//===----------------------- MipsBranchExpansion.cpp ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// \file /// /// This pass do two things: /// - it expands a branch or jump instruction into a long branch if its offset /// is too large to fit into its immediate field, /// - it inserts nops to prevent forbidden slot hazards. /// /// The reason why this pass combines these two tasks is that one of these two /// tasks can break the result of the previous one. /// /// Example of that is a situation where at first, no branch should be expanded, /// but after adding at least one nop somewhere in the code to prevent a /// forbidden slot hazard, offset of some branches may go out of range. In that /// case it is necessary to check again if there is some branch that needs /// expansion. On the other hand, expanding some branch may cause a control /// transfer instruction to appear in the forbidden slot, which is a hazard that /// should be fixed. This pass alternates between this two tasks untill no /// changes are made. Only then we can be sure that all branches are expanded /// properly, and no hazard situations exist. /// /// Regarding branch expanding: /// /// When branch instruction like beqzc or bnezc has offset that is too large /// to fit into its immediate field, it has to be expanded to another /// instruction or series of instructions. /// /// FIXME: Fix pc-region jump instructions which cross 256MB segment boundaries. /// TODO: Handle out of range bc, b (pseudo) instructions. /// /// Regarding compact branch hazard prevention: /// /// Hazards handled: forbidden slots for MIPSR6, FPU slots for MIPS3 and below, /// load delay slots for MIPS1. /// /// A forbidden slot hazard occurs when a compact branch instruction is executed /// and the adjacent instruction in memory is a control transfer instruction /// such as a branch or jump, ERET, ERETNC, DERET, WAIT and PAUSE. /// /// For example: /// /// 0x8004 bnec a1,v0, /// 0x8008 beqc a1,a2, /// /// In such cases, the processor is required to signal a Reserved Instruction /// exception. /// /// Here, if the instruction at 0x8004 is executed, the processor will raise an /// exception as there is a control transfer instruction at 0x8008. /// /// There are two sources of forbidden slot hazards: /// /// A) A previous pass has created a compact branch directly. /// B) Transforming a delay slot branch into compact branch. This case can be /// difficult to process as lookahead for hazards is insufficient, as /// backwards delay slot fillling can also produce hazards in previously /// processed instuctions. /// /// In future this pass can be extended (or new pass can be created) to handle /// other pipeline hazards, such as various MIPS1 hazards, processor errata that /// require instruction reorganization, etc. /// /// This pass has to run after the delay slot filler as that pass can introduce /// pipeline hazards such as compact branch hazard, hence the existing hazard /// recognizer is not suitable. /// //===----------------------------------------------------------------------===// #include "MCTargetDesc/MipsABIInfo.h" #include "MCTargetDesc/MipsBaseInfo.h" #include "MCTargetDesc/MipsMCNaCl.h" #include "MCTargetDesc/MipsMCTargetDesc.h" #include "Mips.h" #include "MipsInstrInfo.h" #include "MipsMachineFunction.h" #include "MipsSubtarget.h" #include "MipsTargetMachine.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Target/TargetMachine.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "mips-branch-expansion" STATISTIC(NumInsertedNops, "Number of nops inserted"); STATISTIC(LongBranches, "Number of long branches."); static cl::opt SkipLongBranch("skip-mips-long-branch", cl::init(false), cl::desc("MIPS: Skip branch expansion pass."), cl::Hidden); static cl::opt ForceLongBranch("force-mips-long-branch", cl::init(false), cl::desc("MIPS: Expand all branches to long format."), cl::Hidden); namespace { using Iter = MachineBasicBlock::iterator; using ReverseIter = MachineBasicBlock::reverse_iterator; struct MBBInfo { uint64_t Size = 0; bool HasLongBranch = false; MachineInstr *Br = nullptr; uint64_t Offset = 0; MBBInfo() = default; }; class MipsBranchExpansion : public MachineFunctionPass { public: static char ID; MipsBranchExpansion() : MachineFunctionPass(ID), ABI(MipsABIInfo::Unknown()) { initializeMipsBranchExpansionPass(*PassRegistry::getPassRegistry()); } StringRef getPassName() const override { return "Mips Branch Expansion Pass"; } bool runOnMachineFunction(MachineFunction &F) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } private: void splitMBB(MachineBasicBlock *MBB); void initMBBInfo(); int64_t computeOffset(const MachineInstr *Br); uint64_t computeOffsetFromTheBeginning(int MBB); void replaceBranch(MachineBasicBlock &MBB, Iter Br, const DebugLoc &DL, MachineBasicBlock *MBBOpnd); bool buildProperJumpMI(MachineBasicBlock *MBB, MachineBasicBlock::iterator Pos, DebugLoc DL); void expandToLongBranch(MBBInfo &Info); template bool handleSlot(Pred Predicate, Safe SafeInSlot); bool handleForbiddenSlot(); bool handleFPUDelaySlot(); bool handleLoadDelaySlot(); bool handlePossibleLongBranch(); const MipsSubtarget *STI; const MipsInstrInfo *TII; MachineFunction *MFp; SmallVector MBBInfos; bool IsPIC; MipsABIInfo ABI; bool ForceLongBranchFirstPass = false; }; } // end of anonymous namespace char MipsBranchExpansion::ID = 0; INITIALIZE_PASS(MipsBranchExpansion, DEBUG_TYPE, "Expand out of range branch instructions and fix forbidden" " slot hazards", false, false) /// Returns a pass that clears pipeline hazards. FunctionPass *llvm::createMipsBranchExpansion() { return new MipsBranchExpansion(); } // Find the next real instruction from the current position in current basic // block. static Iter getNextMachineInstrInBB(Iter Position) { Iter I = Position, E = Position->getParent()->end(); I = std::find_if_not(I, E, [](const Iter &Insn) { return Insn->isTransient(); }); return I; } // Find the next real instruction from the current position, looking through // basic block boundaries. static std::pair getNextMachineInstr(Iter Position, MachineBasicBlock *Parent) { if (Position == Parent->end()) { do { MachineBasicBlock *Succ = Parent->getNextNode(); if (Succ != nullptr && Parent->isSuccessor(Succ)) { Position = Succ->begin(); Parent = Succ; } else { return std::make_pair(Position, true); } } while (Parent->empty()); } Iter Instr = getNextMachineInstrInBB(Position); if (Instr == Parent->end()) { return getNextMachineInstr(Instr, Parent); } return std::make_pair(Instr, false); } /// Iterate over list of Br's operands and search for a MachineBasicBlock /// operand. static MachineBasicBlock *getTargetMBB(const MachineInstr &Br) { for (unsigned I = 0, E = Br.getDesc().getNumOperands(); I < E; ++I) { const MachineOperand &MO = Br.getOperand(I); if (MO.isMBB()) return MO.getMBB(); } llvm_unreachable("This instruction does not have an MBB operand."); } // Traverse the list of instructions backwards until a non-debug instruction is // found or it reaches E. static ReverseIter getNonDebugInstr(ReverseIter B, const ReverseIter &E) { for (; B != E; ++B) if (!B->isDebugInstr()) return B; return E; } // Split MBB if it has two direct jumps/branches. void MipsBranchExpansion::splitMBB(MachineBasicBlock *MBB) { ReverseIter End = MBB->rend(); ReverseIter LastBr = getNonDebugInstr(MBB->rbegin(), End); // Return if MBB has no branch instructions. if ((LastBr == End) || (!LastBr->isConditionalBranch() && !LastBr->isUnconditionalBranch())) return; ReverseIter FirstBr = getNonDebugInstr(std::next(LastBr), End); // MBB has only one branch instruction if FirstBr is not a branch // instruction. if ((FirstBr == End) || (!FirstBr->isConditionalBranch() && !FirstBr->isUnconditionalBranch())) return; assert(!FirstBr->isIndirectBranch() && "Unexpected indirect branch found."); // Create a new MBB. Move instructions in MBB to the newly created MBB. MachineBasicBlock *NewMBB = MFp->CreateMachineBasicBlock(MBB->getBasicBlock()); // Insert NewMBB and fix control flow. MachineBasicBlock *Tgt = getTargetMBB(*FirstBr); NewMBB->transferSuccessors(MBB); if (Tgt != getTargetMBB(*LastBr)) NewMBB->removeSuccessor(Tgt, true); MBB->addSuccessor(NewMBB); MBB->addSuccessor(Tgt); MFp->insert(std::next(MachineFunction::iterator(MBB)), NewMBB); NewMBB->splice(NewMBB->end(), MBB, LastBr.getReverse(), MBB->end()); } // Fill MBBInfos. void MipsBranchExpansion::initMBBInfo() { // Split the MBBs if they have two branches. Each basic block should have at // most one branch after this loop is executed. for (auto &MBB : *MFp) splitMBB(&MBB); MFp->RenumberBlocks(); MBBInfos.clear(); MBBInfos.resize(MFp->size()); for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) { MachineBasicBlock *MBB = MFp->getBlockNumbered(I); // Compute size of MBB. for (MachineInstr &MI : MBB->instrs()) MBBInfos[I].Size += TII->getInstSizeInBytes(MI); } } // Compute offset of branch in number of bytes. int64_t MipsBranchExpansion::computeOffset(const MachineInstr *Br) { int64_t Offset = 0; int ThisMBB = Br->getParent()->getNumber(); int TargetMBB = getTargetMBB(*Br)->getNumber(); // Compute offset of a forward branch. if (ThisMBB < TargetMBB) { for (int N = ThisMBB + 1; N < TargetMBB; ++N) Offset += MBBInfos[N].Size; return Offset + 4; } // Compute offset of a backward branch. for (int N = ThisMBB; N >= TargetMBB; --N) Offset += MBBInfos[N].Size; return -Offset + 4; } // Returns the distance in bytes up until MBB uint64_t MipsBranchExpansion::computeOffsetFromTheBeginning(int MBB) { uint64_t Offset = 0; for (int N = 0; N < MBB; ++N) Offset += MBBInfos[N].Size; return Offset; } // Replace Br with a branch which has the opposite condition code and a // MachineBasicBlock operand MBBOpnd. void MipsBranchExpansion::replaceBranch(MachineBasicBlock &MBB, Iter Br, const DebugLoc &DL, MachineBasicBlock *MBBOpnd) { unsigned NewOpc = TII->getOppositeBranchOpc(Br->getOpcode()); const MCInstrDesc &NewDesc = TII->get(NewOpc); MachineInstrBuilder MIB = BuildMI(MBB, Br, DL, NewDesc); for (unsigned I = 0, E = Br->getDesc().getNumOperands(); I < E; ++I) { MachineOperand &MO = Br->getOperand(I); switch (MO.getType()) { case MachineOperand::MO_Register: MIB.addReg(MO.getReg()); break; case MachineOperand::MO_Immediate: // Octeon BBIT family of branch has an immediate operand // (e.g. BBIT0 $v0, 3, %bb.1). if (!TII->isBranchWithImm(Br->getOpcode())) llvm_unreachable("Unexpected immediate in branch instruction"); MIB.addImm(MO.getImm()); break; case MachineOperand::MO_MachineBasicBlock: MIB.addMBB(MBBOpnd); break; default: llvm_unreachable("Unexpected operand type in branch instruction"); } } if (Br->hasDelaySlot()) { // Bundle the instruction in the delay slot to the newly created branch // and erase the original branch. assert(Br->isBundledWithSucc()); MachineBasicBlock::instr_iterator II = Br.getInstrIterator(); MIBundleBuilder(&*MIB).append((++II)->removeFromBundle()); } Br->eraseFromParent(); } bool MipsBranchExpansion::buildProperJumpMI(MachineBasicBlock *MBB, MachineBasicBlock::iterator Pos, DebugLoc DL) { bool HasR6 = ABI.IsN64() ? STI->hasMips64r6() : STI->hasMips32r6(); bool AddImm = HasR6 && !STI->useIndirectJumpsHazard(); unsigned JR = ABI.IsN64() ? Mips::JR64 : Mips::JR; unsigned JIC = ABI.IsN64() ? Mips::JIC64 : Mips::JIC; unsigned JR_HB = ABI.IsN64() ? Mips::JR_HB64 : Mips::JR_HB; unsigned JR_HB_R6 = ABI.IsN64() ? Mips::JR_HB64_R6 : Mips::JR_HB_R6; unsigned JumpOp; if (STI->useIndirectJumpsHazard()) JumpOp = HasR6 ? JR_HB_R6 : JR_HB; else JumpOp = HasR6 ? JIC : JR; if (JumpOp == Mips::JIC && STI->inMicroMipsMode()) JumpOp = Mips::JIC_MMR6; unsigned ATReg = ABI.IsN64() ? Mips::AT_64 : Mips::AT; MachineInstrBuilder Instr = BuildMI(*MBB, Pos, DL, TII->get(JumpOp)).addReg(ATReg); if (AddImm) Instr.addImm(0); return !AddImm; } // Expand branch instructions to long branches. // TODO: This function has to be fixed for beqz16 and bnez16, because it // currently assumes that all branches have 16-bit offsets, and will produce // wrong code if branches whose allowed offsets are [-128, -126, ..., 126] // are present. void MipsBranchExpansion::expandToLongBranch(MBBInfo &I) { MachineBasicBlock::iterator Pos; MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br); DebugLoc DL = I.Br->getDebugLoc(); const BasicBlock *BB = MBB->getBasicBlock(); MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB); MachineBasicBlock *LongBrMBB = MFp->CreateMachineBasicBlock(BB); MFp->insert(FallThroughMBB, LongBrMBB); MBB->replaceSuccessor(TgtMBB, LongBrMBB); if (IsPIC) { MachineBasicBlock *BalTgtMBB = MFp->CreateMachineBasicBlock(BB); MFp->insert(FallThroughMBB, BalTgtMBB); LongBrMBB->addSuccessor(BalTgtMBB); BalTgtMBB->addSuccessor(TgtMBB); // We must select between the MIPS32r6/MIPS64r6 BALC (which is a normal // instruction) and the pre-MIPS32r6/MIPS64r6 definition (which is an // pseudo-instruction wrapping BGEZAL). const unsigned BalOp = STI->hasMips32r6() ? STI->inMicroMipsMode() ? Mips::BALC_MMR6 : Mips::BALC : STI->inMicroMipsMode() ? Mips::BAL_BR_MM : Mips::BAL_BR; if (!ABI.IsN64()) { // Pre R6: // $longbr: // addiu $sp, $sp, -8 // sw $ra, 0($sp) // lui $at, %hi($tgt - $baltgt) // bal $baltgt // addiu $at, $at, %lo($tgt - $baltgt) // $baltgt: // addu $at, $ra, $at // lw $ra, 0($sp) // jr $at // addiu $sp, $sp, 8 // $fallthrough: // // R6: // $longbr: // addiu $sp, $sp, -8 // sw $ra, 0($sp) // lui $at, %hi($tgt - $baltgt) // addiu $at, $at, %lo($tgt - $baltgt) // balc $baltgt // $baltgt: // addu $at, $ra, $at // lw $ra, 0($sp) // addiu $sp, $sp, 8 // jic $at, 0 // $fallthrough: Pos = LongBrMBB->begin(); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP) .addImm(-8); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW)) .addReg(Mips::RA) .addReg(Mips::SP) .addImm(0); // LUi and ADDiu instructions create 32-bit offset of the target basic // block from the target of BAL(C) instruction. We cannot use immediate // value for this offset because it cannot be determined accurately when // the program has inline assembly statements. We therefore use the // relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which // are resolved during the fixup, so the values will always be correct. // // Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt) // expressions at this point (it is possible only at the MC layer), // we replace LUi and ADDiu with pseudo instructions // LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic // blocks as operands to these instructions. When lowering these pseudo // instructions to LUi and ADDiu in the MC layer, we will create // %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as // operands to lowered instructions. BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi), Mips::AT) .addMBB(TgtMBB, MipsII::MO_ABS_HI) .addMBB(BalTgtMBB); MachineInstrBuilder BalInstr = BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB); MachineInstrBuilder ADDiuInstr = BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_ADDiu), Mips::AT) .addReg(Mips::AT) .addMBB(TgtMBB, MipsII::MO_ABS_LO) .addMBB(BalTgtMBB); if (STI->hasMips32r6()) { LongBrMBB->insert(Pos, ADDiuInstr); LongBrMBB->insert(Pos, BalInstr); } else { LongBrMBB->insert(Pos, BalInstr); LongBrMBB->insert(Pos, ADDiuInstr); LongBrMBB->rbegin()->bundleWithPred(); } Pos = BalTgtMBB->begin(); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT) .addReg(Mips::RA) .addReg(Mips::AT); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA) .addReg(Mips::SP) .addImm(0); if (STI->isTargetNaCl()) // Bundle-align the target of indirect branch JR. TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN); // In NaCl, modifying the sp is not allowed in branch delay slot. // For MIPS32R6, we can skip using a delay slot branch. bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL); if (STI->isTargetNaCl() || !hasDelaySlot) { BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP) .addImm(8); } if (hasDelaySlot) { if (STI->isTargetNaCl()) { TII->insertNop(*BalTgtMBB, Pos, DL); } else { BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP) .addReg(Mips::SP) .addImm(8); } BalTgtMBB->rbegin()->bundleWithPred(); } } else { // Pre R6: // $longbr: // daddiu $sp, $sp, -16 // sd $ra, 0($sp) // daddiu $at, $zero, %hi($tgt - $baltgt) // dsll $at, $at, 16 // bal $baltgt // daddiu $at, $at, %lo($tgt - $baltgt) // $baltgt: // daddu $at, $ra, $at // ld $ra, 0($sp) // jr64 $at // daddiu $sp, $sp, 16 // $fallthrough: // R6: // $longbr: // daddiu $sp, $sp, -16 // sd $ra, 0($sp) // daddiu $at, $zero, %hi($tgt - $baltgt) // dsll $at, $at, 16 // daddiu $at, $at, %lo($tgt - $baltgt) // balc $baltgt // $baltgt: // daddu $at, $ra, $at // ld $ra, 0($sp) // daddiu $sp, $sp, 16 // jic $at, 0 // $fallthrough: // We assume the branch is within-function, and that offset is within // +/- 2GB. High 32 bits will therefore always be zero. // Note that this will work even if the offset is negative, because // of the +1 modification that's added in that case. For example, if the // offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is // // 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000 // // and the bits [47:32] are zero. For %highest // // 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000 // // and the bits [63:48] are zero. Pos = LongBrMBB->begin(); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64) .addReg(Mips::SP_64) .addImm(-16); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD)) .addReg(Mips::RA_64) .addReg(Mips::SP_64) .addImm(0); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64) .addReg(Mips::ZERO_64) .addMBB(TgtMBB, MipsII::MO_ABS_HI) .addMBB(BalTgtMBB); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64) .addReg(Mips::AT_64) .addImm(16); MachineInstrBuilder BalInstr = BuildMI(*MFp, DL, TII->get(BalOp)).addMBB(BalTgtMBB); MachineInstrBuilder DADDiuInstr = BuildMI(*MFp, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64) .addReg(Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_ABS_LO) .addMBB(BalTgtMBB); if (STI->hasMips32r6()) { LongBrMBB->insert(Pos, DADDiuInstr); LongBrMBB->insert(Pos, BalInstr); } else { LongBrMBB->insert(Pos, BalInstr); LongBrMBB->insert(Pos, DADDiuInstr); LongBrMBB->rbegin()->bundleWithPred(); } Pos = BalTgtMBB->begin(); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64) .addReg(Mips::RA_64) .addReg(Mips::AT_64); BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64) .addReg(Mips::SP_64) .addImm(0); bool hasDelaySlot = buildProperJumpMI(BalTgtMBB, Pos, DL); // If there is no delay slot, Insert stack adjustment before if (!hasDelaySlot) { BuildMI(*BalTgtMBB, std::prev(Pos), DL, TII->get(Mips::DADDiu), Mips::SP_64) .addReg(Mips::SP_64) .addImm(16); } else { BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64) .addReg(Mips::SP_64) .addImm(16); BalTgtMBB->rbegin()->bundleWithPred(); } } } else { // Not PIC Pos = LongBrMBB->begin(); LongBrMBB->addSuccessor(TgtMBB); // Compute the position of the potentiall jump instruction (basic blocks // before + 4 for the instruction) uint64_t JOffset = computeOffsetFromTheBeginning(MBB->getNumber()) + MBBInfos[MBB->getNumber()].Size + 4; uint64_t TgtMBBOffset = computeOffsetFromTheBeginning(TgtMBB->getNumber()); // If it's a forward jump, then TgtMBBOffset will be shifted by two // instructions if (JOffset < TgtMBBOffset) TgtMBBOffset += 2 * 4; // Compare 4 upper bits to check if it's the same segment bool SameSegmentJump = JOffset >> 28 == TgtMBBOffset >> 28; if (STI->hasMips32r6() && TII->isBranchOffsetInRange(Mips::BC, I.Offset)) { // R6: // $longbr: // bc $tgt // $fallthrough: // BuildMI(*LongBrMBB, Pos, DL, TII->get(STI->inMicroMipsMode() ? Mips::BC_MMR6 : Mips::BC)) .addMBB(TgtMBB); } else if (SameSegmentJump) { // Pre R6: // $longbr: // j $tgt // nop // $fallthrough: // BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::J)).addMBB(TgtMBB); TII->insertNop(*LongBrMBB, Pos, DL)->bundleWithPred(); } else { // At this point, offset where we need to branch does not fit into // immediate field of the branch instruction and is not in the same // segment as jump instruction. Therefore we will break it into couple // instructions, where we first load the offset into register, and then we // do branch register. if (ABI.IsN64()) { BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op_64), Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_HIGHEST); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op), Mips::AT_64) .addReg(Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_HIGHER); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64) .addReg(Mips::AT_64) .addImm(16); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op), Mips::AT_64) .addReg(Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_ABS_HI); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64) .addReg(Mips::AT_64) .addImm(16); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu2Op), Mips::AT_64) .addReg(Mips::AT_64) .addMBB(TgtMBB, MipsII::MO_ABS_LO); } else { BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_LUi2Op), Mips::AT) .addMBB(TgtMBB, MipsII::MO_ABS_HI); BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_ADDiu2Op), Mips::AT) .addReg(Mips::AT) .addMBB(TgtMBB, MipsII::MO_ABS_LO); } buildProperJumpMI(LongBrMBB, Pos, DL); } } if (I.Br->isUnconditionalBranch()) { // Change branch destination. assert(I.Br->getDesc().getNumOperands() == 1); I.Br->removeOperand(0); I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB)); } else // Change branch destination and reverse condition. replaceBranch(*MBB, I.Br, DL, &*FallThroughMBB); } static void emitGPDisp(MachineFunction &F, const MipsInstrInfo *TII) { MachineBasicBlock &MBB = F.front(); MachineBasicBlock::iterator I = MBB.begin(); DebugLoc DL = MBB.findDebugLoc(MBB.begin()); BuildMI(MBB, I, DL, TII->get(Mips::LUi), Mips::V0) .addExternalSymbol("_gp_disp", MipsII::MO_ABS_HI); BuildMI(MBB, I, DL, TII->get(Mips::ADDiu), Mips::V0) .addReg(Mips::V0) .addExternalSymbol("_gp_disp", MipsII::MO_ABS_LO); MBB.removeLiveIn(Mips::V0); } template bool MipsBranchExpansion::handleSlot(Pred Predicate, Safe SafeInSlot) { bool Changed = false; for (MachineFunction::iterator FI = MFp->begin(); FI != MFp->end(); ++FI) { for (Iter I = FI->begin(); I != FI->end(); ++I) { // Delay slot hazard handling. Use lookahead over state. if (!Predicate(*I)) continue; Iter IInSlot; bool LastInstInFunction = std::next(I) == FI->end() && std::next(FI) == MFp->end(); if (!LastInstInFunction) { std::pair Res = getNextMachineInstr(std::next(I), &*FI); LastInstInFunction |= Res.second; IInSlot = Res.first; } if (LastInstInFunction || !SafeInSlot(*IInSlot, *I)) { MachineBasicBlock::instr_iterator Iit = I->getIterator(); if (std::next(Iit) == FI->end() || std::next(Iit)->getOpcode() != Mips::NOP) { Changed = true; TII->insertNop(*(I->getParent()), std::next(I), I->getDebugLoc()) ->bundleWithPred(); NumInsertedNops++; } } } } return Changed; } bool MipsBranchExpansion::handleForbiddenSlot() { // Forbidden slot hazards are only defined for MIPSR6 but not microMIPSR6. if (!STI->hasMips32r6() || STI->inMicroMipsMode()) return false; return handleSlot( [this](auto &I) -> bool { return TII->HasForbiddenSlot(I); }, [this](auto &IInSlot, auto &I) -> bool { return TII->SafeInForbiddenSlot(IInSlot); }); } bool MipsBranchExpansion::handleFPUDelaySlot() { // FPU delay slots are only defined for MIPS3 and below. if (STI->hasMips32() || STI->hasMips4()) return false; return handleSlot([this](auto &I) -> bool { return TII->HasFPUDelaySlot(I); }, [this](auto &IInSlot, auto &I) -> bool { return TII->SafeInFPUDelaySlot(IInSlot, I); }); } bool MipsBranchExpansion::handleLoadDelaySlot() { // Load delay slot hazards are only for MIPS1. if (STI->hasMips2()) return false; return handleSlot( [this](auto &I) -> bool { return TII->HasLoadDelaySlot(I); }, [this](auto &IInSlot, auto &I) -> bool { return TII->SafeInLoadDelaySlot(IInSlot, I); }); } bool MipsBranchExpansion::handlePossibleLongBranch() { if (STI->inMips16Mode() || !STI->enableLongBranchPass()) return false; if (SkipLongBranch) return false; bool EverMadeChange = false, MadeChange = true; while (MadeChange) { MadeChange = false; initMBBInfo(); for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) { MachineBasicBlock *MBB = MFp->getBlockNumbered(I); // Search for MBB's branch instruction. ReverseIter End = MBB->rend(); ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End); if ((Br != End) && Br->isBranch() && !Br->isIndirectBranch() && (Br->isConditionalBranch() || (Br->isUnconditionalBranch() && IsPIC))) { int64_t Offset = computeOffset(&*Br); if (STI->isTargetNaCl()) { // The offset calculation does not include sandboxing instructions // that will be added later in the MC layer. Since at this point we // don't know the exact amount of code that "sandboxing" will add, we // conservatively estimate that code will not grow more than 100%. Offset *= 2; } if (ForceLongBranchFirstPass || !TII->isBranchOffsetInRange(Br->getOpcode(), Offset)) { MBBInfos[I].Offset = Offset; MBBInfos[I].Br = &*Br; } } } // End for ForceLongBranchFirstPass = false; SmallVectorImpl::iterator I, E = MBBInfos.end(); for (I = MBBInfos.begin(); I != E; ++I) { // Skip if this MBB doesn't have a branch or the branch has already been // converted to a long branch. if (!I->Br) continue; expandToLongBranch(*I); ++LongBranches; EverMadeChange = MadeChange = true; } MFp->RenumberBlocks(); } return EverMadeChange; } bool MipsBranchExpansion::runOnMachineFunction(MachineFunction &MF) { const TargetMachine &TM = MF.getTarget(); IsPIC = TM.isPositionIndependent(); ABI = static_cast(TM).getABI(); STI = &MF.getSubtarget(); TII = static_cast(STI->getInstrInfo()); if (IsPIC && ABI.IsO32() && MF.getInfo()->globalBaseRegSet()) emitGPDisp(MF, TII); MFp = &MF; ForceLongBranchFirstPass = ForceLongBranch; // Run these at least once. bool longBranchChanged = handlePossibleLongBranch(); bool forbiddenSlotChanged = handleForbiddenSlot(); bool fpuDelaySlotChanged = handleFPUDelaySlot(); bool loadDelaySlotChanged = handleLoadDelaySlot(); bool Changed = longBranchChanged || forbiddenSlotChanged || fpuDelaySlotChanged || loadDelaySlotChanged; // Then run them alternatively while there are changes. while (forbiddenSlotChanged) { longBranchChanged = handlePossibleLongBranch(); fpuDelaySlotChanged = handleFPUDelaySlot(); loadDelaySlotChanged = handleLoadDelaySlot(); if (!longBranchChanged && !fpuDelaySlotChanged && !loadDelaySlotChanged) break; forbiddenSlotChanged = handleForbiddenSlot(); } return Changed; }