//===- GCNRegPressure.h -----------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// /// /// \file /// This file defines the GCNRegPressure class, which tracks registry pressure /// by bookkeeping number of SGPR/VGPRs used, weights for large SGPR/VGPRs. It /// also implements a compare function, which compares different register /// pressures, and declares one with max occupancy as winner. /// //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H #define LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H #include "GCNSubtarget.h" #include "llvm/CodeGen/LiveIntervals.h" #include namespace llvm { class MachineRegisterInfo; class raw_ostream; class SlotIndex; struct GCNRegPressure { enum RegKind { SGPR32, SGPR_TUPLE, VGPR32, VGPR_TUPLE, AGPR32, AGPR_TUPLE, TOTAL_KINDS }; GCNRegPressure() { clear(); } bool empty() const { return getSGPRNum() == 0 && getVGPRNum(false) == 0; } void clear() { std::fill(&Value[0], &Value[TOTAL_KINDS], 0); } unsigned getSGPRNum() const { return Value[SGPR32]; } unsigned getVGPRNum(bool UnifiedVGPRFile) const { if (UnifiedVGPRFile) { return Value[AGPR32] ? alignTo(Value[VGPR32], 4) + Value[AGPR32] : Value[VGPR32] + Value[AGPR32]; } return std::max(Value[VGPR32], Value[AGPR32]); } unsigned getAGPRNum() const { return Value[AGPR32]; } unsigned getVGPRTuplesWeight() const { return std::max(Value[VGPR_TUPLE], Value[AGPR_TUPLE]); } unsigned getSGPRTuplesWeight() const { return Value[SGPR_TUPLE]; } unsigned getOccupancy(const GCNSubtarget &ST) const { return std::min(ST.getOccupancyWithNumSGPRs(getSGPRNum()), ST.getOccupancyWithNumVGPRs(getVGPRNum(ST.hasGFX90AInsts()))); } void inc(unsigned Reg, LaneBitmask PrevMask, LaneBitmask NewMask, const MachineRegisterInfo &MRI); bool higherOccupancy(const GCNSubtarget &ST, const GCNRegPressure& O) const { return getOccupancy(ST) > O.getOccupancy(ST); } /// Compares \p this GCNRegpressure to \p O, returning true if \p this is /// less. Since GCNRegpressure contains different types of pressures, and due /// to target-specific pecularities (e.g. we care about occupancy rather than /// raw register usage), we determine if \p this GCNRegPressure is less than /// \p O based on the following tiered comparisons (in order order of /// precedence): /// 1. Better occupancy /// 2. Less spilling (first preference to VGPR spills, then to SGPR spills) /// 3. Less tuple register pressure (first preference to VGPR tuples if we /// determine that SGPR pressure is not important) /// 4. Less raw register pressure (first preference to VGPR tuples if we /// determine that SGPR pressure is not important) bool less(const MachineFunction &MF, const GCNRegPressure &O, unsigned MaxOccupancy = std::numeric_limits::max()) const; bool operator==(const GCNRegPressure &O) const { return std::equal(&Value[0], &Value[TOTAL_KINDS], O.Value); } bool operator!=(const GCNRegPressure &O) const { return !(*this == O); } GCNRegPressure &operator+=(const GCNRegPressure &RHS) { for (unsigned I = 0; I < TOTAL_KINDS; ++I) Value[I] += RHS.Value[I]; return *this; } GCNRegPressure &operator-=(const GCNRegPressure &RHS) { for (unsigned I = 0; I < TOTAL_KINDS; ++I) Value[I] -= RHS.Value[I]; return *this; } void dump() const; private: unsigned Value[TOTAL_KINDS]; static unsigned getRegKind(Register Reg, const MachineRegisterInfo &MRI); friend GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2); friend Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST); }; inline GCNRegPressure max(const GCNRegPressure &P1, const GCNRegPressure &P2) { GCNRegPressure Res; for (unsigned I = 0; I < GCNRegPressure::TOTAL_KINDS; ++I) Res.Value[I] = std::max(P1.Value[I], P2.Value[I]); return Res; } inline GCNRegPressure operator+(const GCNRegPressure &P1, const GCNRegPressure &P2) { GCNRegPressure Sum = P1; Sum += P2; return Sum; } inline GCNRegPressure operator-(const GCNRegPressure &P1, const GCNRegPressure &P2) { GCNRegPressure Diff = P1; Diff -= P2; return Diff; } class GCNRPTracker { public: using LiveRegSet = DenseMap; protected: const LiveIntervals &LIS; LiveRegSet LiveRegs; GCNRegPressure CurPressure, MaxPressure; const MachineInstr *LastTrackedMI = nullptr; mutable const MachineRegisterInfo *MRI = nullptr; GCNRPTracker(const LiveIntervals &LIS_) : LIS(LIS_) {} void reset(const MachineInstr &MI, const LiveRegSet *LiveRegsCopy, bool After); public: // live regs for the current state const decltype(LiveRegs) &getLiveRegs() const { return LiveRegs; } const MachineInstr *getLastTrackedMI() const { return LastTrackedMI; } void clearMaxPressure() { MaxPressure.clear(); } GCNRegPressure getPressure() const { return CurPressure; } decltype(LiveRegs) moveLiveRegs() { return std::move(LiveRegs); } }; GCNRPTracker::LiveRegSet getLiveRegs(SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); class GCNUpwardRPTracker : public GCNRPTracker { public: GCNUpwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {} // reset tracker and set live register set to the specified value. void reset(const MachineRegisterInfo &MRI_, const LiveRegSet &LiveRegs_); // reset tracker at the specified slot index. void reset(const MachineRegisterInfo &MRI, SlotIndex SI) { reset(MRI, llvm::getLiveRegs(SI, LIS, MRI)); } // reset tracker to the end of the MBB. void reset(const MachineBasicBlock &MBB) { reset(MBB.getParent()->getRegInfo(), LIS.getSlotIndexes()->getMBBEndIdx(&MBB)); } // reset tracker to the point just after MI (in program order). void reset(const MachineInstr &MI) { reset(MI.getMF()->getRegInfo(), LIS.getInstructionIndex(MI).getDeadSlot()); } // move to the state just before the MI (in program order). void recede(const MachineInstr &MI); // checks whether the tracker's state after receding MI corresponds // to reported by LIS. bool isValid() const; const GCNRegPressure &getMaxPressure() const { return MaxPressure; } void resetMaxPressure() { MaxPressure = CurPressure; } GCNRegPressure getMaxPressureAndReset() { GCNRegPressure RP = MaxPressure; resetMaxPressure(); return RP; } }; class GCNDownwardRPTracker : public GCNRPTracker { // Last position of reset or advanceBeforeNext MachineBasicBlock::const_iterator NextMI; MachineBasicBlock::const_iterator MBBEnd; public: GCNDownwardRPTracker(const LiveIntervals &LIS_) : GCNRPTracker(LIS_) {} MachineBasicBlock::const_iterator getNext() const { return NextMI; } // Return MaxPressure and clear it. GCNRegPressure moveMaxPressure() { auto Res = MaxPressure; MaxPressure.clear(); return Res; } // Reset tracker to the point before the MI // filling live regs upon this point using LIS. // Returns false if block is empty except debug values. bool reset(const MachineInstr &MI, const LiveRegSet *LiveRegs = nullptr); // Move to the state right before the next MI or after the end of MBB. // Returns false if reached end of the block. bool advanceBeforeNext(); // Move to the state at the MI, advanceBeforeNext has to be called first. void advanceToNext(); // Move to the state at the next MI. Returns false if reached end of block. bool advance(); // Advance instructions until before End. bool advance(MachineBasicBlock::const_iterator End); // Reset to Begin and advance to End. bool advance(MachineBasicBlock::const_iterator Begin, MachineBasicBlock::const_iterator End, const LiveRegSet *LiveRegsCopy = nullptr); }; LaneBitmask getLiveLaneMask(unsigned Reg, SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); LaneBitmask getLiveLaneMask(const LiveInterval &LI, SlotIndex SI, const MachineRegisterInfo &MRI); GCNRPTracker::LiveRegSet getLiveRegs(SlotIndex SI, const LiveIntervals &LIS, const MachineRegisterInfo &MRI); /// creates a map MachineInstr -> LiveRegSet /// R - range of iterators on instructions /// After - upon entry or exit of every instruction /// Note: there is no entry in the map for instructions with empty live reg set /// Complexity = O(NumVirtRegs * averageLiveRangeSegmentsPerReg * lg(R)) template DenseMap getLiveRegMap(Range &&R, bool After, LiveIntervals &LIS) { std::vector Indexes; Indexes.reserve(std::distance(R.begin(), R.end())); auto &SII = *LIS.getSlotIndexes(); for (MachineInstr *I : R) { auto SI = SII.getInstructionIndex(*I); Indexes.push_back(After ? SI.getDeadSlot() : SI.getBaseIndex()); } llvm::sort(Indexes); auto &MRI = (*R.begin())->getParent()->getParent()->getRegInfo(); DenseMap LiveRegMap; SmallVector LiveIdxs, SRLiveIdxs; for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { auto Reg = Register::index2VirtReg(I); if (!LIS.hasInterval(Reg)) continue; auto &LI = LIS.getInterval(Reg); LiveIdxs.clear(); if (!LI.findIndexesLiveAt(Indexes, std::back_inserter(LiveIdxs))) continue; if (!LI.hasSubRanges()) { for (auto SI : LiveIdxs) LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] = MRI.getMaxLaneMaskForVReg(Reg); } else for (const auto &S : LI.subranges()) { // constrain search for subranges by indexes live at main range SRLiveIdxs.clear(); S.findIndexesLiveAt(LiveIdxs, std::back_inserter(SRLiveIdxs)); for (auto SI : SRLiveIdxs) LiveRegMap[SII.getInstructionFromIndex(SI)][Reg] |= S.LaneMask; } } return LiveRegMap; } inline GCNRPTracker::LiveRegSet getLiveRegsAfter(const MachineInstr &MI, const LiveIntervals &LIS) { return getLiveRegs(LIS.getInstructionIndex(MI).getDeadSlot(), LIS, MI.getParent()->getParent()->getRegInfo()); } inline GCNRPTracker::LiveRegSet getLiveRegsBefore(const MachineInstr &MI, const LiveIntervals &LIS) { return getLiveRegs(LIS.getInstructionIndex(MI).getBaseIndex(), LIS, MI.getParent()->getParent()->getRegInfo()); } template GCNRegPressure getRegPressure(const MachineRegisterInfo &MRI, Range &&LiveRegs) { GCNRegPressure Res; for (const auto &RM : LiveRegs) Res.inc(RM.first, LaneBitmask::getNone(), RM.second, MRI); return Res; } bool isEqual(const GCNRPTracker::LiveRegSet &S1, const GCNRPTracker::LiveRegSet &S2); Printable print(const GCNRegPressure &RP, const GCNSubtarget *ST = nullptr); Printable print(const GCNRPTracker::LiveRegSet &LiveRegs, const MachineRegisterInfo &MRI); Printable reportMismatch(const GCNRPTracker::LiveRegSet &LISLR, const GCNRPTracker::LiveRegSet &TrackedL, const TargetRegisterInfo *TRI, StringRef Pfx = " "); struct GCNRegPressurePrinter : public MachineFunctionPass { static char ID; public: GCNRegPressurePrinter() : MachineFunctionPass(ID) {} bool runOnMachineFunction(MachineFunction &MF) override; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } }; } // end namespace llvm #endif // LLVM_LIB_TARGET_AMDGPU_GCNREGPRESSURE_H