopSize = 0; for (auto I = ML->block_begin(), IE = ML->block_end(); I != IE; ++I) for (const MachineInstr &J : **I) { LoopSize += TII->getInstSizeInBytes(J); if (LoopSize > 32) break; } if (LoopSize > 16 && LoopSize <= 32) return Align(32); break; } } return TargetLowering::getPrefLoopAlignment(ML); } /// getConstraintType - Given a constraint, return the type of /// constraint it is for this target. PPCTargetLowering::ConstraintType PPCTargetLowering::getConstraintType(StringRef Constraint) const { if (Constraint.size() == 1) { switch (Constraint[0]) { default: break; case 'b': case 'r': case 'f': case 'd': case 'v': case 'y': return C_RegisterClass; case 'Z': // FIXME: While Z does indicate a memory constraint, it specifically // indicates an r+r address (used in conjunction with the 'y' modifier // in the replacement string). Currently, we're forcing the base // register to be r0 in the asm printer (which is interpreted as zero) // and forming the complete address in the second register. This is // suboptimal. return C_Memory; } } else if (Constraint == "wc") { // individual CR bits. return C_RegisterClass; } else if (Constraint == "wa" || Constraint == "wd" || Constraint == "wf" || Constraint == "ws" || Constraint == "wi" || Constraint == "ww") { return C_RegisterClass; // VSX registers. } return TargetLowering::getConstraintType(Constraint); } /// Examine constraint type and operand type and determine a weight value. /// This object must already have been set up with the operand type /// and the current alternative constraint selected. TargetLowering::ConstraintWeight PPCTargetLowering::getSingleConstraintMatchWeight( AsmOperandInfo &info, const char *constraint) const { ConstraintWeight weight = CW_Invalid; Value *CallOperandVal = info.CallOperandVal; // If we don't have a value, we can't do a match, // but allow it at the lowest weight. if (!CallOperandVal) return CW_Default; Type *type = CallOperandVal->getType(); // Look at the constraint type. if (StringRef(constraint) == "wc" && type->isIntegerTy(1)) return CW_Register; // an individual CR bit. else if ((StringRef(constraint) == "wa" || StringRef(constraint) == "wd" || StringRef(constraint) == "wf") && type->isVectorTy()) return CW_Register; else if (StringRef(constraint) == "wi" && type->isIntegerTy(64)) return CW_Register; // just hold 64-bit integers data. else if (StringRef(constraint) == "ws" && type->isDoubleTy()) return CW_Register; else if (StringRef(constraint) == "ww" && type->isFloatTy()) return CW_Register; switch (*constraint) { default: weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); break; case 'b': if (type->isIntegerTy()) weight = CW_Register; break; case 'f': if (type->isFloatTy()) weight = CW_Register; break; case 'd': if (type->isDoubleTy()) weight = CW_Register; break; case 'v': if (type->isVectorTy()) weight = CW_Register; break; case 'y': weight = CW_Register; break; case 'Z': weight = CW_Memory; break; } return weight; } std::pair PPCTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { if (Constraint.size() == 1) { // GCC RS6000 Constraint Letters switch (Constraint[0]) { case 'b': // R1-R31 if (VT == MVT::i64 && Subtarget.isPPC64()) return std::make_pair(0U, &PPC::G8RC_NOX0RegClass); return std::make_pair(0U, &PPC::GPRC_NOR0RegClass); case 'r': // R0-R31 if (VT == MVT::i64 && Subtarget.isPPC64()) return std::make_pair(0U, &PPC::G8RCRegClass); return std::make_pair(0U, &PPC::GPRCRegClass); // 'd' and 'f' constraints are both defined to be "the floating point // registers", where one is for 32-bit and the other for 64-bit. We don't // really care overly much here so just give them all the same reg classes. case 'd': case 'f': if (Subtarget.hasSPE()) { if (VT == MVT::f32 || VT == MVT::i32) return std::make_pair(0U, &PPC::GPRCRegClass); if (VT == MVT::f64 || VT == MVT::i64) return std::make_pair(0U, &PPC::SPERCRegClass); } else { if (VT == MVT::f32 || VT == MVT::i32) return std::make_pair(0U, &PPC::F4RCRegClass); if (VT == MVT::f64 || VT == MVT::i64) return std::make_pair(0U, &PPC::F8RCRegClass); } break; case 'v': if (Subtarget.hasAltivec() && VT.isVector()) return std::make_pair(0U, &PPC::VRRCRegClass); else if (Subtarget.hasVSX()) // Scalars in Altivec registers only make sense with VSX. return std::make_pair(0U, &PPC::VFRCRegClass); break; case 'y': // crrc return std::make_pair(0U, &PPC::CRRCRegClass); } } else if (Constraint == "wc" && Subtarget.useCRBits()) { // An individual CR bit. return std::make_pair(0U, &PPC::CRBITRCRegClass); } else if ((Constraint == "wa" || Constraint == "wd" || Constraint == "wf" || Constraint == "wi") && Subtarget.hasVSX()) { // A VSX register for either a scalar (FP) or vector. There is no // support for single precision scalars on subtargets prior to Power8. if (VT.isVector()) return std::make_pair(0U, &PPC::VSRCRegClass); if (VT == MVT::f32 && Subtarget.hasP8Vector()) return std::make_pair(0U, &PPC::VSSRCRegClass); return std::make_pair(0U, &PPC::VSFRCRegClass); } else if ((Constraint == "ws" || Constraint == "ww") && Subtarget.hasVSX()) { if (VT == MVT::f32 && Subtarget.hasP8Vector()) return std::make_pair(0U, &PPC::VSSRCRegClass); else return std::make_pair(0U, &PPC::VSFRCRegClass); } else if (Constraint == "lr") { if (VT == MVT::i64) return std::make_pair(0U, &PPC::LR8RCRegClass); else return std::make_pair(0U, &PPC::LRRCRegClass); } // Handle special cases of physical registers that are not properly handled // by the base class. if (Constraint[0] == '{' && Constraint[Constraint.size() - 1] == '}') { // If we name a VSX register, we can't defer to the base class because it // will not recognize the correct register (their names will be VSL{0-31} // and V{0-31} so they won't match). So we match them here. if (Constraint.size() > 3 && Constraint[1] == 'v' && Constraint[2] == 's') { int VSNum = atoi(Constraint.data() + 3); assert(VSNum >= 0 && VSNum <= 63 && "Attempted to access a vsr out of range"); if (VSNum < 32) return std::make_pair(PPC::VSL0 + VSNum, &PPC::VSRCRegClass); return std::make_pair(PPC::V0 + VSNum - 32, &PPC::VSRCRegClass); } // For float registers, we can't defer to the base class as it will match // the SPILLTOVSRRC class. if (Constraint.size() > 3 && Constraint[1] == 'f') { int RegNum = atoi(Constraint.data() + 2); if (RegNum > 31 || RegNum < 0) report_fatal_error("Invalid floating point register number"); if (VT == MVT::f32 || VT == MVT::i32) return Subtarget.hasSPE() ? std::make_pair(PPC::R0 + RegNum, &PPC::GPRCRegClass) : std::make_pair(PPC::F0 + RegNum, &PPC::F4RCRegClass); if (VT == MVT::f64 || VT == MVT::i64) return Subtarget.hasSPE() ? std::make_pair(PPC::S0 + RegNum, &PPC::SPERCRegClass) : std::make_pair(PPC::F0 + RegNum, &PPC::F8RCRegClass); } } std::pair R = TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); // r[0-9]+ are used, on PPC64, to refer to the corresponding 64-bit registers // (which we call X[0-9]+). If a 64-bit value has been requested, and a // 32-bit GPR has been selected, then 'upgrade' it to the 64-bit parent // register. // FIXME: If TargetLowering::getRegForInlineAsmConstraint could somehow use // the AsmName field from *RegisterInfo.td, then this would not be necessary. if (R.first && VT == MVT::i64 && Subtarget.isPPC64() && PPC::GPRCRegClass.contains(R.first)) return std::make_pair(TRI->getMatchingSuperReg(R.first, PPC::sub_32, &PPC::G8RCRegClass), &PPC::G8RCRegClass); // GCC accepts 'cc' as an alias for 'cr0', and we need to do the same. if (!R.second && StringRef("{cc}").equals_insensitive(Constraint)) { R.first = PPC::CR0; R.second = &PPC::CRRCRegClass; } // FIXME: This warning should ideally be emitted in the front end. const auto &TM = getTargetMachine(); if (Subtarget.isAIXABI() && !TM.getAIXExtendedAltivecABI()) { if (((R.first >= PPC::V20 && R.first <= PPC::V31) || (R.first >= PPC::VF20 && R.first <= PPC::VF31)) && (R.second == &PPC::VSRCRegClass || R.second == &PPC::VSFRCRegClass)) errs() << "warning: vector registers 20 to 32 are reserved in the " "default AIX AltiVec ABI and cannot be used\n"; } return R; } /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops /// vector. If it is invalid, don't add anything to Ops. void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector &Ops, SelectionDAG &DAG) const { SDValue Result; // Only support length 1 constraints. if (Constraint.size() > 1) return; char Letter = Constraint[0]; switch (Letter) { default: break; case 'I': case 'J': case 'K': case 'L': case 'M': case 'N': case 'O': case 'P': { ConstantSDNode *CST = dyn_cast(Op); if (!CST) return; // Must be an immediate to match. SDLoc dl(Op); int64_t Value = CST->getSExtValue(); EVT TCVT = MVT::i64; // All constants taken to be 64 bits so that negative // numbers are printed as such. switch (Letter) { default: llvm_unreachable("Unknown constraint letter!"); case 'I': // "I" is a signed 16-bit constant. if (isInt<16>(Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'J': // "J" is a constant with only the high-order 16 bits nonzero. if (isShiftedUInt<16, 16>(Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'L': // "L" is a signed 16-bit constant shifted left 16 bits. if (isShiftedInt<16, 16>(Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'K': // "K" is a constant with only the low-order 16 bits nonzero. if (isUInt<16>(Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'M': // "M" is a constant that is greater than 31. if (Value > 31) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'N': // "N" is a positive constant that is an exact power of two. if (Value > 0 && isPowerOf2_64(Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'O': // "O" is the constant zero. if (Value == 0) Result = DAG.getTargetConstant(Value, dl, TCVT); break; case 'P': // "P" is a constant whose negation is a signed 16-bit constant. if (isInt<16>(-Value)) Result = DAG.getTargetConstant(Value, dl, TCVT); break; } break; } } if (Result.getNode()) { Ops.push_back(Result); return; } // Handle standard constraint letters. TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); } void PPCTargetLowering::CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl &Ops, SelectionDAG &DAG) const { if (I.getNumOperands() <= 1) return; if (!isa(Ops[1].getNode())) return; auto IntrinsicID = Ops[1].getNode()->getAsZExtVal(); if (IntrinsicID != Intrinsic::ppc_tdw && IntrinsicID != Intrinsic::ppc_tw && IntrinsicID != Intrinsic::ppc_trapd && IntrinsicID != Intrinsic::ppc_trap) return; if (MDNode *MDN = I.getMetadata(LLVMContext::MD_annotation)) Ops.push_back(DAG.getMDNode(MDN)); } // isLegalAddressingMode - Return true if the addressing mode represented // by AM is legal for this target, for a load/store of the specified type. bool PPCTargetLowering::isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AS, Instruction *I) const { // Vector type r+i form is supported since power9 as DQ form. We don't check // the offset matching DQ form requirement(off % 16 == 0), because on PowerPC, // imm form is preferred and the offset can be adjusted to use imm form later // in pass PPCLoopInstrFormPrep. Also in LSR, for one LSRUse, it uses min and // max offset to check legal addressing mode, we should be a little aggressive // to contain other offsets for that LSRUse. if (Ty->isVectorTy() && AM.BaseOffs != 0 && !Subtarget.hasP9Vector()) return false; // PPC allows a sign-extended 16-bit immediate field. if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) return false; // No global is ever allowed as a base. if (AM.BaseGV) return false; // PPC only support r+r, switch (AM.Scale) { case 0: // "r+i" or just "i", depending on HasBaseReg. break; case 1: if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. return false; // Otherwise we have r+r or r+i. break; case 2: if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. return false; // Allow 2*r as r+r. break; default: // No other scales are supported. return false; } return true; } SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setReturnAddressIsTaken(true); if (verifyReturnAddressArgumentIsConstant(Op, DAG)) return SDValue(); SDLoc dl(Op); unsigned Depth = Op.getConstantOperandVal(0); // Make sure the function does not optimize away the store of the RA to // the stack. PPCFunctionInfo *FuncInfo = MF.getInfo(); FuncInfo->setLRStoreRequired(); bool isPPC64 = Subtarget.isPPC64(); auto PtrVT = getPointerTy(MF.getDataLayout()); if (Depth > 0) { // The link register (return address) is saved in the caller's frame // not the callee's stack frame. So we must get the caller's frame // address and load the return address at the LR offset from there. SDValue FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), LowerFRAMEADDR(Op, DAG), MachinePointerInfo()); SDValue Offset = DAG.getConstant(Subtarget.getFrameLowering()->getReturnSaveOffset(), dl, isPPC64 ? MVT::i64 : MVT::i32); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, PtrVT, FrameAddr, Offset), MachinePointerInfo()); } // Just load the return address off the stack. SDValue RetAddrFI = getReturnAddrFrameIndex(DAG); return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), RetAddrFI, MachinePointerInfo()); } SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { SDLoc dl(Op); unsigned Depth = Op.getConstantOperandVal(0); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo &MFI = MF.getFrameInfo(); MFI.setFrameAddressIsTaken(true); EVT PtrVT = getPointerTy(MF.getDataLayout()); bool isPPC64 = PtrVT == MVT::i64; // Naked functions never have a frame pointer, and so we use r1. For all // other functions, this decision must be delayed until during PEI. unsigned FrameReg; if (MF.getFunction().hasFnAttribute(Attribute::Naked)) FrameReg = isPPC64 ? PPC::X1 : PPC::R1; else FrameReg = isPPC64 ? PPC::FP8 : PPC::FP; SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, PtrVT); while (Depth--) FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo()); return FrameAddr; } // FIXME? Maybe this could be a TableGen attribute on some registers and // this table could be generated automatically from RegInfo. Register PPCTargetLowering::getRegisterByName(const char* RegName, LLT VT, const MachineFunction &MF) const { bool isPPC64 = Subtarget.isPPC64(); bool is64Bit = isPPC64 && VT == LLT::scalar(64); if (!is64Bit && VT != LLT::scalar(32)) report_fatal_error("Invalid register global variable type"); Register Reg = StringSwitch(RegName) .Case("r1", is64Bit ? PPC::X1 : PPC::R1) .Case("r2", isPPC64 ? Register() : PPC::R2) .Case("r13", (is64Bit ? PPC::X13 : PPC::R13)) .Default(Register()); if (Reg) return Reg; report_fatal_error("Invalid register name global variable"); } bool PPCTargetLowering::isAccessedAsGotIndirect(SDValue GA) const { // 32-bit SVR4 ABI access everything as got-indirect. if (Subtarget.is32BitELFABI()) return true; // AIX accesses everything indirectly through the TOC, which is similar to // the GOT. if (Subtarget.isAIXABI()) return true; CodeModel::Model CModel = getTargetMachine().getCodeModel(); // If it is small or large code model, module locals are accessed // indirectly by loading their address from .toc/.got. if (CModel == CodeModel::Small || CModel == CodeModel::Large) return true; // JumpTable and BlockAddress are accessed as got-indirect. if (isa(GA) || isa(GA)) return true; if (GlobalAddressSDNode *G = dyn_cast(GA)) return Subtarget.isGVIndirectSymbol(G->getGlobal()); return false; } bool PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { // The PowerPC target isn't yet aware of offsets. return false; } bool PPCTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, const CallInst &I, MachineFunction &MF, unsigned Intrinsic) const { switch (Intrinsic) { case Intrinsic::ppc_atomicrmw_xchg_i128: case Intrinsic::ppc_atomicrmw_add_i128: case Intrinsic::ppc_atomicrmw_sub_i128: case Intrinsic::ppc_atomicrmw_nand_i128: case Intrinsic::ppc_atomicrmw_and_i128: case Intrinsic::ppc_atomicrmw_or_i128: case Intrinsic::ppc_atomicrmw_xor_i128: case Intrinsic::ppc_cmpxchg_i128: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::ppc_atomic_load_i128: Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile; return true; case Intrinsic::ppc_atomic_store_i128: Info.opc = ISD::INTRINSIC_VOID; Info.memVT = MVT::i128; Info.ptrVal = I.getArgOperand(2); Info.offset = 0; Info.align = Align(16); Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; case Intrinsic::ppc_altivec_lvx: case Intrinsic::ppc_altivec_lvxl: case Intrinsic::ppc_altivec_lvebx: case Intrinsic::ppc_altivec_lvehx: case Intrinsic::ppc_altivec_lvewx: case Intrinsic::ppc_vsx_lxvd2x: case Intrinsic::ppc_vsx_lxvw4x: case Intrinsic::ppc_vsx_lxvd2x_be: case Intrinsic::ppc_vsx_lxvw4x_be: case Intrinsic::ppc_vsx_lxvl: case Intrinsic::ppc_vsx_lxvll: { EVT VT; switch (Intrinsic) { case Intrinsic::ppc_altivec_lvebx: VT = MVT::i8; break; case Intrinsic::ppc_altivec_lvehx: VT = MVT::i16; break; case Intrinsic::ppc_altivec_lvewx: VT = MVT::i32; break; case Intrinsic::ppc_vsx_lxvd2x: case Intrinsic::ppc_vsx_lxvd2x_be: VT = MVT::v2f64; break; default: VT = MVT::v4i32; break; } Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = VT; Info.ptrVal = I.getArgOperand(0); Info.offset = -VT.getStoreSize()+1; Info.size = 2*VT.getStoreSize()-1; Info.align = Align(1); Info.flags = MachineMemOperand::MOLoad; return true; } case Intrinsic::ppc_altivec_stvx: case Intrinsic::ppc_altivec_stvxl: case Intrinsic::ppc_altivec_stvebx: case Intrinsic::ppc_altivec_stvehx: case Intrinsic::ppc_altivec_stvewx: case Intrinsic::ppc_vsx_stxvd2x: case Intrinsic::ppc_vsx_stxvw4x: case Intrinsic::ppc_vsx_stxvd2x_be: case Intrinsic::ppc_vsx_stxvw4x_be: case Intrinsic::ppc_vsx_stxvl: case Intrinsic::ppc_vsx_stxvll: { EVT VT; switch (Intrinsic) { case Intrinsic::ppc_altivec_stvebx: VT = MVT::i8; break; case Intrinsic::ppc_altivec_stvehx: VT = MVT::i16; break; case Intrinsic::ppc_altivec_stvewx: VT = MVT::i32; break; case Intrinsic::ppc_vsx_stxvd2x: case Intrinsic::ppc_vsx_stxvd2x_be: VT = MVT::v2f64; break; default: VT = MVT::v4i32; break; } Info.opc = ISD::INTRINSIC_VOID; Info.memVT = VT; Info.ptrVal = I.getArgOperand(1); Info.offset = -VT.getStoreSize()+1; Info.size = 2*VT.getStoreSize()-1; Info.align = Align(1); Info.flags = MachineMemOperand::MOStore; return true; } case Intrinsic::ppc_stdcx: case Intrinsic::ppc_stwcx: case Intrinsic::ppc_sthcx: case Intrinsic::ppc_stbcx: { EVT VT; auto Alignment = Align(8); switch (Intrinsic) { case Intrinsic::ppc_stdcx: VT = MVT::i64; break; case Intrinsic::ppc_stwcx: VT = MVT::i32; Alignment = Align(4); break; case Intrinsic::ppc_sthcx: VT = MVT::i16; Alignment = Align(2); break; case Intrinsic::ppc_stbcx: VT = MVT::i8; Alignment = Align(1); break; } Info.opc = ISD::INTRINSIC_W_CHAIN; Info.memVT = VT; Info.ptrVal = I.getArgOperand(0); Info.offset = 0; Info.align = Alignment; Info.flags = MachineMemOperand::MOStore | MachineMemOperand::MOVolatile; return true; } default: break; } return false; } /// It returns EVT::Other if the type should be determined using generic /// target-independent logic. EVT PPCTargetLowering::getOptimalMemOpType( const MemOp &Op, const AttributeList &FuncAttributes) const { if (getTargetMachine().getOptLevel() != CodeGenOptLevel::None) { // We should use Altivec/VSX loads and stores when available. For unaligned // addresses, unaligned VSX loads are only fast starting with the P8. if (Subtarget.hasAltivec() && Op.size() >= 16) { if (Op.isMemset() && Subtarget.hasVSX()) { uint64_t TailSize = Op.size() % 16; // For memset lowering, EXTRACT_VECTOR_ELT tries to return constant // element if vector element type matches tail store. For tail size // 3/4, the tail store is i32, v4i32 cannot be used, need a legal one. if (TailSize > 2 && TailSize <= 4) { return MVT::v8i16; } return MVT::v4i32; } if (Op.isAligned(Align(16)) || Subtarget.hasP8Vector()) return MVT::v4i32; } } if (Subtarget.isPPC64()) { return MVT::i64; } return MVT::i32; } /// Returns true if it is beneficial to convert a load of a constant /// to just the constant itself. bool PPCTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const { assert(Ty->isIntegerTy()); unsigned BitSize = Ty->getPrimitiveSizeInBits(); return !(BitSize == 0 || BitSize > 64); } bool PPCTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) return false; unsigned NumBits1 = Ty1->getPrimitiveSizeInBits(); unsigned NumBits2 = Ty2->getPrimitiveSizeInBits(); return NumBits1 == 64 && NumBits2 == 32; } bool PPCTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isInteger() || !VT2.isInteger()) return false; unsigned NumBits1 = VT1.getSizeInBits(); unsigned NumBits2 = VT2.getSizeInBits(); return NumBits1 == 64 && NumBits2 == 32; } bool PPCTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { // Generally speaking, zexts are not free, but they are free when they can be // folded with other operations. if (LoadSDNode *LD = dyn_cast(Val)) { EVT MemVT = LD->getMemoryVT(); if ((MemVT == MVT::i1 || MemVT == MVT::i8 || MemVT == MVT::i16 || (Subtarget.isPPC64() && MemVT == MVT::i32)) && (LD->getExtensionType() == ISD::NON_EXTLOAD || LD->getExtensionType() == ISD::ZEXTLOAD)) return true; } // FIXME: Add other cases... // - 32-bit shifts with a zext to i64 // - zext after ctlz, bswap, etc. // - zext after and by a constant mask return TargetLowering::isZExtFree(Val, VT2); } bool PPCTargetLowering::isFPExtFree(EVT DestVT, EVT SrcVT) const { assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() && "invalid fpext types"); // Extending to float128 is not free. if (DestVT == MVT::f128) return false; return true; } bool PPCTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return isInt<16>(Imm) || isUInt<16>(Imm); } bool PPCTargetLowering::isLegalAddImmediate(int64_t Imm) const { return isInt<16>(Imm) || isUInt<16>(Imm); } bool PPCTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, unsigned, Align, MachineMemOperand::Flags, unsigned *Fast) const { if (DisablePPCUnaligned) return false; // PowerPC supports unaligned memory access for simple non-vector types. // Although accessing unaligned addresses is not as efficient as accessing // aligned addresses, it is generally more efficient than manual expansion, // and generally only traps for software emulation when crossing page // boundaries. if (!VT.isSimple()) return false; if (VT.isFloatingPoint() && !VT.isVector() && !Subtarget.allowsUnalignedFPAccess()) return false; if (VT.getSimpleVT().isVector()) { if (Subtarget.hasVSX()) { if (VT != MVT::v2f64 && VT != MVT::v2i64 && VT != MVT::v4f32 && VT != MVT::v4i32) return false; } else { return false; } } if (VT == MVT::ppcf128) return false; if (Fast) *Fast = 1; return true; } bool PPCTargetLowering::decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const { // Check integral scalar types. if (!VT.isScalarInteger()) return false; if (auto *ConstNode = dyn_cast(C.getNode())) { if (!ConstNode->getAPIntValue().isSignedIntN(64)) return false; // This transformation will generate >= 2 operations. But the following // cases will generate <= 2 instructions during ISEL. So exclude them. // 1. If the constant multiplier fits 16 bits, it can be handled by one // HW instruction, ie. MULLI // 2. If the multiplier after shifted fits 16 bits, an extra shift // instruction is needed than case 1, ie. MULLI and RLDICR int64_t Imm = ConstNode->getSExtValue(); unsigned Shift = llvm::countr_zero(Imm); Imm >>= Shift; if (isInt<16>(Imm)) return false; uint64_t UImm = static_cast(Imm); if (isPowerOf2_64(UImm + 1) || isPowerOf2_64(UImm - 1) || isPowerOf2_64(1 - UImm) || isPowerOf2_64(-1 - UImm)) return true; } return false; } bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT VT) const { return isFMAFasterThanFMulAndFAdd( MF.getFunction(), VT.getTypeForEVT(MF.getFunction().getContext())); } bool PPCTargetLowering::isFMAFasterThanFMulAndFAdd(const Function &F, Type *Ty) const { if (Subtarget.hasSPE() || Subtarget.useSoftFloat()) return false; switch (Ty->getScalarType()->getTypeID()) { case Type::FloatTyID: case Type::DoubleTyID: return true; case Type::FP128TyID: return Subtarget.hasP9Vector(); default: return false; } } // FIXME: add more patterns which are not profitable to hoist. bool PPCTargetLowering::isProfitableToHoist(Instruction *I) const { if (!I->hasOneUse()) return true; Instruction *User = I->user_back(); assert(User && "A single use instruction with no uses."); switch (I->getOpcode()) { case Instruction::FMul: { // Don't break FMA, PowerPC prefers FMA. if (User->getOpcode() != Instruction::FSub && User->getOpcode() != Instruction::FAdd) return true; const TargetOptions &Options = getTargetMachine().Options; const Function *F = I->getFunction(); const DataLayout &DL = F->getDataLayout(); Type *Ty = User->getOperand(0)->getType(); return !( isFMAFasterThanFMulAndFAdd(*F, Ty) && isOperationLegalOrCustom(ISD::FMA, getValueType(DL, Ty)) && (Options.AllowFPOpFusion == FPOpFusion::Fast || Options.UnsafeFPMath)); } case Instruction::Load: { // Don't break "store (load float*)" pattern, this pattern will be combined // to "store (load int32)" in later InstCombine pass. See function // combineLoadToOperationType. On PowerPC, loading a float point takes more // cycles than loading a 32 bit integer. LoadInst *LI = cast(I); // For the loads that combineLoadToOperationType does nothing, like // ordered load, it should be profitable to hoist them. // For swifterror load, it can only be used for pointer to pointer type, so // later type check should get rid of this case. if (!LI->isUnordered()) return true; if (User->getOpcode() != Instruction::Store) return true; if (I->getType()->getTypeID() != Type::FloatTyID) return true; return false; } default: return true; } return true; } const MCPhysReg * PPCTargetLowering::getScratchRegisters(CallingConv::ID) const { // LR is a callee-save register, but we must treat it as clobbered by any call // site. Hence we include LR in the scratch registers, which are in turn added // as implicit-defs for stackmaps and patchpoints. The same reasoning applies // to CTR, which is used by any indirect call. static const MCPhysReg ScratchRegs[] = { PPC::X12, PPC::LR8, PPC::CTR8, 0 }; return ScratchRegs; } Register PPCTargetLowering::getExceptionPointerRegister( const Constant *PersonalityFn) const { return Subtarget.isPPC64() ? PPC::X3 : PPC::R3; } Register PPCTargetLowering::getExceptionSelectorRegister( const Constant *PersonalityFn) const { return Subtarget.isPPC64() ? PPC::X4 : PPC::R4; } bool PPCTargetLowering::shouldExpandBuildVectorWithShuffles( EVT VT , unsigned DefinedValues) const { if (VT == MVT::v2i64) return Subtarget.hasDirectMove(); // Don't need stack ops with direct moves if (Subtarget.hasVSX()) return true; return TargetLowering::shouldExpandBuildVectorWithShuffles(VT, DefinedValues); } Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const { if (DisableILPPref || Subtarget.enableMachineScheduler()) return TargetLowering::getSchedulingPreference(N); return Sched::ILP; } // Create a fast isel object. FastISel * PPCTargetLowering::createFastISel(FunctionLoweringInfo &FuncInfo, const TargetLibraryInfo *LibInfo) const { return PPC::createFastISel(FuncInfo, LibInfo); } // 'Inverted' means the FMA opcode after negating one multiplicand. // For example, (fma -a b c) = (fnmsub a b c) static unsigned invertFMAOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Invalid FMA opcode for PowerPC!"); case ISD::FMA: return PPCISD::FNMSUB; case PPCISD::FNMSUB: return ISD::FMA; } } SDValue PPCTargetLowering::getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth) const { if (Depth > SelectionDAG::MaxRecursionDepth) return SDValue(); unsigned Opc = Op.getOpcode(); EVT VT = Op.getValueType(); SDNodeFlags Flags = Op.getNode()->getFlags(); switch (Opc) { case PPCISD::FNMSUB: if (!Op.hasOneUse() || !isTypeLegal(VT)) break; const TargetOptions &Options = getTargetMachine().Options; SDValue N0 = Op.getOperand(0); SDValue N1 = Op.getOperand(1); SDValue N2 = Op.getOperand(2); SDLoc Loc(Op); NegatibleCost N2Cost = NegatibleCost::Expensive; SDValue NegN2 = getNegatedExpression(N2, DAG, LegalOps, OptForSize, N2Cost, Depth + 1); if (!NegN2) return SDValue(); // (fneg (fnmsub a b c)) => (fnmsub (fneg a) b (fneg c)) // (fneg (fnmsub a b c)) => (fnmsub a (fneg b) (fneg c)) // These transformations may change sign of zeroes. For example, // -(-ab-(-c))=-0 while -(-(ab-c))=+0 when a=b=c=1. if (Flags.hasNoSignedZeros() || Options.NoSignedZerosFPMath) { // Try and choose the cheaper one to negate. NegatibleCost N0Cost = NegatibleCost::Expensive; SDValue NegN0 = getNegatedExpression(N0, DAG, LegalOps, OptForSize, N0Cost, Depth + 1); NegatibleCost N1Cost = NegatibleCost::Expensive; SDValue NegN1 = getNegatedExpression(N1, DAG, LegalOps, OptForSize, N1Cost, Depth + 1); if (NegN0 && N0Cost <= N1Cost) { Cost = std::min(N0Cost, N2Cost); return DAG.getNode(Opc, Loc, VT, NegN0, N1, NegN2, Flags); } else if (NegN1) { Cost = std::min(N1Cost, N2Cost); return DAG.getNode(Opc, Loc, VT, N0, NegN1, NegN2, Flags); } } // (fneg (fnmsub a b c)) => (fma a b (fneg c)) if (isOperationLegal(ISD::FMA, VT)) { Cost = N2Cost; return DAG.getNode(ISD::FMA, Loc, VT, N0, N1, NegN2, Flags); } break; } return TargetLowering::getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth); } // Override to enable LOAD_STACK_GUARD lowering on Linux. bool PPCTargetLowering::useLoadStackGuardNode() const { if (!Subtarget.isTargetLinux()) return TargetLowering::useLoadStackGuardNode(); return true; } // Override to disable global variable loading on Linux and insert AIX canary // word declaration. void PPCTargetLowering::insertSSPDeclarations(Module &M) const { if (Subtarget.isAIXABI()) { M.getOrInsertGlobal(AIXSSPCanaryWordName, PointerType::getUnqual(M.getContext())); return; } if (!Subtarget.isTargetLinux()) return TargetLowering::insertSSPDeclarations(M); } Value *PPCTargetLowering::getSDagStackGuard(const Module &M) const { if (Subtarget.isAIXABI()) return M.getGlobalVariable(AIXSSPCanaryWordName); return TargetLowering::getSDagStackGuard(M); } bool PPCTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, bool ForCodeSize) const { if (!VT.isSimple() || !Subtarget.hasVSX()) return false; switch(VT.getSimpleVT().SimpleTy) { default: // For FP types that are currently not supported by PPC backend, return // false. Examples: f16, f80. return false; case MVT::f32: case MVT::f64: { if (Subtarget.hasPrefixInstrs() && Subtarget.hasP10Vector()) { // we can materialize all immediatess via XXSPLTI32DX and XXSPLTIDP. return true; } bool IsExact; APSInt IntResult(16, false); // The rounding mode doesn't really matter because we only care about floats // that can be converted to integers exactly. Imm.convertToInteger(IntResult, APFloat::rmTowardZero, &IsExact); // For exact values in the range [-16, 15] we can materialize the float. if (IsExact && IntResult <= 15 && IntResult >= -16) return true; return Imm.isZero(); } case MVT::ppcf128: return Imm.isPosZero(); } } // For vector shift operation op, fold // (op x, (and y, ((1 << numbits(x)) - 1))) -> (target op x, y) static SDValue stripModuloOnShift(const TargetLowering &TLI, SDNode *N, SelectionDAG &DAG) { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); EVT VT = N0.getValueType(); unsigned OpSizeInBits = VT.getScalarSizeInBits(); unsigned Opcode = N->getOpcode(); unsigned TargetOpcode; switch (Opcode) { default: llvm_unreachable("Unexpected shift operation"); case ISD::SHL: TargetOpcode = PPCISD::SHL; break; case ISD::SRL: TargetOpcode = PPCISD::SRL; break; case ISD::SRA: TargetOpcode = PPCISD::SRA; break; } if (VT.isVector() && TLI.isOperationLegal(Opcode, VT) && N1->getOpcode() == ISD::AND) if (ConstantSDNode *Mask = isConstOrConstSplat(N1->getOperand(1))) if (Mask->getZExtValue() == OpSizeInBits - 1) return DAG.getNode(TargetOpcode, SDLoc(N), VT, N0, N1->getOperand(0)); return SDValue(); } SDValue PPCTargetLowering::combineSHL(SDNode *N, DAGCombinerInfo &DCI) const { if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) return Value; SDValue N0 = N->getOperand(0); ConstantSDNode *CN1 = dyn_cast(N->getOperand(1)); if (!Subtarget.isISA3_0() || !Subtarget.isPPC64() || N0.getOpcode() != ISD::SIGN_EXTEND || N0.getOperand(0).getValueType() != MVT::i32 || CN1 == nullptr || N->getValueType(0) != MVT::i64) return SDValue(); // We can't save an operation here if the value is already extended, and // the existing shift is easier to combine. SDValue ExtsSrc = N0.getOperand(0); if (ExtsSrc.getOpcode() == ISD::TRUNCATE && ExtsSrc.getOperand(0).getOpcode() == ISD::AssertSext) return SDValue(); SDLoc DL(N0); SDValue ShiftBy = SDValue(CN1, 0); // We want the shift amount to be i32 on the extswli, but the shift could // have an i64. if (ShiftBy.getValueType() == MVT::i64) ShiftBy = DCI.DAG.getConstant(CN1->getZExtValue(), DL, MVT::i32); return DCI.DAG.getNode(PPCISD::EXTSWSLI, DL, MVT::i64, N0->getOperand(0), ShiftBy); } SDValue PPCTargetLowering::combineSRA(SDNode *N, DAGCombinerInfo &DCI) const { if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) return Value; return SDValue(); } SDValue PPCTargetLowering::combineSRL(SDNode *N, DAGCombinerInfo &DCI) const { if (auto Value = stripModuloOnShift(*this, N, DCI.DAG)) return Value; return SDValue(); } // Transform (add X, (zext(setne Z, C))) -> (addze X, (addic (addi Z, -C), -1)) // Transform (add X, (zext(sete Z, C))) -> (addze X, (subfic (addi Z, -C), 0)) // When C is zero, the equation (addi Z, -C) can be simplified to Z // Requirement: -C in [-32768, 32767], X and Z are MVT::i64 types static SDValue combineADDToADDZE(SDNode *N, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { if (!Subtarget.isPPC64()) return SDValue(); SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); auto isZextOfCompareWithConstant = [](SDValue Op) { if (Op.getOpcode() != ISD::ZERO_EXTEND || !Op.hasOneUse() || Op.getValueType() != MVT::i64) return false; SDValue Cmp = Op.getOperand(0); if (Cmp.getOpcode() != ISD::SETCC || !Cmp.hasOneUse() || Cmp.getOperand(0).getValueType() != MVT::i64) return false; if (auto *Constant = dyn_cast(Cmp.getOperand(1))) { int64_t NegConstant = 0 - Constant->getSExtValue(); // Due to the limitations of the addi instruction, // -C is required to be [-32768, 32767]. return isInt<16>(NegConstant); } return false; }; bool LHSHasPattern = isZextOfCompareWithConstant(LHS); bool RHSHasPattern = isZextOfCompareWithConstant(RHS); // If there is a pattern, canonicalize a zext operand to the RHS. if (LHSHasPattern && !RHSHasPattern) std::swap(LHS, RHS); else if (!LHSHasPattern && !RHSHasPattern) return SDValue(); SDLoc DL(N); SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Glue); SDValue Cmp = RHS.getOperand(0); SDValue Z = Cmp.getOperand(0); auto *Constant = cast(Cmp.getOperand(1)); int64_t NegConstant = 0 - Constant->getSExtValue(); switch(cast(Cmp.getOperand(2))->get()) { default: break; case ISD::SETNE: { // when C == 0 // --> addze X, (addic Z, -1).carry // / // add X, (zext(setne Z, C))-- // \ when -32768 <= -C <= 32767 && C != 0 // --> addze X, (addic (addi Z, -C), -1).carry SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, DAG.getConstant(NegConstant, DL, MVT::i64)); SDValue AddOrZ = NegConstant != 0 ? Add : Z; SDValue Addc = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i64, MVT::Glue), AddOrZ, DAG.getConstant(-1ULL, DL, MVT::i64)); return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), SDValue(Addc.getNode(), 1)); } case ISD::SETEQ: { // when C == 0 // --> addze X, (subfic Z, 0).carry // / // add X, (zext(sete Z, C))-- // \ when -32768 <= -C <= 32767 && C != 0 // --> addze X, (subfic (addi Z, -C), 0).carry SDValue Add = DAG.getNode(ISD::ADD, DL, MVT::i64, Z, DAG.getConstant(NegConstant, DL, MVT::i64)); SDValue AddOrZ = NegConstant != 0 ? Add : Z; SDValue Subc = DAG.getNode(ISD::SUBC, DL, DAG.getVTList(MVT::i64, MVT::Glue), DAG.getConstant(0, DL, MVT::i64), AddOrZ); return DAG.getNode(ISD::ADDE, DL, VTs, LHS, DAG.getConstant(0, DL, MVT::i64), SDValue(Subc.getNode(), 1)); } } return SDValue(); } // Transform // (add C1, (MAT_PCREL_ADDR GlobalAddr+C2)) to // (MAT_PCREL_ADDR GlobalAddr+(C1+C2)) // In this case both C1 and C2 must be known constants. // C1+C2 must fit into a 34 bit signed integer. static SDValue combineADDToMAT_PCREL_ADDR(SDNode *N, SelectionDAG &DAG, const PPCSubtarget &Subtarget) { if (!Subtarget.isUsingPCRelativeCalls()) return SDValue(); // Check both Operand 0 and Operand 1 of the ADD node for the PCRel node. // If we find that node try to cast the Global Address and the Constant. SDValue LHS = N->getOperand(0); SDValue RHS = N->getOperand(1); if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) std::swap(LHS, RHS); if (LHS.getOpcode() != PPCISD::MAT_PCREL_ADDR) return SDValue(); // Operand zero of PPCISD::MAT_PCREL_ADDR is the GA node. GlobalAddressSDNode *GSDN = dyn_cast(LHS.getOperand(0)); ConstantSDNode* ConstNode = dyn_cast(RHS); // Check that both casts succeeded. if (!GSDN || !ConstNode) return SDValue(); int64_t NewOffset = GSDN->getOffset() + ConstNode->getSExtValue(); SDLoc DL(GSDN); // The signed int offset needs to fit in 34 bits. if (!isInt<34>(NewOffset)) return SDValue(); // The new global address is a copy of the old global address except // that it has the updated Offset. SDValue GA = DAG.getTargetGlobalAddress(GSDN->getGlobal(), DL, GSDN->getValueType(0), NewOffset, GSDN->getTargetFlags()); SDValue MatPCRel = DAG.getNode(PPCISD::MAT_PCREL_ADDR, DL, GSDN->getValueType(0), GA); return MatPCRel; } SDValue PPCTargetLowering::combineADD(SDNode *N, DAGCombinerInfo &DCI) const { if (auto Value = combineADDToADDZE(N, DCI.DAG, Subtarget)) return Value; if (auto Value = combineADDToMAT_PCREL_ADDR(N, DCI.DAG, Subtarget)) return Value; return SDValue(); } // Detect TRUNCATE operations on bitcasts of float128 values. // What we are looking for here is the situtation where we extract a subset // of bits from a 128 bit float. // This can be of two forms: // 1) BITCAST of f128 feeding TRUNCATE // 2) BITCAST of f128 feeding SRL (a shift) feeding TRUNCATE // The reason this is required is because we do not have a legal i128 type // and so we want to prevent having to store the f128 and then reload part // of it. SDValue PPCTargetLowering::combineTRUNCATE(SDNode *N, DAGCombinerInfo &DCI) const { // If we are using CRBits then try that first. if (Subtarget.useCRBits()) { // Check if CRBits did anything and return that if it did. if (SDValue CRTruncValue = DAGCombineTruncBoolExt(N, DCI)) return CRTruncValue; } SDLoc dl(N); SDValue Op0 = N->getOperand(0); // Looking for a truncate of i128 to i64. if (Op0.getValueType() != MVT::i128 || N->getValueType(0) != MVT::i64) return SDValue(); int EltToExtract = DCI.DAG.getDataLayout().isBigEndian() ? 1 : 0; // SRL feeding TRUNCATE. if (Op0.getOpcode() == ISD::SRL) { ConstantSDNode *ConstNode = dyn_cast(Op0.getOperand(1)); // The right shift has to be by 64 bits. if (!ConstNode || ConstNode->getZExtValue() != 64) return SDValue(); // Switch the element number to extract. EltToExtract = EltToExtract ? 0 : 1; // Update Op0 past the SRL. Op0 = Op0.getOperand(0); } // BITCAST feeding a TRUNCATE possibly via SRL. if (Op0.getOpcode() == ISD::BITCAST && Op0.getValueType() == MVT::i128 && Op0.getOperand(0).getValueType() == MVT::f128) { SDValue Bitcast = DCI.DAG.getBitcast(MVT::v2i64, Op0.getOperand(0)); return DCI.DAG.getNode( ISD::EXTRACT_VECTOR_ELT, dl, MVT::i64, Bitcast, DCI.DAG.getTargetConstant(EltToExtract, dl, MVT::i32)); } return SDValue(); } SDValue PPCTargetLowering::combineMUL(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; ConstantSDNode *ConstOpOrElement = isConstOrConstSplat(N->getOperand(1)); if (!ConstOpOrElement) return SDValue(); // An imul is usually smaller than the alternative sequence for legal type. if (DAG.getMachineFunction().getFunction().hasMinSize() && isOperationLegal(ISD::MUL, N->getValueType(0))) return SDValue(); auto IsProfitable = [this](bool IsNeg, bool IsAddOne, EVT VT) -> bool { switch (this->Subtarget.getCPUDirective()) { default: // TODO: enhance the condition for subtarget before pwr8 return false; case PPC::DIR_PWR8: // type mul add shl // scalar 4 1 1 // vector 7 2 2 return true; case PPC::DIR_PWR9: case PPC::DIR_PWR10: case PPC::DIR_PWR11: case PPC::DIR_PWR_FUTURE: // type mul add shl // scalar 5 2 2 // vector 7 2 2 // The cycle RATIO of related operations are showed as a table above. // Because mul is 5(scalar)/7(vector), add/sub/shl are all 2 for both // scalar and vector type. For 2 instrs patterns, add/sub + shl // are 4, it is always profitable; but for 3 instrs patterns // (mul x, -(2^N + 1)) => -(add (shl x, N), x), sub + add + shl are 6. // So we should only do it for vector type. return IsAddOne && IsNeg ? VT.isVector() : true; } }; EVT VT = N->getValueType(0); SDLoc DL(N); const APInt &MulAmt = ConstOpOrElement->getAPIntValue(); bool IsNeg = MulAmt.isNegative(); APInt MulAmtAbs = MulAmt.abs(); if ((MulAmtAbs - 1).isPowerOf2()) { // (mul x, 2^N + 1) => (add (shl x, N), x) // (mul x, -(2^N + 1)) => -(add (shl x, N), x) if (!IsProfitable(IsNeg, true, VT)) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant((MulAmtAbs - 1).logBase2(), DL, VT)); SDValue Res = DAG.getNode(ISD::ADD, DL, VT, Op0, Op1); if (!IsNeg) return Res; return DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), Res); } else if ((MulAmtAbs + 1).isPowerOf2()) { // (mul x, 2^N - 1) => (sub (shl x, N), x) // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) if (!IsProfitable(IsNeg, false, VT)) return SDValue(); SDValue Op0 = N->getOperand(0); SDValue Op1 = DAG.getNode(ISD::SHL, DL, VT, N->getOperand(0), DAG.getConstant((MulAmtAbs + 1).logBase2(), DL, VT)); if (!IsNeg) return DAG.getNode(ISD::SUB, DL, VT, Op1, Op0); else return DAG.getNode(ISD::SUB, DL, VT, Op0, Op1); } else { return SDValue(); } } // Combine fma-like op (like fnmsub) with fnegs to appropriate op. Do this // in combiner since we need to check SD flags and other subtarget features. SDValue PPCTargetLowering::combineFMALike(SDNode *N, DAGCombinerInfo &DCI) const { SDValue N0 = N->getOperand(0); SDValue N1 = N->getOperand(1); SDValue N2 = N->getOperand(2); SDNodeFlags Flags = N->getFlags(); EVT VT = N->getValueType(0); SelectionDAG &DAG = DCI.DAG; const TargetOptions &Options = getTargetMachine().Options; unsigned Opc = N->getOpcode(); bool CodeSize = DAG.getMachineFunction().getFunction().hasOptSize(); bool LegalOps = !DCI.isBeforeLegalizeOps(); SDLoc Loc(N); if (!isOperationLegal(ISD::FMA, VT)) return SDValue(); // Allowing transformation to FNMSUB may change sign of zeroes when ab-c=0 // since (fnmsub a b c)=-0 while c-ab=+0. if (!Flags.hasNoSignedZeros() && !Options.NoSignedZerosFPMath) return SDValue(); // (fma (fneg a) b c) => (fnmsub a b c) // (fnmsub (fneg a) b c) => (fma a b c) if (SDValue NegN0 = getCheaperNegatedExpression(N0, DAG, LegalOps, CodeSize)) return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, NegN0, N1, N2, Flags); // (fma a (fneg b) c) => (fnmsub a b c) // (fnmsub a (fneg b) c) => (fma a b c) if (SDValue NegN1 = getCheaperNegatedExpression(N1, DAG, LegalOps, CodeSize)) return DAG.getNode(invertFMAOpcode(Opc), Loc, VT, N0, NegN1, N2, Flags); return SDValue(); } bool PPCTargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const { // Only duplicate to increase tail-calls for the 64bit SysV ABIs. if (!Subtarget.is64BitELFABI()) return false; // If not a tail call then no need to proceed. if (!CI->isTailCall()) return false; // If sibling calls have been disabled and tail-calls aren't guaranteed // there is no reason to duplicate. auto &TM = getTargetMachine(); if (!TM.Options.GuaranteedTailCallOpt && DisableSCO) return false; // Can't tail call a function called indirectly, or if it has variadic args. const Function *Callee = CI->getCalledFunction(); if (!Callee || Callee->isVarArg()) return false; // Make sure the callee and caller calling conventions are eligible for tco. const Function *Caller = CI->getParent()->getParent(); if (!areCallingConvEligibleForTCO_64SVR4(Caller->getCallingConv(), CI->getCallingConv())) return false; // If the function is local then we have a good chance at tail-calling it return getTargetMachine().shouldAssumeDSOLocal(Callee); } bool PPCTargetLowering:: isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const { const Value *Mask = AndI.getOperand(1); // If the mask is suitable for andi. or andis. we should sink the and. if (const ConstantInt *CI = dyn_cast(Mask)) { // Can't handle constants wider than 64-bits. if (CI->getBitWidth() > 64) return false; int64_t ConstVal = CI->getZExtValue(); return isUInt<16>(ConstVal) || (isUInt<16>(ConstVal >> 16) && !(ConstVal & 0xFFFF)); } // For non-constant masks, we can always use the record-form and. return true; } /// getAddrModeForFlags - Based on the set of address flags, select the most /// optimal instruction format to match by. PPC::AddrMode PPCTargetLowering::getAddrModeForFlags(unsigned Flags) const { // This is not a node we should be handling here. if (Flags == PPC::MOF_None) return PPC::AM_None; // Unaligned D-Forms are tried first, followed by the aligned D-Forms. for (auto FlagSet : AddrModesMap.at(PPC::AM_DForm)) if ((Flags & FlagSet) == FlagSet) return PPC::AM_DForm; for (auto FlagSet : AddrModesMap.at(PPC::AM_DSForm)) if ((Flags & FlagSet) == FlagSet) return PPC::AM_DSForm; for (auto FlagSet : AddrModesMap.at(PPC::AM_DQForm)) if ((Flags & FlagSet) == FlagSet) return PPC::AM_DQForm; for (auto FlagSet : AddrModesMap.at(PPC::AM_PrefixDForm)) if ((Flags & FlagSet) == FlagSet) return PPC::AM_PrefixDForm; // If no other forms are selected, return an X-Form as it is the most // general addressing mode. return PPC::AM_XForm; } /// Set alignment flags based on whether or not the Frame Index is aligned. /// Utilized when computing flags for address computation when selecting /// load and store instructions. static void setAlignFlagsForFI(SDValue N, unsigned &FlagSet, SelectionDAG &DAG) { bool IsAdd = ((N.getOpcode() == ISD::ADD) || (N.getOpcode() == ISD::OR)); FrameIndexSDNode *FI = dyn_cast(IsAdd ? N.getOperand(0) : N); if (!FI) return; const MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); unsigned FrameIndexAlign = MFI.getObjectAlign(FI->getIndex()).value(); // If this is (add $FI, $S16Imm), the alignment flags are already set // based on the immediate. We just need to clear the alignment flags // if the FI alignment is weaker. if ((FrameIndexAlign % 4) != 0) FlagSet &= ~PPC::MOF_RPlusSImm16Mult4; if ((FrameIndexAlign % 16) != 0) FlagSet &= ~PPC::MOF_RPlusSImm16Mult16; // If the address is a plain FrameIndex, set alignment flags based on // FI alignment. if (!IsAdd) { if ((FrameIndexAlign % 4) == 0) FlagSet |= PPC::MOF_RPlusSImm16Mult4; if ((FrameIndexAlign % 16) == 0) FlagSet |= PPC::MOF_RPlusSImm16Mult16; } } /// Given a node, compute flags that are used for address computation when /// selecting load and store instructions. The flags computed are stored in /// FlagSet. This function takes into account whether the node is a constant, /// an ADD, OR, or a constant, and computes the address flags accordingly. static void computeFlagsForAddressComputation(SDValue N, unsigned &FlagSet, SelectionDAG &DAG) { // Set the alignment flags for the node depending on if the node is // 4-byte or 16-byte aligned. auto SetAlignFlagsForImm = [&](uint64_t Imm) { if ((Imm & 0x3) == 0) FlagSet |= PPC::MOF_RPlusSImm16Mult4; if ((Imm & 0xf) == 0) FlagSet |= PPC::MOF_RPlusSImm16Mult16; }; if (ConstantSDNode *CN = dyn_cast(N)) { // All 32-bit constants can be computed as LIS + Disp. const APInt &ConstImm = CN->getAPIntValue(); if (ConstImm.isSignedIntN(32)) { // Flag to handle 32-bit constants. FlagSet |= PPC::MOF_AddrIsSImm32; SetAlignFlagsForImm(ConstImm.getZExtValue()); setAlignFlagsForFI(N, FlagSet, DAG); } if (ConstImm.isSignedIntN(34)) // Flag to handle 34-bit constants. FlagSet |= PPC::MOF_RPlusSImm34; else // Let constant materialization handle large constants. FlagSet |= PPC::MOF_NotAddNorCst; } else if (N.getOpcode() == ISD::ADD || provablyDisjointOr(DAG, N)) { // This address can be represented as an addition of: // - Register + Imm16 (possibly a multiple of 4/16) // - Register + Imm34 // - Register + PPCISD::Lo // - Register + Register // In any case, we won't have to match this as Base + Zero. SDValue RHS = N.getOperand(1); if (ConstantSDNode *CN = dyn_cast(RHS)) { const APInt &ConstImm = CN->getAPIntValue(); if (ConstImm.isSignedIntN(16)) { FlagSet |= PPC::MOF_RPlusSImm16; // Signed 16-bit immediates. SetAlignFlagsForImm(ConstImm.getZExtValue()); setAlignFlagsForFI(N, FlagSet, DAG); } if (ConstImm.isSignedIntN(34)) FlagSet |= PPC::MOF_RPlusSImm34; // Signed 34-bit immediates. else FlagSet |= PPC::MOF_RPlusR; // Register. } else if (RHS.getOpcode() == PPCISD::Lo && !RHS.getConstantOperandVal(1)) FlagSet |= PPC::MOF_RPlusLo; // PPCISD::Lo. else FlagSet |= PPC::MOF_RPlusR; } else { // The address computation is not a constant or an addition. setAlignFlagsForFI(N, FlagSet, DAG); FlagSet |= PPC::MOF_NotAddNorCst; } } static bool isPCRelNode(SDValue N) { return (N.getOpcode() == PPCISD::MAT_PCREL_ADDR || isValidPCRelNode(N) || isValidPCRelNode(N) || isValidPCRelNode(N) || isValidPCRelNode(N)); } /// computeMOFlags - Given a node N and it's Parent (a MemSDNode), compute /// the address flags of the load/store instruction that is to be matched. unsigned PPCTargetLowering::computeMOFlags(const SDNode *Parent, SDValue N, SelectionDAG &DAG) const { unsigned FlagSet = PPC::MOF_None; // Compute subtarget flags. if (!Subtarget.hasP9Vector()) FlagSet |= PPC::MOF_SubtargetBeforeP9; else FlagSet |= PPC::MOF_SubtargetP9; if (Subtarget.hasPrefixInstrs()) FlagSet |= PPC::MOF_SubtargetP10; if (Subtarget.hasSPE()) FlagSet |= PPC::MOF_SubtargetSPE; // Check if we have a PCRel node and return early. if ((FlagSet & PPC::MOF_SubtargetP10) && isPCRelNode(N)) return FlagSet; // If the node is the paired load/store intrinsics, compute flags for // address computation and return early. unsigned ParentOp = Parent->getOpcode(); if (Subtarget.isISA3_1() && ((ParentOp == ISD::INTRINSIC_W_CHAIN) || (ParentOp == ISD::INTRINSIC_VOID))) { unsigned ID = Parent->getConstantOperandVal(1); if ((ID == Intrinsic::ppc_vsx_lxvp) || (ID == Intrinsic::ppc_vsx_stxvp)) { SDValue IntrinOp = (ID == Intrinsic::ppc_vsx_lxvp) ? Parent->getOperand(2) : Parent->getOperand(3); computeFlagsForAddressComputation(IntrinOp, FlagSet, DAG); FlagSet |= PPC::MOF_Vector; return FlagSet; } } // Mark this as something we don't want to handle here if it is atomic // or pre-increment instruction. if (const LSBaseSDNode *LSB = dyn_cast(Parent)) if (LSB->isIndexed()) return PPC::MOF_None; // Compute in-memory type flags. This is based on if there are scalars, // floats or vectors. const MemSDNode *MN = dyn_cast(Parent); assert(MN && "Parent should be a MemSDNode!"); EVT MemVT = MN->getMemoryVT(); unsigned Size = MemVT.getSizeInBits(); if (MemVT.isScalarInteger()) { assert(Size <= 128 && "Not expecting scalar integers larger than 16 bytes!"); if (Size < 32) FlagSet |= PPC::MOF_SubWordInt; else if (Size == 32) FlagSet |= PPC::MOF_WordInt; else FlagSet |= PPC::MOF_DoubleWordInt; } else if (MemVT.isVector() && !MemVT.isFloatingPoint()) { // Integer vectors. if (Size == 128) FlagSet |= PPC::MOF_Vector; else if (Size == 256) { assert(Subtarget.pairedVectorMemops() && "256-bit vectors are only available when paired vector memops is " "enabled!"); FlagSet |= PPC::MOF_Vector; } else llvm_unreachable("Not expecting illegal vectors!"); } else { // Floating point type: can be scalar, f128 or vector types. if (Size == 32 || Size == 64) FlagSet |= PPC::MOF_ScalarFloat; else if (MemVT == MVT::f128 || MemVT.isVector()) FlagSet |= PPC::MOF_Vector; else llvm_unreachable("Not expecting illegal scalar floats!"); } // Compute flags for address computation. computeFlagsForAddressComputation(N, FlagSet, DAG); // Compute type extension flags. if (const LoadSDNode *LN = dyn_cast(Parent)) { switch (LN->getExtensionType()) { case ISD::SEXTLOAD: FlagSet |= PPC::MOF_SExt; break; case ISD::EXTLOAD: case ISD::ZEXTLOAD: FlagSet |= PPC::MOF_ZExt; break; case ISD::NON_EXTLOAD: FlagSet |= PPC::MOF_NoExt; break; } } else FlagSet |= PPC::MOF_NoExt; // For integers, no extension is the same as zero extension. // We set the extension mode to zero extension so we don't have // to add separate entries in AddrModesMap for loads and stores. if (MemVT.isScalarInteger() && (FlagSet & PPC::MOF_NoExt)) { FlagSet |= PPC::MOF_ZExt; FlagSet &= ~PPC::MOF_NoExt; } // If we don't have prefixed instructions, 34-bit constants should be // treated as PPC::MOF_NotAddNorCst so they can match D-Forms. bool IsNonP1034BitConst = ((PPC::MOF_RPlusSImm34 | PPC::MOF_AddrIsSImm32 | PPC::MOF_SubtargetP10) & FlagSet) == PPC::MOF_RPlusSImm34; if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::OR && IsNonP1034BitConst) FlagSet |= PPC::MOF_NotAddNorCst; return FlagSet; } /// SelectForceXFormMode - Given the specified address, force it to be /// represented as an indexed [r+r] operation (an XForm instruction). PPC::AddrMode PPCTargetLowering::SelectForceXFormMode(SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG) const { PPC::AddrMode Mode = PPC::AM_XForm; int16_t ForceXFormImm = 0; if (provablyDisjointOr(DAG, N) && !isIntS16Immediate(N.getOperand(1), ForceXFormImm)) { Disp = N.getOperand(0); Base = N.getOperand(1); return Mode; } // If the address is the result of an add, we will utilize the fact that the // address calculation includes an implicit add. However, we can reduce // register pressure if we do not materialize a constant just for use as the // index register. We only get rid of the add if it is not an add of a // value and a 16-bit signed constant and both have a single use. if (N.getOpcode() == ISD::ADD && (!isIntS16Immediate(N.getOperand(1), ForceXFormImm) || !N.getOperand(1).hasOneUse() || !N.getOperand(0).hasOneUse())) { Disp = N.getOperand(0); Base = N.getOperand(1); return Mode; } // Otherwise, use R0 as the base register. Disp = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, N.getValueType()); Base = N; return Mode; } bool PPCTargetLowering::splitValueIntoRegisterParts( SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional CC) const { EVT ValVT = Val.getValueType(); // If we are splitting a scalar integer into f64 parts (i.e. so they // can be placed into VFRC registers), we need to zero extend and // bitcast the values. This will ensure the value is placed into a // VSR using direct moves or stack operations as needed. if (PartVT == MVT::f64 && (ValVT == MVT::i32 || ValVT == MVT::i16 || ValVT == MVT::i8)) { Val = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i64, Val); Val = DAG.getNode(ISD::BITCAST, DL, MVT::f64, Val); Parts[0] = Val; return true; } return false; } SDValue PPCTargetLowering::lowerToLibCall(const char *LibCallName, SDValue Op, SelectionDAG &DAG) const { const TargetLowering &TLI = DAG.getTargetLoweringInfo(); TargetLowering::CallLoweringInfo CLI(DAG); EVT RetVT = Op.getValueType(); Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); SDValue Callee = DAG.getExternalSymbol(LibCallName, TLI.getPointerTy(DAG.getDataLayout())); bool SignExtend = TLI.shouldSignExtendTypeInLibCall(RetVT, false); TargetLowering::ArgListTy Args; TargetLowering::ArgListEntry Entry; for (const SDValue &N : Op->op_values()) { EVT ArgVT = N.getValueType(); Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); Entry.Node = N; Entry.Ty = ArgTy; Entry.IsSExt = TLI.shouldSignExtendTypeInLibCall(ArgVT, SignExtend); Entry.IsZExt = !Entry.IsSExt; Args.push_back(Entry); } SDValue InChain = DAG.getEntryNode(); SDValue TCChain = InChain; const Function &F = DAG.getMachineFunction().getFunction(); bool isTailCall = TLI.isInTailCallPosition(DAG, Op.getNode(), TCChain) && (RetTy == F.getReturnType() || F.getReturnType()->isVoidTy()); if (isTailCall) InChain = TCChain; CLI.setDebugLoc(SDLoc(Op)) .setChain(InChain) .setLibCallee(CallingConv::C, RetTy, Callee, std::move(Args)) .setTailCall(isTailCall) .setSExtResult(SignExtend) .setZExtResult(!SignExtend) .setIsPostTypeLegalization(true); return TLI.LowerCallTo(CLI).first; } SDValue PPCTargetLowering::lowerLibCallBasedOnType( const char *LibCallFloatName, const char *LibCallDoubleName, SDValue Op, SelectionDAG &DAG) const { if (Op.getValueType() == MVT::f32) return lowerToLibCall(LibCallFloatName, Op, DAG); if (Op.getValueType() == MVT::f64) return lowerToLibCall(LibCallDoubleName, Op, DAG); return SDValue(); } bool PPCTargetLowering::isLowringToMASSFiniteSafe(SDValue Op) const { SDNodeFlags Flags = Op.getNode()->getFlags(); return isLowringToMASSSafe(Op) && Flags.hasNoSignedZeros() && Flags.hasNoNaNs() && Flags.hasNoInfs(); } bool PPCTargetLowering::isLowringToMASSSafe(SDValue Op) const { return Op.getNode()->getFlags().hasApproximateFuncs(); } bool PPCTargetLowering::isScalarMASSConversionEnabled() const { return getTargetMachine().Options.PPCGenScalarMASSEntries; } SDValue PPCTargetLowering::lowerLibCallBase(const char *LibCallDoubleName, const char *LibCallFloatName, const char *LibCallDoubleNameFinite, const char *LibCallFloatNameFinite, SDValue Op, SelectionDAG &DAG) const { if (!isScalarMASSConversionEnabled() || !isLowringToMASSSafe(Op)) return SDValue(); if (!isLowringToMASSFiniteSafe(Op)) return lowerLibCallBasedOnType(LibCallFloatName, LibCallDoubleName, Op, DAG); return lowerLibCallBasedOnType(LibCallFloatNameFinite, LibCallDoubleNameFinite, Op, DAG); } SDValue PPCTargetLowering::lowerPow(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_pow", "__xl_powf", "__xl_pow_finite", "__xl_powf_finite", Op, DAG); } SDValue PPCTargetLowering::lowerSin(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_sin", "__xl_sinf", "__xl_sin_finite", "__xl_sinf_finite", Op, DAG); } SDValue PPCTargetLowering::lowerCos(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_cos", "__xl_cosf", "__xl_cos_finite", "__xl_cosf_finite", Op, DAG); } SDValue PPCTargetLowering::lowerLog(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_log", "__xl_logf", "__xl_log_finite", "__xl_logf_finite", Op, DAG); } SDValue PPCTargetLowering::lowerLog10(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_log10", "__xl_log10f", "__xl_log10_finite", "__xl_log10f_finite", Op, DAG); } SDValue PPCTargetLowering::lowerExp(SDValue Op, SelectionDAG &DAG) const { return lowerLibCallBase("__xl_exp", "__xl_expf", "__xl_exp_finite", "__xl_expf_finite", Op, DAG); } // If we happen to match to an aligned D-Form, check if the Frame Index is // adequately aligned. If it is not, reset the mode to match to X-Form. static void setXFormForUnalignedFI(SDValue N, unsigned Flags, PPC::AddrMode &Mode) { if (!isa(N)) return; if ((Mode == PPC::AM_DSForm && !(Flags & PPC::MOF_RPlusSImm16Mult4)) || (Mode == PPC::AM_DQForm && !(Flags & PPC::MOF_RPlusSImm16Mult16))) Mode = PPC::AM_XForm; } /// SelectOptimalAddrMode - Based on a node N and it's Parent (a MemSDNode), /// compute the address flags of the node, get the optimal address mode based /// on the flags, and set the Base and Disp based on the address mode. PPC::AddrMode PPCTargetLowering::SelectOptimalAddrMode(const SDNode *Parent, SDValue N, SDValue &Disp, SDValue &Base, SelectionDAG &DAG, MaybeAlign Align) const { SDLoc DL(Parent); // Compute the address flags. unsigned Flags = computeMOFlags(Parent, N, DAG); // Get the optimal address mode based on the Flags. PPC::AddrMode Mode = getAddrModeForFlags(Flags); // If the address mode is DS-Form or DQ-Form, check if the FI is aligned. // Select an X-Form load if it is not. setXFormForUnalignedFI(N, Flags, Mode); // Set the mode to PC-Relative addressing mode if we have a valid PC-Rel node. if ((Mode == PPC::AM_XForm) && isPCRelNode(N)) { assert(Subtarget.isUsingPCRelativeCalls() && "Must be using PC-Relative calls when a valid PC-Relative node is " "present!"); Mode = PPC::AM_PCRel; } // Set Base and Disp accordingly depending on the address mode. switch (Mode) { case PPC::AM_DForm: case PPC::AM_DSForm: case PPC::AM_DQForm: { // This is a register plus a 16-bit immediate. The base will be the // register and the displacement will be the immediate unless it // isn't sufficiently aligned. if (Flags & PPC::MOF_RPlusSImm16) { SDValue Op0 = N.getOperand(0); SDValue Op1 = N.getOperand(1); int16_t Imm = Op1->getAsZExtVal(); if (!Align || isAligned(*Align, Imm)) { Disp = DAG.getTargetConstant(Imm, DL, N.getValueType()); Base = Op0; if (FrameIndexSDNode *FI = dyn_cast(Op0)) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } break; } } // This is a register plus the @lo relocation. The base is the register // and the displacement is the global address. else if (Flags & PPC::MOF_RPlusLo) { Disp = N.getOperand(1).getOperand(0); // The global address. assert(Disp.getOpcode() == ISD::TargetGlobalAddress || Disp.getOpcode() == ISD::TargetGlobalTLSAddress || Disp.getOpcode() == ISD::TargetConstantPool || Disp.getOpcode() == ISD::TargetJumpTable); Base = N.getOperand(0); break; } // This is a constant address at most 32 bits. The base will be // zero or load-immediate-shifted and the displacement will be // the low 16 bits of the address. else if (Flags & PPC::MOF_AddrIsSImm32) { auto *CN = cast(N); EVT CNType = CN->getValueType(0); uint64_t CNImm = CN->getZExtValue(); // If this address fits entirely in a 16-bit sext immediate field, codegen // this as "d, 0". int16_t Imm; if (isIntS16Immediate(CN, Imm) && (!Align || isAligned(*Align, Imm))) { Disp = DAG.getTargetConstant(Imm, DL, CNType); Base = DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, CNType); break; } // Handle 32-bit sext immediate with LIS + Addr mode. if ((CNType == MVT::i32 || isInt<32>(CNImm)) && (!Align || isAligned(*Align, CNImm))) { int32_t Addr = (int32_t)CNImm; // Otherwise, break this down into LIS + Disp. Disp = DAG.getTargetConstant((int16_t)Addr, DL, MVT::i32); Base = DAG.getTargetConstant((Addr - (int16_t)Addr) >> 16, DL, MVT::i32); uint32_t LIS = CNType == MVT::i32 ? PPC::LIS : PPC::LIS8; Base = SDValue(DAG.getMachineNode(LIS, DL, CNType, Base), 0); break; } } // Otherwise, the PPC:MOF_NotAdd flag is set. Load/Store is Non-foldable. Disp = DAG.getTargetConstant(0, DL, getPointerTy(DAG.getDataLayout())); if (FrameIndexSDNode *FI = dyn_cast(N)) { Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); fixupFuncForFI(DAG, FI->getIndex(), N.getValueType()); } else Base = N; break; } case PPC::AM_PrefixDForm: { int64_t Imm34 = 0; unsigned Opcode = N.getOpcode(); if (((Opcode == ISD::ADD) || (Opcode == ISD::OR)) && (isIntS34Immediate(N.getOperand(1), Imm34))) { // N is an Add/OR Node, and it's operand is a 34-bit signed immediate. Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); if (FrameIndexSDNode *FI = dyn_cast(N.getOperand(0))) Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType()); else Base = N.getOperand(0); } else if (isIntS34Immediate(N, Imm34)) { // The address is a 34-bit signed immediate. Disp = DAG.getTargetConstant(Imm34, DL, N.getValueType()); Base = DAG.getRegister(PPC::ZERO8, N.getValueType()); } break; } case PPC::AM_PCRel: { // When selecting PC-Relative instructions, "Base" is not utilized as // we select the address as [PC+imm]. Disp = N; break; } case PPC::AM_None: break; default: { // By default, X-Form is always available to be selected. // When a frame index is not aligned, we also match by XForm. FrameIndexSDNode *FI = dyn_cast(N); Base = FI ? N : N.getOperand(1); Disp = FI ? DAG.getRegister(Subtarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO, N.getValueType()) : N.getOperand(0); break; } } return Mode; } CCAssignFn *PPCTargetLowering::ccAssignFnForCall(CallingConv::ID CC, bool Return, bool IsVarArg) const { switch (CC) { case CallingConv::Cold: return (Return ? RetCC_PPC_Cold : CC_PPC64_ELF); default: return CC_PPC64_ELF; } } bool PPCTargetLowering::shouldInlineQuadwordAtomics() const { return Subtarget.isPPC64() && Subtarget.hasQuadwordAtomics(); } TargetLowering::AtomicExpansionKind PPCTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { unsigned Size = AI->getType()->getPrimitiveSizeInBits(); if (shouldInlineQuadwordAtomics() && Size == 128) return AtomicExpansionKind::MaskedIntrinsic; switch (AI->getOperation()) { case AtomicRMWInst::UIncWrap: case AtomicRMWInst::UDecWrap: return AtomicExpansionKind::CmpXChg; default: return TargetLowering::shouldExpandAtomicRMWInIR(AI); } llvm_unreachable("unreachable atomicrmw operation"); } TargetLowering::AtomicExpansionKind PPCTargetLowering::shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const { unsigned Size = AI->getNewValOperand()->getType()->getPrimitiveSizeInBits(); if (shouldInlineQuadwordAtomics() && Size == 128) return AtomicExpansionKind::MaskedIntrinsic; return TargetLowering::shouldExpandAtomicCmpXchgInIR(AI); } static Intrinsic::ID getIntrinsicForAtomicRMWBinOp128(AtomicRMWInst::BinOp BinOp) { switch (BinOp) { default: llvm_unreachable("Unexpected AtomicRMW BinOp"); case AtomicRMWInst::Xchg: return Intrinsic::ppc_atomicrmw_xchg_i128; case AtomicRMWInst::Add: return Intrinsic::ppc_atomicrmw_add_i128; case AtomicRMWInst::Sub: return Intrinsic::ppc_atomicrmw_sub_i128; case AtomicRMWInst::And: return Intrinsic::ppc_atomicrmw_and_i128; case AtomicRMWInst::Or: return Intrinsic::ppc_atomicrmw_or_i128; case AtomicRMWInst::Xor: return Intrinsic::ppc_atomicrmw_xor_i128; case AtomicRMWInst::Nand: return Intrinsic::ppc_atomicrmw_nand_i128; } } Value *PPCTargetLowering::emitMaskedAtomicRMWIntrinsic( IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const { assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = Incr->getType(); assert(ValTy->getPrimitiveSizeInBits() == 128); Function *RMW = Intrinsic::getDeclaration( M, getIntrinsicForAtomicRMWBinOp128(AI->getOperation())); Type *Int64Ty = Type::getInt64Ty(M->getContext()); Value *IncrLo = Builder.CreateTrunc(Incr, Int64Ty, "incr_lo"); Value *IncrHi = Builder.CreateTrunc(Builder.CreateLShr(Incr, 64), Int64Ty, "incr_hi"); Value *LoHi = Builder.CreateCall(RMW, {AlignedAddr, IncrLo, IncrHi}); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); } Value *PPCTargetLowering::emitMaskedAtomicCmpXchgIntrinsic( IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const { assert(shouldInlineQuadwordAtomics() && "Only support quadword now"); Module *M = Builder.GetInsertBlock()->getParent()->getParent(); Type *ValTy = CmpVal->getType(); assert(ValTy->getPrimitiveSizeInBits() == 128); Function *IntCmpXchg = Intrinsic::getDeclaration(M, Intrinsic::ppc_cmpxchg_i128); Type *Int64Ty = Type::getInt64Ty(M->getContext()); Value *CmpLo = Builder.CreateTrunc(CmpVal, Int64Ty, "cmp_lo"); Value *CmpHi = Builder.CreateTrunc(Builder.CreateLShr(CmpVal, 64), Int64Ty, "cmp_hi"); Value *NewLo = Builder.CreateTrunc(NewVal, Int64Ty, "new_lo"); Value *NewHi = Builder.CreateTrunc(Builder.CreateLShr(NewVal, 64), Int64Ty, "new_hi"); emitLeadingFence(Builder, CI, Ord); Value *LoHi = Builder.CreateCall(IntCmpXchg, {AlignedAddr, CmpLo, CmpHi, NewLo, NewHi}); emitTrailingFence(Builder, CI, Ord); Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); return Builder.CreateOr( Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 64)), "val64"); }