//===- AArch64LoadStoreOptimizer.cpp - AArch64 load/store opt. pass -------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains a pass that performs load / store related peephole // optimizations. This pass should be run after register allocation. // // The pass runs after the PrologEpilogInserter where we emit the CFI // instructions. In order to preserve the correctness of the unwind informaiton, // the pass should not change the order of any two instructions, one of which // has the FrameSetup/FrameDestroy flag or, alternatively, apply an add-hoc fix // to unwind information. // //===----------------------------------------------------------------------===// #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64Subtarget.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/IR/DebugLoc.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/DebugCounter.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "aarch64-ldst-opt" STATISTIC(NumPairCreated, "Number of load/store pair instructions generated"); STATISTIC(NumPostFolded, "Number of post-index updates folded"); STATISTIC(NumPreFolded, "Number of pre-index updates folded"); STATISTIC(NumUnscaledPairCreated, "Number of load/store from unscaled generated"); STATISTIC(NumZeroStoresPromoted, "Number of narrow zero stores promoted"); STATISTIC(NumLoadsFromStoresPromoted, "Number of loads from stores promoted"); STATISTIC(NumFailedAlignmentCheck, "Number of load/store pair transformation " "not passed the alignment check"); DEBUG_COUNTER(RegRenamingCounter, DEBUG_TYPE "-reg-renaming", "Controls which pairs are considered for renaming"); // The LdStLimit limits how far we search for load/store pairs. static cl::opt LdStLimit("aarch64-load-store-scan-limit", cl::init(20), cl::Hidden); // The UpdateLimit limits how far we search for update instructions when we form // pre-/post-index instructions. static cl::opt UpdateLimit("aarch64-update-scan-limit", cl::init(100), cl::Hidden); // Enable register renaming to find additional store pairing opportunities. static cl::opt EnableRenaming("aarch64-load-store-renaming", cl::init(true), cl::Hidden); #define AARCH64_LOAD_STORE_OPT_NAME "AArch64 load / store optimization pass" namespace { using LdStPairFlags = struct LdStPairFlags { // If a matching instruction is found, MergeForward is set to true if the // merge is to remove the first instruction and replace the second with // a pair-wise insn, and false if the reverse is true. bool MergeForward = false; // SExtIdx gives the index of the result of the load pair that must be // extended. The value of SExtIdx assumes that the paired load produces the // value in this order: (I, returned iterator), i.e., -1 means no value has // to be extended, 0 means I, and 1 means the returned iterator. int SExtIdx = -1; // If not none, RenameReg can be used to rename the result register of the // first store in a pair. Currently this only works when merging stores // forward. std::optional RenameReg; LdStPairFlags() = default; void setMergeForward(bool V = true) { MergeForward = V; } bool getMergeForward() const { return MergeForward; } void setSExtIdx(int V) { SExtIdx = V; } int getSExtIdx() const { return SExtIdx; } void setRenameReg(MCPhysReg R) { RenameReg = R; } void clearRenameReg() { RenameReg = std::nullopt; } std::optional getRenameReg() const { return RenameReg; } }; struct AArch64LoadStoreOpt : public MachineFunctionPass { static char ID; AArch64LoadStoreOpt() : MachineFunctionPass(ID) { initializeAArch64LoadStoreOptPass(*PassRegistry::getPassRegistry()); } AliasAnalysis *AA; const AArch64InstrInfo *TII; const TargetRegisterInfo *TRI; const AArch64Subtarget *Subtarget; // Track which register units have been modified and used. LiveRegUnits ModifiedRegUnits, UsedRegUnits; LiveRegUnits DefinedInBB; void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } // Scan the instructions looking for a load/store that can be combined // with the current instruction into a load/store pair. // Return the matching instruction if one is found, else MBB->end(). MachineBasicBlock::iterator findMatchingInsn(MachineBasicBlock::iterator I, LdStPairFlags &Flags, unsigned Limit, bool FindNarrowMerge); // Scan the instructions looking for a store that writes to the address from // which the current load instruction reads. Return true if one is found. bool findMatchingStore(MachineBasicBlock::iterator I, unsigned Limit, MachineBasicBlock::iterator &StoreI); // Merge the two instructions indicated into a wider narrow store instruction. MachineBasicBlock::iterator mergeNarrowZeroStores(MachineBasicBlock::iterator I, MachineBasicBlock::iterator MergeMI, const LdStPairFlags &Flags); // Merge the two instructions indicated into a single pair-wise instruction. MachineBasicBlock::iterator mergePairedInsns(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, const LdStPairFlags &Flags); // Promote the load that reads directly from the address stored to. MachineBasicBlock::iterator promoteLoadFromStore(MachineBasicBlock::iterator LoadI, MachineBasicBlock::iterator StoreI); // Scan the instruction list to find a base register update that can // be combined with the current instruction (a load or store) using // pre or post indexed addressing with writeback. Scan forwards. MachineBasicBlock::iterator findMatchingUpdateInsnForward(MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit); // Scan the instruction list to find a base register update that can // be combined with the current instruction (a load or store) using // pre or post indexed addressing with writeback. Scan backwards. MachineBasicBlock::iterator findMatchingUpdateInsnBackward(MachineBasicBlock::iterator I, unsigned Limit); // Find an instruction that updates the base register of the ld/st // instruction. bool isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, unsigned BaseReg, int Offset); // Merge a pre- or post-index base register update into a ld/st instruction. MachineBasicBlock::iterator mergeUpdateInsn(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update, bool IsPreIdx); // Find and merge zero store instructions. bool tryToMergeZeroStInst(MachineBasicBlock::iterator &MBBI); // Find and pair ldr/str instructions. bool tryToPairLdStInst(MachineBasicBlock::iterator &MBBI); // Find and promote load instructions which read directly from store. bool tryToPromoteLoadFromStore(MachineBasicBlock::iterator &MBBI); // Find and merge a base register updates before or after a ld/st instruction. bool tryToMergeLdStUpdate(MachineBasicBlock::iterator &MBBI); bool optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt); bool runOnMachineFunction(MachineFunction &Fn) override; MachineFunctionProperties getRequiredProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::NoVRegs); } StringRef getPassName() const override { return AARCH64_LOAD_STORE_OPT_NAME; } }; char AArch64LoadStoreOpt::ID = 0; } // end anonymous namespace INITIALIZE_PASS(AArch64LoadStoreOpt, "aarch64-ldst-opt", AARCH64_LOAD_STORE_OPT_NAME, false, false) static bool isNarrowStore(unsigned Opc) { switch (Opc) { default: return false; case AArch64::STRBBui: case AArch64::STURBBi: case AArch64::STRHHui: case AArch64::STURHHi: return true; } } // These instruction set memory tag and either keep memory contents unchanged or // set it to zero, ignoring the address part of the source register. static bool isTagStore(const MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; case AArch64::STGi: case AArch64::STZGi: case AArch64::ST2Gi: case AArch64::STZ2Gi: return true; } } static unsigned getMatchingNonSExtOpcode(unsigned Opc, bool *IsValidLdStrOpc = nullptr) { if (IsValidLdStrOpc) *IsValidLdStrOpc = true; switch (Opc) { default: if (IsValidLdStrOpc) *IsValidLdStrOpc = false; return std::numeric_limits::max(); case AArch64::STRDui: case AArch64::STURDi: case AArch64::STRDpre: case AArch64::STRQui: case AArch64::STURQi: case AArch64::STRQpre: case AArch64::STRBBui: case AArch64::STURBBi: case AArch64::STRHHui: case AArch64::STURHHi: case AArch64::STRWui: case AArch64::STRWpre: case AArch64::STURWi: case AArch64::STRXui: case AArch64::STRXpre: case AArch64::STURXi: case AArch64::LDRDui: case AArch64::LDURDi: case AArch64::LDRDpre: case AArch64::LDRQui: case AArch64::LDURQi: case AArch64::LDRQpre: case AArch64::LDRWui: case AArch64::LDURWi: case AArch64::LDRWpre: case AArch64::LDRXui: case AArch64::LDURXi: case AArch64::LDRXpre: case AArch64::STRSui: case AArch64::STURSi: case AArch64::STRSpre: case AArch64::LDRSui: case AArch64::LDURSi: case AArch64::LDRSpre: return Opc; case AArch64::LDRSWui: return AArch64::LDRWui; case AArch64::LDURSWi: return AArch64::LDURWi; case AArch64::LDRSWpre: return AArch64::LDRWpre; } } static unsigned getMatchingWideOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no wide equivalent!"); case AArch64::STRBBui: return AArch64::STRHHui; case AArch64::STRHHui: return AArch64::STRWui; case AArch64::STURBBi: return AArch64::STURHHi; case AArch64::STURHHi: return AArch64::STURWi; case AArch64::STURWi: return AArch64::STURXi; case AArch64::STRWui: return AArch64::STRXui; } } static unsigned getMatchingPairOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no pairwise equivalent!"); case AArch64::STRSui: case AArch64::STURSi: return AArch64::STPSi; case AArch64::STRSpre: return AArch64::STPSpre; case AArch64::STRDui: case AArch64::STURDi: return AArch64::STPDi; case AArch64::STRDpre: return AArch64::STPDpre; case AArch64::STRQui: case AArch64::STURQi: return AArch64::STPQi; case AArch64::STRQpre: return AArch64::STPQpre; case AArch64::STRWui: case AArch64::STURWi: return AArch64::STPWi; case AArch64::STRWpre: return AArch64::STPWpre; case AArch64::STRXui: case AArch64::STURXi: return AArch64::STPXi; case AArch64::STRXpre: return AArch64::STPXpre; case AArch64::LDRSui: case AArch64::LDURSi: return AArch64::LDPSi; case AArch64::LDRSpre: return AArch64::LDPSpre; case AArch64::LDRDui: case AArch64::LDURDi: return AArch64::LDPDi; case AArch64::LDRDpre: return AArch64::LDPDpre; case AArch64::LDRQui: case AArch64::LDURQi: return AArch64::LDPQi; case AArch64::LDRQpre: return AArch64::LDPQpre; case AArch64::LDRWui: case AArch64::LDURWi: return AArch64::LDPWi; case AArch64::LDRWpre: return AArch64::LDPWpre; case AArch64::LDRXui: case AArch64::LDURXi: return AArch64::LDPXi; case AArch64::LDRXpre: return AArch64::LDPXpre; case AArch64::LDRSWui: case AArch64::LDURSWi: return AArch64::LDPSWi; case AArch64::LDRSWpre: return AArch64::LDPSWpre; } } static unsigned isMatchingStore(MachineInstr &LoadInst, MachineInstr &StoreInst) { unsigned LdOpc = LoadInst.getOpcode(); unsigned StOpc = StoreInst.getOpcode(); switch (LdOpc) { default: llvm_unreachable("Unsupported load instruction!"); case AArch64::LDRBBui: return StOpc == AArch64::STRBBui || StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; case AArch64::LDURBBi: return StOpc == AArch64::STURBBi || StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; case AArch64::LDRHHui: return StOpc == AArch64::STRHHui || StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; case AArch64::LDURHHi: return StOpc == AArch64::STURHHi || StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; case AArch64::LDRWui: return StOpc == AArch64::STRWui || StOpc == AArch64::STRXui; case AArch64::LDURWi: return StOpc == AArch64::STURWi || StOpc == AArch64::STURXi; case AArch64::LDRXui: return StOpc == AArch64::STRXui; case AArch64::LDURXi: return StOpc == AArch64::STURXi; } } static unsigned getPreIndexedOpcode(unsigned Opc) { // FIXME: We don't currently support creating pre-indexed loads/stores when // the load or store is the unscaled version. If we decide to perform such an // optimization in the future the cases for the unscaled loads/stores will // need to be added here. switch (Opc) { default: llvm_unreachable("Opcode has no pre-indexed equivalent!"); case AArch64::STRSui: return AArch64::STRSpre; case AArch64::STRDui: return AArch64::STRDpre; case AArch64::STRQui: return AArch64::STRQpre; case AArch64::STRBBui: return AArch64::STRBBpre; case AArch64::STRHHui: return AArch64::STRHHpre; case AArch64::STRWui: return AArch64::STRWpre; case AArch64::STRXui: return AArch64::STRXpre; case AArch64::LDRSui: return AArch64::LDRSpre; case AArch64::LDRDui: return AArch64::LDRDpre; case AArch64::LDRQui: return AArch64::LDRQpre; case AArch64::LDRBBui: return AArch64::LDRBBpre; case AArch64::LDRHHui: return AArch64::LDRHHpre; case AArch64::LDRWui: return AArch64::LDRWpre; case AArch64::LDRXui: return AArch64::LDRXpre; case AArch64::LDRSWui: return AArch64::LDRSWpre; case AArch64::LDPSi: return AArch64::LDPSpre; case AArch64::LDPSWi: return AArch64::LDPSWpre; case AArch64::LDPDi: return AArch64::LDPDpre; case AArch64::LDPQi: return AArch64::LDPQpre; case AArch64::LDPWi: return AArch64::LDPWpre; case AArch64::LDPXi: return AArch64::LDPXpre; case AArch64::STPSi: return AArch64::STPSpre; case AArch64::STPDi: return AArch64::STPDpre; case AArch64::STPQi: return AArch64::STPQpre; case AArch64::STPWi: return AArch64::STPWpre; case AArch64::STPXi: return AArch64::STPXpre; case AArch64::STGi: return AArch64::STGPreIndex; case AArch64::STZGi: return AArch64::STZGPreIndex; case AArch64::ST2Gi: return AArch64::ST2GPreIndex; case AArch64::STZ2Gi: return AArch64::STZ2GPreIndex; case AArch64::STGPi: return AArch64::STGPpre; } } static unsigned getPostIndexedOpcode(unsigned Opc) { switch (Opc) { default: llvm_unreachable("Opcode has no post-indexed wise equivalent!"); case AArch64::STRSui: case AArch64::STURSi: return AArch64::STRSpost; case AArch64::STRDui: case AArch64::STURDi: return AArch64::STRDpost; case AArch64::STRQui: case AArch64::STURQi: return AArch64::STRQpost; case AArch64::STRBBui: return AArch64::STRBBpost; case AArch64::STRHHui: return AArch64::STRHHpost; case AArch64::STRWui: case AArch64::STURWi: return AArch64::STRWpost; case AArch64::STRXui: case AArch64::STURXi: return AArch64::STRXpost; case AArch64::LDRSui: case AArch64::LDURSi: return AArch64::LDRSpost; case AArch64::LDRDui: case AArch64::LDURDi: return AArch64::LDRDpost; case AArch64::LDRQui: case AArch64::LDURQi: return AArch64::LDRQpost; case AArch64::LDRBBui: return AArch64::LDRBBpost; case AArch64::LDRHHui: return AArch64::LDRHHpost; case AArch64::LDRWui: case AArch64::LDURWi: return AArch64::LDRWpost; case AArch64::LDRXui: case AArch64::LDURXi: return AArch64::LDRXpost; case AArch64::LDRSWui: return AArch64::LDRSWpost; case AArch64::LDPSi: return AArch64::LDPSpost; case AArch64::LDPSWi: return AArch64::LDPSWpost; case AArch64::LDPDi: return AArch64::LDPDpost; case AArch64::LDPQi: return AArch64::LDPQpost; case AArch64::LDPWi: return AArch64::LDPWpost; case AArch64::LDPXi: return AArch64::LDPXpost; case AArch64::STPSi: return AArch64::STPSpost; case AArch64::STPDi: return AArch64::STPDpost; case AArch64::STPQi: return AArch64::STPQpost; case AArch64::STPWi: return AArch64::STPWpost; case AArch64::STPXi: return AArch64::STPXpost; case AArch64::STGi: return AArch64::STGPostIndex; case AArch64::STZGi: return AArch64::STZGPostIndex; case AArch64::ST2Gi: return AArch64::ST2GPostIndex; case AArch64::STZ2Gi: return AArch64::STZ2GPostIndex; case AArch64::STGPi: return AArch64::STGPpost; } } static bool isPreLdStPairCandidate(MachineInstr &FirstMI, MachineInstr &MI) { unsigned OpcA = FirstMI.getOpcode(); unsigned OpcB = MI.getOpcode(); switch (OpcA) { default: return false; case AArch64::STRSpre: return (OpcB == AArch64::STRSui) || (OpcB == AArch64::STURSi); case AArch64::STRDpre: return (OpcB == AArch64::STRDui) || (OpcB == AArch64::STURDi); case AArch64::STRQpre: return (OpcB == AArch64::STRQui) || (OpcB == AArch64::STURQi); case AArch64::STRWpre: return (OpcB == AArch64::STRWui) || (OpcB == AArch64::STURWi); case AArch64::STRXpre: return (OpcB == AArch64::STRXui) || (OpcB == AArch64::STURXi); case AArch64::LDRSpre: return (OpcB == AArch64::LDRSui) || (OpcB == AArch64::LDURSi); case AArch64::LDRDpre: return (OpcB == AArch64::LDRDui) || (OpcB == AArch64::LDURDi); case AArch64::LDRQpre: return (OpcB == AArch64::LDRQui) || (OpcB == AArch64::LDURQi); case AArch64::LDRWpre: return (OpcB == AArch64::LDRWui) || (OpcB == AArch64::LDURWi); case AArch64::LDRXpre: return (OpcB == AArch64::LDRXui) || (OpcB == AArch64::LDURXi); case AArch64::LDRSWpre: return (OpcB == AArch64::LDRSWui) || (OpcB == AArch64::LDURSWi); } } // Returns the scale and offset range of pre/post indexed variants of MI. static void getPrePostIndexedMemOpInfo(const MachineInstr &MI, int &Scale, int &MinOffset, int &MaxOffset) { bool IsPaired = AArch64InstrInfo::isPairedLdSt(MI); bool IsTagStore = isTagStore(MI); // ST*G and all paired ldst have the same scale in pre/post-indexed variants // as in the "unsigned offset" variant. // All other pre/post indexed ldst instructions are unscaled. Scale = (IsTagStore || IsPaired) ? AArch64InstrInfo::getMemScale(MI) : 1; if (IsPaired) { MinOffset = -64; MaxOffset = 63; } else { MinOffset = -256; MaxOffset = 255; } } static MachineOperand &getLdStRegOp(MachineInstr &MI, unsigned PairedRegOp = 0) { assert(PairedRegOp < 2 && "Unexpected register operand idx."); bool IsPreLdSt = AArch64InstrInfo::isPreLdSt(MI); if (IsPreLdSt) PairedRegOp += 1; unsigned Idx = AArch64InstrInfo::isPairedLdSt(MI) || IsPreLdSt ? PairedRegOp : 0; return MI.getOperand(Idx); } static bool isLdOffsetInRangeOfSt(MachineInstr &LoadInst, MachineInstr &StoreInst, const AArch64InstrInfo *TII) { assert(isMatchingStore(LoadInst, StoreInst) && "Expect only matched ld/st."); int LoadSize = TII->getMemScale(LoadInst); int StoreSize = TII->getMemScale(StoreInst); int UnscaledStOffset = TII->hasUnscaledLdStOffset(StoreInst) ? AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() : AArch64InstrInfo::getLdStOffsetOp(StoreInst).getImm() * StoreSize; int UnscaledLdOffset = TII->hasUnscaledLdStOffset(LoadInst) ? AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() : AArch64InstrInfo::getLdStOffsetOp(LoadInst).getImm() * LoadSize; return (UnscaledStOffset <= UnscaledLdOffset) && (UnscaledLdOffset + LoadSize <= (UnscaledStOffset + StoreSize)); } static bool isPromotableZeroStoreInst(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); return (Opc == AArch64::STRWui || Opc == AArch64::STURWi || isNarrowStore(Opc)) && getLdStRegOp(MI).getReg() == AArch64::WZR; } static bool isPromotableLoadFromStore(MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; // Scaled instructions. case AArch64::LDRBBui: case AArch64::LDRHHui: case AArch64::LDRWui: case AArch64::LDRXui: // Unscaled instructions. case AArch64::LDURBBi: case AArch64::LDURHHi: case AArch64::LDURWi: case AArch64::LDURXi: return true; } } static bool isMergeableLdStUpdate(MachineInstr &MI) { unsigned Opc = MI.getOpcode(); switch (Opc) { default: return false; // Scaled instructions. case AArch64::STRSui: case AArch64::STRDui: case AArch64::STRQui: case AArch64::STRXui: case AArch64::STRWui: case AArch64::STRHHui: case AArch64::STRBBui: case AArch64::LDRSui: case AArch64::LDRDui: case AArch64::LDRQui: case AArch64::LDRXui: case AArch64::LDRWui: case AArch64::LDRHHui: case AArch64::LDRBBui: case AArch64::STGi: case AArch64::STZGi: case AArch64::ST2Gi: case AArch64::STZ2Gi: case AArch64::STGPi: // Unscaled instructions. case AArch64::STURSi: case AArch64::STURDi: case AArch64::STURQi: case AArch64::STURWi: case AArch64::STURXi: case AArch64::LDURSi: case AArch64::LDURDi: case AArch64::LDURQi: case AArch64::LDURWi: case AArch64::LDURXi: // Paired instructions. case AArch64::LDPSi: case AArch64::LDPSWi: case AArch64::LDPDi: case AArch64::LDPQi: case AArch64::LDPWi: case AArch64::LDPXi: case AArch64::STPSi: case AArch64::STPDi: case AArch64::STPQi: case AArch64::STPWi: case AArch64::STPXi: // Make sure this is a reg+imm (as opposed to an address reloc). if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) return false; return true; } } static bool isRewritableImplicitDef(unsigned Opc) { switch (Opc) { default: return false; case AArch64::ORRWrs: case AArch64::ADDWri: return true; } } MachineBasicBlock::iterator AArch64LoadStoreOpt::mergeNarrowZeroStores(MachineBasicBlock::iterator I, MachineBasicBlock::iterator MergeMI, const LdStPairFlags &Flags) { assert(isPromotableZeroStoreInst(*I) && isPromotableZeroStoreInst(*MergeMI) && "Expected promotable zero stores."); MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator NextI = next_nodbg(I, E); // If NextI is the second of the two instructions to be merged, we need // to skip one further. Either way we merge will invalidate the iterator, // and we don't need to scan the new instruction, as it's a pairwise // instruction, which we're not considering for further action anyway. if (NextI == MergeMI) NextI = next_nodbg(NextI, E); unsigned Opc = I->getOpcode(); unsigned MergeMIOpc = MergeMI->getOpcode(); bool IsScaled = !TII->hasUnscaledLdStOffset(Opc); bool IsMergedMIScaled = !TII->hasUnscaledLdStOffset(MergeMIOpc); int OffsetStride = IsScaled ? TII->getMemScale(*I) : 1; int MergeMIOffsetStride = IsMergedMIScaled ? TII->getMemScale(*MergeMI) : 1; bool MergeForward = Flags.getMergeForward(); // Insert our new paired instruction after whichever of the paired // instructions MergeForward indicates. MachineBasicBlock::iterator InsertionPoint = MergeForward ? MergeMI : I; // Also based on MergeForward is from where we copy the base register operand // so we get the flags compatible with the input code. const MachineOperand &BaseRegOp = MergeForward ? AArch64InstrInfo::getLdStBaseOp(*MergeMI) : AArch64InstrInfo::getLdStBaseOp(*I); // Which register is Rt and which is Rt2 depends on the offset order. int64_t IOffsetInBytes = AArch64InstrInfo::getLdStOffsetOp(*I).getImm() * OffsetStride; int64_t MIOffsetInBytes = AArch64InstrInfo::getLdStOffsetOp(*MergeMI).getImm() * MergeMIOffsetStride; // Select final offset based on the offset order. int64_t OffsetImm; if (IOffsetInBytes > MIOffsetInBytes) OffsetImm = MIOffsetInBytes; else OffsetImm = IOffsetInBytes; int NewOpcode = getMatchingWideOpcode(Opc); bool FinalIsScaled = !TII->hasUnscaledLdStOffset(NewOpcode); // Adjust final offset if the result opcode is a scaled store. if (FinalIsScaled) { int NewOffsetStride = FinalIsScaled ? TII->getMemScale(NewOpcode) : 1; assert(((OffsetImm % NewOffsetStride) == 0) && "Offset should be a multiple of the store memory scale"); OffsetImm = OffsetImm / NewOffsetStride; } // Construct the new instruction. DebugLoc DL = I->getDebugLoc(); MachineBasicBlock *MBB = I->getParent(); MachineInstrBuilder MIB; MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(getMatchingWideOpcode(Opc))) .addReg(isNarrowStore(Opc) ? AArch64::WZR : AArch64::XZR) .add(BaseRegOp) .addImm(OffsetImm) .cloneMergedMemRefs({&*I, &*MergeMI}) .setMIFlags(I->mergeFlagsWith(*MergeMI)); (void)MIB; LLVM_DEBUG(dbgs() << "Creating wider store. Replacing instructions:\n "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << " "); LLVM_DEBUG(MergeMI->print(dbgs())); LLVM_DEBUG(dbgs() << " with instruction:\n "); LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); // Erase the old instructions. I->eraseFromParent(); MergeMI->eraseFromParent(); return NextI; } // Apply Fn to all instructions between MI and the beginning of the block, until // a def for DefReg is reached. Returns true, iff Fn returns true for all // visited instructions. Stop after visiting Limit iterations. static bool forAllMIsUntilDef(MachineInstr &MI, MCPhysReg DefReg, const TargetRegisterInfo *TRI, unsigned Limit, std::function &Fn) { auto MBB = MI.getParent(); for (MachineInstr &I : instructionsWithoutDebug(MI.getReverseIterator(), MBB->instr_rend())) { if (!Limit) return false; --Limit; bool isDef = any_of(I.operands(), [DefReg, TRI](MachineOperand &MOP) { return MOP.isReg() && MOP.isDef() && !MOP.isDebug() && MOP.getReg() && TRI->regsOverlap(MOP.getReg(), DefReg); }); if (!Fn(I, isDef)) return false; if (isDef) break; } return true; } static void updateDefinedRegisters(MachineInstr &MI, LiveRegUnits &Units, const TargetRegisterInfo *TRI) { for (const MachineOperand &MOP : phys_regs_and_masks(MI)) if (MOP.isReg() && MOP.isKill()) Units.removeReg(MOP.getReg()); for (const MachineOperand &MOP : phys_regs_and_masks(MI)) if (MOP.isReg() && !MOP.isKill()) Units.addReg(MOP.getReg()); } MachineBasicBlock::iterator AArch64LoadStoreOpt::mergePairedInsns(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Paired, const LdStPairFlags &Flags) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator NextI = next_nodbg(I, E); // If NextI is the second of the two instructions to be merged, we need // to skip one further. Either way we merge will invalidate the iterator, // and we don't need to scan the new instruction, as it's a pairwise // instruction, which we're not considering for further action anyway. if (NextI == Paired) NextI = next_nodbg(NextI, E); int SExtIdx = Flags.getSExtIdx(); unsigned Opc = SExtIdx == -1 ? I->getOpcode() : getMatchingNonSExtOpcode(I->getOpcode()); bool IsUnscaled = TII->hasUnscaledLdStOffset(Opc); int OffsetStride = IsUnscaled ? TII->getMemScale(*I) : 1; bool MergeForward = Flags.getMergeForward(); std::optional RenameReg = Flags.getRenameReg(); if (RenameReg) { MCRegister RegToRename = getLdStRegOp(*I).getReg(); DefinedInBB.addReg(*RenameReg); // Return the sub/super register for RenameReg, matching the size of // OriginalReg. auto GetMatchingSubReg = [this, RenameReg](const TargetRegisterClass *C) -> MCPhysReg { for (MCPhysReg SubOrSuper : TRI->sub_and_superregs_inclusive(*RenameReg)) { if (C->contains(SubOrSuper)) return SubOrSuper; } llvm_unreachable("Should have found matching sub or super register!"); }; std::function UpdateMIs = [this, RegToRename, GetMatchingSubReg, MergeForward](MachineInstr &MI, bool IsDef) { if (IsDef) { bool SeenDef = false; for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) { MachineOperand &MOP = MI.getOperand(OpIdx); // Rename the first explicit definition and all implicit // definitions matching RegToRename. if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && (!MergeForward || !SeenDef || (MOP.isDef() && MOP.isImplicit())) && TRI->regsOverlap(MOP.getReg(), RegToRename)) { assert((MOP.isImplicit() || (MOP.isRenamable() && !MOP.isEarlyClobber())) && "Need renamable operands"); Register MatchingReg; if (const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, TII, TRI)) MatchingReg = GetMatchingSubReg(RC); else { if (!isRewritableImplicitDef(MI.getOpcode())) continue; MatchingReg = GetMatchingSubReg( TRI->getMinimalPhysRegClass(MOP.getReg())); } MOP.setReg(MatchingReg); SeenDef = true; } } } else { for (unsigned OpIdx = 0; OpIdx < MI.getNumOperands(); ++OpIdx) { MachineOperand &MOP = MI.getOperand(OpIdx); if (MOP.isReg() && !MOP.isDebug() && MOP.getReg() && TRI->regsOverlap(MOP.getReg(), RegToRename)) { assert((MOP.isImplicit() || (MOP.isRenamable() && !MOP.isEarlyClobber())) && "Need renamable operands"); Register MatchingReg; if (const TargetRegisterClass *RC = MI.getRegClassConstraint(OpIdx, TII, TRI)) MatchingReg = GetMatchingSubReg(RC); else MatchingReg = GetMatchingSubReg( TRI->getMinimalPhysRegClass(MOP.getReg())); assert(MatchingReg != AArch64::NoRegister && "Cannot find matching regs for renaming"); MOP.setReg(MatchingReg); } } } LLVM_DEBUG(dbgs() << "Renamed " << MI); return true; }; forAllMIsUntilDef(MergeForward ? *I : *std::prev(Paired), RegToRename, TRI, UINT32_MAX, UpdateMIs); #if !defined(NDEBUG) // For forward merging store: // Make sure the register used for renaming is not used between the // paired instructions. That would trash the content before the new // paired instruction. MCPhysReg RegToCheck = *RenameReg; // For backward merging load: // Make sure the register being renamed is not used between the // paired instructions. That would trash the content after the new // paired instruction. if (!MergeForward) RegToCheck = RegToRename; for (auto &MI : iterator_range>( MergeForward ? std::next(I) : I, MergeForward ? std::next(Paired) : Paired)) assert(all_of(MI.operands(), [this, RegToCheck](const MachineOperand &MOP) { return !MOP.isReg() || MOP.isDebug() || !MOP.getReg() || MOP.isUndef() || !TRI->regsOverlap(MOP.getReg(), RegToCheck); }) && "Rename register used between paired instruction, trashing the " "content"); #endif } // Insert our new paired instruction after whichever of the paired // instructions MergeForward indicates. MachineBasicBlock::iterator InsertionPoint = MergeForward ? Paired : I; // Also based on MergeForward is from where we copy the base register operand // so we get the flags compatible with the input code. const MachineOperand &BaseRegOp = MergeForward ? AArch64InstrInfo::getLdStBaseOp(*Paired) : AArch64InstrInfo::getLdStBaseOp(*I); int Offset = AArch64InstrInfo::getLdStOffsetOp(*I).getImm(); int PairedOffset = AArch64InstrInfo::getLdStOffsetOp(*Paired).getImm(); bool PairedIsUnscaled = TII->hasUnscaledLdStOffset(Paired->getOpcode()); if (IsUnscaled != PairedIsUnscaled) { // We're trying to pair instructions that differ in how they are scaled. If // I is scaled then scale the offset of Paired accordingly. Otherwise, do // the opposite (i.e., make Paired's offset unscaled). int MemSize = TII->getMemScale(*Paired); if (PairedIsUnscaled) { // If the unscaled offset isn't a multiple of the MemSize, we can't // pair the operations together. assert(!(PairedOffset % TII->getMemScale(*Paired)) && "Offset should be a multiple of the stride!"); PairedOffset /= MemSize; } else { PairedOffset *= MemSize; } } // Which register is Rt and which is Rt2 depends on the offset order. // However, for pre load/stores the Rt should be the one of the pre // load/store. MachineInstr *RtMI, *Rt2MI; if (Offset == PairedOffset + OffsetStride && !AArch64InstrInfo::isPreLdSt(*I)) { RtMI = &*Paired; Rt2MI = &*I; // Here we swapped the assumption made for SExtIdx. // I.e., we turn ldp I, Paired into ldp Paired, I. // Update the index accordingly. if (SExtIdx != -1) SExtIdx = (SExtIdx + 1) % 2; } else { RtMI = &*I; Rt2MI = &*Paired; } int OffsetImm = AArch64InstrInfo::getLdStOffsetOp(*RtMI).getImm(); // Scale the immediate offset, if necessary. if (TII->hasUnscaledLdStOffset(RtMI->getOpcode())) { assert(!(OffsetImm % TII->getMemScale(*RtMI)) && "Unscaled offset cannot be scaled."); OffsetImm /= TII->getMemScale(*RtMI); } // Construct the new instruction. MachineInstrBuilder MIB; DebugLoc DL = I->getDebugLoc(); MachineBasicBlock *MBB = I->getParent(); MachineOperand RegOp0 = getLdStRegOp(*RtMI); MachineOperand RegOp1 = getLdStRegOp(*Rt2MI); MachineOperand &PairedRegOp = RtMI == &*Paired ? RegOp0 : RegOp1; // Kill flags may become invalid when moving stores for pairing. if (RegOp0.isUse()) { if (!MergeForward) { // Clear kill flags on store if moving upwards. Example: // STRWui kill %w0, ... // USE %w1 // STRWui kill %w1 ; need to clear kill flag when moving STRWui upwards // We are about to move the store of w1, so its kill flag may become // invalid; not the case for w0. // Since w1 is used between the stores, the kill flag on w1 is cleared // after merging. // STPWi kill %w0, %w1, ... // USE %w1 for (auto It = std::next(I); It != Paired && PairedRegOp.isKill(); ++It) if (It->readsRegister(PairedRegOp.getReg(), TRI)) PairedRegOp.setIsKill(false); } else { // Clear kill flags of the first stores register. Example: // STRWui %w1, ... // USE kill %w1 ; need to clear kill flag when moving STRWui downwards // STRW %w0 Register Reg = getLdStRegOp(*I).getReg(); for (MachineInstr &MI : make_range(std::next(I), Paired)) MI.clearRegisterKills(Reg, TRI); } } unsigned int MatchPairOpcode = getMatchingPairOpcode(Opc); MIB = BuildMI(*MBB, InsertionPoint, DL, TII->get(MatchPairOpcode)); // Adds the pre-index operand for pre-indexed ld/st pairs. if (AArch64InstrInfo::isPreLdSt(*RtMI)) MIB.addReg(BaseRegOp.getReg(), RegState::Define); MIB.add(RegOp0) .add(RegOp1) .add(BaseRegOp) .addImm(OffsetImm) .cloneMergedMemRefs({&*I, &*Paired}) .setMIFlags(I->mergeFlagsWith(*Paired)); (void)MIB; LLVM_DEBUG( dbgs() << "Creating pair load/store. Replacing instructions:\n "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << " "); LLVM_DEBUG(Paired->print(dbgs())); LLVM_DEBUG(dbgs() << " with instruction:\n "); if (SExtIdx != -1) { // Generate the sign extension for the proper result of the ldp. // I.e., with X1, that would be: // %w1 = KILL %w1, implicit-def %x1 // %x1 = SBFMXri killed %x1, 0, 31 MachineOperand &DstMO = MIB->getOperand(SExtIdx); // Right now, DstMO has the extended register, since it comes from an // extended opcode. Register DstRegX = DstMO.getReg(); // Get the W variant of that register. Register DstRegW = TRI->getSubReg(DstRegX, AArch64::sub_32); // Update the result of LDP to use the W instead of the X variant. DstMO.setReg(DstRegW); LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); // Make the machine verifier happy by providing a definition for // the X register. // Insert this definition right after the generated LDP, i.e., before // InsertionPoint. MachineInstrBuilder MIBKill = BuildMI(*MBB, InsertionPoint, DL, TII->get(TargetOpcode::KILL), DstRegW) .addReg(DstRegW) .addReg(DstRegX, RegState::Define); MIBKill->getOperand(2).setImplicit(); // Create the sign extension. MachineInstrBuilder MIBSXTW = BuildMI(*MBB, InsertionPoint, DL, TII->get(AArch64::SBFMXri), DstRegX) .addReg(DstRegX) .addImm(0) .addImm(31); (void)MIBSXTW; LLVM_DEBUG(dbgs() << " Extend operand:\n "); LLVM_DEBUG(((MachineInstr *)MIBSXTW)->print(dbgs())); } else { LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); } LLVM_DEBUG(dbgs() << "\n"); if (MergeForward) for (const MachineOperand &MOP : phys_regs_and_masks(*I)) if (MOP.isReg() && MOP.isKill()) DefinedInBB.addReg(MOP.getReg()); // Erase the old instructions. I->eraseFromParent(); Paired->eraseFromParent(); return NextI; } MachineBasicBlock::iterator AArch64LoadStoreOpt::promoteLoadFromStore(MachineBasicBlock::iterator LoadI, MachineBasicBlock::iterator StoreI) { MachineBasicBlock::iterator NextI = next_nodbg(LoadI, LoadI->getParent()->end()); int LoadSize = TII->getMemScale(*LoadI); int StoreSize = TII->getMemScale(*StoreI); Register LdRt = getLdStRegOp(*LoadI).getReg(); const MachineOperand &StMO = getLdStRegOp(*StoreI); Register StRt = getLdStRegOp(*StoreI).getReg(); bool IsStoreXReg = TRI->getRegClass(AArch64::GPR64RegClassID)->contains(StRt); assert((IsStoreXReg || TRI->getRegClass(AArch64::GPR32RegClassID)->contains(StRt)) && "Unexpected RegClass"); MachineInstr *BitExtMI; if (LoadSize == StoreSize && (LoadSize == 4 || LoadSize == 8)) { // Remove the load, if the destination register of the loads is the same // register for stored value. if (StRt == LdRt && LoadSize == 8) { for (MachineInstr &MI : make_range(StoreI->getIterator(), LoadI->getIterator())) { if (MI.killsRegister(StRt, TRI)) { MI.clearRegisterKills(StRt, TRI); break; } } LLVM_DEBUG(dbgs() << "Remove load instruction:\n "); LLVM_DEBUG(LoadI->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); LoadI->eraseFromParent(); return NextI; } // Replace the load with a mov if the load and store are in the same size. BitExtMI = BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), TII->get(IsStoreXReg ? AArch64::ORRXrs : AArch64::ORRWrs), LdRt) .addReg(IsStoreXReg ? AArch64::XZR : AArch64::WZR) .add(StMO) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) .setMIFlags(LoadI->getFlags()); } else { // FIXME: Currently we disable this transformation in big-endian targets as // performance and correctness are verified only in little-endian. if (!Subtarget->isLittleEndian()) return NextI; bool IsUnscaled = TII->hasUnscaledLdStOffset(*LoadI); assert(IsUnscaled == TII->hasUnscaledLdStOffset(*StoreI) && "Unsupported ld/st match"); assert(LoadSize <= StoreSize && "Invalid load size"); int UnscaledLdOffset = IsUnscaled ? AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() : AArch64InstrInfo::getLdStOffsetOp(*LoadI).getImm() * LoadSize; int UnscaledStOffset = IsUnscaled ? AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() : AArch64InstrInfo::getLdStOffsetOp(*StoreI).getImm() * StoreSize; int Width = LoadSize * 8; Register DestReg = IsStoreXReg ? Register(TRI->getMatchingSuperReg( LdRt, AArch64::sub_32, &AArch64::GPR64RegClass)) : LdRt; assert((UnscaledLdOffset >= UnscaledStOffset && (UnscaledLdOffset + LoadSize) <= UnscaledStOffset + StoreSize) && "Invalid offset"); int Immr = 8 * (UnscaledLdOffset - UnscaledStOffset); int Imms = Immr + Width - 1; if (UnscaledLdOffset == UnscaledStOffset) { uint32_t AndMaskEncoded = ((IsStoreXReg ? 1 : 0) << 12) // N | ((Immr) << 6) // immr | ((Imms) << 0) // imms ; BitExtMI = BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), TII->get(IsStoreXReg ? AArch64::ANDXri : AArch64::ANDWri), DestReg) .add(StMO) .addImm(AndMaskEncoded) .setMIFlags(LoadI->getFlags()); } else { BitExtMI = BuildMI(*LoadI->getParent(), LoadI, LoadI->getDebugLoc(), TII->get(IsStoreXReg ? AArch64::UBFMXri : AArch64::UBFMWri), DestReg) .add(StMO) .addImm(Immr) .addImm(Imms) .setMIFlags(LoadI->getFlags()); } } // Clear kill flags between store and load. for (MachineInstr &MI : make_range(StoreI->getIterator(), BitExtMI->getIterator())) if (MI.killsRegister(StRt, TRI)) { MI.clearRegisterKills(StRt, TRI); break; } LLVM_DEBUG(dbgs() << "Promoting load by replacing :\n "); LLVM_DEBUG(StoreI->print(dbgs())); LLVM_DEBUG(dbgs() << " "); LLVM_DEBUG(LoadI->print(dbgs())); LLVM_DEBUG(dbgs() << " with instructions:\n "); LLVM_DEBUG(StoreI->print(dbgs())); LLVM_DEBUG(dbgs() << " "); LLVM_DEBUG((BitExtMI)->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); // Erase the old instructions. LoadI->eraseFromParent(); return NextI; } static bool inBoundsForPair(bool IsUnscaled, int Offset, int OffsetStride) { // Convert the byte-offset used by unscaled into an "element" offset used // by the scaled pair load/store instructions. if (IsUnscaled) { // If the byte-offset isn't a multiple of the stride, there's no point // trying to match it. if (Offset % OffsetStride) return false; Offset /= OffsetStride; } return Offset <= 63 && Offset >= -64; } // Do alignment, specialized to power of 2 and for signed ints, // avoiding having to do a C-style cast from uint_64t to int when // using alignTo from include/llvm/Support/MathExtras.h. // FIXME: Move this function to include/MathExtras.h? static int alignTo(int Num, int PowOf2) { return (Num + PowOf2 - 1) & ~(PowOf2 - 1); } static bool mayAlias(MachineInstr &MIa, SmallVectorImpl &MemInsns, AliasAnalysis *AA) { for (MachineInstr *MIb : MemInsns) { if (MIa.mayAlias(AA, *MIb, /*UseTBAA*/ false)) { LLVM_DEBUG(dbgs() << "Aliasing with: "; MIb->dump()); return true; } } LLVM_DEBUG(dbgs() << "No aliases found\n"); return false; } bool AArch64LoadStoreOpt::findMatchingStore( MachineBasicBlock::iterator I, unsigned Limit, MachineBasicBlock::iterator &StoreI) { MachineBasicBlock::iterator B = I->getParent()->begin(); MachineBasicBlock::iterator MBBI = I; MachineInstr &LoadMI = *I; Register BaseReg = AArch64InstrInfo::getLdStBaseOp(LoadMI).getReg(); // If the load is the first instruction in the block, there's obviously // not any matching store. if (MBBI == B) return false; // Track which register units have been modified and used between the first // insn and the second insn. ModifiedRegUnits.clear(); UsedRegUnits.clear(); unsigned Count = 0; do { MBBI = prev_nodbg(MBBI, B); MachineInstr &MI = *MBBI; // Don't count transient instructions towards the search limit since there // may be different numbers of them if e.g. debug information is present. if (!MI.isTransient()) ++Count; // If the load instruction reads directly from the address to which the // store instruction writes and the stored value is not modified, we can // promote the load. Since we do not handle stores with pre-/post-index, // it's unnecessary to check if BaseReg is modified by the store itself. // Also we can't handle stores without an immediate offset operand, // while the operand might be the address for a global variable. if (MI.mayStore() && isMatchingStore(LoadMI, MI) && BaseReg == AArch64InstrInfo::getLdStBaseOp(MI).getReg() && AArch64InstrInfo::getLdStOffsetOp(MI).isImm() && isLdOffsetInRangeOfSt(LoadMI, MI, TII) && ModifiedRegUnits.available(getLdStRegOp(MI).getReg())) { StoreI = MBBI; return true; } if (MI.isCall()) return false; // Update modified / uses register units. LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); // Otherwise, if the base register is modified, we have no match, so // return early. if (!ModifiedRegUnits.available(BaseReg)) return false; // If we encounter a store aliased with the load, return early. if (MI.mayStore() && LoadMI.mayAlias(AA, MI, /*UseTBAA*/ false)) return false; } while (MBBI != B && Count < Limit); return false; } static bool needsWinCFI(const MachineFunction *MF) { return MF->getTarget().getMCAsmInfo()->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); } // Returns true if FirstMI and MI are candidates for merging or pairing. // Otherwise, returns false. static bool areCandidatesToMergeOrPair(MachineInstr &FirstMI, MachineInstr &MI, LdStPairFlags &Flags, const AArch64InstrInfo *TII) { // If this is volatile or if pairing is suppressed, not a candidate. if (MI.hasOrderedMemoryRef() || TII->isLdStPairSuppressed(MI)) return false; // We should have already checked FirstMI for pair suppression and volatility. assert(!FirstMI.hasOrderedMemoryRef() && !TII->isLdStPairSuppressed(FirstMI) && "FirstMI shouldn't get here if either of these checks are true."); if (needsWinCFI(MI.getMF()) && (MI.getFlag(MachineInstr::FrameSetup) || MI.getFlag(MachineInstr::FrameDestroy))) return false; unsigned OpcA = FirstMI.getOpcode(); unsigned OpcB = MI.getOpcode(); // Opcodes match: If the opcodes are pre ld/st there is nothing more to check. if (OpcA == OpcB) return !AArch64InstrInfo::isPreLdSt(FirstMI); // Two pre ld/st of different opcodes cannot be merged either if (AArch64InstrInfo::isPreLdSt(FirstMI) && AArch64InstrInfo::isPreLdSt(MI)) return false; // Try to match a sign-extended load/store with a zero-extended load/store. bool IsValidLdStrOpc, PairIsValidLdStrOpc; unsigned NonSExtOpc = getMatchingNonSExtOpcode(OpcA, &IsValidLdStrOpc); assert(IsValidLdStrOpc && "Given Opc should be a Load or Store with an immediate"); // OpcA will be the first instruction in the pair. if (NonSExtOpc == getMatchingNonSExtOpcode(OpcB, &PairIsValidLdStrOpc)) { Flags.setSExtIdx(NonSExtOpc == (unsigned)OpcA ? 1 : 0); return true; } // If the second instruction isn't even a mergable/pairable load/store, bail // out. if (!PairIsValidLdStrOpc) return false; // FIXME: We don't support merging narrow stores with mixed scaled/unscaled // offsets. if (isNarrowStore(OpcA) || isNarrowStore(OpcB)) return false; // The STRpre - STRui and // LDRpre-LDRui // are candidate pairs that can be merged. if (isPreLdStPairCandidate(FirstMI, MI)) return true; // Try to match an unscaled load/store with a scaled load/store. return TII->hasUnscaledLdStOffset(OpcA) != TII->hasUnscaledLdStOffset(OpcB) && getMatchingPairOpcode(OpcA) == getMatchingPairOpcode(OpcB); // FIXME: Can we also match a mixed sext/zext unscaled/scaled pair? } static bool canRenameMOP(const MachineOperand &MOP, const TargetRegisterInfo *TRI) { if (MOP.isReg()) { auto *RegClass = TRI->getMinimalPhysRegClass(MOP.getReg()); // Renaming registers with multiple disjunct sub-registers (e.g. the // result of a LD3) means that all sub-registers are renamed, potentially // impacting other instructions we did not check. Bail out. // Note that this relies on the structure of the AArch64 register file. In // particular, a subregister cannot be written without overwriting the // whole register. if (RegClass->HasDisjunctSubRegs) { LLVM_DEBUG( dbgs() << " Cannot rename operands with multiple disjunct subregisters (" << MOP << ")\n"); return false; } // We cannot rename arbitrary implicit-defs, the specific rule to rewrite // them must be known. For example, in ORRWrs the implicit-def // corresponds to the result register. if (MOP.isImplicit() && MOP.isDef()) { if (!isRewritableImplicitDef(MOP.getParent()->getOpcode())) return false; return TRI->isSuperOrSubRegisterEq( MOP.getParent()->getOperand(0).getReg(), MOP.getReg()); } } return MOP.isImplicit() || (MOP.isRenamable() && !MOP.isEarlyClobber() && !MOP.isTied()); } static bool canRenameUpToDef(MachineInstr &FirstMI, LiveRegUnits &UsedInBetween, SmallPtrSetImpl &RequiredClasses, const TargetRegisterInfo *TRI) { if (!FirstMI.mayStore()) return false; // Check if we can find an unused register which we can use to rename // the register used by the first load/store. auto RegToRename = getLdStRegOp(FirstMI).getReg(); // For now, we only rename if the store operand gets killed at the store. if (!getLdStRegOp(FirstMI).isKill() && !any_of(FirstMI.operands(), [TRI, RegToRename](const MachineOperand &MOP) { return MOP.isReg() && !MOP.isDebug() && MOP.getReg() && MOP.isImplicit() && MOP.isKill() && TRI->regsOverlap(RegToRename, MOP.getReg()); })) { LLVM_DEBUG(dbgs() << " Operand not killed at " << FirstMI); return false; } bool FoundDef = false; // For each instruction between FirstMI and the previous def for RegToRename, // we // * check if we can rename RegToRename in this instruction // * collect the registers used and required register classes for RegToRename. std::function CheckMIs = [&](MachineInstr &MI, bool IsDef) { LLVM_DEBUG(dbgs() << "Checking " << MI); // Currently we do not try to rename across frame-setup instructions. if (MI.getFlag(MachineInstr::FrameSetup)) { LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions " << "currently\n"); return false; } UsedInBetween.accumulate(MI); // For a definition, check that we can rename the definition and exit the // loop. FoundDef = IsDef; // For defs, check if we can rename the first def of RegToRename. if (FoundDef) { // For some pseudo instructions, we might not generate code in the end // (e.g. KILL) and we would end up without a correct def for the rename // register. // TODO: This might be overly conservative and we could handle those cases // in multiple ways: // 1. Insert an extra copy, to materialize the def. // 2. Skip pseudo-defs until we find an non-pseudo def. if (MI.isPseudo()) { LLVM_DEBUG(dbgs() << " Cannot rename pseudo/bundle instruction\n"); return false; } for (auto &MOP : MI.operands()) { if (!MOP.isReg() || !MOP.isDef() || MOP.isDebug() || !MOP.getReg() || !TRI->regsOverlap(MOP.getReg(), RegToRename)) continue; if (!canRenameMOP(MOP, TRI)) { LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI); return false; } RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); } return true; } else { for (auto &MOP : MI.operands()) { if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || !TRI->regsOverlap(MOP.getReg(), RegToRename)) continue; if (!canRenameMOP(MOP, TRI)) { LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI); return false; } RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); } } return true; }; if (!forAllMIsUntilDef(FirstMI, RegToRename, TRI, LdStLimit, CheckMIs)) return false; if (!FoundDef) { LLVM_DEBUG(dbgs() << " Did not find definition for register in BB\n"); return false; } return true; } // We want to merge the second load into the first by rewriting the usages of // the same reg between first (incl.) and second (excl.). We don't need to care // about any insns before FirstLoad or after SecondLoad. // 1. The second load writes new value into the same reg. // - The renaming is impossible to impact later use of the reg. // - The second load always trash the value written by the first load which // means the reg must be killed before the second load. // 2. The first load must be a def for the same reg so we don't need to look // into anything before it. static bool canRenameUntilSecondLoad( MachineInstr &FirstLoad, MachineInstr &SecondLoad, LiveRegUnits &UsedInBetween, SmallPtrSetImpl &RequiredClasses, const TargetRegisterInfo *TRI) { if (FirstLoad.isPseudo()) return false; UsedInBetween.accumulate(FirstLoad); auto RegToRename = getLdStRegOp(FirstLoad).getReg(); bool Success = std::all_of( FirstLoad.getIterator(), SecondLoad.getIterator(), [&](MachineInstr &MI) { LLVM_DEBUG(dbgs() << "Checking " << MI); // Currently we do not try to rename across frame-setup instructions. if (MI.getFlag(MachineInstr::FrameSetup)) { LLVM_DEBUG(dbgs() << " Cannot rename framesetup instructions " << "currently\n"); return false; } for (auto &MOP : MI.operands()) { if (!MOP.isReg() || MOP.isDebug() || !MOP.getReg() || !TRI->regsOverlap(MOP.getReg(), RegToRename)) continue; if (!canRenameMOP(MOP, TRI)) { LLVM_DEBUG(dbgs() << " Cannot rename " << MOP << " in " << MI); return false; } RequiredClasses.insert(TRI->getMinimalPhysRegClass(MOP.getReg())); } return true; }); return Success; } // Check if we can find a physical register for renaming \p Reg. This register // must: // * not be defined already in \p DefinedInBB; DefinedInBB must contain all // defined registers up to the point where the renamed register will be used, // * not used in \p UsedInBetween; UsedInBetween must contain all accessed // registers in the range the rename register will be used, // * is available in all used register classes (checked using RequiredClasses). static std::optional tryToFindRegisterToRename( const MachineFunction &MF, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl &RequiredClasses, const TargetRegisterInfo *TRI) { const MachineRegisterInfo &RegInfo = MF.getRegInfo(); // Checks if any sub- or super-register of PR is callee saved. auto AnySubOrSuperRegCalleePreserved = [&MF, TRI](MCPhysReg PR) { return any_of(TRI->sub_and_superregs_inclusive(PR), [&MF, TRI](MCPhysReg SubOrSuper) { return TRI->isCalleeSavedPhysReg(SubOrSuper, MF); }); }; // Check if PR or one of its sub- or super-registers can be used for all // required register classes. auto CanBeUsedForAllClasses = [&RequiredClasses, TRI](MCPhysReg PR) { return all_of(RequiredClasses, [PR, TRI](const TargetRegisterClass *C) { return any_of( TRI->sub_and_superregs_inclusive(PR), [C](MCPhysReg SubOrSuper) { return C->contains(SubOrSuper); }); }); }; auto *RegClass = TRI->getMinimalPhysRegClass(Reg); for (const MCPhysReg &PR : *RegClass) { if (DefinedInBB.available(PR) && UsedInBetween.available(PR) && !RegInfo.isReserved(PR) && !AnySubOrSuperRegCalleePreserved(PR) && CanBeUsedForAllClasses(PR)) { DefinedInBB.addReg(PR); LLVM_DEBUG(dbgs() << "Found rename register " << printReg(PR, TRI) << "\n"); return {PR}; } } LLVM_DEBUG(dbgs() << "No rename register found from " << TRI->getRegClassName(RegClass) << "\n"); return std::nullopt; } // For store pairs: returns a register from FirstMI to the beginning of the // block that can be renamed. // For load pairs: returns a register from FirstMI to MI that can be renamed. static std::optional findRenameRegForSameLdStRegPair( std::optional MaybeCanRename, MachineInstr &FirstMI, MachineInstr &MI, Register Reg, LiveRegUnits &DefinedInBB, LiveRegUnits &UsedInBetween, SmallPtrSetImpl &RequiredClasses, const TargetRegisterInfo *TRI) { std::optional RenameReg; if (!DebugCounter::shouldExecute(RegRenamingCounter)) return RenameReg; auto *RegClass = TRI->getMinimalPhysRegClass(getLdStRegOp(FirstMI).getReg()); MachineFunction &MF = *FirstMI.getParent()->getParent(); if (!RegClass || !MF.getRegInfo().tracksLiveness()) return RenameReg; const bool IsLoad = FirstMI.mayLoad(); if (!MaybeCanRename) { if (IsLoad) MaybeCanRename = {canRenameUntilSecondLoad(FirstMI, MI, UsedInBetween, RequiredClasses, TRI)}; else MaybeCanRename = { canRenameUpToDef(FirstMI, UsedInBetween, RequiredClasses, TRI)}; } if (*MaybeCanRename) { RenameReg = tryToFindRegisterToRename(MF, Reg, DefinedInBB, UsedInBetween, RequiredClasses, TRI); } return RenameReg; } /// Scan the instructions looking for a load/store that can be combined with the /// current instruction into a wider equivalent or a load/store pair. MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingInsn(MachineBasicBlock::iterator I, LdStPairFlags &Flags, unsigned Limit, bool FindNarrowMerge) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator MBBI = I; MachineBasicBlock::iterator MBBIWithRenameReg; MachineInstr &FirstMI = *I; MBBI = next_nodbg(MBBI, E); bool MayLoad = FirstMI.mayLoad(); bool IsUnscaled = TII->hasUnscaledLdStOffset(FirstMI); Register Reg = getLdStRegOp(FirstMI).getReg(); Register BaseReg = AArch64InstrInfo::getLdStBaseOp(FirstMI).getReg(); int Offset = AArch64InstrInfo::getLdStOffsetOp(FirstMI).getImm(); int OffsetStride = IsUnscaled ? TII->getMemScale(FirstMI) : 1; bool IsPromotableZeroStore = isPromotableZeroStoreInst(FirstMI); std::optional MaybeCanRename; if (!EnableRenaming) MaybeCanRename = {false}; SmallPtrSet RequiredClasses; LiveRegUnits UsedInBetween; UsedInBetween.init(*TRI); Flags.clearRenameReg(); // Track which register units have been modified and used between the first // insn (inclusive) and the second insn. ModifiedRegUnits.clear(); UsedRegUnits.clear(); // Remember any instructions that read/write memory between FirstMI and MI. SmallVector MemInsns; LLVM_DEBUG(dbgs() << "Find match for: "; FirstMI.dump()); for (unsigned Count = 0; MBBI != E && Count < Limit; MBBI = next_nodbg(MBBI, E)) { MachineInstr &MI = *MBBI; LLVM_DEBUG(dbgs() << "Analysing 2nd insn: "; MI.dump()); UsedInBetween.accumulate(MI); // Don't count transient instructions towards the search limit since there // may be different numbers of them if e.g. debug information is present. if (!MI.isTransient()) ++Count; Flags.setSExtIdx(-1); if (areCandidatesToMergeOrPair(FirstMI, MI, Flags, TII) && AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) { assert(MI.mayLoadOrStore() && "Expected memory operation."); // If we've found another instruction with the same opcode, check to see // if the base and offset are compatible with our starting instruction. // These instructions all have scaled immediate operands, so we just // check for +1/-1. Make sure to check the new instruction offset is // actually an immediate and not a symbolic reference destined for // a relocation. Register MIBaseReg = AArch64InstrInfo::getLdStBaseOp(MI).getReg(); int MIOffset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); bool MIIsUnscaled = TII->hasUnscaledLdStOffset(MI); if (IsUnscaled != MIIsUnscaled) { // We're trying to pair instructions that differ in how they are scaled. // If FirstMI is scaled then scale the offset of MI accordingly. // Otherwise, do the opposite (i.e., make MI's offset unscaled). int MemSize = TII->getMemScale(MI); if (MIIsUnscaled) { // If the unscaled offset isn't a multiple of the MemSize, we can't // pair the operations together: bail and keep looking. if (MIOffset % MemSize) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); continue; } MIOffset /= MemSize; } else { MIOffset *= MemSize; } } bool IsPreLdSt = isPreLdStPairCandidate(FirstMI, MI); if (BaseReg == MIBaseReg) { // If the offset of the second ld/st is not equal to the size of the // destination register it can’t be paired with a pre-index ld/st // pair. Additionally if the base reg is used or modified the operations // can't be paired: bail and keep looking. if (IsPreLdSt) { bool IsOutOfBounds = MIOffset != TII->getMemScale(MI); bool IsBaseRegUsed = !UsedRegUnits.available( AArch64InstrInfo::getLdStBaseOp(MI).getReg()); bool IsBaseRegModified = !ModifiedRegUnits.available( AArch64InstrInfo::getLdStBaseOp(MI).getReg()); // If the stored value and the address of the second instruction is // the same, it needs to be using the updated register and therefore // it must not be folded. bool IsMIRegTheSame = TRI->regsOverlap(getLdStRegOp(MI).getReg(), AArch64InstrInfo::getLdStBaseOp(MI).getReg()); if (IsOutOfBounds || IsBaseRegUsed || IsBaseRegModified || IsMIRegTheSame) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); continue; } } else { if ((Offset != MIOffset + OffsetStride) && (Offset + OffsetStride != MIOffset)) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); continue; } } int MinOffset = Offset < MIOffset ? Offset : MIOffset; if (FindNarrowMerge) { // If the alignment requirements of the scaled wide load/store // instruction can't express the offset of the scaled narrow input, // bail and keep looking. For promotable zero stores, allow only when // the stored value is the same (i.e., WZR). if ((!IsUnscaled && alignTo(MinOffset, 2) != MinOffset) || (IsPromotableZeroStore && Reg != getLdStRegOp(MI).getReg())) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); continue; } } else { // Pairwise instructions have a 7-bit signed offset field. Single // insns have a 12-bit unsigned offset field. If the resultant // immediate offset of merging these instructions is out of range for // a pairwise instruction, bail and keep looking. if (!inBoundsForPair(IsUnscaled, MinOffset, OffsetStride)) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); LLVM_DEBUG(dbgs() << "Offset doesn't fit in immediate, " << "keep looking.\n"); continue; } // If the alignment requirements of the paired (scaled) instruction // can't express the offset of the unscaled input, bail and keep // looking. if (IsUnscaled && (alignTo(MinOffset, OffsetStride) != MinOffset)) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); LLVM_DEBUG(dbgs() << "Offset doesn't fit due to alignment requirements, " << "keep looking.\n"); continue; } } // If the BaseReg has been modified, then we cannot do the optimization. // For example, in the following pattern // ldr x1 [x2] // ldr x2 [x3] // ldr x4 [x2, #8], // the first and third ldr cannot be converted to ldp x1, x4, [x2] if (!ModifiedRegUnits.available(BaseReg)) return E; const bool SameLoadReg = MayLoad && TRI->isSuperOrSubRegisterEq( Reg, getLdStRegOp(MI).getReg()); // If the Rt of the second instruction (destination register of the // load) was not modified or used between the two instructions and none // of the instructions between the second and first alias with the // second, we can combine the second into the first. bool RtNotModified = ModifiedRegUnits.available(getLdStRegOp(MI).getReg()); bool RtNotUsed = !(MI.mayLoad() && !SameLoadReg && !UsedRegUnits.available(getLdStRegOp(MI).getReg())); LLVM_DEBUG(dbgs() << "Checking, can combine 2nd into 1st insn:\n" << "Reg '" << getLdStRegOp(MI) << "' not modified: " << (RtNotModified ? "true" : "false") << "\n" << "Reg '" << getLdStRegOp(MI) << "' not used: " << (RtNotUsed ? "true" : "false") << "\n"); if (RtNotModified && RtNotUsed && !mayAlias(MI, MemInsns, AA)) { // For pairs loading into the same reg, try to find a renaming // opportunity to allow the renaming of Reg between FirstMI and MI // and combine MI into FirstMI; otherwise bail and keep looking. if (SameLoadReg) { std::optional RenameReg = findRenameRegForSameLdStRegPair(MaybeCanRename, FirstMI, MI, Reg, DefinedInBB, UsedInBetween, RequiredClasses, TRI); if (!RenameReg) { LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); MemInsns.push_back(&MI); LLVM_DEBUG(dbgs() << "Can't find reg for renaming, " << "keep looking.\n"); continue; } Flags.setRenameReg(*RenameReg); } Flags.setMergeForward(false); if (!SameLoadReg) Flags.clearRenameReg(); return MBBI; } // Likewise, if the Rt of the first instruction is not modified or used // between the two instructions and none of the instructions between the // first and the second alias with the first, we can combine the first // into the second. RtNotModified = !( MayLoad && !UsedRegUnits.available(getLdStRegOp(FirstMI).getReg())); LLVM_DEBUG(dbgs() << "Checking, can combine 1st into 2nd insn:\n" << "Reg '" << getLdStRegOp(FirstMI) << "' not modified: " << (RtNotModified ? "true" : "false") << "\n"); if (RtNotModified && !mayAlias(FirstMI, MemInsns, AA)) { if (ModifiedRegUnits.available(getLdStRegOp(FirstMI).getReg())) { Flags.setMergeForward(true); Flags.clearRenameReg(); return MBBI; } std::optional RenameReg = findRenameRegForSameLdStRegPair( MaybeCanRename, FirstMI, MI, Reg, DefinedInBB, UsedInBetween, RequiredClasses, TRI); if (RenameReg) { Flags.setMergeForward(true); Flags.setRenameReg(*RenameReg); MBBIWithRenameReg = MBBI; } } LLVM_DEBUG(dbgs() << "Unable to combine these instructions due to " << "interference in between, keep looking.\n"); } } if (Flags.getRenameReg()) return MBBIWithRenameReg; // If the instruction wasn't a matching load or store. Stop searching if we // encounter a call instruction that might modify memory. if (MI.isCall()) { LLVM_DEBUG(dbgs() << "Found a call, stop looking.\n"); return E; } // Update modified / uses register units. LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); // Otherwise, if the base register is modified, we have no match, so // return early. if (!ModifiedRegUnits.available(BaseReg)) { LLVM_DEBUG(dbgs() << "Base reg is modified, stop looking.\n"); return E; } // Update list of instructions that read/write memory. if (MI.mayLoadOrStore()) MemInsns.push_back(&MI); } return E; } static MachineBasicBlock::iterator maybeMoveCFI(MachineInstr &MI, MachineBasicBlock::iterator MaybeCFI) { auto End = MI.getParent()->end(); if (MaybeCFI == End || MaybeCFI->getOpcode() != TargetOpcode::CFI_INSTRUCTION || !(MI.getFlag(MachineInstr::FrameSetup) || MI.getFlag(MachineInstr::FrameDestroy)) || AArch64InstrInfo::getLdStBaseOp(MI).getReg() != AArch64::SP) return End; const MachineFunction &MF = *MI.getParent()->getParent(); unsigned CFIIndex = MaybeCFI->getOperand(0).getCFIIndex(); const MCCFIInstruction &CFI = MF.getFrameInstructions()[CFIIndex]; switch (CFI.getOperation()) { case MCCFIInstruction::OpDefCfa: case MCCFIInstruction::OpDefCfaOffset: return MaybeCFI; default: return End; } } MachineBasicBlock::iterator AArch64LoadStoreOpt::mergeUpdateInsn(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Update, bool IsPreIdx) { assert((Update->getOpcode() == AArch64::ADDXri || Update->getOpcode() == AArch64::SUBXri) && "Unexpected base register update instruction to merge!"); MachineBasicBlock::iterator E = I->getParent()->end(); MachineBasicBlock::iterator NextI = next_nodbg(I, E); // If updating the SP and the following instruction is CFA offset related CFI // instruction move it after the merged instruction. MachineBasicBlock::iterator CFI = IsPreIdx ? maybeMoveCFI(*Update, next_nodbg(Update, E)) : E; // Return the instruction following the merged instruction, which is // the instruction following our unmerged load. Unless that's the add/sub // instruction we're merging, in which case it's the one after that. if (NextI == Update) NextI = next_nodbg(NextI, E); int Value = Update->getOperand(2).getImm(); assert(AArch64_AM::getShiftValue(Update->getOperand(3).getImm()) == 0 && "Can't merge 1 << 12 offset into pre-/post-indexed load / store"); if (Update->getOpcode() == AArch64::SUBXri) Value = -Value; unsigned NewOpc = IsPreIdx ? getPreIndexedOpcode(I->getOpcode()) : getPostIndexedOpcode(I->getOpcode()); MachineInstrBuilder MIB; int Scale, MinOffset, MaxOffset; getPrePostIndexedMemOpInfo(*I, Scale, MinOffset, MaxOffset); if (!AArch64InstrInfo::isPairedLdSt(*I)) { // Non-paired instruction. MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) .add(getLdStRegOp(*Update)) .add(getLdStRegOp(*I)) .add(AArch64InstrInfo::getLdStBaseOp(*I)) .addImm(Value / Scale) .setMemRefs(I->memoperands()) .setMIFlags(I->mergeFlagsWith(*Update)); } else { // Paired instruction. MIB = BuildMI(*I->getParent(), I, I->getDebugLoc(), TII->get(NewOpc)) .add(getLdStRegOp(*Update)) .add(getLdStRegOp(*I, 0)) .add(getLdStRegOp(*I, 1)) .add(AArch64InstrInfo::getLdStBaseOp(*I)) .addImm(Value / Scale) .setMemRefs(I->memoperands()) .setMIFlags(I->mergeFlagsWith(*Update)); } if (CFI != E) { MachineBasicBlock *MBB = I->getParent(); MBB->splice(std::next(MIB.getInstr()->getIterator()), MBB, CFI); } if (IsPreIdx) { ++NumPreFolded; LLVM_DEBUG(dbgs() << "Creating pre-indexed load/store."); } else { ++NumPostFolded; LLVM_DEBUG(dbgs() << "Creating post-indexed load/store."); } LLVM_DEBUG(dbgs() << " Replacing instructions:\n "); LLVM_DEBUG(I->print(dbgs())); LLVM_DEBUG(dbgs() << " "); LLVM_DEBUG(Update->print(dbgs())); LLVM_DEBUG(dbgs() << " with instruction:\n "); LLVM_DEBUG(((MachineInstr *)MIB)->print(dbgs())); LLVM_DEBUG(dbgs() << "\n"); // Erase the old instructions for the block. I->eraseFromParent(); Update->eraseFromParent(); return NextI; } bool AArch64LoadStoreOpt::isMatchingUpdateInsn(MachineInstr &MemMI, MachineInstr &MI, unsigned BaseReg, int Offset) { switch (MI.getOpcode()) { default: break; case AArch64::SUBXri: case AArch64::ADDXri: // Make sure it's a vanilla immediate operand, not a relocation or // anything else we can't handle. if (!MI.getOperand(2).isImm()) break; // Watch out for 1 << 12 shifted value. if (AArch64_AM::getShiftValue(MI.getOperand(3).getImm())) break; // The update instruction source and destination register must be the // same as the load/store base register. if (MI.getOperand(0).getReg() != BaseReg || MI.getOperand(1).getReg() != BaseReg) break; int UpdateOffset = MI.getOperand(2).getImm(); if (MI.getOpcode() == AArch64::SUBXri) UpdateOffset = -UpdateOffset; // The immediate must be a multiple of the scaling factor of the pre/post // indexed instruction. int Scale, MinOffset, MaxOffset; getPrePostIndexedMemOpInfo(MemMI, Scale, MinOffset, MaxOffset); if (UpdateOffset % Scale != 0) break; // Scaled offset must fit in the instruction immediate. int ScaledOffset = UpdateOffset / Scale; if (ScaledOffset > MaxOffset || ScaledOffset < MinOffset) break; // If we have a non-zero Offset, we check that it matches the amount // we're adding to the register. if (!Offset || Offset == UpdateOffset) return true; break; } return false; } MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnForward( MachineBasicBlock::iterator I, int UnscaledOffset, unsigned Limit) { MachineBasicBlock::iterator E = I->getParent()->end(); MachineInstr &MemMI = *I; MachineBasicBlock::iterator MBBI = I; Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); int MIUnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm() * TII->getMemScale(MemMI); // Scan forward looking for post-index opportunities. Updating instructions // can't be formed if the memory instruction doesn't have the offset we're // looking for. if (MIUnscaledOffset != UnscaledOffset) return E; // If the base register overlaps a source/destination register, we can't // merge the update. This does not apply to tag store instructions which // ignore the address part of the source register. // This does not apply to STGPi as well, which does not have unpredictable // behavior in this case unlike normal stores, and always performs writeback // after reading the source register value. if (!isTagStore(MemMI) && MemMI.getOpcode() != AArch64::STGPi) { bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { Register DestReg = getLdStRegOp(MemMI, i).getReg(); if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) return E; } } // Track which register units have been modified and used between the first // insn (inclusive) and the second insn. ModifiedRegUnits.clear(); UsedRegUnits.clear(); MBBI = next_nodbg(MBBI, E); // We can't post-increment the stack pointer if any instruction between // the memory access (I) and the increment (MBBI) can access the memory // region defined by [SP, MBBI]. const bool BaseRegSP = BaseReg == AArch64::SP; if (BaseRegSP && needsWinCFI(I->getMF())) { // FIXME: For now, we always block the optimization over SP in windows // targets as it requires to adjust the unwind/debug info, messing up // the unwind info can actually cause a miscompile. return E; } for (unsigned Count = 0; MBBI != E && Count < Limit; MBBI = next_nodbg(MBBI, E)) { MachineInstr &MI = *MBBI; // Don't count transient instructions towards the search limit since there // may be different numbers of them if e.g. debug information is present. if (!MI.isTransient()) ++Count; // If we found a match, return it. if (isMatchingUpdateInsn(*I, MI, BaseReg, UnscaledOffset)) return MBBI; // Update the status of what the instruction clobbered and used. LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); // Otherwise, if the base register is used or modified, we have no match, so // return early. // If we are optimizing SP, do not allow instructions that may load or store // in between the load and the optimized value update. if (!ModifiedRegUnits.available(BaseReg) || !UsedRegUnits.available(BaseReg) || (BaseRegSP && MBBI->mayLoadOrStore())) return E; } return E; } MachineBasicBlock::iterator AArch64LoadStoreOpt::findMatchingUpdateInsnBackward( MachineBasicBlock::iterator I, unsigned Limit) { MachineBasicBlock::iterator B = I->getParent()->begin(); MachineBasicBlock::iterator E = I->getParent()->end(); MachineInstr &MemMI = *I; MachineBasicBlock::iterator MBBI = I; MachineFunction &MF = *MemMI.getMF(); Register BaseReg = AArch64InstrInfo::getLdStBaseOp(MemMI).getReg(); int Offset = AArch64InstrInfo::getLdStOffsetOp(MemMI).getImm(); // If the load/store is the first instruction in the block, there's obviously // not any matching update. Ditto if the memory offset isn't zero. if (MBBI == B || Offset != 0) return E; // If the base register overlaps a destination register, we can't // merge the update. if (!isTagStore(MemMI)) { bool IsPairedInsn = AArch64InstrInfo::isPairedLdSt(MemMI); for (unsigned i = 0, e = IsPairedInsn ? 2 : 1; i != e; ++i) { Register DestReg = getLdStRegOp(MemMI, i).getReg(); if (DestReg == BaseReg || TRI->isSubRegister(BaseReg, DestReg)) return E; } } const bool BaseRegSP = BaseReg == AArch64::SP; if (BaseRegSP && needsWinCFI(I->getMF())) { // FIXME: For now, we always block the optimization over SP in windows // targets as it requires to adjust the unwind/debug info, messing up // the unwind info can actually cause a miscompile. return E; } const AArch64Subtarget &Subtarget = MF.getSubtarget(); unsigned RedZoneSize = Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); // Track which register units have been modified and used between the first // insn (inclusive) and the second insn. ModifiedRegUnits.clear(); UsedRegUnits.clear(); unsigned Count = 0; bool MemAcessBeforeSPPreInc = false; do { MBBI = prev_nodbg(MBBI, B); MachineInstr &MI = *MBBI; // Don't count transient instructions towards the search limit since there // may be different numbers of them if e.g. debug information is present. if (!MI.isTransient()) ++Count; // If we found a match, return it. if (isMatchingUpdateInsn(*I, MI, BaseReg, Offset)) { // Check that the update value is within our red zone limit (which may be // zero). if (MemAcessBeforeSPPreInc && MBBI->getOperand(2).getImm() > RedZoneSize) return E; return MBBI; } // Update the status of what the instruction clobbered and used. LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, TRI); // Otherwise, if the base register is used or modified, we have no match, so // return early. if (!ModifiedRegUnits.available(BaseReg) || !UsedRegUnits.available(BaseReg)) return E; // Keep track if we have a memory access before an SP pre-increment, in this // case we need to validate later that the update amount respects the red // zone. if (BaseRegSP && MBBI->mayLoadOrStore()) MemAcessBeforeSPPreInc = true; } while (MBBI != B && Count < Limit); return E; } bool AArch64LoadStoreOpt::tryToPromoteLoadFromStore( MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; // If this is a volatile load, don't mess with it. if (MI.hasOrderedMemoryRef()) return false; if (needsWinCFI(MI.getMF()) && MI.getFlag(MachineInstr::FrameDestroy)) return false; // Make sure this is a reg+imm. // FIXME: It is possible to extend it to handle reg+reg cases. if (!AArch64InstrInfo::getLdStOffsetOp(MI).isImm()) return false; // Look backward up to LdStLimit instructions. MachineBasicBlock::iterator StoreI; if (findMatchingStore(MBBI, LdStLimit, StoreI)) { ++NumLoadsFromStoresPromoted; // Promote the load. Keeping the iterator straight is a // pain, so we let the merge routine tell us what the next instruction // is after it's done mucking about. MBBI = promoteLoadFromStore(MBBI, StoreI); return true; } return false; } // Merge adjacent zero stores into a wider store. bool AArch64LoadStoreOpt::tryToMergeZeroStInst( MachineBasicBlock::iterator &MBBI) { assert(isPromotableZeroStoreInst(*MBBI) && "Expected narrow store."); MachineInstr &MI = *MBBI; MachineBasicBlock::iterator E = MI.getParent()->end(); if (!TII->isCandidateToMergeOrPair(MI)) return false; // Look ahead up to LdStLimit instructions for a mergable instruction. LdStPairFlags Flags; MachineBasicBlock::iterator MergeMI = findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ true); if (MergeMI != E) { ++NumZeroStoresPromoted; // Keeping the iterator straight is a pain, so we let the merge routine tell // us what the next instruction is after it's done mucking about. MBBI = mergeNarrowZeroStores(MBBI, MergeMI, Flags); return true; } return false; } // Find loads and stores that can be merged into a single load or store pair // instruction. bool AArch64LoadStoreOpt::tryToPairLdStInst(MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock::iterator E = MI.getParent()->end(); if (!TII->isCandidateToMergeOrPair(MI)) return false; // If disable-ldp feature is opted, do not emit ldp. if (MI.mayLoad() && Subtarget->hasDisableLdp()) return false; // If disable-stp feature is opted, do not emit stp. if (MI.mayStore() && Subtarget->hasDisableStp()) return false; // Early exit if the offset is not possible to match. (6 bits of positive // range, plus allow an extra one in case we find a later insn that matches // with Offset-1) bool IsUnscaled = TII->hasUnscaledLdStOffset(MI); int Offset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm(); int OffsetStride = IsUnscaled ? TII->getMemScale(MI) : 1; // Allow one more for offset. if (Offset > 0) Offset -= OffsetStride; if (!inBoundsForPair(IsUnscaled, Offset, OffsetStride)) return false; // Look ahead up to LdStLimit instructions for a pairable instruction. LdStPairFlags Flags; MachineBasicBlock::iterator Paired = findMatchingInsn(MBBI, Flags, LdStLimit, /* FindNarrowMerge = */ false); if (Paired != E) { // Keeping the iterator straight is a pain, so we let the merge routine tell // us what the next instruction is after it's done mucking about. auto Prev = std::prev(MBBI); // Fetch the memoperand of the load/store that is a candidate for // combination. MachineMemOperand *MemOp = MI.memoperands_empty() ? nullptr : MI.memoperands().front(); // If a load/store arrives and ldp/stp-aligned-only feature is opted, check // that the alignment of the source pointer is at least double the alignment // of the type. if ((MI.mayLoad() && Subtarget->hasLdpAlignedOnly()) || (MI.mayStore() && Subtarget->hasStpAlignedOnly())) { // If there is no size/align information, cancel the transformation. if (!MemOp || !MemOp->getMemoryType().isValid()) { NumFailedAlignmentCheck++; return false; } // Get the needed alignments to check them if // ldp-aligned-only/stp-aligned-only features are opted. uint64_t MemAlignment = MemOp->getAlign().value(); uint64_t TypeAlignment = Align(MemOp->getSize().getValue()).value(); if (MemAlignment < 2 * TypeAlignment) { NumFailedAlignmentCheck++; return false; } } ++NumPairCreated; if (TII->hasUnscaledLdStOffset(MI)) ++NumUnscaledPairCreated; MBBI = mergePairedInsns(MBBI, Paired, Flags); // Collect liveness info for instructions between Prev and the new position // MBBI. for (auto I = std::next(Prev); I != MBBI; I++) updateDefinedRegisters(*I, DefinedInBB, TRI); return true; } return false; } bool AArch64LoadStoreOpt::tryToMergeLdStUpdate (MachineBasicBlock::iterator &MBBI) { MachineInstr &MI = *MBBI; MachineBasicBlock::iterator E = MI.getParent()->end(); MachineBasicBlock::iterator Update; // Look forward to try to form a post-index instruction. For example, // ldr x0, [x20] // add x20, x20, #32 // merged into: // ldr x0, [x20], #32 Update = findMatchingUpdateInsnForward(MBBI, 0, UpdateLimit); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/false); return true; } // Don't know how to handle unscaled pre/post-index versions below, so bail. if (TII->hasUnscaledLdStOffset(MI.getOpcode())) return false; // Look back to try to find a pre-index instruction. For example, // add x0, x0, #8 // ldr x1, [x0] // merged into: // ldr x1, [x0, #8]! Update = findMatchingUpdateInsnBackward(MBBI, UpdateLimit); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); return true; } // The immediate in the load/store is scaled by the size of the memory // operation. The immediate in the add we're looking for, // however, is not, so adjust here. int UnscaledOffset = AArch64InstrInfo::getLdStOffsetOp(MI).getImm() * TII->getMemScale(MI); // Look forward to try to find a pre-index instruction. For example, // ldr x1, [x0, #64] // add x0, x0, #64 // merged into: // ldr x1, [x0, #64]! Update = findMatchingUpdateInsnForward(MBBI, UnscaledOffset, UpdateLimit); if (Update != E) { // Merge the update into the ld/st. MBBI = mergeUpdateInsn(MBBI, Update, /*IsPreIdx=*/true); return true; } return false; } bool AArch64LoadStoreOpt::optimizeBlock(MachineBasicBlock &MBB, bool EnableNarrowZeroStOpt) { bool Modified = false; // Four tranformations to do here: // 1) Find loads that directly read from stores and promote them by // replacing with mov instructions. If the store is wider than the load, // the load will be replaced with a bitfield extract. // e.g., // str w1, [x0, #4] // ldrh w2, [x0, #6] // ; becomes // str w1, [x0, #4] // lsr w2, w1, #16 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { if (isPromotableLoadFromStore(*MBBI) && tryToPromoteLoadFromStore(MBBI)) Modified = true; else ++MBBI; } // 2) Merge adjacent zero stores into a wider store. // e.g., // strh wzr, [x0] // strh wzr, [x0, #2] // ; becomes // str wzr, [x0] // e.g., // str wzr, [x0] // str wzr, [x0, #4] // ; becomes // str xzr, [x0] if (EnableNarrowZeroStOpt) for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { if (isPromotableZeroStoreInst(*MBBI) && tryToMergeZeroStInst(MBBI)) Modified = true; else ++MBBI; } // 3) Find loads and stores that can be merged into a single load or store // pair instruction. // e.g., // ldr x0, [x2] // ldr x1, [x2, #8] // ; becomes // ldp x0, x1, [x2] if (MBB.getParent()->getRegInfo().tracksLiveness()) { DefinedInBB.clear(); DefinedInBB.addLiveIns(MBB); } for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { // Track currently live registers up to this point, to help with // searching for a rename register on demand. updateDefinedRegisters(*MBBI, DefinedInBB, TRI); if (TII->isPairableLdStInst(*MBBI) && tryToPairLdStInst(MBBI)) Modified = true; else ++MBBI; } // 4) Find base register updates that can be merged into the load or store // as a base-reg writeback. // e.g., // ldr x0, [x2] // add x2, x2, #4 // ; becomes // ldr x0, [x2], #4 for (MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end(); MBBI != E;) { if (isMergeableLdStUpdate(*MBBI) && tryToMergeLdStUpdate(MBBI)) Modified = true; else ++MBBI; } return Modified; } bool AArch64LoadStoreOpt::runOnMachineFunction(MachineFunction &Fn) { if (skipFunction(Fn.getFunction())) return false; Subtarget = &Fn.getSubtarget(); TII = static_cast(Subtarget->getInstrInfo()); TRI = Subtarget->getRegisterInfo(); AA = &getAnalysis().getAAResults(); // Resize the modified and used register unit trackers. We do this once // per function and then clear the register units each time we optimize a load // or store. ModifiedRegUnits.init(*TRI); UsedRegUnits.init(*TRI); DefinedInBB.init(*TRI); bool Modified = false; bool enableNarrowZeroStOpt = !Subtarget->requiresStrictAlign(); for (auto &MBB : Fn) { auto M = optimizeBlock(MBB, enableNarrowZeroStOpt); Modified |= M; } return Modified; } // FIXME: Do we need/want a pre-alloc pass like ARM has to try to keep loads and // stores near one another? Note: The pre-RA instruction scheduler already has // hooks to try and schedule pairable loads/stores together to improve pairing // opportunities. Thus, pre-RA pairing pass may not be worth the effort. // FIXME: When pairing store instructions it's very possible for this pass to // hoist a store with a KILL marker above another use (without a KILL marker). // The resulting IR is invalid, but nothing uses the KILL markers after this // pass, so it's never caused a problem in practice. /// createAArch64LoadStoreOptimizationPass - returns an instance of the /// load / store optimization pass. FunctionPass *llvm::createAArch64LoadStoreOptimizationPass() { return new AArch64LoadStoreOpt(); }