//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the AArch64 addressing mode implementation stuff. // //===----------------------------------------------------------------------===// #ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H #define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/bit.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include namespace llvm { /// AArch64_AM - AArch64 Addressing Mode Stuff namespace AArch64_AM { //===----------------------------------------------------------------------===// // Shifts // enum ShiftExtendType { InvalidShiftExtend = -1, LSL = 0, LSR, ASR, ROR, MSL, UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX, }; /// getShiftName - Get the string encoding for the shift type. static inline const char *getShiftExtendName(AArch64_AM::ShiftExtendType ST) { switch (ST) { default: llvm_unreachable("unhandled shift type!"); case AArch64_AM::LSL: return "lsl"; case AArch64_AM::LSR: return "lsr"; case AArch64_AM::ASR: return "asr"; case AArch64_AM::ROR: return "ror"; case AArch64_AM::MSL: return "msl"; case AArch64_AM::UXTB: return "uxtb"; case AArch64_AM::UXTH: return "uxth"; case AArch64_AM::UXTW: return "uxtw"; case AArch64_AM::UXTX: return "uxtx"; case AArch64_AM::SXTB: return "sxtb"; case AArch64_AM::SXTH: return "sxth"; case AArch64_AM::SXTW: return "sxtw"; case AArch64_AM::SXTX: return "sxtx"; } return nullptr; } /// getShiftType - Extract the shift type. static inline AArch64_AM::ShiftExtendType getShiftType(unsigned Imm) { switch ((Imm >> 6) & 0x7) { default: return AArch64_AM::InvalidShiftExtend; case 0: return AArch64_AM::LSL; case 1: return AArch64_AM::LSR; case 2: return AArch64_AM::ASR; case 3: return AArch64_AM::ROR; case 4: return AArch64_AM::MSL; } } /// getShiftValue - Extract the shift value. static inline unsigned getShiftValue(unsigned Imm) { return Imm & 0x3f; } /// getShifterImm - Encode the shift type and amount: /// imm: 6-bit shift amount /// shifter: 000 ==> lsl /// 001 ==> lsr /// 010 ==> asr /// 011 ==> ror /// 100 ==> msl /// {8-6} = shifter /// {5-0} = imm static inline unsigned getShifterImm(AArch64_AM::ShiftExtendType ST, unsigned Imm) { assert((Imm & 0x3f) == Imm && "Illegal shifted immedate value!"); unsigned STEnc = 0; switch (ST) { default: llvm_unreachable("Invalid shift requested"); case AArch64_AM::LSL: STEnc = 0; break; case AArch64_AM::LSR: STEnc = 1; break; case AArch64_AM::ASR: STEnc = 2; break; case AArch64_AM::ROR: STEnc = 3; break; case AArch64_AM::MSL: STEnc = 4; break; } return (STEnc << 6) | (Imm & 0x3f); } //===----------------------------------------------------------------------===// // Extends // /// getArithShiftValue - get the arithmetic shift value. static inline unsigned getArithShiftValue(unsigned Imm) { return Imm & 0x7; } /// getExtendType - Extract the extend type for operands of arithmetic ops. static inline AArch64_AM::ShiftExtendType getExtendType(unsigned Imm) { assert((Imm & 0x7) == Imm && "invalid immediate!"); switch (Imm) { default: llvm_unreachable("Compiler bug!"); case 0: return AArch64_AM::UXTB; case 1: return AArch64_AM::UXTH; case 2: return AArch64_AM::UXTW; case 3: return AArch64_AM::UXTX; case 4: return AArch64_AM::SXTB; case 5: return AArch64_AM::SXTH; case 6: return AArch64_AM::SXTW; case 7: return AArch64_AM::SXTX; } } static inline AArch64_AM::ShiftExtendType getArithExtendType(unsigned Imm) { return getExtendType((Imm >> 3) & 0x7); } /// Mapping from extend bits to required operation: /// shifter: 000 ==> uxtb /// 001 ==> uxth /// 010 ==> uxtw /// 011 ==> uxtx /// 100 ==> sxtb /// 101 ==> sxth /// 110 ==> sxtw /// 111 ==> sxtx inline unsigned getExtendEncoding(AArch64_AM::ShiftExtendType ET) { switch (ET) { default: llvm_unreachable("Invalid extend type requested"); case AArch64_AM::UXTB: return 0; break; case AArch64_AM::UXTH: return 1; break; case AArch64_AM::UXTW: return 2; break; case AArch64_AM::UXTX: return 3; break; case AArch64_AM::SXTB: return 4; break; case AArch64_AM::SXTH: return 5; break; case AArch64_AM::SXTW: return 6; break; case AArch64_AM::SXTX: return 7; break; } } /// getArithExtendImm - Encode the extend type and shift amount for an /// arithmetic instruction: /// imm: 3-bit extend amount /// {5-3} = shifter /// {2-0} = imm3 static inline unsigned getArithExtendImm(AArch64_AM::ShiftExtendType ET, unsigned Imm) { assert((Imm & 0x7) == Imm && "Illegal shifted immedate value!"); return (getExtendEncoding(ET) << 3) | (Imm & 0x7); } /// getMemDoShift - Extract the "do shift" flag value for load/store /// instructions. static inline bool getMemDoShift(unsigned Imm) { return (Imm & 0x1) != 0; } /// getExtendType - Extract the extend type for the offset operand of /// loads/stores. static inline AArch64_AM::ShiftExtendType getMemExtendType(unsigned Imm) { return getExtendType((Imm >> 1) & 0x7); } /// getExtendImm - Encode the extend type and amount for a load/store inst: /// doshift: should the offset be scaled by the access size /// shifter: 000 ==> uxtb /// 001 ==> uxth /// 010 ==> uxtw /// 011 ==> uxtx /// 100 ==> sxtb /// 101 ==> sxth /// 110 ==> sxtw /// 111 ==> sxtx /// {3-1} = shifter /// {0} = doshift static inline unsigned getMemExtendImm(AArch64_AM::ShiftExtendType ET, bool DoShift) { return (getExtendEncoding(ET) << 1) | unsigned(DoShift); } static inline uint64_t ror(uint64_t elt, unsigned size) { return ((elt & 1) << (size-1)) | (elt >> 1); } /// processLogicalImmediate - Determine if an immediate value can be encoded /// as the immediate operand of a logical instruction for the given register /// size. If so, return true with "encoding" set to the encoded value in /// the form N:immr:imms. static inline bool processLogicalImmediate(uint64_t Imm, unsigned RegSize, uint64_t &Encoding) { if (Imm == 0ULL || Imm == ~0ULL || (RegSize != 64 && (Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize))))) return false; // First, determine the element size. unsigned Size = RegSize; do { Size /= 2; uint64_t Mask = (1ULL << Size) - 1; if ((Imm & Mask) != ((Imm >> Size) & Mask)) { Size *= 2; break; } } while (Size > 2); // Second, determine the rotation to make the element be: 0^m 1^n. uint32_t CTO, I; uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size); Imm &= Mask; if (isShiftedMask_64(Imm)) { I = llvm::countr_zero(Imm); assert(I < 64 && "undefined behavior"); CTO = llvm::countr_one(Imm >> I); } else { Imm |= ~Mask; if (!isShiftedMask_64(~Imm)) return false; unsigned CLO = llvm::countl_one(Imm); I = 64 - CLO; CTO = CLO + llvm::countr_one(Imm) - (64 - Size); } // Encode in Immr the number of RORs it would take to get *from* 0^m 1^n // to our target value, where I is the number of RORs to go the opposite // direction. assert(Size > I && "I should be smaller than element size"); unsigned Immr = (Size - I) & (Size - 1); // If size has a 1 in the n'th bit, create a value that has zeroes in // bits [0, n] and ones above that. uint64_t NImms = ~(Size-1) << 1; // Or the CTO value into the low bits, which must be below the Nth bit // bit mentioned above. NImms |= (CTO-1); // Extract the seventh bit and toggle it to create the N field. unsigned N = ((NImms >> 6) & 1) ^ 1; Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f); return true; } /// isLogicalImmediate - Return true if the immediate is valid for a logical /// immediate instruction of the given register size. Return false otherwise. static inline bool isLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding; return processLogicalImmediate(imm, regSize, encoding); } /// encodeLogicalImmediate - Return the encoded immediate value for a logical /// immediate instruction of the given register size. static inline uint64_t encodeLogicalImmediate(uint64_t imm, unsigned regSize) { uint64_t encoding = 0; bool res = processLogicalImmediate(imm, regSize, encoding); assert(res && "invalid logical immediate"); (void)res; return encoding; } /// decodeLogicalImmediate - Decode a logical immediate value in the form /// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the /// integer value it represents with regSize bits. static inline uint64_t decodeLogicalImmediate(uint64_t val, unsigned regSize) { // Extract the N, imms, and immr fields. unsigned N = (val >> 12) & 1; unsigned immr = (val >> 6) & 0x3f; unsigned imms = val & 0x3f; assert((regSize == 64 || N == 0) && "undefined logical immediate encoding"); int len = 31 - llvm::countl_zero((N << 6) | (~imms & 0x3f)); assert(len >= 0 && "undefined logical immediate encoding"); unsigned size = (1 << len); unsigned R = immr & (size - 1); unsigned S = imms & (size - 1); assert(S != size - 1 && "undefined logical immediate encoding"); uint64_t pattern = (1ULL << (S + 1)) - 1; for (unsigned i = 0; i < R; ++i) pattern = ror(pattern, size); // Replicate the pattern to fill the regSize. while (size != regSize) { pattern |= (pattern << size); size *= 2; } return pattern; } /// isValidDecodeLogicalImmediate - Check to see if the logical immediate value /// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits) /// is a valid encoding for an integer value with regSize bits. static inline bool isValidDecodeLogicalImmediate(uint64_t val, unsigned regSize) { // Extract the N and imms fields needed for checking. unsigned N = (val >> 12) & 1; unsigned imms = val & 0x3f; if (regSize == 32 && N != 0) // undefined logical immediate encoding return false; int len = 31 - llvm::countl_zero((N << 6) | (~imms & 0x3f)); if (len < 0) // undefined logical immediate encoding return false; unsigned size = (1 << len); unsigned S = imms & (size - 1); if (S == size - 1) // undefined logical immediate encoding return false; return true; } //===----------------------------------------------------------------------===// // Floating-point Immediates // static inline float getFPImmFloat(unsigned Imm) { // We expect an 8-bit binary encoding of a floating-point number here. uint8_t Sign = (Imm >> 7) & 0x1; uint8_t Exp = (Imm >> 4) & 0x7; uint8_t Mantissa = Imm & 0xf; // 8-bit FP IEEE Float Encoding // abcd efgh aBbbbbbc defgh000 00000000 00000000 // // where B = NOT(b); uint32_t I = 0; I |= Sign << 31; I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; I |= (Exp & 0x3) << 23; I |= Mantissa << 19; return bit_cast(I); } /// getFP16Imm - Return an 8-bit floating-point version of the 16-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. static inline int getFP16Imm(const APInt &Imm) { uint32_t Sign = Imm.lshr(15).getZExtValue() & 1; int32_t Exp = (Imm.lshr(10).getSExtValue() & 0x1f) - 15; // -14 to 15 int32_t Mantissa = Imm.getZExtValue() & 0x3ff; // 10 bits // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0x3f) return -1; Mantissa >>= 6; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } static inline int getFP16Imm(const APFloat &FPImm) { return getFP16Imm(FPImm.bitcastToAPInt()); } /// getFP32Imm - Return an 8-bit floating-point version of the 32-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. static inline int getFP32Imm(const APInt &Imm) { uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127; // -126 to 127 int64_t Mantissa = Imm.getZExtValue() & 0x7fffff; // 23 bits // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0x7ffff) return -1; Mantissa >>= 19; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } static inline int getFP32Imm(const APFloat &FPImm) { return getFP32Imm(FPImm.bitcastToAPInt()); } /// getFP64Imm - Return an 8-bit floating-point version of the 64-bit /// floating-point value. If the value cannot be represented as an 8-bit /// floating-point value, then return -1. static inline int getFP64Imm(const APInt &Imm) { uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023; // -1022 to 1023 uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffULL; // We can handle 4 bits of mantissa. // mantissa = (16+UInt(e:f:g:h))/16. if (Mantissa & 0xffffffffffffULL) return -1; Mantissa >>= 48; if ((Mantissa & 0xf) != Mantissa) return -1; // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 if (Exp < -3 || Exp > 4) return -1; Exp = ((Exp+3) & 0x7) ^ 4; return ((int)Sign << 7) | (Exp << 4) | Mantissa; } static inline int getFP64Imm(const APFloat &FPImm) { return getFP64Imm(FPImm.bitcastToAPInt()); } //===--------------------------------------------------------------------===// // AdvSIMD Modified Immediates //===--------------------------------------------------------------------===// // 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh static inline bool isAdvSIMDModImmType1(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffffff00ffffff00ULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType1(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType1(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 32) | EncVal; } // 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 static inline bool isAdvSIMDModImmType2(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType2(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType2(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8); } // 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 static inline bool isAdvSIMDModImmType3(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType3(uint64_t Imm) { return (Imm & 0xff0000ULL) >> 16; } static inline uint64_t decodeAdvSIMDModImmType3(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16); } // abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 static inline bool isAdvSIMDModImmType4(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0x00ffffff00ffffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType4(uint64_t Imm) { return (Imm & 0xff000000ULL) >> 24; } static inline uint64_t decodeAdvSIMDModImmType4(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 24); } // 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh static inline bool isAdvSIMDModImmType5(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) && ((Imm & 0xff00ff00ff00ff00ULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType5(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType5(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal; } // abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 static inline bool isAdvSIMDModImmType6(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) && ((Imm & 0x00ff00ff00ff00ffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType6(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType6(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8); } // 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF static inline bool isAdvSIMDModImmType7(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL); } static inline uint8_t encodeAdvSIMDModImmType7(uint64_t Imm) { return (Imm & 0xff00ULL) >> 8; } static inline uint64_t decodeAdvSIMDModImmType7(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL; } // 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF static inline bool isAdvSIMDModImmType8(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL); } static inline uint64_t decodeAdvSIMDModImmType8(uint8_t Imm) { uint64_t EncVal = Imm; return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL; } static inline uint8_t encodeAdvSIMDModImmType8(uint64_t Imm) { return (Imm & 0x00ff0000ULL) >> 16; } // abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh static inline bool isAdvSIMDModImmType9(uint64_t Imm) { return ((Imm >> 32) == (Imm & 0xffffffffULL)) && ((Imm >> 48) == (Imm & 0x0000ffffULL)) && ((Imm >> 56) == (Imm & 0x000000ffULL)); } static inline uint8_t encodeAdvSIMDModImmType9(uint64_t Imm) { return (Imm & 0xffULL); } static inline uint64_t decodeAdvSIMDModImmType9(uint8_t Imm) { uint64_t EncVal = Imm; EncVal |= (EncVal << 8); EncVal |= (EncVal << 16); EncVal |= (EncVal << 32); return EncVal; } // aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh // cmode: 1110, op: 1 static inline bool isAdvSIMDModImmType10(uint64_t Imm) { #if defined(_MSC_VER) && _MSC_VER == 1937 && !defined(__clang__) && \ defined(_M_ARM64) // The MSVC compiler 19.37 for ARM64 has an optimization bug that // causes an incorrect behavior with the orignal version. Work around // by using a slightly different variation. // https://developercommunity.visualstudio.com/t/C-ARM64-compiler-optimization-bug/10481261 constexpr uint64_t Mask = 0xFFULL; uint64_t ByteA = (Imm >> 56) & Mask; uint64_t ByteB = (Imm >> 48) & Mask; uint64_t ByteC = (Imm >> 40) & Mask; uint64_t ByteD = (Imm >> 32) & Mask; uint64_t ByteE = (Imm >> 24) & Mask; uint64_t ByteF = (Imm >> 16) & Mask; uint64_t ByteG = (Imm >> 8) & Mask; uint64_t ByteH = Imm & Mask; return (ByteA == 0ULL || ByteA == Mask) && (ByteB == 0ULL || ByteB == Mask) && (ByteC == 0ULL || ByteC == Mask) && (ByteD == 0ULL || ByteD == Mask) && (ByteE == 0ULL || ByteE == Mask) && (ByteF == 0ULL || ByteF == Mask) && (ByteG == 0ULL || ByteG == Mask) && (ByteH == 0ULL || ByteH == Mask); #else uint64_t ByteA = Imm & 0xff00000000000000ULL; uint64_t ByteB = Imm & 0x00ff000000000000ULL; uint64_t ByteC = Imm & 0x0000ff0000000000ULL; uint64_t ByteD = Imm & 0x000000ff00000000ULL; uint64_t ByteE = Imm & 0x00000000ff000000ULL; uint64_t ByteF = Imm & 0x0000000000ff0000ULL; uint64_t ByteG = Imm & 0x000000000000ff00ULL; uint64_t ByteH = Imm & 0x00000000000000ffULL; return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) && (ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) && (ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) && (ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) && (ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) && (ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) && (ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) && (ByteH == 0ULL || ByteH == 0x00000000000000ffULL); #endif } static inline uint8_t encodeAdvSIMDModImmType10(uint64_t Imm) { uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0; uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0; uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0; uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0; uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0; uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0; uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType10(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0xff00000000000000ULL; if (Imm & 0x40) EncVal |= 0x00ff000000000000ULL; if (Imm & 0x20) EncVal |= 0x0000ff0000000000ULL; if (Imm & 0x10) EncVal |= 0x000000ff00000000ULL; if (Imm & 0x08) EncVal |= 0x00000000ff000000ULL; if (Imm & 0x04) EncVal |= 0x0000000000ff0000ULL; if (Imm & 0x02) EncVal |= 0x000000000000ff00ULL; if (Imm & 0x01) EncVal |= 0x00000000000000ffULL; return EncVal; } // aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00 static inline bool isAdvSIMDModImmType11(uint64_t Imm) { uint64_t BString = (Imm & 0x7E000000ULL) >> 25; return ((Imm >> 32) == (Imm & 0xffffffffULL)) && (BString == 0x1f || BString == 0x20) && ((Imm & 0x0007ffff0007ffffULL) == 0); } static inline uint8_t encodeAdvSIMDModImmType11(uint64_t Imm) { uint8_t BitA = (Imm & 0x80000000ULL) != 0; uint8_t BitB = (Imm & 0x20000000ULL) != 0; uint8_t BitC = (Imm & 0x01000000ULL) != 0; uint8_t BitD = (Imm & 0x00800000ULL) != 0; uint8_t BitE = (Imm & 0x00400000ULL) != 0; uint8_t BitF = (Imm & 0x00200000ULL) != 0; uint8_t BitG = (Imm & 0x00100000ULL) != 0; uint8_t BitH = (Imm & 0x00080000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType11(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x80000000ULL; if (Imm & 0x40) EncVal |= 0x3e000000ULL; else EncVal |= 0x40000000ULL; if (Imm & 0x20) EncVal |= 0x01000000ULL; if (Imm & 0x10) EncVal |= 0x00800000ULL; if (Imm & 0x08) EncVal |= 0x00400000ULL; if (Imm & 0x04) EncVal |= 0x00200000ULL; if (Imm & 0x02) EncVal |= 0x00100000ULL; if (Imm & 0x01) EncVal |= 0x00080000ULL; return (EncVal << 32) | EncVal; } // aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00 static inline bool isAdvSIMDModImmType12(uint64_t Imm) { uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54; return ((BString == 0xff || BString == 0x100) && ((Imm & 0x0000ffffffffffffULL) == 0)); } static inline uint8_t encodeAdvSIMDModImmType12(uint64_t Imm) { uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0; uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0; uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0; uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0; uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0; uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0; uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0; uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0; uint8_t EncVal = BitA; EncVal <<= 1; EncVal |= BitB; EncVal <<= 1; EncVal |= BitC; EncVal <<= 1; EncVal |= BitD; EncVal <<= 1; EncVal |= BitE; EncVal <<= 1; EncVal |= BitF; EncVal <<= 1; EncVal |= BitG; EncVal <<= 1; EncVal |= BitH; return EncVal; } static inline uint64_t decodeAdvSIMDModImmType12(uint8_t Imm) { uint64_t EncVal = 0; if (Imm & 0x80) EncVal |= 0x8000000000000000ULL; if (Imm & 0x40) EncVal |= 0x3fc0000000000000ULL; else EncVal |= 0x4000000000000000ULL; if (Imm & 0x20) EncVal |= 0x0020000000000000ULL; if (Imm & 0x10) EncVal |= 0x0010000000000000ULL; if (Imm & 0x08) EncVal |= 0x0008000000000000ULL; if (Imm & 0x04) EncVal |= 0x0004000000000000ULL; if (Imm & 0x02) EncVal |= 0x0002000000000000ULL; if (Imm & 0x01) EncVal |= 0x0001000000000000ULL; return (EncVal << 32) | EncVal; } /// Returns true if Imm is the concatenation of a repeating pattern of type T. template static inline bool isSVEMaskOfIdenticalElements(int64_t Imm) { auto Parts = bit_cast>(Imm); return llvm::all_equal(Parts); } /// Returns true if Imm is valid for CPY/DUP. template static inline bool isSVECpyImm(int64_t Imm) { // Imm is interpreted as a signed value, which means top bits must be all ones // (sign bits if the immediate value is negative and passed in a larger // container), or all zeroes. int64_t Mask = ~int64_t(std::numeric_limits>::max()); if ((Imm & Mask) != 0 && (Imm & Mask) != Mask) return false; // Imm is a signed 8-bit value. // Top bits must be zeroes or sign bits. if (Imm & 0xff) return int8_t(Imm) == T(Imm); // Imm is a signed 16-bit value and multiple of 256. // Top bits must be zeroes or sign bits. if (Imm & 0xff00) return int16_t(Imm) == T(Imm); return Imm == 0; } /// Returns true if Imm is valid for ADD/SUB. template static inline bool isSVEAddSubImm(int64_t Imm) { bool IsInt8t = std::is_same>::value || std::is_same::value; return uint8_t(Imm) == Imm || (!IsInt8t && uint16_t(Imm & ~0xff) == Imm); } /// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent. static inline bool isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm) { if (isSVECpyImm(Imm)) return false; auto S = bit_cast>(Imm); auto H = bit_cast>(Imm); auto B = bit_cast>(Imm); if (isSVEMaskOfIdenticalElements(Imm) && isSVECpyImm(S[0])) return false; if (isSVEMaskOfIdenticalElements(Imm) && isSVECpyImm(H[0])) return false; if (isSVEMaskOfIdenticalElements(Imm) && isSVECpyImm(B[0])) return false; return isLogicalImmediate(Imm, 64); } inline static bool isAnyMOVZMovAlias(uint64_t Value, int RegWidth) { for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16) if ((Value & ~(0xffffULL << Shift)) == 0) return true; return false; } inline static bool isMOVZMovAlias(uint64_t Value, int Shift, int RegWidth) { if (RegWidth == 32) Value &= 0xffffffffULL; // "lsl #0" takes precedence: in practice this only affects "#0, lsl #0". if (Value == 0 && Shift != 0) return false; return (Value & ~(0xffffULL << Shift)) == 0; } inline static bool isMOVNMovAlias(uint64_t Value, int Shift, int RegWidth) { // MOVZ takes precedence over MOVN. if (isAnyMOVZMovAlias(Value, RegWidth)) return false; Value = ~Value; if (RegWidth == 32) Value &= 0xffffffffULL; return isMOVZMovAlias(Value, Shift, RegWidth); } inline static bool isAnyMOVWMovAlias(uint64_t Value, int RegWidth) { if (isAnyMOVZMovAlias(Value, RegWidth)) return true; // It's not a MOVZ, but it might be a MOVN. Value = ~Value; if (RegWidth == 32) Value &= 0xffffffffULL; return isAnyMOVZMovAlias(Value, RegWidth); } } // end namespace AArch64_AM } // end namespace llvm #endif