//==- ARMScheduleM55.td - Arm Cortex-M55 Scheduling Definitions -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the scheduling model for the Arm Cortex-M55 processors. // //===----------------------------------------------------------------------===// // ===---------------------------------------------------------------------===// // Cortex-M55 is a lot like the M4/M33 in terms of scheduling. It technically // has an extra pipeline stage but that is unimportant for scheduling, just // starting our model a stage later. The main points of interest over an // Cortex-M4 are MVE instructions and the ability to dual issue thumb1 // instructions. // // // MVE // // The EPU pipelines now include both MVE and FP instructions. It has four // pipelines across 4 stages (E1-E4). These pipelines are "control", // "load/store", "integer" and "float/mul". We start the schedule at E2 to line // up with the rest of the pipeline we model, and take the latency as the time // between reading registers (almost always in E2) and register write (or // forward, if it allows it). This mean that a lot of instructions (including // loads) actually take 1 cycle (amazingly). // // Each MVE instruction needs to take 2 beats, each performing 64bits of the // 128bit vector operation. So long as the beats are to different pipelines, // the execution of the first-beat-of-the-second-instruction can overlap with // the second-beat-of-the-first. For example a sequence of VLDR;VADD;VMUL;VSTR // can look like this is a pipeline: // 1 2 3 4 5 // LD/ST : VLDR VLDR VSTR VSTR // INTEGER: VADD VADD // FP/MUL : VMUL VMUL // // But a sequence of VLDR;VLDRB;VADD;VSTR because the loads cannot overlap, // looks like: // 1 2 3 4 5 6 // LD/ST : VLDR VLDR VLDRB VLDRB VSTR VSTR // INTEGER: VADD VADD // // For this schedule, we currently model latencies and pipelines well for each // instruction. MVE instruction take two beats, modelled using // ReleaseAtCycles=[2]. // // // Dual Issue // // Cortex-M55 can dual issue two 16-bit T1 instructions providing one is one of // NOPs, ITs, Brs, ADDri/SUBri, UXTB/H, SXTB/H and MOVri's. NOPs and IT's are // not relevant (they will not appear when scheduling), Brs are only at the end // of the block. The others are more useful, and where the problems arise. // // The first problem comes from the fact that we will only be seeing Thumb2 // instructions at the point in the pipeline where we do the scheduling. The // Thumb2SizeReductionPass has not been run yet. Especially pre-ra scheduling // (where the scheduler has the most freedom) we can only really guess at which // instructions will become thumb1 instructions. We are quite optimistic, and // may get some things wrong as a result. // // The other problem is one of telling llvm what to do exactly. The way we // attempt to meld this is: // Set IssueWidth to 2 to allow 2 instructions per cycle. // All instructions we cannot dual issue are "SingleIssue=1" (MVE/FP and T2 // instructions) // We guess at another set of instructions that will become T1 instruction. // These become the primary instruction in a dual issue pair (the normal // one). These use normal resources and latencies, but set SingleIssue = 0. // We guess at another set of instructions that will be shrank down into T1 DI // instructions (add, sub, mov's, etc), which become the secondary. These // don't use a resource, and set SingleIssue = 0. // // So our guessing is a bit rough. It may be possible to improve this by moving // T2SizeReduction pass earlier in the pipeline, for example, so that at least // Post-RA scheduling sees what is T1/T2. It may also be possible to write a // custom instruction matcher for more accurately guess at T1 instructions. def CortexM55Model : SchedMachineModel { let MicroOpBufferSize = 0; // Explicitly set to zero since M55 is in-order. let IssueWidth = 2; // There is some dual-issue support in M55. let MispredictPenalty = 3; // Default is 10 let LoadLatency = 4; // Default is 4 let PostRAScheduler = 1; let FullInstRWOverlapCheck = 1; let CompleteModel = 0; let UnsupportedFeatures = [IsARM, HasNEON, HasDotProd, HasMatMulInt8, HasZCZ, IsNotMClass, HasV8, HasV8_3a, HasTrustZone, HasDFB, IsWindows]; } let SchedModel = CortexM55Model in { //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available. // Modeling each pipeline as a ProcResource using the BufferSize = 0 since // M55 is in-order. def M55UnitALU : ProcResource<1> { let BufferSize = 0; } // Int ALU def M55UnitVecALU : ProcResource<1> { let BufferSize = 0; } // MVE integer pipe def M55UnitVecFPALU : ProcResource<1> { let BufferSize = 0; } // MVE float pipe def M55UnitLoadStore : ProcResource<1> { let BufferSize = 0; } // MVE load/store pipe def M55UnitVecSys : ProcResource<1> { let BufferSize = 0; } // MVE control/sys pipe // Some VMOV's can go down either pipeline. FIXME: This M55Write2IntFPE2 is // intended to model the VMOV taking either Int or FP for 2 cycles. It is not // clear if the llvm scheduler is using it like we want though. def M55UnitVecIntFP: ProcResGroup<[M55UnitVecALU, M55UnitVecFPALU]>; //===----------------------------------------------------------------------===// // Subtarget-specific SchedWrite types which both map the ProcResources and // set the latency. //=====// // ALU // //=====// // Generic writes for Flags, GRPs and other extra operands (eg post-inc, vadc flags, vaddlv etc) def M55WriteLat0 : SchedWriteRes<[]> { let Latency = 0; let NumMicroOps = 0; } def M55WriteLat1 : SchedWriteRes<[]> { let Latency = 1; let NumMicroOps = 0; } def M55WriteLat2 : SchedWriteRes<[]> { let Latency = 2; let NumMicroOps = 0; } // DX instructions are ALU instructions that take a single cycle. The // instructions that may be shrank to T1 (and can be dual issued) are // SingleIssue = 0. The others are SingleIssue = 1. let SingleIssue = 0, Latency = 1 in { def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def M55WriteDX_DI : SchedWriteRes<[M55UnitALU]>; } let SingleIssue = 1, Latency = 1 in { def : WriteRes; def M55WriteDX_SI : SchedWriteRes<[M55UnitALU]>; } def : InstRW<[M55WriteDX_SI], (instregex "t2BF[CI]", "t2CPS", "t2DBG", "t2MRS", "t2MSR", "t2SEL", "t2SG", "t2TT")>; def : InstRW<[M55WriteDX_SI], (instregex "t2SUBS_PC_LR", "COPY")>; def : InstRW<[M55WriteDX_SI], (instregex "t2CS(EL|INC|INV|NEG)")>; // Thumb 2 instructions that could be reduced to a thumb 1 instruction and can // be dual issued with one of the above. This list is optimistic. def : InstRW<[M55WriteDX_DI], (instregex "t2ADDC?rr$", "t2ADDrr$", "t2ADDSrr$", "t2ANDrr$", "t2ASRr[ir]$", "t2BICrr$", "t2CMNzrr$", "t2CMPr[ir]$", "t2EORrr$", "t2LSLr[ir]$", "t2LSRr[ir]$", "t2MVNr$", "t2ORRrr$", "t2REV(16|SH)?$", "t2RORrr$", "t2RSBr[ir]$", "t2RSBSri$", "t2SBCrr$", "t2SUBS?rr$", "t2TEQrr$", "t2TSTrr$", "t2STRi12$", "t2STRs$", "t2STRBi12$", "t2STRBs$", "t2STRHi12$", "t2STRHs$", "t2STR_POST$", "t2STMIA$", "t2STMIA_UPD$", "t2STMDB$", "t2STMDB_UPD$")>; def : InstRW<[M55WriteDX_DI], (instregex "t2SETPAN$", "tADC$", "tADDhirr$", "tADDrSP$", "tADDrSPi$", "tADDrr$", "tADDspi$", "tADDspr$", "tADR$", "tAND$", "tASRri$", "tASRrr$", "tBIC$", "tBKPT$", "tCBNZ$", "tCBZ$", "tCMNz$", "tCMPhir$", "tCMPi8$", "tCMPr$", "tCPS$", "tEOR$", "tHINT$", "tHLT$", "tLSLri$", "tLSLrr$", "tLSRri$", "tLSRrr$", "tMOVSr$", "tMUL$", "tMVN$", "tORR$", "tPICADD$", "tPOP$", "tPUSH$", "tREV$", "tREV16$", "tREVSH$", "tROR$", "tRSB$", "tSBC$", "tSETEND$", "tSTMIA_UPD$", "tSTRBi$", "tSTRBr$", "tSTRHi$", "tSTRHr$", "tSTRi$", "tSTRr$", "tSTRspi$", "tSUBrr$", "tSUBspi$", "tSVC$", "tTRAP$", "tTST$", "tUDF$")>; def : InstRW<[M55WriteDX_DI], (instregex "tB$", "tBLXNSr$", "tBLXr$", "tBX$", "tBXNS$", "tBcc$")>; // CX instructions take 2 (or more) cycles. Again T1 instructions may be dual // issues (SingleIssue = 0) let SingleIssue = 0, Latency = 2 in { def : WriteRes; def M55WriteCX_DI : SchedWriteRes<[M55UnitALU]>; } let SingleIssue = 1, Latency = 2 in { def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def M55WriteCX_SI : SchedWriteRes<[M55UnitALU]>; } def : SchedAlias; def : SchedAlias; def : SchedAlias; def : WriteRes { let Latency = 2; } def : SchedAlias; def : SchedAlias; def : SchedAlias; def : WriteRes { let Latency = 2; } def : InstRW<[M55WriteCX_SI], (instregex "t2CDP", "t2CLREX", "t2[DI][MS]B", "t2MCR", "t2MOVSs[ir]", "t2MRC", "t2MUL", "t2STC")>; def : InstRW<[M55WriteCX_SI], (instregex "t2Q", "t2[SU](ADD|ASX|BFX|DIV)", "t2[SU]H(ADD|ASX|SUB|SAX)", "t2SM[LM]", "t2S(SAT|SUB|SAX)", "t2UQ", "t2USA", "t2USUB", "t2UXTA[BH]")>; def : InstRW<[M55WriteCX_SI], (instregex "t2LD[AC]", "t2STL", "t2STRD")>; def : InstRW<[M55WriteCX_SI], (instregex "MVE_[SU]Q?R?SH[LR]$")>; def : InstRW<[M55WriteCX_SI, M55WriteLat2], (instregex "MVE_ASRL", "MVE_LSLL", "MVE_LSRL", "MVE_[SU]Q?R?SH[LR]L")>; // This may be higher in practice, but that likely doesn't make a difference // for scheduling def : InstRW<[M55WriteCX_SI], (instregex "t2CLRM")>; def : InstRW<[M55WriteCX_DI], (instregex "t2LDR[BH]?i12$", "t2LDRS?[BH]?s$", "t2LDM")>; def : InstRW<[M55WriteCX_DI], (instregex "tLDM", "tLDRBi$", "tLDRBr$", "tLDRHi$", "tLDRHr$", "tLDRSB$", "tLDRSH$", "tLDRi$", "tLDRpci$", "tLDRr$", "tLDRspi$")>; // Dual Issue instructions let Latency = 1, SingleIssue = 0 in { def : WriteRes; def M55WriteDI : SchedWriteRes<[]>; } def : InstRW<[M55WriteDI], (instregex "tADDi[38]$", "tSUBi[38]$", "tMOVi8$", "tMOVr$", "tUXT[BH]$", "tSXT[BH]$")>; // Thumb 2 instructions that could be reduced to a dual issuable Thumb 1 // instruction above. def : InstRW<[M55WriteDI], (instregex "t2ADDS?ri$", "t2MOV[ir]$", "t2MOVi16$", "t2MOVr$", "t2SUBS?ri$", "t2[US]XT[BH]$")>; def : InstRW<[M55WriteDI], (instregex "t2IT", "IT")>; def : InstRW<[M55WriteLat0], (instregex "t2LoopDec")>; // Forwarding // No forwarding in the ALU normally def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; //=============// // MVE and VFP // //=============// // The Writes that take ReleaseAtCycles=[2] are MVE instruction, the others VFP. let SingleIssue = 1, Latency = 1 in { def M55WriteLSE2 : SchedWriteRes<[M55UnitLoadStore]>; def M55WriteIntE2 : SchedWriteRes<[M55UnitVecALU]>; def M55WriteFloatE2 : SchedWriteRes<[M55UnitVecFPALU]>; def M55WriteSysE2 : SchedWriteRes<[M55UnitVecSys]>; def M55Write2LSE2 : SchedWriteRes<[M55UnitLoadStore]> { let ReleaseAtCycles=[2]; } def M55Write2IntE2 : SchedWriteRes<[M55UnitVecALU]> { let ReleaseAtCycles=[2]; } def M55Write2FloatE2 : SchedWriteRes<[M55UnitVecFPALU]> { let ReleaseAtCycles=[2]; } def M55Write2IntFPE2 : SchedWriteRes<[M55UnitVecIntFP]> { let ReleaseAtCycles=[2]; } } let SingleIssue = 1, Latency = 2 in { def M55WriteLSE3 : SchedWriteRes<[M55UnitLoadStore]>; def M55WriteIntE3 : SchedWriteRes<[M55UnitVecALU]>; def M55WriteFloatE3 : SchedWriteRes<[M55UnitVecFPALU]>; def M55Write2LSE3 : SchedWriteRes<[M55UnitLoadStore]> { let ReleaseAtCycles=[2]; } def M55Write2IntE3 : SchedWriteRes<[M55UnitVecALU]> { let ReleaseAtCycles=[2]; } def M55Write2FloatE3 : SchedWriteRes<[M55UnitVecFPALU]> { let ReleaseAtCycles=[2]; } } let SingleIssue = 1, Latency = 3 in { def M55Write2IntE3Plus1 : SchedWriteRes<[M55UnitVecALU]> { let ReleaseAtCycles=[2]; } // Same as M55Write2IntE3/M55Write2FloatE3 above, but longer latency and no forwarding into stores def M55Write2IntE4NoFwd : SchedWriteRes<[M55UnitVecALU]> { let ReleaseAtCycles=[2]; } def M55Write2FloatE4NoFwd : SchedWriteRes<[M55UnitVecFPALU]> { let ReleaseAtCycles=[2]; } } let SingleIssue = 1, Latency = 4 in { def M55Write2IntE3Plus2 : SchedWriteRes<[M55UnitVecALU]> { let ReleaseAtCycles=[2]; } def M55WriteFloatE3Plus2 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 9 in { def M55WriteFloatE3Plus7 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 15 in { def M55WriteFloatE3Plus13 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 16 in { def M55WriteFloatE3Plus14 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 21 in { def M55WriteFloatE3Plus19 : SchedWriteRes<[M55UnitVecFPALU]>; } // VMUL (Double precision) + VADD (Double precision) let SingleIssue = 1, Latency = 24 in { def M55WriteFloatE3Plus22 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 30 in { def M55WriteFloatE3Plus28 : SchedWriteRes<[M55UnitVecFPALU]>; } let SingleIssue = 1, Latency = 36 in { def M55WriteFloatE3Plus34 : SchedWriteRes<[M55UnitVecFPALU]>; } def M55Read0 : SchedReadAdvance<0>; def M55Read1 : SchedReadAdvance<1, [M55Write2LSE3, M55Write2IntE3, M55Write2FloatE3]>; def M55GatherQRead : SchedReadAdvance<-4>; // MVE instructions // Loads and Stores of different kinds // Normal loads def : InstRW<[M55Write2LSE2], (instregex "MVE_VLDR(B|H|W)(S|U)(8|16|32)$")>; // Pre/post inc loads def : InstRW<[M55WriteLat1, M55Write2LSE2], (instregex "MVE_VLDR(B|H|W)(S|U)(8|16|32)_(post|pre)$")>; // Gather loads def : InstRW<[M55Write2LSE3, M55Read0, M55GatherQRead], (instregex "MVE_VLDR(B|H|W|D)(S|U)(8|16|32|64)_rq")>; def : InstRW<[M55Write2LSE3, M55GatherQRead], (instregex "MVE_VLDR(B|H|W|D)(S|U)(8|16|32|64)_qi$")>; def : InstRW<[M55WriteLat1, M55Write2LSE3, M55GatherQRead], (instregex "MVE_VLDR(W|D)U(32|64)_qi_pre$")>; // Interleaving loads def : InstRW<[M55Write2LSE2], (instregex "MVE_VLD[24][0-3]_(8|16|32)$")>; // Interleaving loads with wb def : InstRW<[M55Write2LSE2, M55WriteLat1], (instregex "MVE_VLD[24][0-3]_(8|16|32)_wb$")>; // Normal stores def : InstRW<[M55Write2LSE2, M55Read1], (instregex "MVE_VSTR(B|H|W)U?(8|16|32)$")>; // Pre/post inc stores def : InstRW<[M55Write2LSE2, M55Read1], (instregex "MVE_VSTR(B|H|W)U?(8|16|32)_(post|pre)$")>; // Scatter stores def : InstRW<[M55Write2LSE2, M55Read0, M55Read0, M55GatherQRead], (instregex "MVE_VSTR(B|H|W|D)(8|16|32|64)_rq")>; def : InstRW<[M55Write2LSE2, M55Read0, M55GatherQRead], (instregex "MVE_VSTR(B|H|W|D)(8|16|32|64)_qi")>; // Interleaving stores def : InstRW<[M55Write2LSE2], (instregex "MVE_VST(2|4)")>; // Integer pipe operations def : InstRW<[M55Write2IntE3Plus1], (instregex "MVE_VABAV")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VABD(u|s)")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VABS(u|s)")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_VADC")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VADD(_qr_)?i")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VAND")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VBIC")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VBRSR")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VCADDi")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VCLS")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VCLZ")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_V(D|I)?W?DUP")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VEOR")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VHADD")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VHCADD")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VHSUB")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_V(MAX|MIN)A?(s|u)")>; def : InstRW<[M55Write2IntE3Plus2], (instregex "MVE_V(MAX|MIN)A?V(s|u)8")>; def : InstRW<[M55Write2IntE3Plus1], (instregex "MVE_V(MAX|MIN)A?V(s|u)16")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_V(MAX|MIN)A?V(s|u)32")>; def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VMOVN")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VMOVL")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_VMULL[BT]p")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VMVN")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VNEG(u|s)")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VORN")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VORR")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VPSEL")>; def : InstRW<[M55Write2IntE2], (instregex "MQPRCopy")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VQABS")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VQADD")>; def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VQMOV")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VQNEG")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VSHL")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_V[QR]SHL")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_VQRSHL")>; def : InstRW<[M55Write2IntE4NoFwd], (instregex "MVE_VQ?R?SHRU?N")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VSHR_")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_VRSHR_")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VQSUB")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VREV")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VRHADD")>; def : InstRW<[M55Write2IntE3], (instregex "MVE_VSBC")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VSLI")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VSRI")>; def : InstRW<[M55Write2IntE2], (instregex "MVE_VSUB(_qr_)?i")>; // FP/Mul pipe operations. def : InstRW<[M55Write2FloatE2], (instregex "MVE_VABDf")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VABSf")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VADDf")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VADD_qr_f")>; def : InstRW<[M55Write2FloatE3, M55WriteLat1], (instregex "MVE_VADDLV")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VADDV")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCADDf")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCMLA")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCMUL")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCMP(i|s|u)", "MVE_VPTv(4|8|16)(i|s|u)")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VCMPf", "MVE_VPTv(4|8)f")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf16(u|s)16")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf32(u|s)32")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVT(u|s)16f16")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVT(u|s)32f32")>; def : InstRW<[M55Write2FloatE4NoFwd], (instregex "MVE_VCVTf16f32")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VCVTf32f16")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VFM(A|S)")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_V(MIN|MAX)NM")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VMOV_from_lane")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VMOV_rr_q")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VMOVi")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VMUL(_qr_)?[if]")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?R?D?MULH")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?D?MULL[TB]?[su]")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQDMULL_qr_")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VQ?R?D?ML(A|S)[^L]")>; def : InstRW<[M55Write2FloatE3, M55WriteLat1], (instregex "MVE_VR?ML(A|S)L")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VNEGf")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VRINTf")>; def : InstRW<[M55Write2FloatE2], (instregex "MVE_VSUBf")>; def : InstRW<[M55Write2FloatE3], (instregex "MVE_VSUB_qr_f")>; // Some VMOV's can go down either pipeline. def : InstRW<[M55Write2IntFPE2], (instregex "MVE_VMOV_to_lane", "MVE_VMOV_q_rr")>; def : InstRW<[M55WriteSysE2], (instregex "MVE_VCTP")>; def : InstRW<[M55WriteSysE2], (instregex "MVE_VPNOT")>; def : InstRW<[M55WriteSysE2], (instregex "MVE_VPST")>; // VFP instructions def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : SchedAlias; def : ReadAdvance; def : ReadAdvance; def : InstRW<[M55WriteLSE3], (instregex "VLD")>; def : InstRW<[M55WriteLSE2], (instregex "VST")>; def : InstRW<[M55WriteLSE3], (instregex "VLLD", "VLST")>; def : InstRW<[M55WriteFloatE3], (instregex "VABS(H|S|D)")>; def : InstRW<[M55WriteFloatE3], (instregex "VCVT(A|M|N|P|R|X|Z)(S|U)(H|S|D)")>; def : InstRW<[M55WriteFloatE3], (instregex "VCVT(B|T)(DH|HD)")>; def : InstRW<[M55WriteFloatE2], (instregex "VCMPZ?(E|H|S|D)")>; def : InstRW<[M55WriteFloatE3Plus7], (instregex "VDIVH")>; def : InstRW<[M55WriteFloatE3], (instregex "VFN?M(A|S)(H|S)")>; // VFMA def : InstRW<[M55WriteFloatE3Plus22], (instregex "VFN?M(A|S)D")>; // VFMA def : InstRW<[M55WriteFloatE3], (instregex "VFP_V(MAX|MIN)NM")>; def : InstRW<[M55WriteFloatE3], (instregex "VINSH$", "VMOVH$", "VMOVHR$", "VMOVSR$", "VMOVDRR$")>; // VINS, VMOVX, to-FP reg movs def : InstRW<[M55WriteFloatE2], (instregex "VMOVD$", "VMOVS$", "VMOVR")>; // Other VMOV's def : InstRW<[M55WriteFloatE2], (instregex "FCONSTH", "FCONSTS", "FCONSTD")>; def : InstRW<[M55WriteFloatE2], (instregex "VGETLNi32", "VSETLNi32")>; def : InstRW<[M55WriteFloatE2], (instregex "VMSR", "VMRS")>; def : InstRW<[M55WriteFloatE3Plus2], (instregex "VN?ML(A|S)H")>; // VMLA def : InstRW<[M55WriteFloatE3], (instregex "VNEG(H|S|D)")>; def : InstRW<[M55WriteFloatE3], (instregex "VRINT(A|M|N|P|R|X|Z)(H|S|D)")>; def : InstRW<[M55WriteFloatE3], (instregex "VSEL..(H|S|D)")>; def : InstRW<[M55WriteFloatE3Plus7], (instregex "VSQRTH")>; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; }