//===- AArch64FrameLowering.cpp - AArch64 Frame Lowering -------*- C++ -*-====// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains the AArch64 implementation of TargetFrameLowering class. // // On AArch64, stack frames are structured as follows: // // The stack grows downward. // // All of the individual frame areas on the frame below are optional, i.e. it's // possible to create a function so that the particular area isn't present // in the frame. // // At function entry, the "frame" looks as follows: // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| <- sp // | | Lower address // // // After the prologue has run, the frame has the following general structure. // Note that this doesn't depict the case where a red-zone is used. Also, // technically the last frame area (VLAs) doesn't get created until in the // main function body, after the prologue is run. However, it's depicted here // for completeness. // // | | Higher address // |-----------------------------------| // | | // | arguments passed on the stack | // | | // |-----------------------------------| // | | // | (Win64 only) varargs from reg | // | | // |-----------------------------------| // | | // | callee-saved gpr registers | <--. // | | | On Darwin platforms these // |- - - - - - - - - - - - - - - - - -| | callee saves are swapped, // | prev_lr | | (frame record first) // | prev_fp | <--' // | async context if needed | // | (a.k.a. "frame record") | // |-----------------------------------| <- fp(=x29) // | | // |-----------------------------------| // | | // | callee-saved fp/simd/SVE regs | // | | // |-----------------------------------| // | | // | SVE stack objects | // | | // |-----------------------------------| // |.empty.space.to.make.part.below....| // |.aligned.in.case.it.needs.more.than| (size of this area is unknown at // |.the.standard.16-byte.alignment....| compile time; if present) // |-----------------------------------| // | local variables of fixed size | // | including spill slots | // | | // | | // | | // |-----------------------------------| <- bp(not defined by ABI, // |.variable-sized.local.variables....| LLVM chooses X19) // |.(VLAs)............................| (size of this area is unknown at // |...................................| compile time) // |-----------------------------------| <- sp // | | Lower address // // // To access the data in a frame, at-compile time, a constant offset must be // computable from one of the pointers (fp, bp, sp) to access it. The size // of the areas with a dotted background cannot be computed at compile-time // if they are present, making it required to have all three of fp, bp and // sp to be set up to be able to access all contents in the frame areas, // assuming all of the frame areas are non-empty. // // For most functions, some of the frame areas are empty. For those functions, // it may not be necessary to set up fp or bp: // * A base pointer is definitely needed when there are both VLAs and local // variables with more-than-default alignment requirements. // * A frame pointer is definitely needed when there are local variables with // more-than-default alignment requirements. // // For Darwin platforms the frame-record (fp, lr) is stored at the top of the // callee-saved area, since the unwind encoding does not allow for encoding // this dynamically and existing tools depend on this layout. For other // platforms, the frame-record is stored at the bottom of the (gpr) callee-saved // area to allow SVE stack objects (allocated directly below the callee-saves, // if available) to be accessed directly from the framepointer. // The SVE spill/fill instructions have VL-scaled addressing modes such // as: // ldr z8, [fp, #-7 mul vl] // For SVE the size of the vector length (VL) is not known at compile-time, so // '#-7 mul vl' is an offset that can only be evaluated at runtime. With this // layout, we don't need to add an unscaled offset to the framepointer before // accessing the SVE object in the frame. // // In some cases when a base pointer is not strictly needed, it is generated // anyway when offsets from the frame pointer to access local variables become // so large that the offset can't be encoded in the immediate fields of loads // or stores. // // Outgoing function arguments must be at the bottom of the stack frame when // calling another function. If we do not have variable-sized stack objects, we // can allocate a "reserved call frame" area at the bottom of the local // variable area, large enough for all outgoing calls. If we do have VLAs, then // the stack pointer must be decremented and incremented around each call to // make space for the arguments below the VLAs. // // FIXME: also explain the redzone concept. // // About stack hazards: Under some SME contexts, a coprocessor with its own // separate cache can used for FP operations. This can create hazards if the CPU // and the SME unit try to access the same area of memory, including if the // access is to an area of the stack. To try to alleviate this we attempt to // introduce extra padding into the stack frame between FP and GPR accesses, // controlled by the StackHazardSize option. Without changing the layout of the // stack frame in the diagram above, a stack object of size StackHazardSize is // added between GPR and FPR CSRs. Another is added to the stack objects // section, and stack objects are sorted so that FPR > Hazard padding slot > // GPRs (where possible). Unfortunately some things are not handled well (VLA // area, arguments on the stack, object with both GPR and FPR accesses), but if // those are controlled by the user then the entire stack frame becomes GPR at // the start/end with FPR in the middle, surrounded by Hazard padding. // // An example of the prologue: // // .globl __foo // .align 2 // __foo: // Ltmp0: // .cfi_startproc // .cfi_personality 155, ___gxx_personality_v0 // Leh_func_begin: // .cfi_lsda 16, Lexception33 // // stp xa,bx, [sp, -#offset]! // ... // stp x28, x27, [sp, #offset-32] // stp fp, lr, [sp, #offset-16] // add fp, sp, #offset - 16 // sub sp, sp, #1360 // // The Stack: // +-------------------------------------------+ // 10000 | ........ | ........ | ........ | ........ | // 10004 | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // 10008 | ........ | ........ | ........ | ........ | // 1000c | ........ | ........ | ........ | ........ | // +===========================================+ // 10010 | X28 Register | // 10014 | X28 Register | // +-------------------------------------------+ // 10018 | X27 Register | // 1001c | X27 Register | // +===========================================+ // 10020 | Frame Pointer | // 10024 | Frame Pointer | // +-------------------------------------------+ // 10028 | Link Register | // 1002c | Link Register | // +===========================================+ // 10030 | ........ | ........ | ........ | ........ | // 10034 | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // 10038 | ........ | ........ | ........ | ........ | // 1003c | ........ | ........ | ........ | ........ | // +-------------------------------------------+ // // [sp] = 10030 :: >>initial value<< // sp = 10020 :: stp fp, lr, [sp, #-16]! // fp = sp == 10020 :: mov fp, sp // [sp] == 10020 :: stp x28, x27, [sp, #-16]! // sp == 10010 :: >>final value<< // // The frame pointer (w29) points to address 10020. If we use an offset of // '16' from 'w29', we get the CFI offsets of -8 for w30, -16 for w29, -24 // for w27, and -32 for w28: // // Ltmp1: // .cfi_def_cfa w29, 16 // Ltmp2: // .cfi_offset w30, -8 // Ltmp3: // .cfi_offset w29, -16 // Ltmp4: // .cfi_offset w27, -24 // Ltmp5: // .cfi_offset w28, -32 // //===----------------------------------------------------------------------===// #include "AArch64FrameLowering.h" #include "AArch64InstrInfo.h" #include "AArch64MachineFunctionInfo.h" #include "AArch64RegisterInfo.h" #include "AArch64Subtarget.h" #include "AArch64TargetMachine.h" #include "MCTargetDesc/AArch64AddressingModes.h" #include "MCTargetDesc/AArch64MCTargetDesc.h" #include "llvm/ADT/ScopeExit.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/WinEHFuncInfo.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCDwarf.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "frame-info" static cl::opt EnableRedZone("aarch64-redzone", cl::desc("enable use of redzone on AArch64"), cl::init(false), cl::Hidden); static cl::opt StackTaggingMergeSetTag( "stack-tagging-merge-settag", cl::desc("merge settag instruction in function epilog"), cl::init(true), cl::Hidden); static cl::opt OrderFrameObjects("aarch64-order-frame-objects", cl::desc("sort stack allocations"), cl::init(true), cl::Hidden); cl::opt EnableHomogeneousPrologEpilog( "homogeneous-prolog-epilog", cl::Hidden, cl::desc("Emit homogeneous prologue and epilogue for the size " "optimization (default = off)")); // Stack hazard padding size. 0 = disabled. static cl::opt StackHazardSize("aarch64-stack-hazard-size", cl::init(0), cl::Hidden); // Stack hazard size for analysis remarks. StackHazardSize takes precedence. static cl::opt StackHazardRemarkSize("aarch64-stack-hazard-remark-size", cl::init(0), cl::Hidden); // Whether to insert padding into non-streaming functions (for testing). static cl::opt StackHazardInNonStreaming("aarch64-stack-hazard-in-non-streaming", cl::init(false), cl::Hidden); STATISTIC(NumRedZoneFunctions, "Number of functions using red zone"); /// Returns how much of the incoming argument stack area (in bytes) we should /// clean up in an epilogue. For the C calling convention this will be 0, for /// guaranteed tail call conventions it can be positive (a normal return or a /// tail call to a function that uses less stack space for arguments) or /// negative (for a tail call to a function that needs more stack space than us /// for arguments). static int64_t getArgumentStackToRestore(MachineFunction &MF, MachineBasicBlock &MBB) { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); AArch64FunctionInfo *AFI = MF.getInfo(); bool IsTailCallReturn = (MBB.end() != MBBI) ? AArch64InstrInfo::isTailCallReturnInst(*MBBI) : false; int64_t ArgumentPopSize = 0; if (IsTailCallReturn) { MachineOperand &StackAdjust = MBBI->getOperand(1); // For a tail-call in a callee-pops-arguments environment, some or all of // the stack may actually be in use for the call's arguments, this is // calculated during LowerCall and consumed here... ArgumentPopSize = StackAdjust.getImm(); } else { // ... otherwise the amount to pop is *all* of the argument space, // conveniently stored in the MachineFunctionInfo by // LowerFormalArguments. This will, of course, be zero for the C calling // convention. ArgumentPopSize = AFI->getArgumentStackToRestore(); } return ArgumentPopSize; } static bool produceCompactUnwindFrame(MachineFunction &MF); static bool needsWinCFI(const MachineFunction &MF); static StackOffset getSVEStackSize(const MachineFunction &MF); static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB); /// Returns true if a homogeneous prolog or epilog code can be emitted /// for the size optimization. If possible, a frame helper call is injected. /// When Exit block is given, this check is for epilog. bool AArch64FrameLowering::homogeneousPrologEpilog( MachineFunction &MF, MachineBasicBlock *Exit) const { if (!MF.getFunction().hasMinSize()) return false; if (!EnableHomogeneousPrologEpilog) return false; if (EnableRedZone) return false; // TODO: Window is supported yet. if (needsWinCFI(MF)) return false; // TODO: SVE is not supported yet. if (getSVEStackSize(MF)) return false; // Bail on stack adjustment needed on return for simplicity. const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); if (MFI.hasVarSizedObjects() || RegInfo->hasStackRealignment(MF)) return false; if (Exit && getArgumentStackToRestore(MF, *Exit)) return false; auto *AFI = MF.getInfo(); if (AFI->hasSwiftAsyncContext() || AFI->hasStreamingModeChanges()) return false; // If there are an odd number of GPRs before LR and FP in the CSRs list, // they will not be paired into one RegPairInfo, which is incompatible with // the assumption made by the homogeneous prolog epilog pass. const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); unsigned NumGPRs = 0; for (unsigned I = 0; CSRegs[I]; ++I) { Register Reg = CSRegs[I]; if (Reg == AArch64::LR) { assert(CSRegs[I + 1] == AArch64::FP); if (NumGPRs % 2 != 0) return false; break; } if (AArch64::GPR64RegClass.contains(Reg)) ++NumGPRs; } return true; } /// Returns true if CSRs should be paired. bool AArch64FrameLowering::producePairRegisters(MachineFunction &MF) const { return produceCompactUnwindFrame(MF) || homogeneousPrologEpilog(MF); } /// This is the biggest offset to the stack pointer we can encode in aarch64 /// instructions (without using a separate calculation and a temp register). /// Note that the exception here are vector stores/loads which cannot encode any /// displacements (see estimateRSStackSizeLimit(), isAArch64FrameOffsetLegal()). static const unsigned DefaultSafeSPDisplacement = 255; /// Look at each instruction that references stack frames and return the stack /// size limit beyond which some of these instructions will require a scratch /// register during their expansion later. static unsigned estimateRSStackSizeLimit(MachineFunction &MF) { // FIXME: For now, just conservatively guestimate based on unscaled indexing // range. We'll end up allocating an unnecessary spill slot a lot, but // realistically that's not a big deal at this stage of the game. for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { if (MI.isDebugInstr() || MI.isPseudo() || MI.getOpcode() == AArch64::ADDXri || MI.getOpcode() == AArch64::ADDSXri) continue; for (const MachineOperand &MO : MI.operands()) { if (!MO.isFI()) continue; StackOffset Offset; if (isAArch64FrameOffsetLegal(MI, Offset, nullptr, nullptr, nullptr) == AArch64FrameOffsetCannotUpdate) return 0; } } } return DefaultSafeSPDisplacement; } TargetStackID::Value AArch64FrameLowering::getStackIDForScalableVectors() const { return TargetStackID::ScalableVector; } /// Returns the size of the fixed object area (allocated next to sp on entry) /// On Win64 this may include a var args area and an UnwindHelp object for EH. static unsigned getFixedObjectSize(const MachineFunction &MF, const AArch64FunctionInfo *AFI, bool IsWin64, bool IsFunclet) { if (!IsWin64 || IsFunclet) { return AFI->getTailCallReservedStack(); } else { if (AFI->getTailCallReservedStack() != 0 && !MF.getFunction().getAttributes().hasAttrSomewhere( Attribute::SwiftAsync)) report_fatal_error("cannot generate ABI-changing tail call for Win64"); // Var args are stored here in the primary function. const unsigned VarArgsArea = AFI->getVarArgsGPRSize(); // To support EH funclets we allocate an UnwindHelp object const unsigned UnwindHelpObject = (MF.hasEHFunclets() ? 8 : 0); return AFI->getTailCallReservedStack() + alignTo(VarArgsArea + UnwindHelpObject, 16); } } /// Returns the size of the entire SVE stackframe (calleesaves + spills). static StackOffset getSVEStackSize(const MachineFunction &MF) { const AArch64FunctionInfo *AFI = MF.getInfo(); return StackOffset::getScalable((int64_t)AFI->getStackSizeSVE()); } bool AArch64FrameLowering::canUseRedZone(const MachineFunction &MF) const { if (!EnableRedZone) return false; // Don't use the red zone if the function explicitly asks us not to. // This is typically used for kernel code. const AArch64Subtarget &Subtarget = MF.getSubtarget(); const unsigned RedZoneSize = Subtarget.getTargetLowering()->getRedZoneSize(MF.getFunction()); if (!RedZoneSize) return false; const MachineFrameInfo &MFI = MF.getFrameInfo(); const AArch64FunctionInfo *AFI = MF.getInfo(); uint64_t NumBytes = AFI->getLocalStackSize(); // If neither NEON or SVE are available, a COPY from one Q-reg to // another requires a spill -> reload sequence. We can do that // using a pre-decrementing store/post-decrementing load, but // if we do so, we can't use the Red Zone. bool LowerQRegCopyThroughMem = Subtarget.hasFPARMv8() && !Subtarget.isNeonAvailable() && !Subtarget.hasSVE(); return !(MFI.hasCalls() || hasFP(MF) || NumBytes > RedZoneSize || getSVEStackSize(MF) || LowerQRegCopyThroughMem); } /// hasFP - Return true if the specified function should have a dedicated frame /// pointer register. bool AArch64FrameLowering::hasFP(const MachineFunction &MF) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); // Win64 EH requires a frame pointer if funclets are present, as the locals // are accessed off the frame pointer in both the parent function and the // funclets. if (MF.hasEHFunclets()) return true; // Retain behavior of always omitting the FP for leaf functions when possible. if (MF.getTarget().Options.DisableFramePointerElim(MF)) return true; if (MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken() || MFI.hasStackMap() || MFI.hasPatchPoint() || RegInfo->hasStackRealignment(MF)) return true; // With large callframes around we may need to use FP to access the scavenging // emergency spillslot. // // Unfortunately some calls to hasFP() like machine verifier -> // getReservedReg() -> hasFP in the middle of global isel are too early // to know the max call frame size. Hopefully conservatively returning "true" // in those cases is fine. // DefaultSafeSPDisplacement is fine as we only emergency spill GP regs. if (!MFI.isMaxCallFrameSizeComputed() || MFI.getMaxCallFrameSize() > DefaultSafeSPDisplacement) return true; return false; } /// hasReservedCallFrame - Under normal circumstances, when a frame pointer is /// not required, we reserve argument space for call sites in the function /// immediately on entry to the current function. This eliminates the need for /// add/sub sp brackets around call sites. Returns true if the call frame is /// included as part of the stack frame. bool AArch64FrameLowering::hasReservedCallFrame( const MachineFunction &MF) const { // The stack probing code for the dynamically allocated outgoing arguments // area assumes that the stack is probed at the top - either by the prologue // code, which issues a probe if `hasVarSizedObjects` return true, or by the // most recent variable-sized object allocation. Changing the condition here // may need to be followed up by changes to the probe issuing logic. return !MF.getFrameInfo().hasVarSizedObjects(); } MachineBasicBlock::iterator AArch64FrameLowering::eliminateCallFramePseudoInstr( MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const { const AArch64InstrInfo *TII = static_cast(MF.getSubtarget().getInstrInfo()); const AArch64TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); [[maybe_unused]] MachineFrameInfo &MFI = MF.getFrameInfo(); DebugLoc DL = I->getDebugLoc(); unsigned Opc = I->getOpcode(); bool IsDestroy = Opc == TII->getCallFrameDestroyOpcode(); uint64_t CalleePopAmount = IsDestroy ? I->getOperand(1).getImm() : 0; if (!hasReservedCallFrame(MF)) { int64_t Amount = I->getOperand(0).getImm(); Amount = alignTo(Amount, getStackAlign()); if (!IsDestroy) Amount = -Amount; // N.b. if CalleePopAmount is valid but zero (i.e. callee would pop, but it // doesn't have to pop anything), then the first operand will be zero too so // this adjustment is a no-op. if (CalleePopAmount == 0) { // FIXME: in-function stack adjustment for calls is limited to 24-bits // because there's no guaranteed temporary register available. // // ADD/SUB (immediate) has only LSL #0 and LSL #12 available. // 1) For offset <= 12-bit, we use LSL #0 // 2) For 12-bit <= offset <= 24-bit, we use two instructions. One uses // LSL #0, and the other uses LSL #12. // // Most call frames will be allocated at the start of a function so // this is OK, but it is a limitation that needs dealing with. assert(Amount > -0xffffff && Amount < 0xffffff && "call frame too large"); if (TLI->hasInlineStackProbe(MF) && -Amount >= AArch64::StackProbeMaxUnprobedStack) { // When stack probing is enabled, the decrement of SP may need to be // probed. We only need to do this if the call site needs 1024 bytes of // space or more, because a region smaller than that is allowed to be // unprobed at an ABI boundary. We rely on the fact that SP has been // probed exactly at this point, either by the prologue or most recent // dynamic allocation. assert(MFI.hasVarSizedObjects() && "non-reserved call frame without var sized objects?"); Register ScratchReg = MF.getRegInfo().createVirtualRegister(&AArch64::GPR64RegClass); inlineStackProbeFixed(I, ScratchReg, -Amount, StackOffset::get(0, 0)); } else { emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(Amount), TII); } } } else if (CalleePopAmount != 0) { // If the calling convention demands that the callee pops arguments from the // stack, we want to add it back if we have a reserved call frame. assert(CalleePopAmount < 0xffffff && "call frame too large"); emitFrameOffset(MBB, I, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-(int64_t)CalleePopAmount), TII); } return MBB.erase(I); } void AArch64FrameLowering::emitCalleeSavedGPRLocations( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); SMEAttrs Attrs(MF.getFunction()); bool LocallyStreaming = Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface(); const std::vector &CSI = MFI.getCalleeSavedInfo(); if (CSI.empty()) return; const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const TargetInstrInfo &TII = *STI.getInstrInfo(); DebugLoc DL = MBB.findDebugLoc(MBBI); for (const auto &Info : CSI) { unsigned FrameIdx = Info.getFrameIdx(); if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) continue; assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); int64_t DwarfReg = TRI.getDwarfRegNum(Info.getReg(), true); int64_t Offset = MFI.getObjectOffset(FrameIdx) - getOffsetOfLocalArea(); // The location of VG will be emitted before each streaming-mode change in // the function. Only locally-streaming functions require emitting the // non-streaming VG location here. if ((LocallyStreaming && FrameIdx == AFI->getStreamingVGIdx()) || (!LocallyStreaming && DwarfReg == TRI.getDwarfRegNum(AArch64::VG, true))) continue; unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::createOffset(nullptr, DwarfReg, Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } void AArch64FrameLowering::emitCalleeSavedSVELocations( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); // Add callee saved registers to move list. const std::vector &CSI = MFI.getCalleeSavedInfo(); if (CSI.empty()) return; const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const TargetInstrInfo &TII = *STI.getInstrInfo(); DebugLoc DL = MBB.findDebugLoc(MBBI); AArch64FunctionInfo &AFI = *MF.getInfo(); for (const auto &Info : CSI) { if (!(MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) continue; // Not all unwinders may know about SVE registers, so assume the lowest // common demoninator. assert(!Info.isSpilledToReg() && "Spilling to registers not implemented"); unsigned Reg = Info.getReg(); if (!static_cast(TRI).regNeedsCFI(Reg, Reg)) continue; StackOffset Offset = StackOffset::getScalable(MFI.getObjectOffset(Info.getFrameIdx())) - StackOffset::getFixed(AFI.getCalleeSavedStackSize(MFI)); unsigned CFIIndex = MF.addFrameInst(createCFAOffset(TRI, Reg, Offset)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } static void insertCFISameValue(const MCInstrDesc &Desc, MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, unsigned DwarfReg) { unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, DwarfReg)); BuildMI(MBB, InsertPt, DebugLoc(), Desc).addCFIIndex(CFIIndex); } void AArch64FrameLowering::resetCFIToInitialState( MachineBasicBlock &MBB) const { MachineFunction &MF = *MBB.getParent(); const auto &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); const auto &TRI = static_cast(*Subtarget.getRegisterInfo()); const auto &MFI = *MF.getInfo(); const MCInstrDesc &CFIDesc = TII.get(TargetOpcode::CFI_INSTRUCTION); DebugLoc DL; // Reset the CFA to `SP + 0`. MachineBasicBlock::iterator InsertPt = MBB.begin(); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( nullptr, TRI.getDwarfRegNum(AArch64::SP, true), 0)); BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); // Flip the RA sign state. if (MFI.shouldSignReturnAddress(MF)) { CFIIndex = MF.addFrameInst(MCCFIInstruction::createNegateRAState(nullptr)); BuildMI(MBB, InsertPt, DL, CFIDesc).addCFIIndex(CFIIndex); } // Shadow call stack uses X18, reset it. if (MFI.needsShadowCallStackPrologueEpilogue(MF)) insertCFISameValue(CFIDesc, MF, MBB, InsertPt, TRI.getDwarfRegNum(AArch64::X18, true)); // Emit .cfi_same_value for callee-saved registers. const std::vector &CSI = MF.getFrameInfo().getCalleeSavedInfo(); for (const auto &Info : CSI) { unsigned Reg = Info.getReg(); if (!TRI.regNeedsCFI(Reg, Reg)) continue; insertCFISameValue(CFIDesc, MF, MBB, InsertPt, TRI.getDwarfRegNum(Reg, true)); } } static void emitCalleeSavedRestores(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, bool SVE) { MachineFunction &MF = *MBB.getParent(); MachineFrameInfo &MFI = MF.getFrameInfo(); const std::vector &CSI = MFI.getCalleeSavedInfo(); if (CSI.empty()) return; const TargetSubtargetInfo &STI = MF.getSubtarget(); const TargetRegisterInfo &TRI = *STI.getRegisterInfo(); const TargetInstrInfo &TII = *STI.getInstrInfo(); DebugLoc DL = MBB.findDebugLoc(MBBI); for (const auto &Info : CSI) { if (SVE != (MFI.getStackID(Info.getFrameIdx()) == TargetStackID::ScalableVector)) continue; unsigned Reg = Info.getReg(); if (SVE && !static_cast(TRI).regNeedsCFI(Reg, Reg)) continue; if (!Info.isRestored()) continue; unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore( nullptr, TRI.getDwarfRegNum(Info.getReg(), true))); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameDestroy); } } void AArch64FrameLowering::emitCalleeSavedGPRRestores( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { emitCalleeSavedRestores(MBB, MBBI, false); } void AArch64FrameLowering::emitCalleeSavedSVERestores( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI) const { emitCalleeSavedRestores(MBB, MBBI, true); } // Return the maximum possible number of bytes for `Size` due to the // architectural limit on the size of a SVE register. static int64_t upperBound(StackOffset Size) { static const int64_t MAX_BYTES_PER_SCALABLE_BYTE = 16; return Size.getScalable() * MAX_BYTES_PER_SCALABLE_BYTE + Size.getFixed(); } void AArch64FrameLowering::allocateStackSpace( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, int64_t RealignmentPadding, StackOffset AllocSize, bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI, StackOffset InitialOffset, bool FollowupAllocs) const { if (!AllocSize) return; DebugLoc DL; MachineFunction &MF = *MBB.getParent(); const AArch64Subtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo &TII = *Subtarget.getInstrInfo(); AArch64FunctionInfo &AFI = *MF.getInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const int64_t MaxAlign = MFI.getMaxAlign().value(); const uint64_t AndMask = ~(MaxAlign - 1); if (!Subtarget.getTargetLowering()->hasInlineStackProbe(MF)) { Register TargetReg = RealignmentPadding ? findScratchNonCalleeSaveRegister(&MBB) : AArch64::SP; // SUB Xd/SP, SP, AllocSize emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, EmitCFI, InitialOffset); if (RealignmentPadding) { // AND SP, X9, 0b11111...0000 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) .addReg(TargetReg, RegState::Kill) .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) .setMIFlags(MachineInstr::FrameSetup); AFI.setStackRealigned(true); // No need for SEH instructions here; if we're realigning the stack, // we've set a frame pointer and already finished the SEH prologue. assert(!NeedsWinCFI); } return; } // // Stack probing allocation. // // Fixed length allocation. If we don't need to re-align the stack and don't // have SVE objects, we can use a more efficient sequence for stack probing. if (AllocSize.getScalable() == 0 && RealignmentPadding == 0) { Register ScratchReg = findScratchNonCalleeSaveRegister(&MBB); assert(ScratchReg != AArch64::NoRegister); BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC)) .addDef(ScratchReg) .addImm(AllocSize.getFixed()) .addImm(InitialOffset.getFixed()) .addImm(InitialOffset.getScalable()); // The fixed allocation may leave unprobed bytes at the top of the // stack. If we have subsequent alocation (e.g. if we have variable-sized // objects), we need to issue an extra probe, so these allocations start in // a known state. if (FollowupAllocs) { // STR XZR, [SP] BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) .addReg(AArch64::XZR) .addReg(AArch64::SP) .addImm(0) .setMIFlags(MachineInstr::FrameSetup); } return; } // Variable length allocation. // If the (unknown) allocation size cannot exceed the probe size, decrement // the stack pointer right away. int64_t ProbeSize = AFI.getStackProbeSize(); if (upperBound(AllocSize) + RealignmentPadding <= ProbeSize) { Register ScratchReg = RealignmentPadding ? findScratchNonCalleeSaveRegister(&MBB) : AArch64::SP; assert(ScratchReg != AArch64::NoRegister); // SUB Xd, SP, AllocSize emitFrameOffset(MBB, MBBI, DL, ScratchReg, AArch64::SP, -AllocSize, &TII, MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, EmitCFI, InitialOffset); if (RealignmentPadding) { // AND SP, Xn, 0b11111...0000 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), AArch64::SP) .addReg(ScratchReg, RegState::Kill) .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) .setMIFlags(MachineInstr::FrameSetup); AFI.setStackRealigned(true); } if (FollowupAllocs || upperBound(AllocSize) + RealignmentPadding > AArch64::StackProbeMaxUnprobedStack) { // STR XZR, [SP] BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXui)) .addReg(AArch64::XZR) .addReg(AArch64::SP) .addImm(0) .setMIFlags(MachineInstr::FrameSetup); } return; } // Emit a variable-length allocation probing loop. // TODO: As an optimisation, the loop can be "unrolled" into a few parts, // each of them guaranteed to adjust the stack by less than the probe size. Register TargetReg = findScratchNonCalleeSaveRegister(&MBB); assert(TargetReg != AArch64::NoRegister); // SUB Xd, SP, AllocSize emitFrameOffset(MBB, MBBI, DL, TargetReg, AArch64::SP, -AllocSize, &TII, MachineInstr::FrameSetup, false, NeedsWinCFI, HasWinCFI, EmitCFI, InitialOffset); if (RealignmentPadding) { // AND Xn, Xn, 0b11111...0000 BuildMI(MBB, MBBI, DL, TII.get(AArch64::ANDXri), TargetReg) .addReg(TargetReg, RegState::Kill) .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)) .setMIFlags(MachineInstr::FrameSetup); } BuildMI(MBB, MBBI, DL, TII.get(AArch64::PROBED_STACKALLOC_VAR)) .addReg(TargetReg); if (EmitCFI) { // Set the CFA register back to SP. unsigned Reg = Subtarget.getRegisterInfo()->getDwarfRegNum(AArch64::SP, true); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } if (RealignmentPadding) AFI.setStackRealigned(true); } static MCRegister getRegisterOrZero(MCRegister Reg, bool HasSVE) { switch (Reg.id()) { default: // The called routine is expected to preserve r19-r28 // r29 and r30 are used as frame pointer and link register resp. return 0; // GPRs #define CASE(n) \ case AArch64::W##n: \ case AArch64::X##n: \ return AArch64::X##n CASE(0); CASE(1); CASE(2); CASE(3); CASE(4); CASE(5); CASE(6); CASE(7); CASE(8); CASE(9); CASE(10); CASE(11); CASE(12); CASE(13); CASE(14); CASE(15); CASE(16); CASE(17); CASE(18); #undef CASE // FPRs #define CASE(n) \ case AArch64::B##n: \ case AArch64::H##n: \ case AArch64::S##n: \ case AArch64::D##n: \ case AArch64::Q##n: \ return HasSVE ? AArch64::Z##n : AArch64::Q##n CASE(0); CASE(1); CASE(2); CASE(3); CASE(4); CASE(5); CASE(6); CASE(7); CASE(8); CASE(9); CASE(10); CASE(11); CASE(12); CASE(13); CASE(14); CASE(15); CASE(16); CASE(17); CASE(18); CASE(19); CASE(20); CASE(21); CASE(22); CASE(23); CASE(24); CASE(25); CASE(26); CASE(27); CASE(28); CASE(29); CASE(30); CASE(31); #undef CASE } } void AArch64FrameLowering::emitZeroCallUsedRegs(BitVector RegsToZero, MachineBasicBlock &MBB) const { // Insertion point. MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator(); // Fake a debug loc. DebugLoc DL; if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); const MachineFunction &MF = *MBB.getParent(); const AArch64Subtarget &STI = MF.getSubtarget(); const AArch64RegisterInfo &TRI = *STI.getRegisterInfo(); BitVector GPRsToZero(TRI.getNumRegs()); BitVector FPRsToZero(TRI.getNumRegs()); bool HasSVE = STI.hasSVE(); for (MCRegister Reg : RegsToZero.set_bits()) { if (TRI.isGeneralPurposeRegister(MF, Reg)) { // For GPRs, we only care to clear out the 64-bit register. if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) GPRsToZero.set(XReg); } else if (AArch64InstrInfo::isFpOrNEON(Reg)) { // For FPRs, if (MCRegister XReg = getRegisterOrZero(Reg, HasSVE)) FPRsToZero.set(XReg); } } const AArch64InstrInfo &TII = *STI.getInstrInfo(); // Zero out GPRs. for (MCRegister Reg : GPRsToZero.set_bits()) TII.buildClearRegister(Reg, MBB, MBBI, DL); // Zero out FP/vector registers. for (MCRegister Reg : FPRsToZero.set_bits()) TII.buildClearRegister(Reg, MBB, MBBI, DL); if (HasSVE) { for (MCRegister PReg : {AArch64::P0, AArch64::P1, AArch64::P2, AArch64::P3, AArch64::P4, AArch64::P5, AArch64::P6, AArch64::P7, AArch64::P8, AArch64::P9, AArch64::P10, AArch64::P11, AArch64::P12, AArch64::P13, AArch64::P14, AArch64::P15}) { if (RegsToZero[PReg]) BuildMI(MBB, MBBI, DL, TII.get(AArch64::PFALSE), PReg); } } } static void getLiveRegsForEntryMBB(LivePhysRegs &LiveRegs, const MachineBasicBlock &MBB) { const MachineFunction *MF = MBB.getParent(); LiveRegs.addLiveIns(MBB); // Mark callee saved registers as used so we will not choose them. const MCPhysReg *CSRegs = MF->getRegInfo().getCalleeSavedRegs(); for (unsigned i = 0; CSRegs[i]; ++i) LiveRegs.addReg(CSRegs[i]); } // Find a scratch register that we can use at the start of the prologue to // re-align the stack pointer. We avoid using callee-save registers since they // may appear to be free when this is called from canUseAsPrologue (during // shrink wrapping), but then no longer be free when this is called from // emitPrologue. // // FIXME: This is a bit conservative, since in the above case we could use one // of the callee-save registers as a scratch temp to re-align the stack pointer, // but we would then have to make sure that we were in fact saving at least one // callee-save register in the prologue, which is additional complexity that // doesn't seem worth the benefit. static Register findScratchNonCalleeSaveRegister(MachineBasicBlock *MBB) { MachineFunction *MF = MBB->getParent(); // If MBB is an entry block, use X9 as the scratch register // preserve_none functions may be using X9 to pass arguments, // so prefer to pick an available register below. if (&MF->front() == MBB && MF->getFunction().getCallingConv() != CallingConv::PreserveNone) return AArch64::X9; const AArch64Subtarget &Subtarget = MF->getSubtarget(); const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); LivePhysRegs LiveRegs(TRI); getLiveRegsForEntryMBB(LiveRegs, *MBB); // Prefer X9 since it was historically used for the prologue scratch reg. const MachineRegisterInfo &MRI = MF->getRegInfo(); if (LiveRegs.available(MRI, AArch64::X9)) return AArch64::X9; for (unsigned Reg : AArch64::GPR64RegClass) { if (LiveRegs.available(MRI, Reg)) return Reg; } return AArch64::NoRegister; } bool AArch64FrameLowering::canUseAsPrologue( const MachineBasicBlock &MBB) const { const MachineFunction *MF = MBB.getParent(); MachineBasicBlock *TmpMBB = const_cast(&MBB); const AArch64Subtarget &Subtarget = MF->getSubtarget(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); const AArch64TargetLowering *TLI = Subtarget.getTargetLowering(); const AArch64FunctionInfo *AFI = MF->getInfo(); if (AFI->hasSwiftAsyncContext()) { const AArch64RegisterInfo &TRI = *Subtarget.getRegisterInfo(); const MachineRegisterInfo &MRI = MF->getRegInfo(); LivePhysRegs LiveRegs(TRI); getLiveRegsForEntryMBB(LiveRegs, MBB); // The StoreSwiftAsyncContext clobbers X16 and X17. Make sure they are // available. if (!LiveRegs.available(MRI, AArch64::X16) || !LiveRegs.available(MRI, AArch64::X17)) return false; } // Certain stack probing sequences might clobber flags, then we can't use // the block as a prologue if the flags register is a live-in. if (MF->getInfo()->hasStackProbing() && MBB.isLiveIn(AArch64::NZCV)) return false; // Don't need a scratch register if we're not going to re-align the stack or // emit stack probes. if (!RegInfo->hasStackRealignment(*MF) && !TLI->hasInlineStackProbe(*MF)) return true; // Otherwise, we can use any block as long as it has a scratch register // available. return findScratchNonCalleeSaveRegister(TmpMBB) != AArch64::NoRegister; } static bool windowsRequiresStackProbe(MachineFunction &MF, uint64_t StackSizeInBytes) { const AArch64Subtarget &Subtarget = MF.getSubtarget(); const AArch64FunctionInfo &MFI = *MF.getInfo(); // TODO: When implementing stack protectors, take that into account // for the probe threshold. return Subtarget.isTargetWindows() && MFI.hasStackProbing() && StackSizeInBytes >= uint64_t(MFI.getStackProbeSize()); } static bool needsWinCFI(const MachineFunction &MF) { const Function &F = MF.getFunction(); return MF.getTarget().getMCAsmInfo()->usesWindowsCFI() && F.needsUnwindTableEntry(); } bool AArch64FrameLowering::shouldCombineCSRLocalStackBump( MachineFunction &MF, uint64_t StackBumpBytes) const { AArch64FunctionInfo *AFI = MF.getInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const AArch64Subtarget &Subtarget = MF.getSubtarget(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); if (homogeneousPrologEpilog(MF)) return false; if (AFI->getLocalStackSize() == 0) return false; // For WinCFI, if optimizing for size, prefer to not combine the stack bump // (to force a stp with predecrement) to match the packed unwind format, // provided that there actually are any callee saved registers to merge the // decrement with. // This is potentially marginally slower, but allows using the packed // unwind format for functions that both have a local area and callee saved // registers. Using the packed unwind format notably reduces the size of // the unwind info. if (needsWinCFI(MF) && AFI->getCalleeSavedStackSize() > 0 && MF.getFunction().hasOptSize()) return false; // 512 is the maximum immediate for stp/ldp that will be used for // callee-save save/restores if (StackBumpBytes >= 512 || windowsRequiresStackProbe(MF, StackBumpBytes)) return false; if (MFI.hasVarSizedObjects()) return false; if (RegInfo->hasStackRealignment(MF)) return false; // This isn't strictly necessary, but it simplifies things a bit since the // current RedZone handling code assumes the SP is adjusted by the // callee-save save/restore code. if (canUseRedZone(MF)) return false; // When there is an SVE area on the stack, always allocate the // callee-saves and spills/locals separately. if (getSVEStackSize(MF)) return false; return true; } bool AArch64FrameLowering::shouldCombineCSRLocalStackBumpInEpilogue( MachineBasicBlock &MBB, unsigned StackBumpBytes) const { if (!shouldCombineCSRLocalStackBump(*MBB.getParent(), StackBumpBytes)) return false; if (MBB.empty()) return true; // Disable combined SP bump if the last instruction is an MTE tag store. It // is almost always better to merge SP adjustment into those instructions. MachineBasicBlock::iterator LastI = MBB.getFirstTerminator(); MachineBasicBlock::iterator Begin = MBB.begin(); while (LastI != Begin) { --LastI; if (LastI->isTransient()) continue; if (!LastI->getFlag(MachineInstr::FrameDestroy)) break; } switch (LastI->getOpcode()) { case AArch64::STGloop: case AArch64::STZGloop: case AArch64::STGi: case AArch64::STZGi: case AArch64::ST2Gi: case AArch64::STZ2Gi: return false; default: return true; } llvm_unreachable("unreachable"); } // Given a load or a store instruction, generate an appropriate unwinding SEH // code on Windows. static MachineBasicBlock::iterator InsertSEH(MachineBasicBlock::iterator MBBI, const TargetInstrInfo &TII, MachineInstr::MIFlag Flag) { unsigned Opc = MBBI->getOpcode(); MachineBasicBlock *MBB = MBBI->getParent(); MachineFunction &MF = *MBB->getParent(); DebugLoc DL = MBBI->getDebugLoc(); unsigned ImmIdx = MBBI->getNumOperands() - 1; int Imm = MBBI->getOperand(ImmIdx).getImm(); MachineInstrBuilder MIB; const AArch64Subtarget &Subtarget = MF.getSubtarget(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); switch (Opc) { default: llvm_unreachable("No SEH Opcode for this instruction"); case AArch64::LDPDpost: Imm = -Imm; [[fallthrough]]; case AArch64::STPDpre: { unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP_X)) .addImm(Reg0) .addImm(Reg1) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::LDPXpost: Imm = -Imm; [[fallthrough]]; case AArch64::STPXpre: { Register Reg0 = MBBI->getOperand(1).getReg(); Register Reg1 = MBBI->getOperand(2).getReg(); if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR_X)) .addImm(Imm * 8) .setMIFlag(Flag); else MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP_X)) .addImm(RegInfo->getSEHRegNum(Reg0)) .addImm(RegInfo->getSEHRegNum(Reg1)) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::LDRDpost: Imm = -Imm; [[fallthrough]]; case AArch64::STRDpre: { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg_X)) .addImm(Reg) .addImm(Imm) .setMIFlag(Flag); break; } case AArch64::LDRXpost: Imm = -Imm; [[fallthrough]]; case AArch64::STRXpre: { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg_X)) .addImm(Reg) .addImm(Imm) .setMIFlag(Flag); break; } case AArch64::STPDi: case AArch64::LDPDi: { unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFRegP)) .addImm(Reg0) .addImm(Reg1) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::STPXi: case AArch64::LDPXi: { Register Reg0 = MBBI->getOperand(0).getReg(); Register Reg1 = MBBI->getOperand(1).getReg(); if (Reg0 == AArch64::FP && Reg1 == AArch64::LR) MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFPLR)) .addImm(Imm * 8) .setMIFlag(Flag); else MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveRegP)) .addImm(RegInfo->getSEHRegNum(Reg0)) .addImm(RegInfo->getSEHRegNum(Reg1)) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::STRXui: case AArch64::LDRXui: { int Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveReg)) .addImm(Reg) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::STRDui: case AArch64::LDRDui: { unsigned Reg = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveFReg)) .addImm(Reg) .addImm(Imm * 8) .setMIFlag(Flag); break; } case AArch64::STPQi: case AArch64::LDPQi: { unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(0).getReg()); unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQP)) .addImm(Reg0) .addImm(Reg1) .addImm(Imm * 16) .setMIFlag(Flag); break; } case AArch64::LDPQpost: Imm = -Imm; [[fallthrough]]; case AArch64::STPQpre: { unsigned Reg0 = RegInfo->getSEHRegNum(MBBI->getOperand(1).getReg()); unsigned Reg1 = RegInfo->getSEHRegNum(MBBI->getOperand(2).getReg()); MIB = BuildMI(MF, DL, TII.get(AArch64::SEH_SaveAnyRegQPX)) .addImm(Reg0) .addImm(Reg1) .addImm(Imm * 16) .setMIFlag(Flag); break; } } auto I = MBB->insertAfter(MBBI, MIB); return I; } // Fix up the SEH opcode associated with the save/restore instruction. static void fixupSEHOpcode(MachineBasicBlock::iterator MBBI, unsigned LocalStackSize) { MachineOperand *ImmOpnd = nullptr; unsigned ImmIdx = MBBI->getNumOperands() - 1; switch (MBBI->getOpcode()) { default: llvm_unreachable("Fix the offset in the SEH instruction"); case AArch64::SEH_SaveFPLR: case AArch64::SEH_SaveRegP: case AArch64::SEH_SaveReg: case AArch64::SEH_SaveFRegP: case AArch64::SEH_SaveFReg: case AArch64::SEH_SaveAnyRegQP: case AArch64::SEH_SaveAnyRegQPX: ImmOpnd = &MBBI->getOperand(ImmIdx); break; } if (ImmOpnd) ImmOpnd->setImm(ImmOpnd->getImm() + LocalStackSize); } bool requiresGetVGCall(MachineFunction &MF) { AArch64FunctionInfo *AFI = MF.getInfo(); return AFI->hasStreamingModeChanges() && !MF.getSubtarget().hasSVE(); } static bool requiresSaveVG(MachineFunction &MF) { AArch64FunctionInfo *AFI = MF.getInfo(); // For Darwin platforms we don't save VG for non-SVE functions, even if SME // is enabled with streaming mode changes. if (!AFI->hasStreamingModeChanges()) return false; auto &ST = MF.getSubtarget(); if (ST.isTargetDarwin()) return ST.hasSVE(); return true; } bool isVGInstruction(MachineBasicBlock::iterator MBBI) { unsigned Opc = MBBI->getOpcode(); if (Opc == AArch64::CNTD_XPiI || Opc == AArch64::RDSVLI_XI || Opc == AArch64::UBFMXri) return true; if (requiresGetVGCall(*MBBI->getMF())) { if (Opc == AArch64::ORRXrr) return true; if (Opc == AArch64::BL) { auto Op1 = MBBI->getOperand(0); return Op1.isSymbol() && (StringRef(Op1.getSymbolName()) == "__arm_get_current_vg"); } } return false; } // Convert callee-save register save/restore instruction to do stack pointer // decrement/increment to allocate/deallocate the callee-save stack area by // converting store/load to use pre/post increment version. static MachineBasicBlock::iterator convertCalleeSaveRestoreToSPPrePostIncDec( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, const TargetInstrInfo *TII, int CSStackSizeInc, bool NeedsWinCFI, bool *HasWinCFI, bool EmitCFI, MachineInstr::MIFlag FrameFlag = MachineInstr::FrameSetup, int CFAOffset = 0) { unsigned NewOpc; // If the function contains streaming mode changes, we expect instructions // to calculate the value of VG before spilling. For locally-streaming // functions, we need to do this for both the streaming and non-streaming // vector length. Move past these instructions if necessary. MachineFunction &MF = *MBB.getParent(); if (requiresSaveVG(MF)) while (isVGInstruction(MBBI)) ++MBBI; switch (MBBI->getOpcode()) { default: llvm_unreachable("Unexpected callee-save save/restore opcode!"); case AArch64::STPXi: NewOpc = AArch64::STPXpre; break; case AArch64::STPDi: NewOpc = AArch64::STPDpre; break; case AArch64::STPQi: NewOpc = AArch64::STPQpre; break; case AArch64::STRXui: NewOpc = AArch64::STRXpre; break; case AArch64::STRDui: NewOpc = AArch64::STRDpre; break; case AArch64::STRQui: NewOpc = AArch64::STRQpre; break; case AArch64::LDPXi: NewOpc = AArch64::LDPXpost; break; case AArch64::LDPDi: NewOpc = AArch64::LDPDpost; break; case AArch64::LDPQi: NewOpc = AArch64::LDPQpost; break; case AArch64::LDRXui: NewOpc = AArch64::LDRXpost; break; case AArch64::LDRDui: NewOpc = AArch64::LDRDpost; break; case AArch64::LDRQui: NewOpc = AArch64::LDRQpost; break; } // Get rid of the SEH code associated with the old instruction. if (NeedsWinCFI) { auto SEH = std::next(MBBI); if (AArch64InstrInfo::isSEHInstruction(*SEH)) SEH->eraseFromParent(); } TypeSize Scale = TypeSize::getFixed(1), Width = TypeSize::getFixed(0); int64_t MinOffset, MaxOffset; bool Success = static_cast(TII)->getMemOpInfo( NewOpc, Scale, Width, MinOffset, MaxOffset); (void)Success; assert(Success && "unknown load/store opcode"); // If the first store isn't right where we want SP then we can't fold the // update in so create a normal arithmetic instruction instead. if (MBBI->getOperand(MBBI->getNumOperands() - 1).getImm() != 0 || CSStackSizeInc < MinOffset || CSStackSizeInc > MaxOffset) { // If we are destroying the frame, make sure we add the increment after the // last frame operation. if (FrameFlag == MachineInstr::FrameDestroy) ++MBBI; emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(CSStackSizeInc), TII, FrameFlag, false, false, nullptr, EmitCFI, StackOffset::getFixed(CFAOffset)); return std::prev(MBBI); } MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII->get(NewOpc)); MIB.addReg(AArch64::SP, RegState::Define); // Copy all operands other than the immediate offset. unsigned OpndIdx = 0; for (unsigned OpndEnd = MBBI->getNumOperands() - 1; OpndIdx < OpndEnd; ++OpndIdx) MIB.add(MBBI->getOperand(OpndIdx)); assert(MBBI->getOperand(OpndIdx).getImm() == 0 && "Unexpected immediate offset in first/last callee-save save/restore " "instruction!"); assert(MBBI->getOperand(OpndIdx - 1).getReg() == AArch64::SP && "Unexpected base register in callee-save save/restore instruction!"); assert(CSStackSizeInc % Scale == 0); MIB.addImm(CSStackSizeInc / (int)Scale); MIB.setMIFlags(MBBI->getFlags()); MIB.setMemRefs(MBBI->memoperands()); // Generate a new SEH code that corresponds to the new instruction. if (NeedsWinCFI) { *HasWinCFI = true; InsertSEH(*MIB, *TII, FrameFlag); } if (EmitCFI) { unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::cfiDefCfaOffset(nullptr, CFAOffset - CSStackSizeInc)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(FrameFlag); } return std::prev(MBB.erase(MBBI)); } // Fixup callee-save register save/restore instructions to take into account // combined SP bump by adding the local stack size to the stack offsets. static void fixupCalleeSaveRestoreStackOffset(MachineInstr &MI, uint64_t LocalStackSize, bool NeedsWinCFI, bool *HasWinCFI) { if (AArch64InstrInfo::isSEHInstruction(MI)) return; unsigned Opc = MI.getOpcode(); unsigned Scale; switch (Opc) { case AArch64::STPXi: case AArch64::STRXui: case AArch64::STPDi: case AArch64::STRDui: case AArch64::LDPXi: case AArch64::LDRXui: case AArch64::LDPDi: case AArch64::LDRDui: Scale = 8; break; case AArch64::STPQi: case AArch64::STRQui: case AArch64::LDPQi: case AArch64::LDRQui: Scale = 16; break; default: llvm_unreachable("Unexpected callee-save save/restore opcode!"); } unsigned OffsetIdx = MI.getNumExplicitOperands() - 1; assert(MI.getOperand(OffsetIdx - 1).getReg() == AArch64::SP && "Unexpected base register in callee-save save/restore instruction!"); // Last operand is immediate offset that needs fixing. MachineOperand &OffsetOpnd = MI.getOperand(OffsetIdx); // All generated opcodes have scaled offsets. assert(LocalStackSize % Scale == 0); OffsetOpnd.setImm(OffsetOpnd.getImm() + LocalStackSize / Scale); if (NeedsWinCFI) { *HasWinCFI = true; auto MBBI = std::next(MachineBasicBlock::iterator(MI)); assert(MBBI != MI.getParent()->end() && "Expecting a valid instruction"); assert(AArch64InstrInfo::isSEHInstruction(*MBBI) && "Expecting a SEH instruction"); fixupSEHOpcode(MBBI, LocalStackSize); } } static bool isTargetWindows(const MachineFunction &MF) { return MF.getSubtarget().isTargetWindows(); } // Convenience function to determine whether I is an SVE callee save. static bool IsSVECalleeSave(MachineBasicBlock::iterator I) { switch (I->getOpcode()) { default: return false; case AArch64::PTRUE_C_B: case AArch64::LD1B_2Z_IMM: case AArch64::ST1B_2Z_IMM: case AArch64::STR_ZXI: case AArch64::STR_PXI: case AArch64::LDR_ZXI: case AArch64::LDR_PXI: return I->getFlag(MachineInstr::FrameSetup) || I->getFlag(MachineInstr::FrameDestroy); } } static void emitShadowCallStackPrologue(const TargetInstrInfo &TII, MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, bool NeedsWinCFI, bool NeedsUnwindInfo) { // Shadow call stack prolog: str x30, [x18], #8 BuildMI(MBB, MBBI, DL, TII.get(AArch64::STRXpost)) .addReg(AArch64::X18, RegState::Define) .addReg(AArch64::LR) .addReg(AArch64::X18) .addImm(8) .setMIFlag(MachineInstr::FrameSetup); // This instruction also makes x18 live-in to the entry block. MBB.addLiveIn(AArch64::X18); if (NeedsWinCFI) BuildMI(MBB, MBBI, DL, TII.get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); if (NeedsUnwindInfo) { // Emit a CFI instruction that causes 8 to be subtracted from the value of // x18 when unwinding past this frame. static const char CFIInst[] = { dwarf::DW_CFA_val_expression, 18, // register 2, // length static_cast(unsigned(dwarf::DW_OP_breg18)), static_cast(-8) & 0x7f, // addend (sleb128) }; unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape( nullptr, StringRef(CFIInst, sizeof(CFIInst)))); BuildMI(MBB, MBBI, DL, TII.get(AArch64::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlag(MachineInstr::FrameSetup); } } static void emitShadowCallStackEpilogue(const TargetInstrInfo &TII, MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL) { // Shadow call stack epilog: ldr x30, [x18, #-8]! BuildMI(MBB, MBBI, DL, TII.get(AArch64::LDRXpre)) .addReg(AArch64::X18, RegState::Define) .addReg(AArch64::LR, RegState::Define) .addReg(AArch64::X18) .addImm(-8) .setMIFlag(MachineInstr::FrameDestroy); if (MF.getInfo()->needsAsyncDwarfUnwindInfo(MF)) { unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, 18)); BuildMI(MBB, MBBI, DL, TII.get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameDestroy); } } // Define the current CFA rule to use the provided FP. static void emitDefineCFAWithFP(MachineFunction &MF, MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, const DebugLoc &DL, unsigned FixedObject) { const AArch64Subtarget &STI = MF.getSubtarget(); const AArch64RegisterInfo *TRI = STI.getRegisterInfo(); const TargetInstrInfo *TII = STI.getInstrInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); const int OffsetToFirstCalleeSaveFromFP = AFI->getCalleeSaveBaseToFrameRecordOffset() - AFI->getCalleeSavedStackSize(); Register FramePtr = TRI->getFrameRegister(MF); unsigned Reg = TRI->getDwarfRegNum(FramePtr, true); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa( nullptr, Reg, FixedObject - OffsetToFirstCalleeSaveFromFP)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } #ifndef NDEBUG /// Collect live registers from the end of \p MI's parent up to (including) \p /// MI in \p LiveRegs. static void getLivePhysRegsUpTo(MachineInstr &MI, const TargetRegisterInfo &TRI, LivePhysRegs &LiveRegs) { MachineBasicBlock &MBB = *MI.getParent(); LiveRegs.addLiveOuts(MBB); for (const MachineInstr &MI : reverse(make_range(MI.getIterator(), MBB.instr_end()))) LiveRegs.stepBackward(MI); } #endif void AArch64FrameLowering::emitPrologue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.begin(); const MachineFrameInfo &MFI = MF.getFrameInfo(); const Function &F = MF.getFunction(); const AArch64Subtarget &Subtarget = MF.getSubtarget(); const AArch64RegisterInfo *RegInfo = Subtarget.getRegisterInfo(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); bool EmitCFI = AFI->needsDwarfUnwindInfo(MF); bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); bool HasFP = hasFP(MF); bool NeedsWinCFI = needsWinCFI(MF); bool HasWinCFI = false; auto Cleanup = make_scope_exit([&]() { MF.setHasWinCFI(HasWinCFI); }); MachineBasicBlock::iterator End = MBB.end(); #ifndef NDEBUG const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); // Collect live register from the end of MBB up to the start of the existing // frame setup instructions. MachineBasicBlock::iterator NonFrameStart = MBB.begin(); while (NonFrameStart != End && NonFrameStart->getFlag(MachineInstr::FrameSetup)) ++NonFrameStart; LivePhysRegs LiveRegs(*TRI); if (NonFrameStart != MBB.end()) { getLivePhysRegsUpTo(*NonFrameStart, *TRI, LiveRegs); // Ignore registers used for stack management for now. LiveRegs.removeReg(AArch64::SP); LiveRegs.removeReg(AArch64::X19); LiveRegs.removeReg(AArch64::FP); LiveRegs.removeReg(AArch64::LR); // X0 will be clobbered by a call to __arm_get_current_vg in the prologue. // This is necessary to spill VG if required where SVE is unavailable, but // X0 is preserved around this call. if (requiresGetVGCall(MF)) LiveRegs.removeReg(AArch64::X0); } auto VerifyClobberOnExit = make_scope_exit([&]() { if (NonFrameStart == MBB.end()) return; // Check if any of the newly instructions clobber any of the live registers. for (MachineInstr &MI : make_range(MBB.instr_begin(), NonFrameStart->getIterator())) { for (auto &Op : MI.operands()) if (Op.isReg() && Op.isDef()) assert(!LiveRegs.contains(Op.getReg()) && "live register clobbered by inserted prologue instructions"); } }); #endif bool IsFunclet = MBB.isEHFuncletEntry(); // At this point, we're going to decide whether or not the function uses a // redzone. In most cases, the function doesn't have a redzone so let's // assume that's false and set it to true in the case that there's a redzone. AFI->setHasRedZone(false); // Debug location must be unknown since the first debug location is used // to determine the end of the prologue. DebugLoc DL; const auto &MFnI = *MF.getInfo(); if (MFnI.needsShadowCallStackPrologueEpilogue(MF)) emitShadowCallStackPrologue(*TII, MF, MBB, MBBI, DL, NeedsWinCFI, MFnI.needsDwarfUnwindInfo(MF)); if (MFnI.shouldSignReturnAddress(MF)) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::PAUTH_PROLOGUE)) .setMIFlag(MachineInstr::FrameSetup); if (NeedsWinCFI) HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR } if (EmitCFI && MFnI.isMTETagged()) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::EMITMTETAGGED)) .setMIFlag(MachineInstr::FrameSetup); } // We signal the presence of a Swift extended frame to external tools by // storing FP with 0b0001 in bits 63:60. In normal userland operation a simple // ORR is sufficient, it is assumed a Swift kernel would initialize the TBI // bits so that is still true. if (HasFP && AFI->hasSwiftAsyncContext()) { switch (MF.getTarget().Options.SwiftAsyncFramePointer) { case SwiftAsyncFramePointerMode::DeploymentBased: if (Subtarget.swiftAsyncContextIsDynamicallySet()) { // The special symbol below is absolute and has a *value* that can be // combined with the frame pointer to signal an extended frame. BuildMI(MBB, MBBI, DL, TII->get(AArch64::LOADgot), AArch64::X16) .addExternalSymbol("swift_async_extendedFramePointerFlags", AArch64II::MO_GOT); if (NeedsWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlags(MachineInstr::FrameSetup); HasWinCFI = true; } BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXrs), AArch64::FP) .addUse(AArch64::FP) .addUse(AArch64::X16) .addImm(Subtarget.isTargetILP32() ? 32 : 0); if (NeedsWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlags(MachineInstr::FrameSetup); HasWinCFI = true; } break; } [[fallthrough]]; case SwiftAsyncFramePointerMode::Always: // ORR x29, x29, #0x1000_0000_0000_0000 BuildMI(MBB, MBBI, DL, TII->get(AArch64::ORRXri), AArch64::FP) .addUse(AArch64::FP) .addImm(0x1100) .setMIFlag(MachineInstr::FrameSetup); if (NeedsWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlags(MachineInstr::FrameSetup); HasWinCFI = true; } break; case SwiftAsyncFramePointerMode::Never: break; } } // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; // Set tagged base pointer to the requested stack slot. // Ideally it should match SP value after prologue. std::optional TBPI = AFI->getTaggedBasePointerIndex(); if (TBPI) AFI->setTaggedBasePointerOffset(-MFI.getObjectOffset(*TBPI)); else AFI->setTaggedBasePointerOffset(MFI.getStackSize()); const StackOffset &SVEStackSize = getSVEStackSize(MF); // getStackSize() includes all the locals in its size calculation. We don't // include these locals when computing the stack size of a funclet, as they // are allocated in the parent's stack frame and accessed via the frame // pointer from the funclet. We only save the callee saved registers in the // funclet, which are really the callee saved registers of the parent // function, including the funclet. int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize(); if (!AFI->hasStackFrame() && !windowsRequiresStackProbe(MF, NumBytes)) { assert(!HasFP && "unexpected function without stack frame but with FP"); assert(!SVEStackSize && "unexpected function without stack frame but with SVE objects"); // All of the stack allocation is for locals. AFI->setLocalStackSize(NumBytes); if (!NumBytes) return; // REDZONE: If the stack size is less than 128 bytes, we don't need // to actually allocate. if (canUseRedZone(MF)) { AFI->setHasRedZone(true); ++NumRedZoneFunctions; } else { emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); if (EmitCFI) { // Label used to tie together the PROLOG_LABEL and the MachineMoves. MCSymbol *FrameLabel = MF.getContext().createTempSymbol(); // Encode the stack size of the leaf function. unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::cfiDefCfaOffset(FrameLabel, NumBytes)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) .setMIFlag(MachineInstr::FrameSetup); } return; } bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; // All of the remaining stack allocations are for locals. AFI->setLocalStackSize(NumBytes - PrologueSaveSize); bool CombineSPBump = shouldCombineCSRLocalStackBump(MF, NumBytes); bool HomPrologEpilog = homogeneousPrologEpilog(MF); if (CombineSPBump) { assert(!SVEStackSize && "Cannot combine SP bump with SVE"); emitFrameOffset(MBB, MBBI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-NumBytes), TII, MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI, EmitAsyncCFI); NumBytes = 0; } else if (HomPrologEpilog) { // Stack has been already adjusted. NumBytes -= PrologueSaveSize; } else if (PrologueSaveSize != 0) { MBBI = convertCalleeSaveRestoreToSPPrePostIncDec( MBB, MBBI, DL, TII, -PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitAsyncCFI); NumBytes -= PrologueSaveSize; } assert(NumBytes >= 0 && "Negative stack allocation size!?"); // Move past the saves of the callee-saved registers, fixing up the offsets // and pre-inc if we decided to combine the callee-save and local stack // pointer bump above. while (MBBI != End && MBBI->getFlag(MachineInstr::FrameSetup) && !IsSVECalleeSave(MBBI)) { if (CombineSPBump && // Only fix-up frame-setup load/store instructions. (!requiresSaveVG(MF) || !isVGInstruction(MBBI))) fixupCalleeSaveRestoreStackOffset(*MBBI, AFI->getLocalStackSize(), NeedsWinCFI, &HasWinCFI); ++MBBI; } // For funclets the FP belongs to the containing function. if (!IsFunclet && HasFP) { // Only set up FP if we actually need to. int64_t FPOffset = AFI->getCalleeSaveBaseToFrameRecordOffset(); if (CombineSPBump) FPOffset += AFI->getLocalStackSize(); if (AFI->hasSwiftAsyncContext()) { // Before we update the live FP we have to ensure there's a valid (or // null) asynchronous context in its slot just before FP in the frame // record, so store it now. const auto &Attrs = MF.getFunction().getAttributes(); bool HaveInitialContext = Attrs.hasAttrSomewhere(Attribute::SwiftAsync); if (HaveInitialContext) MBB.addLiveIn(AArch64::X22); Register Reg = HaveInitialContext ? AArch64::X22 : AArch64::XZR; BuildMI(MBB, MBBI, DL, TII->get(AArch64::StoreSwiftAsyncContext)) .addUse(Reg) .addUse(AArch64::SP) .addImm(FPOffset - 8) .setMIFlags(MachineInstr::FrameSetup); if (NeedsWinCFI) { // WinCFI and arm64e, where StoreSwiftAsyncContext is expanded // to multiple instructions, should be mutually-exclusive. assert(Subtarget.getTargetTriple().getArchName() != "arm64e"); BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlags(MachineInstr::FrameSetup); HasWinCFI = true; } } if (HomPrologEpilog) { auto Prolog = MBBI; --Prolog; assert(Prolog->getOpcode() == AArch64::HOM_Prolog); Prolog->addOperand(MachineOperand::CreateImm(FPOffset)); } else { // Issue sub fp, sp, FPOffset or // mov fp,sp when FPOffset is zero. // Note: All stores of callee-saved registers are marked as "FrameSetup". // This code marks the instruction(s) that set the FP also. emitFrameOffset(MBB, MBBI, DL, AArch64::FP, AArch64::SP, StackOffset::getFixed(FPOffset), TII, MachineInstr::FrameSetup, false, NeedsWinCFI, &HasWinCFI); if (NeedsWinCFI && HasWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) .setMIFlag(MachineInstr::FrameSetup); // After setting up the FP, the rest of the prolog doesn't need to be // included in the SEH unwind info. NeedsWinCFI = false; } } if (EmitAsyncCFI) emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); } // Now emit the moves for whatever callee saved regs we have (including FP, // LR if those are saved). Frame instructions for SVE register are emitted // later, after the instruction which actually save SVE regs. if (EmitAsyncCFI) emitCalleeSavedGPRLocations(MBB, MBBI); // Alignment is required for the parent frame, not the funclet const bool NeedsRealignment = NumBytes && !IsFunclet && RegInfo->hasStackRealignment(MF); const int64_t RealignmentPadding = (NeedsRealignment && MFI.getMaxAlign() > Align(16)) ? MFI.getMaxAlign().value() - 16 : 0; if (windowsRequiresStackProbe(MF, NumBytes + RealignmentPadding)) { uint64_t NumWords = (NumBytes + RealignmentPadding) >> 4; if (NeedsWinCFI) { HasWinCFI = true; // alloc_l can hold at most 256MB, so assume that NumBytes doesn't // exceed this amount. We need to move at most 2^24 - 1 into x15. // This is at most two instructions, MOVZ follwed by MOVK. // TODO: Fix to use multiple stack alloc unwind codes for stacks // exceeding 256MB in size. if (NumBytes >= (1 << 28)) report_fatal_error("Stack size cannot exceed 256MB for stack " "unwinding purposes"); uint32_t LowNumWords = NumWords & 0xFFFF; BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVZXi), AArch64::X15) .addImm(LowNumWords) .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 0)) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); if ((NumWords & 0xFFFF0000) != 0) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVKXi), AArch64::X15) .addReg(AArch64::X15) .addImm((NumWords & 0xFFFF0000) >> 16) // High half .addImm(AArch64_AM::getShifterImm(AArch64_AM::LSL, 16)) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); } } else { BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm), AArch64::X15) .addImm(NumWords) .setMIFlags(MachineInstr::FrameSetup); } const char *ChkStk = Subtarget.getChkStkName(); switch (MF.getTarget().getCodeModel()) { case CodeModel::Tiny: case CodeModel::Small: case CodeModel::Medium: case CodeModel::Kernel: BuildMI(MBB, MBBI, DL, TII->get(AArch64::BL)) .addExternalSymbol(ChkStk) .addReg(AArch64::X15, RegState::Implicit) .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) .setMIFlags(MachineInstr::FrameSetup); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); } break; case CodeModel::Large: BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVaddrEXT)) .addReg(AArch64::X16, RegState::Define) .addExternalSymbol(ChkStk) .addExternalSymbol(ChkStk) .setMIFlags(MachineInstr::FrameSetup); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); } BuildMI(MBB, MBBI, DL, TII->get(getBLRCallOpcode(MF))) .addReg(AArch64::X16, RegState::Kill) .addReg(AArch64::X15, RegState::Implicit | RegState::Define) .addReg(AArch64::X16, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(AArch64::X17, RegState::Implicit | RegState::Define | RegState::Dead) .addReg(AArch64::NZCV, RegState::Implicit | RegState::Define | RegState::Dead) .setMIFlags(MachineInstr::FrameSetup); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); } break; } BuildMI(MBB, MBBI, DL, TII->get(AArch64::SUBXrx64), AArch64::SP) .addReg(AArch64::SP, RegState::Kill) .addReg(AArch64::X15, RegState::Kill) .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 4)) .setMIFlags(MachineInstr::FrameSetup); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_StackAlloc)) .addImm(NumBytes) .setMIFlag(MachineInstr::FrameSetup); } NumBytes = 0; if (RealignmentPadding > 0) { if (RealignmentPadding >= 4096) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::MOVi64imm)) .addReg(AArch64::X16, RegState::Define) .addImm(RealignmentPadding) .setMIFlags(MachineInstr::FrameSetup); BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXrx64), AArch64::X15) .addReg(AArch64::SP) .addReg(AArch64::X16, RegState::Kill) .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) .setMIFlag(MachineInstr::FrameSetup); } else { BuildMI(MBB, MBBI, DL, TII->get(AArch64::ADDXri), AArch64::X15) .addReg(AArch64::SP) .addImm(RealignmentPadding) .addImm(0) .setMIFlag(MachineInstr::FrameSetup); } uint64_t AndMask = ~(MFI.getMaxAlign().value() - 1); BuildMI(MBB, MBBI, DL, TII->get(AArch64::ANDXri), AArch64::SP) .addReg(AArch64::X15, RegState::Kill) .addImm(AArch64_AM::encodeLogicalImmediate(AndMask, 64)); AFI->setStackRealigned(true); // No need for SEH instructions here; if we're realigning the stack, // we've set a frame pointer and already finished the SEH prologue. assert(!NeedsWinCFI); } } StackOffset SVECalleeSavesSize = {}, SVELocalsSize = SVEStackSize; MachineBasicBlock::iterator CalleeSavesBegin = MBBI, CalleeSavesEnd = MBBI; // Process the SVE callee-saves to determine what space needs to be // allocated. if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { LLVM_DEBUG(dbgs() << "SVECalleeSavedStackSize = " << CalleeSavedSize << "\n"); // Find callee save instructions in frame. CalleeSavesBegin = MBBI; assert(IsSVECalleeSave(CalleeSavesBegin) && "Unexpected instruction"); while (IsSVECalleeSave(MBBI) && MBBI != MBB.getFirstTerminator()) ++MBBI; CalleeSavesEnd = MBBI; SVECalleeSavesSize = StackOffset::getScalable(CalleeSavedSize); SVELocalsSize = SVEStackSize - SVECalleeSavesSize; } // Allocate space for the callee saves (if any). StackOffset CFAOffset = StackOffset::getFixed((int64_t)MFI.getStackSize() - NumBytes); StackOffset LocalsSize = SVELocalsSize + StackOffset::getFixed(NumBytes); allocateStackSpace(MBB, CalleeSavesBegin, 0, SVECalleeSavesSize, false, nullptr, EmitAsyncCFI && !HasFP, CFAOffset, MFI.hasVarSizedObjects() || LocalsSize); CFAOffset += SVECalleeSavesSize; if (EmitAsyncCFI) emitCalleeSavedSVELocations(MBB, CalleeSavesEnd); // Allocate space for the rest of the frame including SVE locals. Align the // stack as necessary. assert(!(canUseRedZone(MF) && NeedsRealignment) && "Cannot use redzone with stack realignment"); if (!canUseRedZone(MF)) { // FIXME: in the case of dynamic re-alignment, NumBytes doesn't have // the correct value here, as NumBytes also includes padding bytes, // which shouldn't be counted here. allocateStackSpace(MBB, CalleeSavesEnd, RealignmentPadding, SVELocalsSize + StackOffset::getFixed(NumBytes), NeedsWinCFI, &HasWinCFI, EmitAsyncCFI && !HasFP, CFAOffset, MFI.hasVarSizedObjects()); } // If we need a base pointer, set it up here. It's whatever the value of the // stack pointer is at this point. Any variable size objects will be allocated // after this, so we can still use the base pointer to reference locals. // // FIXME: Clarify FrameSetup flags here. // Note: Use emitFrameOffset() like above for FP if the FrameSetup flag is // needed. // For funclets the BP belongs to the containing function. if (!IsFunclet && RegInfo->hasBasePointer(MF)) { TII->copyPhysReg(MBB, MBBI, DL, RegInfo->getBaseRegister(), AArch64::SP, false); if (NeedsWinCFI) { HasWinCFI = true; BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlag(MachineInstr::FrameSetup); } } // The very last FrameSetup instruction indicates the end of prologue. Emit a // SEH opcode indicating the prologue end. if (NeedsWinCFI && HasWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_PrologEnd)) .setMIFlag(MachineInstr::FrameSetup); } // SEH funclets are passed the frame pointer in X1. If the parent // function uses the base register, then the base register is used // directly, and is not retrieved from X1. if (IsFunclet && F.hasPersonalityFn()) { EHPersonality Per = classifyEHPersonality(F.getPersonalityFn()); if (isAsynchronousEHPersonality(Per)) { BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::COPY), AArch64::FP) .addReg(AArch64::X1) .setMIFlag(MachineInstr::FrameSetup); MBB.addLiveIn(AArch64::X1); } } if (EmitCFI && !EmitAsyncCFI) { if (HasFP) { emitDefineCFAWithFP(MF, MBB, MBBI, DL, FixedObject); } else { StackOffset TotalSize = SVEStackSize + StackOffset::getFixed((int64_t)MFI.getStackSize()); unsigned CFIIndex = MF.addFrameInst(createDefCFA( *RegInfo, /*FrameReg=*/AArch64::SP, /*Reg=*/AArch64::SP, TotalSize, /*LastAdjustmentWasScalable=*/false)); BuildMI(MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } emitCalleeSavedGPRLocations(MBB, MBBI); emitCalleeSavedSVELocations(MBB, MBBI); } } static bool isFuncletReturnInstr(const MachineInstr &MI) { switch (MI.getOpcode()) { default: return false; case AArch64::CATCHRET: case AArch64::CLEANUPRET: return true; } } void AArch64FrameLowering::emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const { MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr(); MachineFrameInfo &MFI = MF.getFrameInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); const AArch64Subtarget &Subtarget = MF.getSubtarget(); const TargetInstrInfo *TII = Subtarget.getInstrInfo(); DebugLoc DL; bool NeedsWinCFI = needsWinCFI(MF); bool EmitCFI = AFI->needsAsyncDwarfUnwindInfo(MF); bool HasWinCFI = false; bool IsFunclet = false; if (MBB.end() != MBBI) { DL = MBBI->getDebugLoc(); IsFunclet = isFuncletReturnInstr(*MBBI); } MachineBasicBlock::iterator EpilogStartI = MBB.end(); auto FinishingTouches = make_scope_exit([&]() { if (AFI->shouldSignReturnAddress(MF)) { BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::PAUTH_EPILOGUE)) .setMIFlag(MachineInstr::FrameDestroy); if (NeedsWinCFI) HasWinCFI = true; // AArch64PointerAuth pass will insert SEH_PACSignLR } if (AFI->needsShadowCallStackPrologueEpilogue(MF)) emitShadowCallStackEpilogue(*TII, MF, MBB, MBB.getFirstTerminator(), DL); if (EmitCFI) emitCalleeSavedGPRRestores(MBB, MBB.getFirstTerminator()); if (HasWinCFI) { BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::SEH_EpilogEnd)) .setMIFlag(MachineInstr::FrameDestroy); if (!MF.hasWinCFI()) MF.setHasWinCFI(true); } if (NeedsWinCFI) { assert(EpilogStartI != MBB.end()); if (!HasWinCFI) MBB.erase(EpilogStartI); } }); int64_t NumBytes = IsFunclet ? getWinEHFuncletFrameSize(MF) : MFI.getStackSize(); // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; // How much of the stack used by incoming arguments this function is expected // to restore in this particular epilogue. int64_t ArgumentStackToRestore = getArgumentStackToRestore(MF, MBB); bool IsWin64 = Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), MF.getFunction().isVarArg()); unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, IsFunclet); int64_t AfterCSRPopSize = ArgumentStackToRestore; auto PrologueSaveSize = AFI->getCalleeSavedStackSize() + FixedObject; // We cannot rely on the local stack size set in emitPrologue if the function // has funclets, as funclets have different local stack size requirements, and // the current value set in emitPrologue may be that of the containing // function. if (MF.hasEHFunclets()) AFI->setLocalStackSize(NumBytes - PrologueSaveSize); if (homogeneousPrologEpilog(MF, &MBB)) { assert(!NeedsWinCFI); auto LastPopI = MBB.getFirstTerminator(); if (LastPopI != MBB.begin()) { auto HomogeneousEpilog = std::prev(LastPopI); if (HomogeneousEpilog->getOpcode() == AArch64::HOM_Epilog) LastPopI = HomogeneousEpilog; } // Adjust local stack emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(AFI->getLocalStackSize()), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); // SP has been already adjusted while restoring callee save regs. // We've bailed-out the case with adjusting SP for arguments. assert(AfterCSRPopSize == 0); return; } bool CombineSPBump = shouldCombineCSRLocalStackBumpInEpilogue(MBB, NumBytes); // Assume we can't combine the last pop with the sp restore. bool CombineAfterCSRBump = false; if (!CombineSPBump && PrologueSaveSize != 0) { MachineBasicBlock::iterator Pop = std::prev(MBB.getFirstTerminator()); while (Pop->getOpcode() == TargetOpcode::CFI_INSTRUCTION || AArch64InstrInfo::isSEHInstruction(*Pop)) Pop = std::prev(Pop); // Converting the last ldp to a post-index ldp is valid only if the last // ldp's offset is 0. const MachineOperand &OffsetOp = Pop->getOperand(Pop->getNumOperands() - 1); // If the offset is 0 and the AfterCSR pop is not actually trying to // allocate more stack for arguments (in space that an untimely interrupt // may clobber), convert it to a post-index ldp. if (OffsetOp.getImm() == 0 && AfterCSRPopSize >= 0) { convertCalleeSaveRestoreToSPPrePostIncDec( MBB, Pop, DL, TII, PrologueSaveSize, NeedsWinCFI, &HasWinCFI, EmitCFI, MachineInstr::FrameDestroy, PrologueSaveSize); } else { // If not, make sure to emit an add after the last ldp. // We're doing this by transfering the size to be restored from the // adjustment *before* the CSR pops to the adjustment *after* the CSR // pops. AfterCSRPopSize += PrologueSaveSize; CombineAfterCSRBump = true; } } // Move past the restores of the callee-saved registers. // If we plan on combining the sp bump of the local stack size and the callee // save stack size, we might need to adjust the CSR save and restore offsets. MachineBasicBlock::iterator LastPopI = MBB.getFirstTerminator(); MachineBasicBlock::iterator Begin = MBB.begin(); while (LastPopI != Begin) { --LastPopI; if (!LastPopI->getFlag(MachineInstr::FrameDestroy) || IsSVECalleeSave(LastPopI)) { ++LastPopI; break; } else if (CombineSPBump) fixupCalleeSaveRestoreStackOffset(*LastPopI, AFI->getLocalStackSize(), NeedsWinCFI, &HasWinCFI); } if (NeedsWinCFI) { // Note that there are cases where we insert SEH opcodes in the // epilogue when we had no SEH opcodes in the prologue. For // example, when there is no stack frame but there are stack // arguments. Insert the SEH_EpilogStart and remove it later if it // we didn't emit any SEH opcodes to avoid generating WinCFI for // functions that don't need it. BuildMI(MBB, LastPopI, DL, TII->get(AArch64::SEH_EpilogStart)) .setMIFlag(MachineInstr::FrameDestroy); EpilogStartI = LastPopI; --EpilogStartI; } if (hasFP(MF) && AFI->hasSwiftAsyncContext()) { switch (MF.getTarget().Options.SwiftAsyncFramePointer) { case SwiftAsyncFramePointerMode::DeploymentBased: // Avoid the reload as it is GOT relative, and instead fall back to the // hardcoded value below. This allows a mismatch between the OS and // application without immediately terminating on the difference. [[fallthrough]]; case SwiftAsyncFramePointerMode::Always: // We need to reset FP to its untagged state on return. Bit 60 is // currently used to show the presence of an extended frame. // BIC x29, x29, #0x1000_0000_0000_0000 BuildMI(MBB, MBB.getFirstTerminator(), DL, TII->get(AArch64::ANDXri), AArch64::FP) .addUse(AArch64::FP) .addImm(0x10fe) .setMIFlag(MachineInstr::FrameDestroy); if (NeedsWinCFI) { BuildMI(MBB, MBBI, DL, TII->get(AArch64::SEH_Nop)) .setMIFlags(MachineInstr::FrameDestroy); HasWinCFI = true; } break; case SwiftAsyncFramePointerMode::Never: break; } } const StackOffset &SVEStackSize = getSVEStackSize(MF); // If there is a single SP update, insert it before the ret and we're done. if (CombineSPBump) { assert(!SVEStackSize && "Cannot combine SP bump with SVE"); // When we are about to restore the CSRs, the CFA register is SP again. if (EmitCFI && hasFP(MF)) { const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::cfiDefCfa(nullptr, Reg, NumBytes)); BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameDestroy); } emitFrameOffset(MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(NumBytes + (int64_t)AfterCSRPopSize), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, StackOffset::getFixed(NumBytes)); return; } NumBytes -= PrologueSaveSize; assert(NumBytes >= 0 && "Negative stack allocation size!?"); // Process the SVE callee-saves to determine what space needs to be // deallocated. StackOffset DeallocateBefore = {}, DeallocateAfter = SVEStackSize; MachineBasicBlock::iterator RestoreBegin = LastPopI, RestoreEnd = LastPopI; if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { RestoreBegin = std::prev(RestoreEnd); while (RestoreBegin != MBB.begin() && IsSVECalleeSave(std::prev(RestoreBegin))) --RestoreBegin; assert(IsSVECalleeSave(RestoreBegin) && IsSVECalleeSave(std::prev(RestoreEnd)) && "Unexpected instruction"); StackOffset CalleeSavedSizeAsOffset = StackOffset::getScalable(CalleeSavedSize); DeallocateBefore = SVEStackSize - CalleeSavedSizeAsOffset; DeallocateAfter = CalleeSavedSizeAsOffset; } // Deallocate the SVE area. if (SVEStackSize) { // If we have stack realignment or variable sized objects on the stack, // restore the stack pointer from the frame pointer prior to SVE CSR // restoration. if (AFI->isStackRealigned() || MFI.hasVarSizedObjects()) { if (int64_t CalleeSavedSize = AFI->getSVECalleeSavedStackSize()) { // Set SP to start of SVE callee-save area from which they can // be reloaded. The code below will deallocate the stack space // space by moving FP -> SP. emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::FP, StackOffset::getScalable(-CalleeSavedSize), TII, MachineInstr::FrameDestroy); } } else { if (AFI->getSVECalleeSavedStackSize()) { // Deallocate the non-SVE locals first before we can deallocate (and // restore callee saves) from the SVE area. emitFrameOffset( MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy, false, false, nullptr, EmitCFI && !hasFP(MF), SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize)); NumBytes = 0; } emitFrameOffset(MBB, RestoreBegin, DL, AArch64::SP, AArch64::SP, DeallocateBefore, TII, MachineInstr::FrameDestroy, false, false, nullptr, EmitCFI && !hasFP(MF), SVEStackSize + StackOffset::getFixed(NumBytes + PrologueSaveSize)); emitFrameOffset(MBB, RestoreEnd, DL, AArch64::SP, AArch64::SP, DeallocateAfter, TII, MachineInstr::FrameDestroy, false, false, nullptr, EmitCFI && !hasFP(MF), DeallocateAfter + StackOffset::getFixed(NumBytes + PrologueSaveSize)); } if (EmitCFI) emitCalleeSavedSVERestores(MBB, RestoreEnd); } if (!hasFP(MF)) { bool RedZone = canUseRedZone(MF); // If this was a redzone leaf function, we don't need to restore the // stack pointer (but we may need to pop stack args for fastcc). if (RedZone && AfterCSRPopSize == 0) return; // Pop the local variables off the stack. If there are no callee-saved // registers, it means we are actually positioned at the terminator and can // combine stack increment for the locals and the stack increment for // callee-popped arguments into (possibly) a single instruction and be done. bool NoCalleeSaveRestore = PrologueSaveSize == 0; int64_t StackRestoreBytes = RedZone ? 0 : NumBytes; if (NoCalleeSaveRestore) StackRestoreBytes += AfterCSRPopSize; emitFrameOffset( MBB, LastPopI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(StackRestoreBytes), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, StackOffset::getFixed((RedZone ? 0 : NumBytes) + PrologueSaveSize)); // If we were able to combine the local stack pop with the argument pop, // then we're done. if (NoCalleeSaveRestore || AfterCSRPopSize == 0) { return; } NumBytes = 0; } // Restore the original stack pointer. // FIXME: Rather than doing the math here, we should instead just use // non-post-indexed loads for the restores if we aren't actually going to // be able to save any instructions. if (!IsFunclet && (MFI.hasVarSizedObjects() || AFI->isStackRealigned())) { emitFrameOffset( MBB, LastPopI, DL, AArch64::SP, AArch64::FP, StackOffset::getFixed(-AFI->getCalleeSaveBaseToFrameRecordOffset()), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); } else if (NumBytes) emitFrameOffset(MBB, LastPopI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(NumBytes), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI); // When we are about to restore the CSRs, the CFA register is SP again. if (EmitCFI && hasFP(MF)) { const AArch64RegisterInfo &RegInfo = *Subtarget.getRegisterInfo(); unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); unsigned CFIIndex = MF.addFrameInst( MCCFIInstruction::cfiDefCfa(nullptr, Reg, PrologueSaveSize)); BuildMI(MBB, LastPopI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameDestroy); } // This must be placed after the callee-save restore code because that code // assumes the SP is at the same location as it was after the callee-save save // code in the prologue. if (AfterCSRPopSize) { assert(AfterCSRPopSize > 0 && "attempting to reallocate arg stack that an " "interrupt may have clobbered"); emitFrameOffset( MBB, MBB.getFirstTerminator(), DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(AfterCSRPopSize), TII, MachineInstr::FrameDestroy, false, NeedsWinCFI, &HasWinCFI, EmitCFI, StackOffset::getFixed(CombineAfterCSRBump ? PrologueSaveSize : 0)); } } bool AArch64FrameLowering::enableCFIFixup(MachineFunction &MF) const { return TargetFrameLowering::enableCFIFixup(MF) && MF.getInfo()->needsAsyncDwarfUnwindInfo(MF); } /// getFrameIndexReference - Provide a base+offset reference to an FI slot for /// debug info. It's the same as what we use for resolving the code-gen /// references for now. FIXME: This can go wrong when references are /// SP-relative and simple call frames aren't used. StackOffset AArch64FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI, Register &FrameReg) const { return resolveFrameIndexReference( MF, FI, FrameReg, /*PreferFP=*/ MF.getFunction().hasFnAttribute(Attribute::SanitizeHWAddress) || MF.getFunction().hasFnAttribute(Attribute::SanitizeMemTag), /*ForSimm=*/false); } StackOffset AArch64FrameLowering::getFrameIndexReferenceFromSP(const MachineFunction &MF, int FI) const { // This function serves to provide a comparable offset from a single reference // point (the value of SP at function entry) that can be used for analysis, // e.g. the stack-frame-layout analysis pass. It is not guaranteed to be // correct for all objects in the presence of VLA-area objects or dynamic // stack re-alignment. const auto &MFI = MF.getFrameInfo(); int64_t ObjectOffset = MFI.getObjectOffset(FI); StackOffset SVEStackSize = getSVEStackSize(MF); // For VLA-area objects, just emit an offset at the end of the stack frame. // Whilst not quite correct, these objects do live at the end of the frame and // so it is more useful for analysis for the offset to reflect this. if (MFI.isVariableSizedObjectIndex(FI)) { return StackOffset::getFixed(-((int64_t)MFI.getStackSize())) - SVEStackSize; } // This is correct in the absence of any SVE stack objects. if (!SVEStackSize) return StackOffset::getFixed(ObjectOffset - getOffsetOfLocalArea()); const auto *AFI = MF.getInfo(); if (MFI.getStackID(FI) == TargetStackID::ScalableVector) { return StackOffset::get(-((int64_t)AFI->getCalleeSavedStackSize()), ObjectOffset); } bool IsFixed = MFI.isFixedObjectIndex(FI); bool IsCSR = !IsFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); StackOffset ScalableOffset = {}; if (!IsFixed && !IsCSR) ScalableOffset = -SVEStackSize; return StackOffset::getFixed(ObjectOffset) + ScalableOffset; } StackOffset AArch64FrameLowering::getNonLocalFrameIndexReference(const MachineFunction &MF, int FI) const { return StackOffset::getFixed(getSEHFrameIndexOffset(MF, FI)); } static StackOffset getFPOffset(const MachineFunction &MF, int64_t ObjectOffset) { const auto *AFI = MF.getInfo(); const auto &Subtarget = MF.getSubtarget(); const Function &F = MF.getFunction(); bool IsWin64 = Subtarget.isCallingConvWin64(F.getCallingConv(), F.isVarArg()); unsigned FixedObject = getFixedObjectSize(MF, AFI, IsWin64, /*IsFunclet=*/false); int64_t CalleeSaveSize = AFI->getCalleeSavedStackSize(MF.getFrameInfo()); int64_t FPAdjust = CalleeSaveSize - AFI->getCalleeSaveBaseToFrameRecordOffset(); return StackOffset::getFixed(ObjectOffset + FixedObject + FPAdjust); } static StackOffset getStackOffset(const MachineFunction &MF, int64_t ObjectOffset) { const auto &MFI = MF.getFrameInfo(); return StackOffset::getFixed(ObjectOffset + (int64_t)MFI.getStackSize()); } // TODO: This function currently does not work for scalable vectors. int AArch64FrameLowering::getSEHFrameIndexOffset(const MachineFunction &MF, int FI) const { const auto *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); int ObjectOffset = MF.getFrameInfo().getObjectOffset(FI); return RegInfo->getLocalAddressRegister(MF) == AArch64::FP ? getFPOffset(MF, ObjectOffset).getFixed() : getStackOffset(MF, ObjectOffset).getFixed(); } StackOffset AArch64FrameLowering::resolveFrameIndexReference( const MachineFunction &MF, int FI, Register &FrameReg, bool PreferFP, bool ForSimm) const { const auto &MFI = MF.getFrameInfo(); int64_t ObjectOffset = MFI.getObjectOffset(FI); bool isFixed = MFI.isFixedObjectIndex(FI); bool isSVE = MFI.getStackID(FI) == TargetStackID::ScalableVector; return resolveFrameOffsetReference(MF, ObjectOffset, isFixed, isSVE, FrameReg, PreferFP, ForSimm); } StackOffset AArch64FrameLowering::resolveFrameOffsetReference( const MachineFunction &MF, int64_t ObjectOffset, bool isFixed, bool isSVE, Register &FrameReg, bool PreferFP, bool ForSimm) const { const auto &MFI = MF.getFrameInfo(); const auto *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const auto *AFI = MF.getInfo(); const auto &Subtarget = MF.getSubtarget(); int64_t FPOffset = getFPOffset(MF, ObjectOffset).getFixed(); int64_t Offset = getStackOffset(MF, ObjectOffset).getFixed(); bool isCSR = !isFixed && ObjectOffset >= -((int)AFI->getCalleeSavedStackSize(MFI)); const StackOffset &SVEStackSize = getSVEStackSize(MF); // Use frame pointer to reference fixed objects. Use it for locals if // there are VLAs or a dynamically realigned SP (and thus the SP isn't // reliable as a base). Make sure useFPForScavengingIndex() does the // right thing for the emergency spill slot. bool UseFP = false; if (AFI->hasStackFrame() && !isSVE) { // We shouldn't prefer using the FP to access fixed-sized stack objects when // there are scalable (SVE) objects in between the FP and the fixed-sized // objects. PreferFP &= !SVEStackSize; // Note: Keeping the following as multiple 'if' statements rather than // merging to a single expression for readability. // // Argument access should always use the FP. if (isFixed) { UseFP = hasFP(MF); } else if (isCSR && RegInfo->hasStackRealignment(MF)) { // References to the CSR area must use FP if we're re-aligning the stack // since the dynamically-sized alignment padding is between the SP/BP and // the CSR area. assert(hasFP(MF) && "Re-aligned stack must have frame pointer"); UseFP = true; } else if (hasFP(MF) && !RegInfo->hasStackRealignment(MF)) { // If the FPOffset is negative and we're producing a signed immediate, we // have to keep in mind that the available offset range for negative // offsets is smaller than for positive ones. If an offset is available // via the FP and the SP, use whichever is closest. bool FPOffsetFits = !ForSimm || FPOffset >= -256; PreferFP |= Offset > -FPOffset && !SVEStackSize; if (MFI.hasVarSizedObjects()) { // If we have variable sized objects, we can use either FP or BP, as the // SP offset is unknown. We can use the base pointer if we have one and // FP is not preferred. If not, we're stuck with using FP. bool CanUseBP = RegInfo->hasBasePointer(MF); if (FPOffsetFits && CanUseBP) // Both are ok. Pick the best. UseFP = PreferFP; else if (!CanUseBP) // Can't use BP. Forced to use FP. UseFP = true; // else we can use BP and FP, but the offset from FP won't fit. // That will make us scavenge registers which we can probably avoid by // using BP. If it won't fit for BP either, we'll scavenge anyway. } else if (FPOffset >= 0) { // Use SP or FP, whichever gives us the best chance of the offset // being in range for direct access. If the FPOffset is positive, // that'll always be best, as the SP will be even further away. UseFP = true; } else if (MF.hasEHFunclets() && !RegInfo->hasBasePointer(MF)) { // Funclets access the locals contained in the parent's stack frame // via the frame pointer, so we have to use the FP in the parent // function. (void) Subtarget; assert(Subtarget.isCallingConvWin64(MF.getFunction().getCallingConv(), MF.getFunction().isVarArg()) && "Funclets should only be present on Win64"); UseFP = true; } else { // We have the choice between FP and (SP or BP). if (FPOffsetFits && PreferFP) // If FP is the best fit, use it. UseFP = true; } } } assert( ((isFixed || isCSR) || !RegInfo->hasStackRealignment(MF) || !UseFP) && "In the presence of dynamic stack pointer realignment, " "non-argument/CSR objects cannot be accessed through the frame pointer"); if (isSVE) { StackOffset FPOffset = StackOffset::get(-AFI->getCalleeSaveBaseToFrameRecordOffset(), ObjectOffset); StackOffset SPOffset = SVEStackSize + StackOffset::get(MFI.getStackSize() - AFI->getCalleeSavedStackSize(), ObjectOffset); // Always use the FP for SVE spills if available and beneficial. if (hasFP(MF) && (SPOffset.getFixed() || FPOffset.getScalable() < SPOffset.getScalable() || RegInfo->hasStackRealignment(MF))) { FrameReg = RegInfo->getFrameRegister(MF); return FPOffset; } FrameReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() : (unsigned)AArch64::SP; return SPOffset; } StackOffset ScalableOffset = {}; if (UseFP && !(isFixed || isCSR)) ScalableOffset = -SVEStackSize; if (!UseFP && (isFixed || isCSR)) ScalableOffset = SVEStackSize; if (UseFP) { FrameReg = RegInfo->getFrameRegister(MF); return StackOffset::getFixed(FPOffset) + ScalableOffset; } // Use the base pointer if we have one. if (RegInfo->hasBasePointer(MF)) FrameReg = RegInfo->getBaseRegister(); else { assert(!MFI.hasVarSizedObjects() && "Can't use SP when we have var sized objects."); FrameReg = AArch64::SP; // If we're using the red zone for this function, the SP won't actually // be adjusted, so the offsets will be negative. They're also all // within range of the signed 9-bit immediate instructions. if (canUseRedZone(MF)) Offset -= AFI->getLocalStackSize(); } return StackOffset::getFixed(Offset) + ScalableOffset; } static unsigned getPrologueDeath(MachineFunction &MF, unsigned Reg) { // Do not set a kill flag on values that are also marked as live-in. This // happens with the @llvm-returnaddress intrinsic and with arguments passed in // callee saved registers. // Omitting the kill flags is conservatively correct even if the live-in // is not used after all. bool IsLiveIn = MF.getRegInfo().isLiveIn(Reg); return getKillRegState(!IsLiveIn); } static bool produceCompactUnwindFrame(MachineFunction &MF) { const AArch64Subtarget &Subtarget = MF.getSubtarget(); AttributeList Attrs = MF.getFunction().getAttributes(); return Subtarget.isTargetMachO() && !(Subtarget.getTargetLowering()->supportSwiftError() && Attrs.hasAttrSomewhere(Attribute::SwiftError)) && MF.getFunction().getCallingConv() != CallingConv::SwiftTail && !requiresSaveVG(MF); } static bool invalidateWindowsRegisterPairing(unsigned Reg1, unsigned Reg2, bool NeedsWinCFI, bool IsFirst, const TargetRegisterInfo *TRI) { // If we are generating register pairs for a Windows function that requires // EH support, then pair consecutive registers only. There are no unwind // opcodes for saves/restores of non-consectuve register pairs. // The unwind opcodes are save_regp, save_regp_x, save_fregp, save_frepg_x, // save_lrpair. // https://docs.microsoft.com/en-us/cpp/build/arm64-exception-handling if (Reg2 == AArch64::FP) return true; if (!NeedsWinCFI) return false; if (TRI->getEncodingValue(Reg2) == TRI->getEncodingValue(Reg1) + 1) return false; // If pairing a GPR with LR, the pair can be described by the save_lrpair // opcode. If this is the first register pair, it would end up with a // predecrement, but there's no save_lrpair_x opcode, so we can only do this // if LR is paired with something else than the first register. // The save_lrpair opcode requires the first register to be an odd one. if (Reg1 >= AArch64::X19 && Reg1 <= AArch64::X27 && (Reg1 - AArch64::X19) % 2 == 0 && Reg2 == AArch64::LR && !IsFirst) return false; return true; } /// Returns true if Reg1 and Reg2 cannot be paired using a ldp/stp instruction. /// WindowsCFI requires that only consecutive registers can be paired. /// LR and FP need to be allocated together when the frame needs to save /// the frame-record. This means any other register pairing with LR is invalid. static bool invalidateRegisterPairing(unsigned Reg1, unsigned Reg2, bool UsesWinAAPCS, bool NeedsWinCFI, bool NeedsFrameRecord, bool IsFirst, const TargetRegisterInfo *TRI) { if (UsesWinAAPCS) return invalidateWindowsRegisterPairing(Reg1, Reg2, NeedsWinCFI, IsFirst, TRI); // If we need to store the frame record, don't pair any register // with LR other than FP. if (NeedsFrameRecord) return Reg2 == AArch64::LR; return false; } namespace { struct RegPairInfo { unsigned Reg1 = AArch64::NoRegister; unsigned Reg2 = AArch64::NoRegister; int FrameIdx; int Offset; enum RegType { GPR, FPR64, FPR128, PPR, ZPR, VG } Type; RegPairInfo() = default; bool isPaired() const { return Reg2 != AArch64::NoRegister; } unsigned getScale() const { switch (Type) { case PPR: return 2; case GPR: case FPR64: case VG: return 8; case ZPR: case FPR128: return 16; } llvm_unreachable("Unsupported type"); } bool isScalable() const { return Type == PPR || Type == ZPR; } }; } // end anonymous namespace static void computeCalleeSaveRegisterPairs( MachineFunction &MF, ArrayRef CSI, const TargetRegisterInfo *TRI, SmallVectorImpl &RegPairs, bool NeedsFrameRecord) { if (CSI.empty()) return; bool IsWindows = isTargetWindows(MF); bool NeedsWinCFI = needsWinCFI(MF); AArch64FunctionInfo *AFI = MF.getInfo(); MachineFrameInfo &MFI = MF.getFrameInfo(); CallingConv::ID CC = MF.getFunction().getCallingConv(); unsigned Count = CSI.size(); (void)CC; // MachO's compact unwind format relies on all registers being stored in // pairs. assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 || (Count & 1) == 0) && "Odd number of callee-saved regs to spill!"); int ByteOffset = AFI->getCalleeSavedStackSize(); int StackFillDir = -1; int RegInc = 1; unsigned FirstReg = 0; if (NeedsWinCFI) { // For WinCFI, fill the stack from the bottom up. ByteOffset = 0; StackFillDir = 1; // As the CSI array is reversed to match PrologEpilogInserter, iterate // backwards, to pair up registers starting from lower numbered registers. RegInc = -1; FirstReg = Count - 1; } int ScalableByteOffset = AFI->getSVECalleeSavedStackSize(); bool NeedGapToAlignStack = AFI->hasCalleeSaveStackFreeSpace(); Register LastReg = 0; // When iterating backwards, the loop condition relies on unsigned wraparound. for (unsigned i = FirstReg; i < Count; i += RegInc) { RegPairInfo RPI; RPI.Reg1 = CSI[i].getReg(); if (AArch64::GPR64RegClass.contains(RPI.Reg1)) RPI.Type = RegPairInfo::GPR; else if (AArch64::FPR64RegClass.contains(RPI.Reg1)) RPI.Type = RegPairInfo::FPR64; else if (AArch64::FPR128RegClass.contains(RPI.Reg1)) RPI.Type = RegPairInfo::FPR128; else if (AArch64::ZPRRegClass.contains(RPI.Reg1)) RPI.Type = RegPairInfo::ZPR; else if (AArch64::PPRRegClass.contains(RPI.Reg1)) RPI.Type = RegPairInfo::PPR; else if (RPI.Reg1 == AArch64::VG) RPI.Type = RegPairInfo::VG; else llvm_unreachable("Unsupported register class."); // Add the stack hazard size as we transition from GPR->FPR CSRs. if (AFI->hasStackHazardSlotIndex() && (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && AArch64InstrInfo::isFpOrNEON(RPI.Reg1)) ByteOffset += StackFillDir * StackHazardSize; LastReg = RPI.Reg1; // Add the next reg to the pair if it is in the same register class. if (unsigned(i + RegInc) < Count && !AFI->hasStackHazardSlotIndex()) { Register NextReg = CSI[i + RegInc].getReg(); bool IsFirst = i == FirstReg; switch (RPI.Type) { case RegPairInfo::GPR: if (AArch64::GPR64RegClass.contains(NextReg) && !invalidateRegisterPairing(RPI.Reg1, NextReg, IsWindows, NeedsWinCFI, NeedsFrameRecord, IsFirst, TRI)) RPI.Reg2 = NextReg; break; case RegPairInfo::FPR64: if (AArch64::FPR64RegClass.contains(NextReg) && !invalidateWindowsRegisterPairing(RPI.Reg1, NextReg, NeedsWinCFI, IsFirst, TRI)) RPI.Reg2 = NextReg; break; case RegPairInfo::FPR128: if (AArch64::FPR128RegClass.contains(NextReg)) RPI.Reg2 = NextReg; break; case RegPairInfo::PPR: break; case RegPairInfo::ZPR: if (AFI->getPredicateRegForFillSpill() != 0) if (((RPI.Reg1 - AArch64::Z0) & 1) == 0 && (NextReg == RPI.Reg1 + 1)) RPI.Reg2 = NextReg; break; case RegPairInfo::VG: break; } } // GPRs and FPRs are saved in pairs of 64-bit regs. We expect the CSI // list to come in sorted by frame index so that we can issue the store // pair instructions directly. Assert if we see anything otherwise. // // The order of the registers in the list is controlled by // getCalleeSavedRegs(), so they will always be in-order, as well. assert((!RPI.isPaired() || (CSI[i].getFrameIdx() + RegInc == CSI[i + RegInc].getFrameIdx())) && "Out of order callee saved regs!"); assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg2 != AArch64::FP || RPI.Reg1 == AArch64::LR) && "FrameRecord must be allocated together with LR"); // Windows AAPCS has FP and LR reversed. assert((!RPI.isPaired() || !NeedsFrameRecord || RPI.Reg1 != AArch64::FP || RPI.Reg2 == AArch64::LR) && "FrameRecord must be allocated together with LR"); // MachO's compact unwind format relies on all registers being stored in // adjacent register pairs. assert((!produceCompactUnwindFrame(MF) || CC == CallingConv::PreserveMost || CC == CallingConv::PreserveAll || CC == CallingConv::CXX_FAST_TLS || CC == CallingConv::Win64 || (RPI.isPaired() && ((RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || RPI.Reg1 + 1 == RPI.Reg2))) && "Callee-save registers not saved as adjacent register pair!"); RPI.FrameIdx = CSI[i].getFrameIdx(); if (NeedsWinCFI && RPI.isPaired()) // RPI.FrameIdx must be the lower index of the pair RPI.FrameIdx = CSI[i + RegInc].getFrameIdx(); int Scale = RPI.getScale(); int OffsetPre = RPI.isScalable() ? ScalableByteOffset : ByteOffset; assert(OffsetPre % Scale == 0); if (RPI.isScalable()) ScalableByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); else ByteOffset += StackFillDir * (RPI.isPaired() ? 2 * Scale : Scale); // Swift's async context is directly before FP, so allocate an extra // 8 bytes for it. if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && ((!IsWindows && RPI.Reg2 == AArch64::FP) || (IsWindows && RPI.Reg2 == AArch64::LR))) ByteOffset += StackFillDir * 8; // Round up size of non-pair to pair size if we need to pad the // callee-save area to ensure 16-byte alignment. if (NeedGapToAlignStack && !NeedsWinCFI && !RPI.isScalable() && RPI.Type != RegPairInfo::FPR128 && !RPI.isPaired() && ByteOffset % 16 != 0) { ByteOffset += 8 * StackFillDir; assert(MFI.getObjectAlign(RPI.FrameIdx) <= Align(16)); // A stack frame with a gap looks like this, bottom up: // d9, d8. x21, gap, x20, x19. // Set extra alignment on the x21 object to create the gap above it. MFI.setObjectAlignment(RPI.FrameIdx, Align(16)); NeedGapToAlignStack = false; } int OffsetPost = RPI.isScalable() ? ScalableByteOffset : ByteOffset; assert(OffsetPost % Scale == 0); // If filling top down (default), we want the offset after incrementing it. // If filling bottom up (WinCFI) we need the original offset. int Offset = NeedsWinCFI ? OffsetPre : OffsetPost; // The FP, LR pair goes 8 bytes into our expanded 24-byte slot so that the // Swift context can directly precede FP. if (NeedsFrameRecord && AFI->hasSwiftAsyncContext() && ((!IsWindows && RPI.Reg2 == AArch64::FP) || (IsWindows && RPI.Reg2 == AArch64::LR))) Offset += 8; RPI.Offset = Offset / Scale; assert((!RPI.isPaired() || (!RPI.isScalable() && RPI.Offset >= -64 && RPI.Offset <= 63) || (RPI.isScalable() && RPI.Offset >= -256 && RPI.Offset <= 255)) && "Offset out of bounds for LDP/STP immediate"); // Save the offset to frame record so that the FP register can point to the // innermost frame record (spilled FP and LR registers). if (NeedsFrameRecord && ((!IsWindows && RPI.Reg1 == AArch64::LR && RPI.Reg2 == AArch64::FP) || (IsWindows && RPI.Reg1 == AArch64::FP && RPI.Reg2 == AArch64::LR))) AFI->setCalleeSaveBaseToFrameRecordOffset(Offset); RegPairs.push_back(RPI); if (RPI.isPaired()) i += RegInc; } if (NeedsWinCFI) { // If we need an alignment gap in the stack, align the topmost stack // object. A stack frame with a gap looks like this, bottom up: // x19, d8. d9, gap. // Set extra alignment on the topmost stack object (the first element in // CSI, which goes top down), to create the gap above it. if (AFI->hasCalleeSaveStackFreeSpace()) MFI.setObjectAlignment(CSI[0].getFrameIdx(), Align(16)); // We iterated bottom up over the registers; flip RegPairs back to top // down order. std::reverse(RegPairs.begin(), RegPairs.end()); } } bool AArch64FrameLowering::spillCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, ArrayRef CSI, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); bool NeedsWinCFI = needsWinCFI(MF); DebugLoc DL; SmallVector RegPairs; computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); MachineRegisterInfo &MRI = MF.getRegInfo(); // Refresh the reserved regs in case there are any potential changes since the // last freeze. MRI.freezeReservedRegs(); if (homogeneousPrologEpilog(MF)) { auto MIB = BuildMI(MBB, MI, DL, TII.get(AArch64::HOM_Prolog)) .setMIFlag(MachineInstr::FrameSetup); for (auto &RPI : RegPairs) { MIB.addReg(RPI.Reg1); MIB.addReg(RPI.Reg2); // Update register live in. if (!MRI.isReserved(RPI.Reg1)) MBB.addLiveIn(RPI.Reg1); if (RPI.isPaired() && !MRI.isReserved(RPI.Reg2)) MBB.addLiveIn(RPI.Reg2); } return true; } bool PTrueCreated = false; for (const RegPairInfo &RPI : llvm::reverse(RegPairs)) { unsigned Reg1 = RPI.Reg1; unsigned Reg2 = RPI.Reg2; unsigned StrOpc; // Issue sequence of spills for cs regs. The first spill may be converted // to a pre-decrement store later by emitPrologue if the callee-save stack // area allocation can't be combined with the local stack area allocation. // For example: // stp x22, x21, [sp, #0] // addImm(+0) // stp x20, x19, [sp, #16] // addImm(+2) // stp fp, lr, [sp, #32] // addImm(+4) // Rationale: This sequence saves uop updates compared to a sequence of // pre-increment spills like stp xi,xj,[sp,#-16]! // Note: Similar rationale and sequence for restores in epilog. unsigned Size; Align Alignment; switch (RPI.Type) { case RegPairInfo::GPR: StrOpc = RPI.isPaired() ? AArch64::STPXi : AArch64::STRXui; Size = 8; Alignment = Align(8); break; case RegPairInfo::FPR64: StrOpc = RPI.isPaired() ? AArch64::STPDi : AArch64::STRDui; Size = 8; Alignment = Align(8); break; case RegPairInfo::FPR128: StrOpc = RPI.isPaired() ? AArch64::STPQi : AArch64::STRQui; Size = 16; Alignment = Align(16); break; case RegPairInfo::ZPR: StrOpc = RPI.isPaired() ? AArch64::ST1B_2Z_IMM : AArch64::STR_ZXI; Size = 16; Alignment = Align(16); break; case RegPairInfo::PPR: StrOpc = AArch64::STR_PXI; Size = 2; Alignment = Align(2); break; case RegPairInfo::VG: StrOpc = AArch64::STRXui; Size = 8; Alignment = Align(8); break; } unsigned X0Scratch = AArch64::NoRegister; if (Reg1 == AArch64::VG) { // Find an available register to store value of VG to. Reg1 = findScratchNonCalleeSaveRegister(&MBB); assert(Reg1 != AArch64::NoRegister); SMEAttrs Attrs(MF.getFunction()); if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface() && AFI->getStreamingVGIdx() == std::numeric_limits::max()) { // For locally-streaming functions, we need to store both the streaming // & non-streaming VG. Spill the streaming value first. BuildMI(MBB, MI, DL, TII.get(AArch64::RDSVLI_XI), Reg1) .addImm(1) .setMIFlag(MachineInstr::FrameSetup); BuildMI(MBB, MI, DL, TII.get(AArch64::UBFMXri), Reg1) .addReg(Reg1) .addImm(3) .addImm(63) .setMIFlag(MachineInstr::FrameSetup); AFI->setStreamingVGIdx(RPI.FrameIdx); } else if (MF.getSubtarget().hasSVE()) { BuildMI(MBB, MI, DL, TII.get(AArch64::CNTD_XPiI), Reg1) .addImm(31) .addImm(1) .setMIFlag(MachineInstr::FrameSetup); AFI->setVGIdx(RPI.FrameIdx); } else { const AArch64Subtarget &STI = MF.getSubtarget(); if (llvm::any_of( MBB.liveins(), [&STI](const MachineBasicBlock::RegisterMaskPair &LiveIn) { return STI.getRegisterInfo()->isSuperOrSubRegisterEq( AArch64::X0, LiveIn.PhysReg); })) X0Scratch = Reg1; if (X0Scratch != AArch64::NoRegister) BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), Reg1) .addReg(AArch64::XZR) .addReg(AArch64::X0, RegState::Undef) .addReg(AArch64::X0, RegState::Implicit) .setMIFlag(MachineInstr::FrameSetup); const uint32_t *RegMask = TRI->getCallPreservedMask( MF, CallingConv::AArch64_SME_ABI_Support_Routines_PreserveMost_From_X1); BuildMI(MBB, MI, DL, TII.get(AArch64::BL)) .addExternalSymbol("__arm_get_current_vg") .addRegMask(RegMask) .addReg(AArch64::X0, RegState::ImplicitDefine) .setMIFlag(MachineInstr::FrameSetup); Reg1 = AArch64::X0; AFI->setVGIdx(RPI.FrameIdx); } } LLVM_DEBUG(dbgs() << "CSR spill: (" << printReg(Reg1, TRI); if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); dbgs() << ") -> fi#(" << RPI.FrameIdx; if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; dbgs() << ")\n"); assert((!NeedsWinCFI || !(Reg1 == AArch64::LR && Reg2 == AArch64::FP)) && "Windows unwdinding requires a consecutive (FP,LR) pair"); // Windows unwind codes require consecutive registers if registers are // paired. Make the switch here, so that the code below will save (x,x+1) // and not (x+1,x). unsigned FrameIdxReg1 = RPI.FrameIdx; unsigned FrameIdxReg2 = RPI.FrameIdx + 1; if (NeedsWinCFI && RPI.isPaired()) { std::swap(Reg1, Reg2); std::swap(FrameIdxReg1, FrameIdxReg2); } if (RPI.isPaired() && RPI.isScalable()) { [[maybe_unused]] const AArch64Subtarget &Subtarget = MF.getSubtarget(); AArch64FunctionInfo *AFI = MF.getInfo(); unsigned PnReg = AFI->getPredicateRegForFillSpill(); assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) && "Expects SVE2.1 or SME2 target and a predicate register"); #ifdef EXPENSIVE_CHECKS auto IsPPR = [](const RegPairInfo &c) { return c.Reg1 == RegPairInfo::PPR; }; auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; }; auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); assert(!(PPRBegin < ZPRBegin) && "Expected callee save predicate to be handled first"); #endif if (!PTrueCreated) { PTrueCreated = true; BuildMI(MBB, MI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) .setMIFlags(MachineInstr::FrameSetup); } MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); if (!MRI.isReserved(Reg1)) MBB.addLiveIn(Reg1); if (!MRI.isReserved(Reg2)) MBB.addLiveIn(Reg2); MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0)); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), MachineMemOperand::MOStore, Size, Alignment)); MIB.addReg(PnReg); MIB.addReg(AArch64::SP) .addImm(RPI.Offset) // [sp, #offset*scale], // where factor*scale is implicit .setMIFlag(MachineInstr::FrameSetup); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), MachineMemOperand::MOStore, Size, Alignment)); if (NeedsWinCFI) InsertSEH(MIB, TII, MachineInstr::FrameSetup); } else { // The code when the pair of ZReg is not present MachineInstrBuilder MIB = BuildMI(MBB, MI, DL, TII.get(StrOpc)); if (!MRI.isReserved(Reg1)) MBB.addLiveIn(Reg1); if (RPI.isPaired()) { if (!MRI.isReserved(Reg2)) MBB.addLiveIn(Reg2); MIB.addReg(Reg2, getPrologueDeath(MF, Reg2)); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), MachineMemOperand::MOStore, Size, Alignment)); } MIB.addReg(Reg1, getPrologueDeath(MF, Reg1)) .addReg(AArch64::SP) .addImm(RPI.Offset) // [sp, #offset*scale], // where factor*scale is implicit .setMIFlag(MachineInstr::FrameSetup); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), MachineMemOperand::MOStore, Size, Alignment)); if (NeedsWinCFI) InsertSEH(MIB, TII, MachineInstr::FrameSetup); } // Update the StackIDs of the SVE stack slots. MachineFrameInfo &MFI = MF.getFrameInfo(); if (RPI.Type == RegPairInfo::ZPR || RPI.Type == RegPairInfo::PPR) { MFI.setStackID(FrameIdxReg1, TargetStackID::ScalableVector); if (RPI.isPaired()) MFI.setStackID(FrameIdxReg2, TargetStackID::ScalableVector); } if (X0Scratch != AArch64::NoRegister) BuildMI(MBB, MI, DL, TII.get(AArch64::ORRXrr), AArch64::X0) .addReg(AArch64::XZR) .addReg(X0Scratch, RegState::Undef) .addReg(X0Scratch, RegState::Implicit) .setMIFlag(MachineInstr::FrameSetup); } return true; } bool AArch64FrameLowering::restoreCalleeSavedRegisters( MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, MutableArrayRef CSI, const TargetRegisterInfo *TRI) const { MachineFunction &MF = *MBB.getParent(); const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); DebugLoc DL; SmallVector RegPairs; bool NeedsWinCFI = needsWinCFI(MF); if (MBBI != MBB.end()) DL = MBBI->getDebugLoc(); computeCalleeSaveRegisterPairs(MF, CSI, TRI, RegPairs, hasFP(MF)); if (homogeneousPrologEpilog(MF, &MBB)) { auto MIB = BuildMI(MBB, MBBI, DL, TII.get(AArch64::HOM_Epilog)) .setMIFlag(MachineInstr::FrameDestroy); for (auto &RPI : RegPairs) { MIB.addReg(RPI.Reg1, RegState::Define); MIB.addReg(RPI.Reg2, RegState::Define); } return true; } // For performance reasons restore SVE register in increasing order auto IsPPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::PPR; }; auto PPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsPPR); auto PPREnd = std::find_if_not(PPRBegin, RegPairs.end(), IsPPR); std::reverse(PPRBegin, PPREnd); auto IsZPR = [](const RegPairInfo &c) { return c.Type == RegPairInfo::ZPR; }; auto ZPRBegin = std::find_if(RegPairs.begin(), RegPairs.end(), IsZPR); auto ZPREnd = std::find_if_not(ZPRBegin, RegPairs.end(), IsZPR); std::reverse(ZPRBegin, ZPREnd); bool PTrueCreated = false; for (const RegPairInfo &RPI : RegPairs) { unsigned Reg1 = RPI.Reg1; unsigned Reg2 = RPI.Reg2; // Issue sequence of restores for cs regs. The last restore may be converted // to a post-increment load later by emitEpilogue if the callee-save stack // area allocation can't be combined with the local stack area allocation. // For example: // ldp fp, lr, [sp, #32] // addImm(+4) // ldp x20, x19, [sp, #16] // addImm(+2) // ldp x22, x21, [sp, #0] // addImm(+0) // Note: see comment in spillCalleeSavedRegisters() unsigned LdrOpc; unsigned Size; Align Alignment; switch (RPI.Type) { case RegPairInfo::GPR: LdrOpc = RPI.isPaired() ? AArch64::LDPXi : AArch64::LDRXui; Size = 8; Alignment = Align(8); break; case RegPairInfo::FPR64: LdrOpc = RPI.isPaired() ? AArch64::LDPDi : AArch64::LDRDui; Size = 8; Alignment = Align(8); break; case RegPairInfo::FPR128: LdrOpc = RPI.isPaired() ? AArch64::LDPQi : AArch64::LDRQui; Size = 16; Alignment = Align(16); break; case RegPairInfo::ZPR: LdrOpc = RPI.isPaired() ? AArch64::LD1B_2Z_IMM : AArch64::LDR_ZXI; Size = 16; Alignment = Align(16); break; case RegPairInfo::PPR: LdrOpc = AArch64::LDR_PXI; Size = 2; Alignment = Align(2); break; case RegPairInfo::VG: continue; } LLVM_DEBUG(dbgs() << "CSR restore: (" << printReg(Reg1, TRI); if (RPI.isPaired()) dbgs() << ", " << printReg(Reg2, TRI); dbgs() << ") -> fi#(" << RPI.FrameIdx; if (RPI.isPaired()) dbgs() << ", " << RPI.FrameIdx + 1; dbgs() << ")\n"); // Windows unwind codes require consecutive registers if registers are // paired. Make the switch here, so that the code below will save (x,x+1) // and not (x+1,x). unsigned FrameIdxReg1 = RPI.FrameIdx; unsigned FrameIdxReg2 = RPI.FrameIdx + 1; if (NeedsWinCFI && RPI.isPaired()) { std::swap(Reg1, Reg2); std::swap(FrameIdxReg1, FrameIdxReg2); } AArch64FunctionInfo *AFI = MF.getInfo(); if (RPI.isPaired() && RPI.isScalable()) { [[maybe_unused]] const AArch64Subtarget &Subtarget = MF.getSubtarget(); unsigned PnReg = AFI->getPredicateRegForFillSpill(); assert(((Subtarget.hasSVE2p1() || Subtarget.hasSME2()) && PnReg != 0) && "Expects SVE2.1 or SME2 target and a predicate register"); #ifdef EXPENSIVE_CHECKS assert(!(PPRBegin < ZPRBegin) && "Expected callee save predicate to be handled first"); #endif if (!PTrueCreated) { PTrueCreated = true; BuildMI(MBB, MBBI, DL, TII.get(AArch64::PTRUE_C_B), PnReg) .setMIFlags(MachineInstr::FrameDestroy); } MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); MIB.addReg(/*PairRegs*/ AArch64::Z0_Z1 + (RPI.Reg1 - AArch64::Z0), getDefRegState(true)); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), MachineMemOperand::MOLoad, Size, Alignment)); MIB.addReg(PnReg); MIB.addReg(AArch64::SP) .addImm(RPI.Offset) // [sp, #offset*scale] // where factor*scale is implicit .setMIFlag(MachineInstr::FrameDestroy); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), MachineMemOperand::MOLoad, Size, Alignment)); if (NeedsWinCFI) InsertSEH(MIB, TII, MachineInstr::FrameDestroy); } else { MachineInstrBuilder MIB = BuildMI(MBB, MBBI, DL, TII.get(LdrOpc)); if (RPI.isPaired()) { MIB.addReg(Reg2, getDefRegState(true)); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg2), MachineMemOperand::MOLoad, Size, Alignment)); } MIB.addReg(Reg1, getDefRegState(true)); MIB.addReg(AArch64::SP) .addImm(RPI.Offset) // [sp, #offset*scale] // where factor*scale is implicit .setMIFlag(MachineInstr::FrameDestroy); MIB.addMemOperand(MF.getMachineMemOperand( MachinePointerInfo::getFixedStack(MF, FrameIdxReg1), MachineMemOperand::MOLoad, Size, Alignment)); if (NeedsWinCFI) InsertSEH(MIB, TII, MachineInstr::FrameDestroy); } } return true; } // Return the FrameID for a MMO. static std::optional getMMOFrameID(MachineMemOperand *MMO, const MachineFrameInfo &MFI) { auto *PSV = dyn_cast_or_null(MMO->getPseudoValue()); if (PSV) return std::optional(PSV->getFrameIndex()); if (MMO->getValue()) { if (auto *Al = dyn_cast(getUnderlyingObject(MMO->getValue()))) { for (int FI = MFI.getObjectIndexBegin(); FI < MFI.getObjectIndexEnd(); FI++) if (MFI.getObjectAllocation(FI) == Al) return FI; } } return std::nullopt; } // Return the FrameID for a Load/Store instruction by looking at the first MMO. static std::optional getLdStFrameID(const MachineInstr &MI, const MachineFrameInfo &MFI) { if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) return std::nullopt; return getMMOFrameID(*MI.memoperands_begin(), MFI); } // Check if a Hazard slot is needed for the current function, and if so create // one for it. The index is stored in AArch64FunctionInfo->StackHazardSlotIndex, // which can be used to determine if any hazard padding is needed. void AArch64FrameLowering::determineStackHazardSlot( MachineFunction &MF, BitVector &SavedRegs) const { if (StackHazardSize == 0 || StackHazardSize % 16 != 0 || MF.getInfo()->hasStackHazardSlotIndex()) return; // Stack hazards are only needed in streaming functions. SMEAttrs Attrs(MF.getFunction()); if (!StackHazardInNonStreaming && Attrs.hasNonStreamingInterfaceAndBody()) return; MachineFrameInfo &MFI = MF.getFrameInfo(); // Add a hazard slot if there are any CSR FPR registers, or are any fp-only // stack objects. bool HasFPRCSRs = any_of(SavedRegs.set_bits(), [](unsigned Reg) { return AArch64::FPR64RegClass.contains(Reg) || AArch64::FPR128RegClass.contains(Reg) || AArch64::ZPRRegClass.contains(Reg) || AArch64::PPRRegClass.contains(Reg); }); bool HasFPRStackObjects = false; if (!HasFPRCSRs) { std::vector FrameObjects(MFI.getObjectIndexEnd()); for (auto &MBB : MF) { for (auto &MI : MBB) { std::optional FI = getLdStFrameID(MI, MFI); if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || AArch64InstrInfo::isFpOrNEON(MI)) FrameObjects[*FI] |= 2; else FrameObjects[*FI] |= 1; } } } HasFPRStackObjects = any_of(FrameObjects, [](unsigned B) { return (B & 3) == 2; }); } if (HasFPRCSRs || HasFPRStackObjects) { int ID = MFI.CreateStackObject(StackHazardSize, Align(16), false); LLVM_DEBUG(dbgs() << "Created Hazard slot at " << ID << " size " << StackHazardSize << "\n"); MF.getInfo()->setStackHazardSlotIndex(ID); } } void AArch64FrameLowering::determineCalleeSaves(MachineFunction &MF, BitVector &SavedRegs, RegScavenger *RS) const { // All calls are tail calls in GHC calling conv, and functions have no // prologue/epilogue. if (MF.getFunction().getCallingConv() == CallingConv::GHC) return; TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS); const AArch64RegisterInfo *RegInfo = static_cast( MF.getSubtarget().getRegisterInfo()); const AArch64Subtarget &Subtarget = MF.getSubtarget(); AArch64FunctionInfo *AFI = MF.getInfo(); unsigned UnspilledCSGPR = AArch64::NoRegister; unsigned UnspilledCSGPRPaired = AArch64::NoRegister; MachineFrameInfo &MFI = MF.getFrameInfo(); const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs(); unsigned BasePointerReg = RegInfo->hasBasePointer(MF) ? RegInfo->getBaseRegister() : (unsigned)AArch64::NoRegister; unsigned ExtraCSSpill = 0; bool HasUnpairedGPR64 = false; // Figure out which callee-saved registers to save/restore. for (unsigned i = 0; CSRegs[i]; ++i) { const unsigned Reg = CSRegs[i]; // Add the base pointer register to SavedRegs if it is callee-save. if (Reg == BasePointerReg) SavedRegs.set(Reg); bool RegUsed = SavedRegs.test(Reg); unsigned PairedReg = AArch64::NoRegister; const bool RegIsGPR64 = AArch64::GPR64RegClass.contains(Reg); if (RegIsGPR64 || AArch64::FPR64RegClass.contains(Reg) || AArch64::FPR128RegClass.contains(Reg)) { // Compensate for odd numbers of GP CSRs. // For now, all the known cases of odd number of CSRs are of GPRs. if (HasUnpairedGPR64) PairedReg = CSRegs[i % 2 == 0 ? i - 1 : i + 1]; else PairedReg = CSRegs[i ^ 1]; } // If the function requires all the GP registers to save (SavedRegs), // and there are an odd number of GP CSRs at the same time (CSRegs), // PairedReg could be in a different register class from Reg, which would // lead to a FPR (usually D8) accidentally being marked saved. if (RegIsGPR64 && !AArch64::GPR64RegClass.contains(PairedReg)) { PairedReg = AArch64::NoRegister; HasUnpairedGPR64 = true; } assert(PairedReg == AArch64::NoRegister || AArch64::GPR64RegClass.contains(Reg, PairedReg) || AArch64::FPR64RegClass.contains(Reg, PairedReg) || AArch64::FPR128RegClass.contains(Reg, PairedReg)); if (!RegUsed) { if (AArch64::GPR64RegClass.contains(Reg) && !RegInfo->isReservedReg(MF, Reg)) { UnspilledCSGPR = Reg; UnspilledCSGPRPaired = PairedReg; } continue; } // MachO's compact unwind format relies on all registers being stored in // pairs. // FIXME: the usual format is actually better if unwinding isn't needed. if (producePairRegisters(MF) && PairedReg != AArch64::NoRegister && !SavedRegs.test(PairedReg)) { SavedRegs.set(PairedReg); if (AArch64::GPR64RegClass.contains(PairedReg) && !RegInfo->isReservedReg(MF, PairedReg)) ExtraCSSpill = PairedReg; } } if (MF.getFunction().getCallingConv() == CallingConv::Win64 && !Subtarget.isTargetWindows()) { // For Windows calling convention on a non-windows OS, where X18 is treated // as reserved, back up X18 when entering non-windows code (marked with the // Windows calling convention) and restore when returning regardless of // whether the individual function uses it - it might call other functions // that clobber it. SavedRegs.set(AArch64::X18); } // Calculates the callee saved stack size. unsigned CSStackSize = 0; unsigned SVECSStackSize = 0; const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const MachineRegisterInfo &MRI = MF.getRegInfo(); for (unsigned Reg : SavedRegs.set_bits()) { auto RegSize = TRI->getRegSizeInBits(Reg, MRI) / 8; if (AArch64::PPRRegClass.contains(Reg) || AArch64::ZPRRegClass.contains(Reg)) SVECSStackSize += RegSize; else CSStackSize += RegSize; } // Increase the callee-saved stack size if the function has streaming mode // changes, as we will need to spill the value of the VG register. // For locally streaming functions, we spill both the streaming and // non-streaming VG value. const Function &F = MF.getFunction(); SMEAttrs Attrs(F); if (requiresSaveVG(MF)) { if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) CSStackSize += 16; else CSStackSize += 8; } // Determine if a Hazard slot should be used, and increase the CSStackSize by // StackHazardSize if so. determineStackHazardSlot(MF, SavedRegs); if (AFI->hasStackHazardSlotIndex()) CSStackSize += StackHazardSize; // Save number of saved regs, so we can easily update CSStackSize later. unsigned NumSavedRegs = SavedRegs.count(); // The frame record needs to be created by saving the appropriate registers uint64_t EstimatedStackSize = MFI.estimateStackSize(MF); if (hasFP(MF) || windowsRequiresStackProbe(MF, EstimatedStackSize + CSStackSize + 16)) { SavedRegs.set(AArch64::FP); SavedRegs.set(AArch64::LR); } LLVM_DEBUG({ dbgs() << "*** determineCalleeSaves\nSaved CSRs:"; for (unsigned Reg : SavedRegs.set_bits()) dbgs() << ' ' << printReg(Reg, RegInfo); dbgs() << "\n"; }); // If any callee-saved registers are used, the frame cannot be eliminated. int64_t SVEStackSize = alignTo(SVECSStackSize + estimateSVEStackObjectOffsets(MFI), 16); bool CanEliminateFrame = (SavedRegs.count() == 0) && !SVEStackSize; // The CSR spill slots have not been allocated yet, so estimateStackSize // won't include them. unsigned EstimatedStackSizeLimit = estimateRSStackSizeLimit(MF); // We may address some of the stack above the canonical frame address, either // for our own arguments or during a call. Include that in calculating whether // we have complicated addressing concerns. int64_t CalleeStackUsed = 0; for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) { int64_t FixedOff = MFI.getObjectOffset(I); if (FixedOff > CalleeStackUsed) CalleeStackUsed = FixedOff; } // Conservatively always assume BigStack when there are SVE spills. bool BigStack = SVEStackSize || (EstimatedStackSize + CSStackSize + CalleeStackUsed) > EstimatedStackSizeLimit; if (BigStack || !CanEliminateFrame || RegInfo->cannotEliminateFrame(MF)) AFI->setHasStackFrame(true); // Estimate if we might need to scavenge a register at some point in order // to materialize a stack offset. If so, either spill one additional // callee-saved register or reserve a special spill slot to facilitate // register scavenging. If we already spilled an extra callee-saved register // above to keep the number of spills even, we don't need to do anything else // here. if (BigStack) { if (!ExtraCSSpill && UnspilledCSGPR != AArch64::NoRegister) { LLVM_DEBUG(dbgs() << "Spilling " << printReg(UnspilledCSGPR, RegInfo) << " to get a scratch register.\n"); SavedRegs.set(UnspilledCSGPR); ExtraCSSpill = UnspilledCSGPR; // MachO's compact unwind format relies on all registers being stored in // pairs, so if we need to spill one extra for BigStack, then we need to // store the pair. if (producePairRegisters(MF)) { if (UnspilledCSGPRPaired == AArch64::NoRegister) { // Failed to make a pair for compact unwind format, revert spilling. if (produceCompactUnwindFrame(MF)) { SavedRegs.reset(UnspilledCSGPR); ExtraCSSpill = AArch64::NoRegister; } } else SavedRegs.set(UnspilledCSGPRPaired); } } // If we didn't find an extra callee-saved register to spill, create // an emergency spill slot. if (!ExtraCSSpill || MF.getRegInfo().isPhysRegUsed(ExtraCSSpill)) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const TargetRegisterClass &RC = AArch64::GPR64RegClass; unsigned Size = TRI->getSpillSize(RC); Align Alignment = TRI->getSpillAlign(RC); int FI = MFI.CreateStackObject(Size, Alignment, false); RS->addScavengingFrameIndex(FI); LLVM_DEBUG(dbgs() << "No available CS registers, allocated fi#" << FI << " as the emergency spill slot.\n"); } } // Adding the size of additional 64bit GPR saves. CSStackSize += 8 * (SavedRegs.count() - NumSavedRegs); // A Swift asynchronous context extends the frame record with a pointer // directly before FP. if (hasFP(MF) && AFI->hasSwiftAsyncContext()) CSStackSize += 8; uint64_t AlignedCSStackSize = alignTo(CSStackSize, 16); LLVM_DEBUG(dbgs() << "Estimated stack frame size: " << EstimatedStackSize + AlignedCSStackSize << " bytes.\n"); assert((!MFI.isCalleeSavedInfoValid() || AFI->getCalleeSavedStackSize() == AlignedCSStackSize) && "Should not invalidate callee saved info"); // Round up to register pair alignment to avoid additional SP adjustment // instructions. AFI->setCalleeSavedStackSize(AlignedCSStackSize); AFI->setCalleeSaveStackHasFreeSpace(AlignedCSStackSize != CSStackSize); AFI->setSVECalleeSavedStackSize(alignTo(SVECSStackSize, 16)); } bool AArch64FrameLowering::assignCalleeSavedSpillSlots( MachineFunction &MF, const TargetRegisterInfo *RegInfo, std::vector &CSI, unsigned &MinCSFrameIndex, unsigned &MaxCSFrameIndex) const { bool NeedsWinCFI = needsWinCFI(MF); // To match the canonical windows frame layout, reverse the list of // callee saved registers to get them laid out by PrologEpilogInserter // in the right order. (PrologEpilogInserter allocates stack objects top // down. Windows canonical prologs store higher numbered registers at // the top, thus have the CSI array start from the highest registers.) if (NeedsWinCFI) std::reverse(CSI.begin(), CSI.end()); if (CSI.empty()) return true; // Early exit if no callee saved registers are modified! // Now that we know which registers need to be saved and restored, allocate // stack slots for them. MachineFrameInfo &MFI = MF.getFrameInfo(); auto *AFI = MF.getInfo(); bool UsesWinAAPCS = isTargetWindows(MF); if (UsesWinAAPCS && hasFP(MF) && AFI->hasSwiftAsyncContext()) { int FrameIdx = MFI.CreateStackObject(8, Align(16), true); AFI->setSwiftAsyncContextFrameIdx(FrameIdx); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } // Insert VG into the list of CSRs, immediately before LR if saved. if (requiresSaveVG(MF)) { std::vector VGSaves; SMEAttrs Attrs(MF.getFunction()); auto VGInfo = CalleeSavedInfo(AArch64::VG); VGInfo.setRestored(false); VGSaves.push_back(VGInfo); // Add VG again if the function is locally-streaming, as we will spill two // values. if (Attrs.hasStreamingBody() && !Attrs.hasStreamingInterface()) VGSaves.push_back(VGInfo); bool InsertBeforeLR = false; for (unsigned I = 0; I < CSI.size(); I++) if (CSI[I].getReg() == AArch64::LR) { InsertBeforeLR = true; CSI.insert(CSI.begin() + I, VGSaves.begin(), VGSaves.end()); break; } if (!InsertBeforeLR) CSI.insert(CSI.end(), VGSaves.begin(), VGSaves.end()); } Register LastReg = 0; int HazardSlotIndex = std::numeric_limits::max(); for (auto &CS : CSI) { Register Reg = CS.getReg(); const TargetRegisterClass *RC = RegInfo->getMinimalPhysRegClass(Reg); // Create a hazard slot as we switch between GPR and FPR CSRs. if (AFI->hasStackHazardSlotIndex() && (!LastReg || !AArch64InstrInfo::isFpOrNEON(LastReg)) && AArch64InstrInfo::isFpOrNEON(Reg)) { assert(HazardSlotIndex == std::numeric_limits::max() && "Unexpected register order for hazard slot"); HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex << "\n"); AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); if ((unsigned)HazardSlotIndex < MinCSFrameIndex) MinCSFrameIndex = HazardSlotIndex; if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) MaxCSFrameIndex = HazardSlotIndex; } unsigned Size = RegInfo->getSpillSize(*RC); Align Alignment(RegInfo->getSpillAlign(*RC)); int FrameIdx = MFI.CreateStackObject(Size, Alignment, true); CS.setFrameIdx(FrameIdx); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; // Grab 8 bytes below FP for the extended asynchronous frame info. if (hasFP(MF) && AFI->hasSwiftAsyncContext() && !UsesWinAAPCS && Reg == AArch64::FP) { FrameIdx = MFI.CreateStackObject(8, Alignment, true); AFI->setSwiftAsyncContextFrameIdx(FrameIdx); if ((unsigned)FrameIdx < MinCSFrameIndex) MinCSFrameIndex = FrameIdx; if ((unsigned)FrameIdx > MaxCSFrameIndex) MaxCSFrameIndex = FrameIdx; } LastReg = Reg; } // Add hazard slot in the case where no FPR CSRs are present. if (AFI->hasStackHazardSlotIndex() && HazardSlotIndex == std::numeric_limits::max()) { HazardSlotIndex = MFI.CreateStackObject(StackHazardSize, Align(8), true); LLVM_DEBUG(dbgs() << "Created CSR Hazard at slot " << HazardSlotIndex << "\n"); AFI->setStackHazardCSRSlotIndex(HazardSlotIndex); if ((unsigned)HazardSlotIndex < MinCSFrameIndex) MinCSFrameIndex = HazardSlotIndex; if ((unsigned)HazardSlotIndex > MaxCSFrameIndex) MaxCSFrameIndex = HazardSlotIndex; } return true; } bool AArch64FrameLowering::enableStackSlotScavenging( const MachineFunction &MF) const { const AArch64FunctionInfo *AFI = MF.getInfo(); // If the function has streaming-mode changes, don't scavenge a // spillslot in the callee-save area, as that might require an // 'addvl' in the streaming-mode-changing call-sequence when the // function doesn't use a FP. if (AFI->hasStreamingModeChanges() && !hasFP(MF)) return false; // Don't allow register salvaging with hazard slots, in case it moves objects // into the wrong place. if (AFI->hasStackHazardSlotIndex()) return false; return AFI->hasCalleeSaveStackFreeSpace(); } /// returns true if there are any SVE callee saves. static bool getSVECalleeSaveSlotRange(const MachineFrameInfo &MFI, int &Min, int &Max) { Min = std::numeric_limits::max(); Max = std::numeric_limits::min(); if (!MFI.isCalleeSavedInfoValid()) return false; const std::vector &CSI = MFI.getCalleeSavedInfo(); for (auto &CS : CSI) { if (AArch64::ZPRRegClass.contains(CS.getReg()) || AArch64::PPRRegClass.contains(CS.getReg())) { assert((Max == std::numeric_limits::min() || Max + 1 == CS.getFrameIdx()) && "SVE CalleeSaves are not consecutive"); Min = std::min(Min, CS.getFrameIdx()); Max = std::max(Max, CS.getFrameIdx()); } } return Min != std::numeric_limits::max(); } // Process all the SVE stack objects and determine offsets for each // object. If AssignOffsets is true, the offsets get assigned. // Fills in the first and last callee-saved frame indices into // Min/MaxCSFrameIndex, respectively. // Returns the size of the stack. static int64_t determineSVEStackObjectOffsets(MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex, bool AssignOffsets) { #ifndef NDEBUG // First process all fixed stack objects. for (int I = MFI.getObjectIndexBegin(); I != 0; ++I) assert(MFI.getStackID(I) != TargetStackID::ScalableVector && "SVE vectors should never be passed on the stack by value, only by " "reference."); #endif auto Assign = [&MFI](int FI, int64_t Offset) { LLVM_DEBUG(dbgs() << "alloc FI(" << FI << ") at SP[" << Offset << "]\n"); MFI.setObjectOffset(FI, Offset); }; int64_t Offset = 0; // Then process all callee saved slots. if (getSVECalleeSaveSlotRange(MFI, MinCSFrameIndex, MaxCSFrameIndex)) { // Assign offsets to the callee save slots. for (int I = MinCSFrameIndex; I <= MaxCSFrameIndex; ++I) { Offset += MFI.getObjectSize(I); Offset = alignTo(Offset, MFI.getObjectAlign(I)); if (AssignOffsets) Assign(I, -Offset); } } // Ensure that the Callee-save area is aligned to 16bytes. Offset = alignTo(Offset, Align(16U)); // Create a buffer of SVE objects to allocate and sort it. SmallVector ObjectsToAllocate; // If we have a stack protector, and we've previously decided that we have SVE // objects on the stack and thus need it to go in the SVE stack area, then it // needs to go first. int StackProtectorFI = -1; if (MFI.hasStackProtectorIndex()) { StackProtectorFI = MFI.getStackProtectorIndex(); if (MFI.getStackID(StackProtectorFI) == TargetStackID::ScalableVector) ObjectsToAllocate.push_back(StackProtectorFI); } for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { unsigned StackID = MFI.getStackID(I); if (StackID != TargetStackID::ScalableVector) continue; if (I == StackProtectorFI) continue; if (MaxCSFrameIndex >= I && I >= MinCSFrameIndex) continue; if (MFI.isDeadObjectIndex(I)) continue; ObjectsToAllocate.push_back(I); } // Allocate all SVE locals and spills for (unsigned FI : ObjectsToAllocate) { Align Alignment = MFI.getObjectAlign(FI); // FIXME: Given that the length of SVE vectors is not necessarily a power of // two, we'd need to align every object dynamically at runtime if the // alignment is larger than 16. This is not yet supported. if (Alignment > Align(16)) report_fatal_error( "Alignment of scalable vectors > 16 bytes is not yet supported"); Offset = alignTo(Offset + MFI.getObjectSize(FI), Alignment); if (AssignOffsets) Assign(FI, -Offset); } return Offset; } int64_t AArch64FrameLowering::estimateSVEStackObjectOffsets( MachineFrameInfo &MFI) const { int MinCSFrameIndex, MaxCSFrameIndex; return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, false); } int64_t AArch64FrameLowering::assignSVEStackObjectOffsets( MachineFrameInfo &MFI, int &MinCSFrameIndex, int &MaxCSFrameIndex) const { return determineSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex, true); } void AArch64FrameLowering::processFunctionBeforeFrameFinalized( MachineFunction &MF, RegScavenger *RS) const { MachineFrameInfo &MFI = MF.getFrameInfo(); assert(getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown && "Upwards growing stack unsupported"); int MinCSFrameIndex, MaxCSFrameIndex; int64_t SVEStackSize = assignSVEStackObjectOffsets(MFI, MinCSFrameIndex, MaxCSFrameIndex); AArch64FunctionInfo *AFI = MF.getInfo(); AFI->setStackSizeSVE(alignTo(SVEStackSize, 16U)); AFI->setMinMaxSVECSFrameIndex(MinCSFrameIndex, MaxCSFrameIndex); // If this function isn't doing Win64-style C++ EH, we don't need to do // anything. if (!MF.hasEHFunclets()) return; const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); WinEHFuncInfo &EHInfo = *MF.getWinEHFuncInfo(); MachineBasicBlock &MBB = MF.front(); auto MBBI = MBB.begin(); while (MBBI != MBB.end() && MBBI->getFlag(MachineInstr::FrameSetup)) ++MBBI; // Create an UnwindHelp object. // The UnwindHelp object is allocated at the start of the fixed object area int64_t FixedObject = getFixedObjectSize(MF, AFI, /*IsWin64*/ true, /*IsFunclet*/ false); int UnwindHelpFI = MFI.CreateFixedObject(/*Size*/ 8, /*SPOffset*/ -FixedObject, /*IsImmutable=*/false); EHInfo.UnwindHelpFrameIdx = UnwindHelpFI; // We need to store -2 into the UnwindHelp object at the start of the // function. DebugLoc DL; RS->enterBasicBlockEnd(MBB); RS->backward(MBBI); Register DstReg = RS->FindUnusedReg(&AArch64::GPR64commonRegClass); assert(DstReg && "There must be a free register after frame setup"); BuildMI(MBB, MBBI, DL, TII.get(AArch64::MOVi64imm), DstReg).addImm(-2); BuildMI(MBB, MBBI, DL, TII.get(AArch64::STURXi)) .addReg(DstReg, getKillRegState(true)) .addFrameIndex(UnwindHelpFI) .addImm(0); } namespace { struct TagStoreInstr { MachineInstr *MI; int64_t Offset, Size; explicit TagStoreInstr(MachineInstr *MI, int64_t Offset, int64_t Size) : MI(MI), Offset(Offset), Size(Size) {} }; class TagStoreEdit { MachineFunction *MF; MachineBasicBlock *MBB; MachineRegisterInfo *MRI; // Tag store instructions that are being replaced. SmallVector TagStores; // Combined memref arguments of the above instructions. SmallVector CombinedMemRefs; // Replace allocation tags in [FrameReg + FrameRegOffset, FrameReg + // FrameRegOffset + Size) with the address tag of SP. Register FrameReg; StackOffset FrameRegOffset; int64_t Size; // If not std::nullopt, move FrameReg to (FrameReg + FrameRegUpdate) at the // end. std::optional FrameRegUpdate; // MIFlags for any FrameReg updating instructions. unsigned FrameRegUpdateFlags; // Use zeroing instruction variants. bool ZeroData; DebugLoc DL; void emitUnrolled(MachineBasicBlock::iterator InsertI); void emitLoop(MachineBasicBlock::iterator InsertI); public: TagStoreEdit(MachineBasicBlock *MBB, bool ZeroData) : MBB(MBB), ZeroData(ZeroData) { MF = MBB->getParent(); MRI = &MF->getRegInfo(); } // Add an instruction to be replaced. Instructions must be added in the // ascending order of Offset, and have to be adjacent. void addInstruction(TagStoreInstr I) { assert((TagStores.empty() || TagStores.back().Offset + TagStores.back().Size == I.Offset) && "Non-adjacent tag store instructions."); TagStores.push_back(I); } void clear() { TagStores.clear(); } // Emit equivalent code at the given location, and erase the current set of // instructions. May skip if the replacement is not profitable. May invalidate // the input iterator and replace it with a valid one. void emitCode(MachineBasicBlock::iterator &InsertI, const AArch64FrameLowering *TFI, bool TryMergeSPUpdate); }; void TagStoreEdit::emitUnrolled(MachineBasicBlock::iterator InsertI) { const AArch64InstrInfo *TII = MF->getSubtarget().getInstrInfo(); const int64_t kMinOffset = -256 * 16; const int64_t kMaxOffset = 255 * 16; Register BaseReg = FrameReg; int64_t BaseRegOffsetBytes = FrameRegOffset.getFixed(); if (BaseRegOffsetBytes < kMinOffset || BaseRegOffsetBytes + (Size - Size % 32) > kMaxOffset || // BaseReg can be FP, which is not necessarily aligned to 16-bytes. In // that case, BaseRegOffsetBytes will not be aligned to 16 bytes, which // is required for the offset of ST2G. BaseRegOffsetBytes % 16 != 0) { Register ScratchReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); emitFrameOffset(*MBB, InsertI, DL, ScratchReg, BaseReg, StackOffset::getFixed(BaseRegOffsetBytes), TII); BaseReg = ScratchReg; BaseRegOffsetBytes = 0; } MachineInstr *LastI = nullptr; while (Size) { int64_t InstrSize = (Size > 16) ? 32 : 16; unsigned Opcode = InstrSize == 16 ? (ZeroData ? AArch64::STZGi : AArch64::STGi) : (ZeroData ? AArch64::STZ2Gi : AArch64::ST2Gi); assert(BaseRegOffsetBytes % 16 == 0); MachineInstr *I = BuildMI(*MBB, InsertI, DL, TII->get(Opcode)) .addReg(AArch64::SP) .addReg(BaseReg) .addImm(BaseRegOffsetBytes / 16) .setMemRefs(CombinedMemRefs); // A store to [BaseReg, #0] should go last for an opportunity to fold the // final SP adjustment in the epilogue. if (BaseRegOffsetBytes == 0) LastI = I; BaseRegOffsetBytes += InstrSize; Size -= InstrSize; } if (LastI) MBB->splice(InsertI, MBB, LastI); } void TagStoreEdit::emitLoop(MachineBasicBlock::iterator InsertI) { const AArch64InstrInfo *TII = MF->getSubtarget().getInstrInfo(); Register BaseReg = FrameRegUpdate ? FrameReg : MRI->createVirtualRegister(&AArch64::GPR64RegClass); Register SizeReg = MRI->createVirtualRegister(&AArch64::GPR64RegClass); emitFrameOffset(*MBB, InsertI, DL, BaseReg, FrameReg, FrameRegOffset, TII); int64_t LoopSize = Size; // If the loop size is not a multiple of 32, split off one 16-byte store at // the end to fold BaseReg update into. if (FrameRegUpdate && *FrameRegUpdate) LoopSize -= LoopSize % 32; MachineInstr *LoopI = BuildMI(*MBB, InsertI, DL, TII->get(ZeroData ? AArch64::STZGloop_wback : AArch64::STGloop_wback)) .addDef(SizeReg) .addDef(BaseReg) .addImm(LoopSize) .addReg(BaseReg) .setMemRefs(CombinedMemRefs); if (FrameRegUpdate) LoopI->setFlags(FrameRegUpdateFlags); int64_t ExtraBaseRegUpdate = FrameRegUpdate ? (*FrameRegUpdate - FrameRegOffset.getFixed() - Size) : 0; if (LoopSize < Size) { assert(FrameRegUpdate); assert(Size - LoopSize == 16); // Tag 16 more bytes at BaseReg and update BaseReg. BuildMI(*MBB, InsertI, DL, TII->get(ZeroData ? AArch64::STZGPostIndex : AArch64::STGPostIndex)) .addDef(BaseReg) .addReg(BaseReg) .addReg(BaseReg) .addImm(1 + ExtraBaseRegUpdate / 16) .setMemRefs(CombinedMemRefs) .setMIFlags(FrameRegUpdateFlags); } else if (ExtraBaseRegUpdate) { // Update BaseReg. BuildMI( *MBB, InsertI, DL, TII->get(ExtraBaseRegUpdate > 0 ? AArch64::ADDXri : AArch64::SUBXri)) .addDef(BaseReg) .addReg(BaseReg) .addImm(std::abs(ExtraBaseRegUpdate)) .addImm(0) .setMIFlags(FrameRegUpdateFlags); } } // Check if *II is a register update that can be merged into STGloop that ends // at (Reg + Size). RemainingOffset is the required adjustment to Reg after the // end of the loop. bool canMergeRegUpdate(MachineBasicBlock::iterator II, unsigned Reg, int64_t Size, int64_t *TotalOffset) { MachineInstr &MI = *II; if ((MI.getOpcode() == AArch64::ADDXri || MI.getOpcode() == AArch64::SUBXri) && MI.getOperand(0).getReg() == Reg && MI.getOperand(1).getReg() == Reg) { unsigned Shift = AArch64_AM::getShiftValue(MI.getOperand(3).getImm()); int64_t Offset = MI.getOperand(2).getImm() << Shift; if (MI.getOpcode() == AArch64::SUBXri) Offset = -Offset; int64_t AbsPostOffset = std::abs(Offset - Size); const int64_t kMaxOffset = 0xFFF; // Max encoding for unshifted ADDXri / SUBXri if (AbsPostOffset <= kMaxOffset && AbsPostOffset % 16 == 0) { *TotalOffset = Offset; return true; } } return false; } void mergeMemRefs(const SmallVectorImpl &TSE, SmallVectorImpl &MemRefs) { MemRefs.clear(); for (auto &TS : TSE) { MachineInstr *MI = TS.MI; // An instruction without memory operands may access anything. Be // conservative and return an empty list. if (MI->memoperands_empty()) { MemRefs.clear(); return; } MemRefs.append(MI->memoperands_begin(), MI->memoperands_end()); } } void TagStoreEdit::emitCode(MachineBasicBlock::iterator &InsertI, const AArch64FrameLowering *TFI, bool TryMergeSPUpdate) { if (TagStores.empty()) return; TagStoreInstr &FirstTagStore = TagStores[0]; TagStoreInstr &LastTagStore = TagStores[TagStores.size() - 1]; Size = LastTagStore.Offset - FirstTagStore.Offset + LastTagStore.Size; DL = TagStores[0].MI->getDebugLoc(); Register Reg; FrameRegOffset = TFI->resolveFrameOffsetReference( *MF, FirstTagStore.Offset, false /*isFixed*/, false /*isSVE*/, Reg, /*PreferFP=*/false, /*ForSimm=*/true); FrameReg = Reg; FrameRegUpdate = std::nullopt; mergeMemRefs(TagStores, CombinedMemRefs); LLVM_DEBUG({ dbgs() << "Replacing adjacent STG instructions:\n"; for (const auto &Instr : TagStores) { dbgs() << " " << *Instr.MI; } }); // Size threshold where a loop becomes shorter than a linear sequence of // tagging instructions. const int kSetTagLoopThreshold = 176; if (Size < kSetTagLoopThreshold) { if (TagStores.size() < 2) return; emitUnrolled(InsertI); } else { MachineInstr *UpdateInstr = nullptr; int64_t TotalOffset = 0; if (TryMergeSPUpdate) { // See if we can merge base register update into the STGloop. // This is done in AArch64LoadStoreOptimizer for "normal" stores, // but STGloop is way too unusual for that, and also it only // realistically happens in function epilogue. Also, STGloop is expanded // before that pass. if (InsertI != MBB->end() && canMergeRegUpdate(InsertI, FrameReg, FrameRegOffset.getFixed() + Size, &TotalOffset)) { UpdateInstr = &*InsertI++; LLVM_DEBUG(dbgs() << "Folding SP update into loop:\n " << *UpdateInstr); } } if (!UpdateInstr && TagStores.size() < 2) return; if (UpdateInstr) { FrameRegUpdate = TotalOffset; FrameRegUpdateFlags = UpdateInstr->getFlags(); } emitLoop(InsertI); if (UpdateInstr) UpdateInstr->eraseFromParent(); } for (auto &TS : TagStores) TS.MI->eraseFromParent(); } bool isMergeableStackTaggingInstruction(MachineInstr &MI, int64_t &Offset, int64_t &Size, bool &ZeroData) { MachineFunction &MF = *MI.getParent()->getParent(); const MachineFrameInfo &MFI = MF.getFrameInfo(); unsigned Opcode = MI.getOpcode(); ZeroData = (Opcode == AArch64::STZGloop || Opcode == AArch64::STZGi || Opcode == AArch64::STZ2Gi); if (Opcode == AArch64::STGloop || Opcode == AArch64::STZGloop) { if (!MI.getOperand(0).isDead() || !MI.getOperand(1).isDead()) return false; if (!MI.getOperand(2).isImm() || !MI.getOperand(3).isFI()) return false; Offset = MFI.getObjectOffset(MI.getOperand(3).getIndex()); Size = MI.getOperand(2).getImm(); return true; } if (Opcode == AArch64::STGi || Opcode == AArch64::STZGi) Size = 16; else if (Opcode == AArch64::ST2Gi || Opcode == AArch64::STZ2Gi) Size = 32; else return false; if (MI.getOperand(0).getReg() != AArch64::SP || !MI.getOperand(1).isFI()) return false; Offset = MFI.getObjectOffset(MI.getOperand(1).getIndex()) + 16 * MI.getOperand(2).getImm(); return true; } // Detect a run of memory tagging instructions for adjacent stack frame slots, // and replace them with a shorter instruction sequence: // * replace STG + STG with ST2G // * replace STGloop + STGloop with STGloop // This code needs to run when stack slot offsets are already known, but before // FrameIndex operands in STG instructions are eliminated. MachineBasicBlock::iterator tryMergeAdjacentSTG(MachineBasicBlock::iterator II, const AArch64FrameLowering *TFI, RegScavenger *RS) { bool FirstZeroData; int64_t Size, Offset; MachineInstr &MI = *II; MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator NextI = ++II; if (&MI == &MBB->instr_back()) return II; if (!isMergeableStackTaggingInstruction(MI, Offset, Size, FirstZeroData)) return II; SmallVector Instrs; Instrs.emplace_back(&MI, Offset, Size); constexpr int kScanLimit = 10; int Count = 0; for (MachineBasicBlock::iterator E = MBB->end(); NextI != E && Count < kScanLimit; ++NextI) { MachineInstr &MI = *NextI; bool ZeroData; int64_t Size, Offset; // Collect instructions that update memory tags with a FrameIndex operand // and (when applicable) constant size, and whose output registers are dead // (the latter is almost always the case in practice). Since these // instructions effectively have no inputs or outputs, we are free to skip // any non-aliasing instructions in between without tracking used registers. if (isMergeableStackTaggingInstruction(MI, Offset, Size, ZeroData)) { if (ZeroData != FirstZeroData) break; Instrs.emplace_back(&MI, Offset, Size); continue; } // Only count non-transient, non-tagging instructions toward the scan // limit. if (!MI.isTransient()) ++Count; // Just in case, stop before the epilogue code starts. if (MI.getFlag(MachineInstr::FrameSetup) || MI.getFlag(MachineInstr::FrameDestroy)) break; // Reject anything that may alias the collected instructions. if (MI.mayLoadOrStore() || MI.hasUnmodeledSideEffects()) break; } // New code will be inserted after the last tagging instruction we've found. MachineBasicBlock::iterator InsertI = Instrs.back().MI; // All the gathered stack tag instructions are merged and placed after // last tag store in the list. The check should be made if the nzcv // flag is live at the point where we are trying to insert. Otherwise // the nzcv flag might get clobbered if any stg loops are present. // FIXME : This approach of bailing out from merge is conservative in // some ways like even if stg loops are not present after merge the // insert list, this liveness check is done (which is not needed). LivePhysRegs LiveRegs(*(MBB->getParent()->getSubtarget().getRegisterInfo())); LiveRegs.addLiveOuts(*MBB); for (auto I = MBB->rbegin();; ++I) { MachineInstr &MI = *I; if (MI == InsertI) break; LiveRegs.stepBackward(*I); } InsertI++; if (LiveRegs.contains(AArch64::NZCV)) return InsertI; llvm::stable_sort(Instrs, [](const TagStoreInstr &Left, const TagStoreInstr &Right) { return Left.Offset < Right.Offset; }); // Make sure that we don't have any overlapping stores. int64_t CurOffset = Instrs[0].Offset; for (auto &Instr : Instrs) { if (CurOffset > Instr.Offset) return NextI; CurOffset = Instr.Offset + Instr.Size; } // Find contiguous runs of tagged memory and emit shorter instruction // sequencies for them when possible. TagStoreEdit TSE(MBB, FirstZeroData); std::optional EndOffset; for (auto &Instr : Instrs) { if (EndOffset && *EndOffset != Instr.Offset) { // Found a gap. TSE.emitCode(InsertI, TFI, /*TryMergeSPUpdate = */ false); TSE.clear(); } TSE.addInstruction(Instr); EndOffset = Instr.Offset + Instr.Size; } const MachineFunction *MF = MBB->getParent(); // Multiple FP/SP updates in a loop cannot be described by CFI instructions. TSE.emitCode( InsertI, TFI, /*TryMergeSPUpdate = */ !MF->getInfo()->needsAsyncDwarfUnwindInfo(*MF)); return InsertI; } } // namespace MachineBasicBlock::iterator emitVGSaveRestore(MachineBasicBlock::iterator II, const AArch64FrameLowering *TFI) { MachineInstr &MI = *II; MachineBasicBlock *MBB = MI.getParent(); MachineFunction *MF = MBB->getParent(); if (MI.getOpcode() != AArch64::VGSavePseudo && MI.getOpcode() != AArch64::VGRestorePseudo) return II; SMEAttrs FuncAttrs(MF->getFunction()); bool LocallyStreaming = FuncAttrs.hasStreamingBody() && !FuncAttrs.hasStreamingInterface(); const AArch64FunctionInfo *AFI = MF->getInfo(); const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); const AArch64InstrInfo *TII = MF->getSubtarget().getInstrInfo(); int64_t VGFrameIdx = LocallyStreaming ? AFI->getStreamingVGIdx() : AFI->getVGIdx(); assert(VGFrameIdx != std::numeric_limits::max() && "Expected FrameIdx for VG"); unsigned CFIIndex; if (MI.getOpcode() == AArch64::VGSavePseudo) { const MachineFrameInfo &MFI = MF->getFrameInfo(); int64_t Offset = MFI.getObjectOffset(VGFrameIdx) - TFI->getOffsetOfLocalArea(); CFIIndex = MF->addFrameInst(MCCFIInstruction::createOffset( nullptr, TRI->getDwarfRegNum(AArch64::VG, true), Offset)); } else CFIIndex = MF->addFrameInst(MCCFIInstruction::createRestore( nullptr, TRI->getDwarfRegNum(AArch64::VG, true))); MachineInstr *UnwindInst = BuildMI(*MBB, II, II->getDebugLoc(), TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex); MI.eraseFromParent(); return UnwindInst->getIterator(); } void AArch64FrameLowering::processFunctionBeforeFrameIndicesReplaced( MachineFunction &MF, RegScavenger *RS = nullptr) const { for (auto &BB : MF) for (MachineBasicBlock::iterator II = BB.begin(); II != BB.end();) { if (requiresSaveVG(MF)) II = emitVGSaveRestore(II, this); if (StackTaggingMergeSetTag) II = tryMergeAdjacentSTG(II, this, RS); } } /// For Win64 AArch64 EH, the offset to the Unwind object is from the SP /// before the update. This is easily retrieved as it is exactly the offset /// that is set in processFunctionBeforeFrameFinalized. StackOffset AArch64FrameLowering::getFrameIndexReferencePreferSP( const MachineFunction &MF, int FI, Register &FrameReg, bool IgnoreSPUpdates) const { const MachineFrameInfo &MFI = MF.getFrameInfo(); if (IgnoreSPUpdates) { LLVM_DEBUG(dbgs() << "Offset from the SP for " << FI << " is " << MFI.getObjectOffset(FI) << "\n"); FrameReg = AArch64::SP; return StackOffset::getFixed(MFI.getObjectOffset(FI)); } // Go to common code if we cannot provide sp + offset. if (MFI.hasVarSizedObjects() || MF.getInfo()->getStackSizeSVE() || MF.getSubtarget().getRegisterInfo()->hasStackRealignment(MF)) return getFrameIndexReference(MF, FI, FrameReg); FrameReg = AArch64::SP; return getStackOffset(MF, MFI.getObjectOffset(FI)); } /// The parent frame offset (aka dispFrame) is only used on X86_64 to retrieve /// the parent's frame pointer unsigned AArch64FrameLowering::getWinEHParentFrameOffset( const MachineFunction &MF) const { return 0; } /// Funclets only need to account for space for the callee saved registers, /// as the locals are accounted for in the parent's stack frame. unsigned AArch64FrameLowering::getWinEHFuncletFrameSize( const MachineFunction &MF) const { // This is the size of the pushed CSRs. unsigned CSSize = MF.getInfo()->getCalleeSavedStackSize(); // This is the amount of stack a funclet needs to allocate. return alignTo(CSSize + MF.getFrameInfo().getMaxCallFrameSize(), getStackAlign()); } namespace { struct FrameObject { bool IsValid = false; // Index of the object in MFI. int ObjectIndex = 0; // Group ID this object belongs to. int GroupIndex = -1; // This object should be placed first (closest to SP). bool ObjectFirst = false; // This object's group (which always contains the object with // ObjectFirst==true) should be placed first. bool GroupFirst = false; // Used to distinguish between FP and GPR accesses. The values are decided so // that they sort FPR < Hazard < GPR and they can be or'd together. unsigned Accesses = 0; enum { AccessFPR = 1, AccessHazard = 2, AccessGPR = 4 }; }; class GroupBuilder { SmallVector CurrentMembers; int NextGroupIndex = 0; std::vector &Objects; public: GroupBuilder(std::vector &Objects) : Objects(Objects) {} void AddMember(int Index) { CurrentMembers.push_back(Index); } void EndCurrentGroup() { if (CurrentMembers.size() > 1) { // Create a new group with the current member list. This might remove them // from their pre-existing groups. That's OK, dealing with overlapping // groups is too hard and unlikely to make a difference. LLVM_DEBUG(dbgs() << "group:"); for (int Index : CurrentMembers) { Objects[Index].GroupIndex = NextGroupIndex; LLVM_DEBUG(dbgs() << " " << Index); } LLVM_DEBUG(dbgs() << "\n"); NextGroupIndex++; } CurrentMembers.clear(); } }; bool FrameObjectCompare(const FrameObject &A, const FrameObject &B) { // Objects at a lower index are closer to FP; objects at a higher index are // closer to SP. // // For consistency in our comparison, all invalid objects are placed // at the end. This also allows us to stop walking when we hit the // first invalid item after it's all sorted. // // If we want to include a stack hazard region, order FPR accesses < the // hazard object < GPRs accesses in order to create a separation between the // two. For the Accesses field 1 = FPR, 2 = Hazard Object, 4 = GPR. // // Otherwise the "first" object goes first (closest to SP), followed by the // members of the "first" group. // // The rest are sorted by the group index to keep the groups together. // Higher numbered groups are more likely to be around longer (i.e. untagged // in the function epilogue and not at some earlier point). Place them closer // to SP. // // If all else equal, sort by the object index to keep the objects in the // original order. return std::make_tuple(!A.IsValid, A.Accesses, A.ObjectFirst, A.GroupFirst, A.GroupIndex, A.ObjectIndex) < std::make_tuple(!B.IsValid, B.Accesses, B.ObjectFirst, B.GroupFirst, B.GroupIndex, B.ObjectIndex); } } // namespace void AArch64FrameLowering::orderFrameObjects( const MachineFunction &MF, SmallVectorImpl &ObjectsToAllocate) const { if (!OrderFrameObjects || ObjectsToAllocate.empty()) return; const AArch64FunctionInfo &AFI = *MF.getInfo(); const MachineFrameInfo &MFI = MF.getFrameInfo(); std::vector FrameObjects(MFI.getObjectIndexEnd()); for (auto &Obj : ObjectsToAllocate) { FrameObjects[Obj].IsValid = true; FrameObjects[Obj].ObjectIndex = Obj; } // Identify FPR vs GPR slots for hazards, and stack slots that are tagged at // the same time. GroupBuilder GB(FrameObjects); for (auto &MBB : MF) { for (auto &MI : MBB) { if (MI.isDebugInstr()) continue; if (AFI.hasStackHazardSlotIndex()) { std::optional FI = getLdStFrameID(MI, MFI); if (FI && *FI >= 0 && *FI < (int)FrameObjects.size()) { if (MFI.getStackID(*FI) == TargetStackID::ScalableVector || AArch64InstrInfo::isFpOrNEON(MI)) FrameObjects[*FI].Accesses |= FrameObject::AccessFPR; else FrameObjects[*FI].Accesses |= FrameObject::AccessGPR; } } int OpIndex; switch (MI.getOpcode()) { case AArch64::STGloop: case AArch64::STZGloop: OpIndex = 3; break; case AArch64::STGi: case AArch64::STZGi: case AArch64::ST2Gi: case AArch64::STZ2Gi: OpIndex = 1; break; default: OpIndex = -1; } int TaggedFI = -1; if (OpIndex >= 0) { const MachineOperand &MO = MI.getOperand(OpIndex); if (MO.isFI()) { int FI = MO.getIndex(); if (FI >= 0 && FI < MFI.getObjectIndexEnd() && FrameObjects[FI].IsValid) TaggedFI = FI; } } // If this is a stack tagging instruction for a slot that is not part of a // group yet, either start a new group or add it to the current one. if (TaggedFI >= 0) GB.AddMember(TaggedFI); else GB.EndCurrentGroup(); } // Groups should never span multiple basic blocks. GB.EndCurrentGroup(); } if (AFI.hasStackHazardSlotIndex()) { FrameObjects[AFI.getStackHazardSlotIndex()].Accesses = FrameObject::AccessHazard; // If a stack object is unknown or both GPR and FPR, sort it into GPR. for (auto &Obj : FrameObjects) if (!Obj.Accesses || Obj.Accesses == (FrameObject::AccessGPR | FrameObject::AccessFPR)) Obj.Accesses = FrameObject::AccessGPR; } // If the function's tagged base pointer is pinned to a stack slot, we want to // put that slot first when possible. This will likely place it at SP + 0, // and save one instruction when generating the base pointer because IRG does // not allow an immediate offset. std::optional TBPI = AFI.getTaggedBasePointerIndex(); if (TBPI) { FrameObjects[*TBPI].ObjectFirst = true; FrameObjects[*TBPI].GroupFirst = true; int FirstGroupIndex = FrameObjects[*TBPI].GroupIndex; if (FirstGroupIndex >= 0) for (FrameObject &Object : FrameObjects) if (Object.GroupIndex == FirstGroupIndex) Object.GroupFirst = true; } llvm::stable_sort(FrameObjects, FrameObjectCompare); int i = 0; for (auto &Obj : FrameObjects) { // All invalid items are sorted at the end, so it's safe to stop. if (!Obj.IsValid) break; ObjectsToAllocate[i++] = Obj.ObjectIndex; } LLVM_DEBUG({ dbgs() << "Final frame order:\n"; for (auto &Obj : FrameObjects) { if (!Obj.IsValid) break; dbgs() << " " << Obj.ObjectIndex << ": group " << Obj.GroupIndex; if (Obj.ObjectFirst) dbgs() << ", first"; if (Obj.GroupFirst) dbgs() << ", group-first"; dbgs() << "\n"; } }); } /// Emit a loop to decrement SP until it is equal to TargetReg, with probes at /// least every ProbeSize bytes. Returns an iterator of the first instruction /// after the loop. The difference between SP and TargetReg must be an exact /// multiple of ProbeSize. MachineBasicBlock::iterator AArch64FrameLowering::inlineStackProbeLoopExactMultiple( MachineBasicBlock::iterator MBBI, int64_t ProbeSize, Register TargetReg) const { MachineBasicBlock &MBB = *MBBI->getParent(); MachineFunction &MF = *MBB.getParent(); const AArch64InstrInfo *TII = MF.getSubtarget().getInstrInfo(); DebugLoc DL = MBB.findDebugLoc(MBBI); MachineFunction::iterator MBBInsertPoint = std::next(MBB.getIterator()); MachineBasicBlock *LoopMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MF.insert(MBBInsertPoint, LoopMBB); MachineBasicBlock *ExitMBB = MF.CreateMachineBasicBlock(MBB.getBasicBlock()); MF.insert(MBBInsertPoint, ExitMBB); // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not encodable // in SUB). emitFrameOffset(*LoopMBB, LoopMBB->end(), DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-ProbeSize), TII, MachineInstr::FrameSetup); // STR XZR, [SP] BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::STRXui)) .addReg(AArch64::XZR) .addReg(AArch64::SP) .addImm(0) .setMIFlags(MachineInstr::FrameSetup); // CMP SP, TargetReg BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::SUBSXrx64), AArch64::XZR) .addReg(AArch64::SP) .addReg(TargetReg) .addImm(AArch64_AM::getArithExtendImm(AArch64_AM::UXTX, 0)) .setMIFlags(MachineInstr::FrameSetup); // B.CC Loop BuildMI(*LoopMBB, LoopMBB->end(), DL, TII->get(AArch64::Bcc)) .addImm(AArch64CC::NE) .addMBB(LoopMBB) .setMIFlags(MachineInstr::FrameSetup); LoopMBB->addSuccessor(ExitMBB); LoopMBB->addSuccessor(LoopMBB); // Synthesize the exit MBB. ExitMBB->splice(ExitMBB->end(), &MBB, MBBI, MBB.end()); ExitMBB->transferSuccessorsAndUpdatePHIs(&MBB); MBB.addSuccessor(LoopMBB); // Update liveins. fullyRecomputeLiveIns({ExitMBB, LoopMBB}); return ExitMBB->begin(); } void AArch64FrameLowering::inlineStackProbeFixed( MachineBasicBlock::iterator MBBI, Register ScratchReg, int64_t FrameSize, StackOffset CFAOffset) const { MachineBasicBlock *MBB = MBBI->getParent(); MachineFunction &MF = *MBB->getParent(); const AArch64InstrInfo *TII = MF.getSubtarget().getInstrInfo(); AArch64FunctionInfo *AFI = MF.getInfo(); bool EmitAsyncCFI = AFI->needsAsyncDwarfUnwindInfo(MF); bool HasFP = hasFP(MF); DebugLoc DL; int64_t ProbeSize = MF.getInfo()->getStackProbeSize(); int64_t NumBlocks = FrameSize / ProbeSize; int64_t ResidualSize = FrameSize % ProbeSize; LLVM_DEBUG(dbgs() << "Stack probing: total " << FrameSize << " bytes, " << NumBlocks << " blocks of " << ProbeSize << " bytes, plus " << ResidualSize << " bytes\n"); // Decrement SP by NumBlock * ProbeSize bytes, with either unrolled or // ordinary loop. if (NumBlocks <= AArch64::StackProbeMaxLoopUnroll) { for (int i = 0; i < NumBlocks; ++i) { // SUB SP, SP, #ProbeSize (or equivalent if ProbeSize is not // encodable in a SUB). emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-ProbeSize), TII, MachineInstr::FrameSetup, false, false, nullptr, EmitAsyncCFI && !HasFP, CFAOffset); CFAOffset += StackOffset::getFixed(ProbeSize); // STR XZR, [SP] BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) .addReg(AArch64::XZR) .addReg(AArch64::SP) .addImm(0) .setMIFlags(MachineInstr::FrameSetup); } } else if (NumBlocks != 0) { // SUB ScratchReg, SP, #FrameSize (or equivalent if FrameSize is not // encodable in ADD). ScrathReg may temporarily become the CFA register. emitFrameOffset(*MBB, MBBI, DL, ScratchReg, AArch64::SP, StackOffset::getFixed(-ProbeSize * NumBlocks), TII, MachineInstr::FrameSetup, false, false, nullptr, EmitAsyncCFI && !HasFP, CFAOffset); CFAOffset += StackOffset::getFixed(ProbeSize * NumBlocks); MBBI = inlineStackProbeLoopExactMultiple(MBBI, ProbeSize, ScratchReg); MBB = MBBI->getParent(); if (EmitAsyncCFI && !HasFP) { // Set the CFA register back to SP. const AArch64RegisterInfo &RegInfo = *MF.getSubtarget().getRegisterInfo(); unsigned Reg = RegInfo.getDwarfRegNum(AArch64::SP, true); unsigned CFIIndex = MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg)); BuildMI(*MBB, MBBI, DL, TII->get(TargetOpcode::CFI_INSTRUCTION)) .addCFIIndex(CFIIndex) .setMIFlags(MachineInstr::FrameSetup); } } if (ResidualSize != 0) { // SUB SP, SP, #ResidualSize (or equivalent if ResidualSize is not encodable // in SUB). emitFrameOffset(*MBB, MBBI, DL, AArch64::SP, AArch64::SP, StackOffset::getFixed(-ResidualSize), TII, MachineInstr::FrameSetup, false, false, nullptr, EmitAsyncCFI && !HasFP, CFAOffset); if (ResidualSize > AArch64::StackProbeMaxUnprobedStack) { // STR XZR, [SP] BuildMI(*MBB, MBBI, DL, TII->get(AArch64::STRXui)) .addReg(AArch64::XZR) .addReg(AArch64::SP) .addImm(0) .setMIFlags(MachineInstr::FrameSetup); } } } void AArch64FrameLowering::inlineStackProbe(MachineFunction &MF, MachineBasicBlock &MBB) const { // Get the instructions that need to be replaced. We emit at most two of // these. Remember them in order to avoid complications coming from the need // to traverse the block while potentially creating more blocks. SmallVector ToReplace; for (MachineInstr &MI : MBB) if (MI.getOpcode() == AArch64::PROBED_STACKALLOC || MI.getOpcode() == AArch64::PROBED_STACKALLOC_VAR) ToReplace.push_back(&MI); for (MachineInstr *MI : ToReplace) { if (MI->getOpcode() == AArch64::PROBED_STACKALLOC) { Register ScratchReg = MI->getOperand(0).getReg(); int64_t FrameSize = MI->getOperand(1).getImm(); StackOffset CFAOffset = StackOffset::get(MI->getOperand(2).getImm(), MI->getOperand(3).getImm()); inlineStackProbeFixed(MI->getIterator(), ScratchReg, FrameSize, CFAOffset); } else { assert(MI->getOpcode() == AArch64::PROBED_STACKALLOC_VAR && "Stack probe pseudo-instruction expected"); const AArch64InstrInfo *TII = MI->getMF()->getSubtarget().getInstrInfo(); Register TargetReg = MI->getOperand(0).getReg(); (void)TII->probedStackAlloc(MI->getIterator(), TargetReg, true); } MI->eraseFromParent(); } } struct StackAccess { enum AccessType { NotAccessed = 0, // Stack object not accessed by load/store instructions. GPR = 1 << 0, // A general purpose register. PPR = 1 << 1, // A predicate register. FPR = 1 << 2, // A floating point/Neon/SVE register. }; int Idx; StackOffset Offset; int64_t Size; unsigned AccessTypes; StackAccess() : Idx(0), Offset(), Size(0), AccessTypes(NotAccessed) {} bool operator<(const StackAccess &Rhs) const { return std::make_tuple(start(), Idx) < std::make_tuple(Rhs.start(), Rhs.Idx); } bool isCPU() const { // Predicate register load and store instructions execute on the CPU. return AccessTypes & (AccessType::GPR | AccessType::PPR); } bool isSME() const { return AccessTypes & AccessType::FPR; } bool isMixed() const { return isCPU() && isSME(); } int64_t start() const { return Offset.getFixed() + Offset.getScalable(); } int64_t end() const { return start() + Size; } std::string getTypeString() const { switch (AccessTypes) { case AccessType::FPR: return "FPR"; case AccessType::PPR: return "PPR"; case AccessType::GPR: return "GPR"; case AccessType::NotAccessed: return "NA"; default: return "Mixed"; } } void print(raw_ostream &OS) const { OS << getTypeString() << " stack object at [SP" << (Offset.getFixed() < 0 ? "" : "+") << Offset.getFixed(); if (Offset.getScalable()) OS << (Offset.getScalable() < 0 ? "" : "+") << Offset.getScalable() << " * vscale"; OS << "]"; } }; static inline raw_ostream &operator<<(raw_ostream &OS, const StackAccess &SA) { SA.print(OS); return OS; } void AArch64FrameLowering::emitRemarks( const MachineFunction &MF, MachineOptimizationRemarkEmitter *ORE) const { SMEAttrs Attrs(MF.getFunction()); if (Attrs.hasNonStreamingInterfaceAndBody()) return; const uint64_t HazardSize = (StackHazardSize) ? StackHazardSize : StackHazardRemarkSize; if (HazardSize == 0) return; const MachineFrameInfo &MFI = MF.getFrameInfo(); // Bail if function has no stack objects. if (!MFI.hasStackObjects()) return; std::vector StackAccesses(MFI.getNumObjects()); size_t NumFPLdSt = 0; size_t NumNonFPLdSt = 0; // Collect stack accesses via Load/Store instructions. for (const MachineBasicBlock &MBB : MF) { for (const MachineInstr &MI : MBB) { if (!MI.mayLoadOrStore() || MI.getNumMemOperands() < 1) continue; for (MachineMemOperand *MMO : MI.memoperands()) { std::optional FI = getMMOFrameID(MMO, MFI); if (FI && !MFI.isDeadObjectIndex(*FI)) { int FrameIdx = *FI; size_t ArrIdx = FrameIdx + MFI.getNumFixedObjects(); if (StackAccesses[ArrIdx].AccessTypes == StackAccess::NotAccessed) { StackAccesses[ArrIdx].Idx = FrameIdx; StackAccesses[ArrIdx].Offset = getFrameIndexReferenceFromSP(MF, FrameIdx); StackAccesses[ArrIdx].Size = MFI.getObjectSize(FrameIdx); } unsigned RegTy = StackAccess::AccessType::GPR; if (MFI.getStackID(FrameIdx) == TargetStackID::ScalableVector) { if (AArch64::PPRRegClass.contains(MI.getOperand(0).getReg())) RegTy = StackAccess::PPR; else RegTy = StackAccess::FPR; } else if (AArch64InstrInfo::isFpOrNEON(MI)) { RegTy = StackAccess::FPR; } StackAccesses[ArrIdx].AccessTypes |= RegTy; if (RegTy == StackAccess::FPR) ++NumFPLdSt; else ++NumNonFPLdSt; } } } } if (NumFPLdSt == 0 || NumNonFPLdSt == 0) return; llvm::sort(StackAccesses); StackAccesses.erase(llvm::remove_if(StackAccesses, [](const StackAccess &S) { return S.AccessTypes == StackAccess::NotAccessed; }), StackAccesses.end()); SmallVector MixedObjects; SmallVector> HazardPairs; if (StackAccesses.front().isMixed()) MixedObjects.push_back(&StackAccesses.front()); for (auto It = StackAccesses.begin(), End = std::prev(StackAccesses.end()); It != End; ++It) { const auto &First = *It; const auto &Second = *(It + 1); if (Second.isMixed()) MixedObjects.push_back(&Second); if ((First.isSME() && Second.isCPU()) || (First.isCPU() && Second.isSME())) { uint64_t Distance = static_cast(Second.start() - First.end()); if (Distance < HazardSize) HazardPairs.emplace_back(&First, &Second); } } auto EmitRemark = [&](llvm::StringRef Str) { ORE->emit([&]() { auto R = MachineOptimizationRemarkAnalysis( "sme", "StackHazard", MF.getFunction().getSubprogram(), &MF.front()); return R << formatv("stack hazard in '{0}': ", MF.getName()).str() << Str; }); }; for (const auto &P : HazardPairs) EmitRemark(formatv("{0} is too close to {1}", *P.first, *P.second).str()); for (const auto *Obj : MixedObjects) EmitRemark( formatv("{0} accessed by both GP and FP instructions", *Obj).str()); }