//===- CoverageMapping.cpp - Code coverage mapping support ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file contains support for clang's and llvm's instrumentation based // code coverage. // //===----------------------------------------------------------------------===// #include "llvm/ProfileData/Coverage/CoverageMapping.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/Object/BuildID.h" #include "llvm/ProfileData/Coverage/CoverageMappingReader.h" #include "llvm/ProfileData/InstrProfReader.h" #include "llvm/Support/Debug.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/VirtualFileSystem.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; using namespace coverage; #define DEBUG_TYPE "coverage-mapping" Counter CounterExpressionBuilder::get(const CounterExpression &E) { auto It = ExpressionIndices.find(E); if (It != ExpressionIndices.end()) return Counter::getExpression(It->second); unsigned I = Expressions.size(); Expressions.push_back(E); ExpressionIndices[E] = I; return Counter::getExpression(I); } void CounterExpressionBuilder::extractTerms(Counter C, int Factor, SmallVectorImpl &Terms) { switch (C.getKind()) { case Counter::Zero: break; case Counter::CounterValueReference: Terms.emplace_back(C.getCounterID(), Factor); break; case Counter::Expression: const auto &E = Expressions[C.getExpressionID()]; extractTerms(E.LHS, Factor, Terms); extractTerms( E.RHS, E.Kind == CounterExpression::Subtract ? -Factor : Factor, Terms); break; } } Counter CounterExpressionBuilder::simplify(Counter ExpressionTree) { // Gather constant terms. SmallVector Terms; extractTerms(ExpressionTree, +1, Terms); // If there are no terms, this is just a zero. The algorithm below assumes at // least one term. if (Terms.size() == 0) return Counter::getZero(); // Group the terms by counter ID. llvm::sort(Terms, [](const Term &LHS, const Term &RHS) { return LHS.CounterID < RHS.CounterID; }); // Combine terms by counter ID to eliminate counters that sum to zero. auto Prev = Terms.begin(); for (auto I = Prev + 1, E = Terms.end(); I != E; ++I) { if (I->CounterID == Prev->CounterID) { Prev->Factor += I->Factor; continue; } ++Prev; *Prev = *I; } Terms.erase(++Prev, Terms.end()); Counter C; // Create additions. We do this before subtractions to avoid constructs like // ((0 - X) + Y), as opposed to (Y - X). for (auto T : Terms) { if (T.Factor <= 0) continue; for (int I = 0; I < T.Factor; ++I) if (C.isZero()) C = Counter::getCounter(T.CounterID); else C = get(CounterExpression(CounterExpression::Add, C, Counter::getCounter(T.CounterID))); } // Create subtractions. for (auto T : Terms) { if (T.Factor >= 0) continue; for (int I = 0; I < -T.Factor; ++I) C = get(CounterExpression(CounterExpression::Subtract, C, Counter::getCounter(T.CounterID))); } return C; } Counter CounterExpressionBuilder::add(Counter LHS, Counter RHS, bool Simplify) { auto Cnt = get(CounterExpression(CounterExpression::Add, LHS, RHS)); return Simplify ? simplify(Cnt) : Cnt; } Counter CounterExpressionBuilder::subtract(Counter LHS, Counter RHS, bool Simplify) { auto Cnt = get(CounterExpression(CounterExpression::Subtract, LHS, RHS)); return Simplify ? simplify(Cnt) : Cnt; } void CounterMappingContext::dump(const Counter &C, raw_ostream &OS) const { switch (C.getKind()) { case Counter::Zero: OS << '0'; return; case Counter::CounterValueReference: OS << '#' << C.getCounterID(); break; case Counter::Expression: { if (C.getExpressionID() >= Expressions.size()) return; const auto &E = Expressions[C.getExpressionID()]; OS << '('; dump(E.LHS, OS); OS << (E.Kind == CounterExpression::Subtract ? " - " : " + "); dump(E.RHS, OS); OS << ')'; break; } } if (CounterValues.empty()) return; Expected Value = evaluate(C); if (auto E = Value.takeError()) { consumeError(std::move(E)); return; } OS << '[' << *Value << ']'; } Expected CounterMappingContext::evaluate(const Counter &C) const { struct StackElem { Counter ICounter; int64_t LHS = 0; enum { KNeverVisited = 0, KVisitedOnce = 1, KVisitedTwice = 2, } VisitCount = KNeverVisited; }; std::stack CounterStack; CounterStack.push({C}); int64_t LastPoppedValue; while (!CounterStack.empty()) { StackElem &Current = CounterStack.top(); switch (Current.ICounter.getKind()) { case Counter::Zero: LastPoppedValue = 0; CounterStack.pop(); break; case Counter::CounterValueReference: if (Current.ICounter.getCounterID() >= CounterValues.size()) return errorCodeToError(errc::argument_out_of_domain); LastPoppedValue = CounterValues[Current.ICounter.getCounterID()]; CounterStack.pop(); break; case Counter::Expression: { if (Current.ICounter.getExpressionID() >= Expressions.size()) return errorCodeToError(errc::argument_out_of_domain); const auto &E = Expressions[Current.ICounter.getExpressionID()]; if (Current.VisitCount == StackElem::KNeverVisited) { CounterStack.push(StackElem{E.LHS}); Current.VisitCount = StackElem::KVisitedOnce; } else if (Current.VisitCount == StackElem::KVisitedOnce) { Current.LHS = LastPoppedValue; CounterStack.push(StackElem{E.RHS}); Current.VisitCount = StackElem::KVisitedTwice; } else { int64_t LHS = Current.LHS; int64_t RHS = LastPoppedValue; LastPoppedValue = E.Kind == CounterExpression::Subtract ? LHS - RHS : LHS + RHS; CounterStack.pop(); } break; } } } return LastPoppedValue; } mcdc::TVIdxBuilder::TVIdxBuilder(const SmallVectorImpl &NextIDs, int Offset) : Indices(NextIDs.size()) { // Construct Nodes and set up each InCount auto N = NextIDs.size(); SmallVector Nodes(N); for (unsigned ID = 0; ID < N; ++ID) { for (unsigned C = 0; C < 2; ++C) { #ifndef NDEBUG Indices[ID][C] = INT_MIN; #endif auto NextID = NextIDs[ID][C]; Nodes[ID].NextIDs[C] = NextID; if (NextID >= 0) ++Nodes[NextID].InCount; } } // Sort key ordered by <-Width, Ord> SmallVector> Decisions; // Traverse Nodes to assign Idx SmallVector Q; assert(Nodes[0].InCount == 0); Nodes[0].Width = 1; Q.push_back(0); unsigned Ord = 0; while (!Q.empty()) { auto IID = Q.begin(); int ID = *IID; Q.erase(IID); auto &Node = Nodes[ID]; assert(Node.Width > 0); for (unsigned I = 0; I < 2; ++I) { auto NextID = Node.NextIDs[I]; assert(NextID != 0 && "NextID should not point to the top"); if (NextID < 0) { // Decision Decisions.emplace_back(-Node.Width, Ord++, ID, I); assert(Ord == Decisions.size()); continue; } // Inter Node auto &NextNode = Nodes[NextID]; assert(NextNode.InCount > 0); // Assign Idx assert(Indices[ID][I] == INT_MIN); Indices[ID][I] = NextNode.Width; auto NextWidth = int64_t(NextNode.Width) + Node.Width; if (NextWidth > HardMaxTVs) { NumTestVectors = HardMaxTVs; // Overflow return; } NextNode.Width = NextWidth; // Ready if all incomings are processed. // Or NextNode.Width hasn't been confirmed yet. if (--NextNode.InCount == 0) Q.push_back(NextID); } } llvm::sort(Decisions); // Assign TestVector Indices in Decision Nodes int64_t CurIdx = 0; for (auto [NegWidth, Ord, ID, C] : Decisions) { int Width = -NegWidth; assert(Nodes[ID].Width == Width); assert(Nodes[ID].NextIDs[C] < 0); assert(Indices[ID][C] == INT_MIN); Indices[ID][C] = Offset + CurIdx; CurIdx += Width; if (CurIdx > HardMaxTVs) { NumTestVectors = HardMaxTVs; // Overflow return; } } assert(CurIdx < HardMaxTVs); NumTestVectors = CurIdx; #ifndef NDEBUG for (const auto &Idxs : Indices) for (auto Idx : Idxs) assert(Idx != INT_MIN); SavedNodes = std::move(Nodes); #endif } namespace { /// Construct this->NextIDs with Branches for TVIdxBuilder to use it /// before MCDCRecordProcessor(). class NextIDsBuilder { protected: SmallVector NextIDs; public: NextIDsBuilder(const ArrayRef Branches) : NextIDs(Branches.size()) { #ifndef NDEBUG DenseSet SeenIDs; #endif for (const auto *Branch : Branches) { const auto &BranchParams = Branch->getBranchParams(); assert(SeenIDs.insert(BranchParams.ID).second && "Duplicate CondID"); NextIDs[BranchParams.ID] = BranchParams.Conds; } assert(SeenIDs.size() == Branches.size()); } }; class MCDCRecordProcessor : NextIDsBuilder, mcdc::TVIdxBuilder { /// A bitmap representing the executed test vectors for a boolean expression. /// Each index of the bitmap corresponds to a possible test vector. An index /// with a bit value of '1' indicates that the corresponding Test Vector /// identified by that index was executed. const BitVector &Bitmap; /// Decision Region to which the ExecutedTestVectorBitmap applies. const CounterMappingRegion &Region; const mcdc::DecisionParameters &DecisionParams; /// Array of branch regions corresponding each conditions in the boolean /// expression. ArrayRef Branches; /// Total number of conditions in the boolean expression. unsigned NumConditions; /// Vector used to track whether a condition is constant folded. MCDCRecord::BoolVector Folded; /// Mapping of calculated MC/DC Independence Pairs for each condition. MCDCRecord::TVPairMap IndependencePairs; /// Storage for ExecVectors /// ExecVectors is the alias of its 0th element. std::array ExecVectorsByCond; /// Actual executed Test Vectors for the boolean expression, based on /// ExecutedTestVectorBitmap. MCDCRecord::TestVectors &ExecVectors; /// Number of False items in ExecVectors unsigned NumExecVectorsF; #ifndef NDEBUG DenseSet TVIdxs; #endif bool IsVersion11; public: MCDCRecordProcessor(const BitVector &Bitmap, const CounterMappingRegion &Region, ArrayRef Branches, bool IsVersion11) : NextIDsBuilder(Branches), TVIdxBuilder(this->NextIDs), Bitmap(Bitmap), Region(Region), DecisionParams(Region.getDecisionParams()), Branches(Branches), NumConditions(DecisionParams.NumConditions), Folded(NumConditions, false), IndependencePairs(NumConditions), ExecVectors(ExecVectorsByCond[false]), IsVersion11(IsVersion11) {} private: // Walk the binary decision diagram and try assigning both false and true to // each node. When a terminal node (ID == 0) is reached, fill in the value in // the truth table. void buildTestVector(MCDCRecord::TestVector &TV, mcdc::ConditionID ID, int TVIdx) { for (auto MCDCCond : {MCDCRecord::MCDC_False, MCDCRecord::MCDC_True}) { static_assert(MCDCRecord::MCDC_False == 0); static_assert(MCDCRecord::MCDC_True == 1); TV.set(ID, MCDCCond); auto NextID = NextIDs[ID][MCDCCond]; auto NextTVIdx = TVIdx + Indices[ID][MCDCCond]; assert(NextID == SavedNodes[ID].NextIDs[MCDCCond]); if (NextID >= 0) { buildTestVector(TV, NextID, NextTVIdx); continue; } assert(TVIdx < SavedNodes[ID].Width); assert(TVIdxs.insert(NextTVIdx).second && "Duplicate TVIdx"); if (!Bitmap[IsVersion11 ? DecisionParams.BitmapIdx * CHAR_BIT + TV.getIndex() : DecisionParams.BitmapIdx - NumTestVectors + NextTVIdx]) continue; // Copy the completed test vector to the vector of testvectors. // The final value (T,F) is equal to the last non-dontcare state on the // path (in a short-circuiting system). ExecVectorsByCond[MCDCCond].push_back({TV, MCDCCond}); } // Reset back to DontCare. TV.set(ID, MCDCRecord::MCDC_DontCare); } /// Walk the bits in the bitmap. A bit set to '1' indicates that the test /// vector at the corresponding index was executed during a test run. void findExecutedTestVectors() { // Walk the binary decision diagram to enumerate all possible test vectors. // We start at the root node (ID == 0) with all values being DontCare. // `TVIdx` starts with 0 and is in the traversal. // `Index` encodes the bitmask of true values and is initially 0. MCDCRecord::TestVector TV(NumConditions); buildTestVector(TV, 0, 0); assert(TVIdxs.size() == unsigned(NumTestVectors) && "TVIdxs wasn't fulfilled"); // Fill ExecVectors order by False items and True items. // ExecVectors is the alias of ExecVectorsByCond[false], so // Append ExecVectorsByCond[true] on it. NumExecVectorsF = ExecVectors.size(); auto &ExecVectorsT = ExecVectorsByCond[true]; ExecVectors.append(std::make_move_iterator(ExecVectorsT.begin()), std::make_move_iterator(ExecVectorsT.end())); } // Find an independence pair for each condition: // - The condition is true in one test and false in the other. // - The decision outcome is true one test and false in the other. // - All other conditions' values must be equal or marked as "don't care". void findIndependencePairs() { unsigned NumTVs = ExecVectors.size(); for (unsigned I = NumExecVectorsF; I < NumTVs; ++I) { const auto &[A, ACond] = ExecVectors[I]; assert(ACond == MCDCRecord::MCDC_True); for (unsigned J = 0; J < NumExecVectorsF; ++J) { const auto &[B, BCond] = ExecVectors[J]; assert(BCond == MCDCRecord::MCDC_False); // If the two vectors differ in exactly one condition, ignoring DontCare // conditions, we have found an independence pair. auto AB = A.getDifferences(B); if (AB.count() == 1) IndependencePairs.insert( {AB.find_first(), std::make_pair(J + 1, I + 1)}); } } } public: /// Process the MC/DC Record in order to produce a result for a boolean /// expression. This process includes tracking the conditions that comprise /// the decision region, calculating the list of all possible test vectors, /// marking the executed test vectors, and then finding an Independence Pair /// out of the executed test vectors for each condition in the boolean /// expression. A condition is tracked to ensure that its ID can be mapped to /// its ordinal position in the boolean expression. The condition's source /// location is also tracked, as well as whether it is constant folded (in /// which case it is excuded from the metric). MCDCRecord processMCDCRecord() { unsigned I = 0; MCDCRecord::CondIDMap PosToID; MCDCRecord::LineColPairMap CondLoc; // Walk the Record's BranchRegions (representing Conditions) in order to: // - Hash the condition based on its corresponding ID. This will be used to // calculate the test vectors. // - Keep a map of the condition's ordinal position (1, 2, 3, 4) to its // actual ID. This will be used to visualize the conditions in the // correct order. // - Keep track of the condition source location. This will be used to // visualize where the condition is. // - Record whether the condition is constant folded so that we exclude it // from being measured. for (const auto *B : Branches) { const auto &BranchParams = B->getBranchParams(); PosToID[I] = BranchParams.ID; CondLoc[I] = B->startLoc(); Folded[I++] = (B->Count.isZero() && B->FalseCount.isZero()); } // Using Profile Bitmap from runtime, mark the executed test vectors. findExecutedTestVectors(); // Compare executed test vectors against each other to find an independence // pairs for each condition. This processing takes the most time. findIndependencePairs(); // Record Test vectors, executed vectors, and independence pairs. return MCDCRecord(Region, std::move(ExecVectors), std::move(IndependencePairs), std::move(Folded), std::move(PosToID), std::move(CondLoc)); } }; } // namespace Expected CounterMappingContext::evaluateMCDCRegion( const CounterMappingRegion &Region, ArrayRef Branches, bool IsVersion11) { MCDCRecordProcessor MCDCProcessor(Bitmap, Region, Branches, IsVersion11); return MCDCProcessor.processMCDCRecord(); } unsigned CounterMappingContext::getMaxCounterID(const Counter &C) const { struct StackElem { Counter ICounter; int64_t LHS = 0; enum { KNeverVisited = 0, KVisitedOnce = 1, KVisitedTwice = 2, } VisitCount = KNeverVisited; }; std::stack CounterStack; CounterStack.push({C}); int64_t LastPoppedValue; while (!CounterStack.empty()) { StackElem &Current = CounterStack.top(); switch (Current.ICounter.getKind()) { case Counter::Zero: LastPoppedValue = 0; CounterStack.pop(); break; case Counter::CounterValueReference: LastPoppedValue = Current.ICounter.getCounterID(); CounterStack.pop(); break; case Counter::Expression: { if (Current.ICounter.getExpressionID() >= Expressions.size()) { LastPoppedValue = 0; CounterStack.pop(); } else { const auto &E = Expressions[Current.ICounter.getExpressionID()]; if (Current.VisitCount == StackElem::KNeverVisited) { CounterStack.push(StackElem{E.LHS}); Current.VisitCount = StackElem::KVisitedOnce; } else if (Current.VisitCount == StackElem::KVisitedOnce) { Current.LHS = LastPoppedValue; CounterStack.push(StackElem{E.RHS}); Current.VisitCount = StackElem::KVisitedTwice; } else { int64_t LHS = Current.LHS; int64_t RHS = LastPoppedValue; LastPoppedValue = std::max(LHS, RHS); CounterStack.pop(); } } break; } } } return LastPoppedValue; } void FunctionRecordIterator::skipOtherFiles() { while (Current != Records.end() && !Filename.empty() && Filename != Current->Filenames[0]) ++Current; if (Current == Records.end()) *this = FunctionRecordIterator(); } ArrayRef CoverageMapping::getImpreciseRecordIndicesForFilename( StringRef Filename) const { size_t FilenameHash = hash_value(Filename); auto RecordIt = FilenameHash2RecordIndices.find(FilenameHash); if (RecordIt == FilenameHash2RecordIndices.end()) return {}; return RecordIt->second; } static unsigned getMaxCounterID(const CounterMappingContext &Ctx, const CoverageMappingRecord &Record) { unsigned MaxCounterID = 0; for (const auto &Region : Record.MappingRegions) { MaxCounterID = std::max(MaxCounterID, Ctx.getMaxCounterID(Region.Count)); } return MaxCounterID; } /// Returns the bit count static unsigned getMaxBitmapSize(const CoverageMappingRecord &Record, bool IsVersion11) { unsigned MaxBitmapIdx = 0; unsigned NumConditions = 0; // Scan max(BitmapIdx). // Note that `<=` is used insted of `<`, because `BitmapIdx == 0` is valid // and `MaxBitmapIdx is `unsigned`. `BitmapIdx` is unique in the record. for (const auto &Region : reverse(Record.MappingRegions)) { if (Region.Kind != CounterMappingRegion::MCDCDecisionRegion) continue; const auto &DecisionParams = Region.getDecisionParams(); if (MaxBitmapIdx <= DecisionParams.BitmapIdx) { MaxBitmapIdx = DecisionParams.BitmapIdx; NumConditions = DecisionParams.NumConditions; } } if (IsVersion11) MaxBitmapIdx = MaxBitmapIdx * CHAR_BIT + llvm::alignTo(uint64_t(1) << NumConditions, CHAR_BIT); return MaxBitmapIdx; } namespace { /// Collect Decisions, Branchs, and Expansions and associate them. class MCDCDecisionRecorder { private: /// This holds the DecisionRegion and MCDCBranches under it. /// Also traverses Expansion(s). /// The Decision has the number of MCDCBranches and will complete /// when it is filled with unique ConditionID of MCDCBranches. struct DecisionRecord { const CounterMappingRegion *DecisionRegion; /// They are reflected from DecisionRegion for convenience. mcdc::DecisionParameters DecisionParams; LineColPair DecisionStartLoc; LineColPair DecisionEndLoc; /// This is passed to `MCDCRecordProcessor`, so this should be compatible /// to`ArrayRef`. SmallVector MCDCBranches; /// IDs that are stored in MCDCBranches /// Complete when all IDs (1 to NumConditions) are met. DenseSet ConditionIDs; /// Set of IDs of Expansion(s) that are relevant to DecisionRegion /// and its children (via expansions). /// FileID pointed by ExpandedFileID is dedicated to the expansion, so /// the location in the expansion doesn't matter. DenseSet ExpandedFileIDs; DecisionRecord(const CounterMappingRegion &Decision) : DecisionRegion(&Decision), DecisionParams(Decision.getDecisionParams()), DecisionStartLoc(Decision.startLoc()), DecisionEndLoc(Decision.endLoc()) { assert(Decision.Kind == CounterMappingRegion::MCDCDecisionRegion); } /// Determine whether DecisionRecord dominates `R`. bool dominates(const CounterMappingRegion &R) const { // Determine whether `R` is included in `DecisionRegion`. if (R.FileID == DecisionRegion->FileID && R.startLoc() >= DecisionStartLoc && R.endLoc() <= DecisionEndLoc) return true; // Determine whether `R` is pointed by any of Expansions. return ExpandedFileIDs.contains(R.FileID); } enum Result { NotProcessed = 0, /// Irrelevant to this Decision Processed, /// Added to this Decision Completed, /// Added and filled this Decision }; /// Add Branch into the Decision /// \param Branch expects MCDCBranchRegion /// \returns NotProcessed/Processed/Completed Result addBranch(const CounterMappingRegion &Branch) { assert(Branch.Kind == CounterMappingRegion::MCDCBranchRegion); auto ConditionID = Branch.getBranchParams().ID; if (ConditionIDs.contains(ConditionID) || ConditionID >= DecisionParams.NumConditions) return NotProcessed; if (!this->dominates(Branch)) return NotProcessed; assert(MCDCBranches.size() < DecisionParams.NumConditions); // Put `ID=0` in front of `MCDCBranches` for convenience // even if `MCDCBranches` is not topological. if (ConditionID == 0) MCDCBranches.insert(MCDCBranches.begin(), &Branch); else MCDCBranches.push_back(&Branch); // Mark `ID` as `assigned`. ConditionIDs.insert(ConditionID); // `Completed` when `MCDCBranches` is full return (MCDCBranches.size() == DecisionParams.NumConditions ? Completed : Processed); } /// Record Expansion if it is relevant to this Decision. /// Each `Expansion` may nest. /// \returns true if recorded. bool recordExpansion(const CounterMappingRegion &Expansion) { if (!this->dominates(Expansion)) return false; ExpandedFileIDs.insert(Expansion.ExpandedFileID); return true; } }; private: /// Decisions in progress /// DecisionRecord is added for each MCDCDecisionRegion. /// DecisionRecord is removed when Decision is completed. SmallVector Decisions; public: ~MCDCDecisionRecorder() { assert(Decisions.empty() && "All Decisions have not been resolved"); } /// Register Region and start recording. void registerDecision(const CounterMappingRegion &Decision) { Decisions.emplace_back(Decision); } void recordExpansion(const CounterMappingRegion &Expansion) { any_of(Decisions, [&Expansion](auto &Decision) { return Decision.recordExpansion(Expansion); }); } using DecisionAndBranches = std::pair /// Branches >; /// Add MCDCBranchRegion to DecisionRecord. /// \param Branch to be processed /// \returns DecisionsAndBranches if DecisionRecord completed. /// Or returns nullopt. std::optional processBranch(const CounterMappingRegion &Branch) { // Seek each Decision and apply Region to it. for (auto DecisionIter = Decisions.begin(), DecisionEnd = Decisions.end(); DecisionIter != DecisionEnd; ++DecisionIter) switch (DecisionIter->addBranch(Branch)) { case DecisionRecord::NotProcessed: continue; case DecisionRecord::Processed: return std::nullopt; case DecisionRecord::Completed: DecisionAndBranches Result = std::make_pair(DecisionIter->DecisionRegion, std::move(DecisionIter->MCDCBranches)); Decisions.erase(DecisionIter); // No longer used. return Result; } llvm_unreachable("Branch not found in Decisions"); } }; } // namespace Error CoverageMapping::loadFunctionRecord( const CoverageMappingRecord &Record, IndexedInstrProfReader &ProfileReader) { StringRef OrigFuncName = Record.FunctionName; if (OrigFuncName.empty()) return make_error(coveragemap_error::malformed, "record function name is empty"); if (Record.Filenames.empty()) OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName); else OrigFuncName = getFuncNameWithoutPrefix(OrigFuncName, Record.Filenames[0]); CounterMappingContext Ctx(Record.Expressions); std::vector Counts; if (Error E = ProfileReader.getFunctionCounts(Record.FunctionName, Record.FunctionHash, Counts)) { instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); if (IPE == instrprof_error::hash_mismatch) { FuncHashMismatches.emplace_back(std::string(Record.FunctionName), Record.FunctionHash); return Error::success(); } if (IPE != instrprof_error::unknown_function) return make_error(IPE); Counts.assign(getMaxCounterID(Ctx, Record) + 1, 0); } Ctx.setCounts(Counts); bool IsVersion11 = ProfileReader.getVersion() < IndexedInstrProf::ProfVersion::Version12; BitVector Bitmap; if (Error E = ProfileReader.getFunctionBitmap(Record.FunctionName, Record.FunctionHash, Bitmap)) { instrprof_error IPE = std::get<0>(InstrProfError::take(std::move(E))); if (IPE == instrprof_error::hash_mismatch) { FuncHashMismatches.emplace_back(std::string(Record.FunctionName), Record.FunctionHash); return Error::success(); } if (IPE != instrprof_error::unknown_function) return make_error(IPE); Bitmap = BitVector(getMaxBitmapSize(Record, IsVersion11)); } Ctx.setBitmap(std::move(Bitmap)); assert(!Record.MappingRegions.empty() && "Function has no regions"); // This coverage record is a zero region for a function that's unused in // some TU, but used in a different TU. Ignore it. The coverage maps from the // the other TU will either be loaded (providing full region counts) or they // won't (in which case we don't unintuitively report functions as uncovered // when they have non-zero counts in the profile). if (Record.MappingRegions.size() == 1 && Record.MappingRegions[0].Count.isZero() && Counts[0] > 0) return Error::success(); MCDCDecisionRecorder MCDCDecisions; FunctionRecord Function(OrigFuncName, Record.Filenames); for (const auto &Region : Record.MappingRegions) { // MCDCDecisionRegion should be handled first since it overlaps with // others inside. if (Region.Kind == CounterMappingRegion::MCDCDecisionRegion) { MCDCDecisions.registerDecision(Region); continue; } Expected ExecutionCount = Ctx.evaluate(Region.Count); if (auto E = ExecutionCount.takeError()) { consumeError(std::move(E)); return Error::success(); } Expected AltExecutionCount = Ctx.evaluate(Region.FalseCount); if (auto E = AltExecutionCount.takeError()) { consumeError(std::move(E)); return Error::success(); } Function.pushRegion(Region, *ExecutionCount, *AltExecutionCount, ProfileReader.hasSingleByteCoverage()); // Record ExpansionRegion. if (Region.Kind == CounterMappingRegion::ExpansionRegion) { MCDCDecisions.recordExpansion(Region); continue; } // Do nothing unless MCDCBranchRegion. if (Region.Kind != CounterMappingRegion::MCDCBranchRegion) continue; auto Result = MCDCDecisions.processBranch(Region); if (!Result) // Any Decision doesn't complete. continue; auto MCDCDecision = Result->first; auto &MCDCBranches = Result->second; // Since the bitmap identifies the executed test vectors for an MC/DC // DecisionRegion, all of the information is now available to process. // This is where the bulk of the MC/DC progressing takes place. Expected Record = Ctx.evaluateMCDCRegion(*MCDCDecision, MCDCBranches, IsVersion11); if (auto E = Record.takeError()) { consumeError(std::move(E)); return Error::success(); } // Save the MC/DC Record so that it can be visualized later. Function.pushMCDCRecord(std::move(*Record)); } // Don't create records for (filenames, function) pairs we've already seen. auto FilenamesHash = hash_combine_range(Record.Filenames.begin(), Record.Filenames.end()); if (!RecordProvenance[FilenamesHash].insert(hash_value(OrigFuncName)).second) return Error::success(); Functions.push_back(std::move(Function)); // Performance optimization: keep track of the indices of the function records // which correspond to each filename. This can be used to substantially speed // up queries for coverage info in a file. unsigned RecordIndex = Functions.size() - 1; for (StringRef Filename : Record.Filenames) { auto &RecordIndices = FilenameHash2RecordIndices[hash_value(Filename)]; // Note that there may be duplicates in the filename set for a function // record, because of e.g. macro expansions in the function in which both // the macro and the function are defined in the same file. if (RecordIndices.empty() || RecordIndices.back() != RecordIndex) RecordIndices.push_back(RecordIndex); } return Error::success(); } // This function is for memory optimization by shortening the lifetimes // of CoverageMappingReader instances. Error CoverageMapping::loadFromReaders( ArrayRef> CoverageReaders, IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage) { for (const auto &CoverageReader : CoverageReaders) { for (auto RecordOrErr : *CoverageReader) { if (Error E = RecordOrErr.takeError()) return E; const auto &Record = *RecordOrErr; if (Error E = Coverage.loadFunctionRecord(Record, ProfileReader)) return E; } } return Error::success(); } Expected> CoverageMapping::load( ArrayRef> CoverageReaders, IndexedInstrProfReader &ProfileReader) { auto Coverage = std::unique_ptr(new CoverageMapping()); if (Error E = loadFromReaders(CoverageReaders, ProfileReader, *Coverage)) return std::move(E); return std::move(Coverage); } // If E is a no_data_found error, returns success. Otherwise returns E. static Error handleMaybeNoDataFoundError(Error E) { return handleErrors( std::move(E), [](const CoverageMapError &CME) { if (CME.get() == coveragemap_error::no_data_found) return static_cast(Error::success()); return make_error(CME.get(), CME.getMessage()); }); } Error CoverageMapping::loadFromFile( StringRef Filename, StringRef Arch, StringRef CompilationDir, IndexedInstrProfReader &ProfileReader, CoverageMapping &Coverage, bool &DataFound, SmallVectorImpl *FoundBinaryIDs) { auto CovMappingBufOrErr = MemoryBuffer::getFileOrSTDIN( Filename, /*IsText=*/false, /*RequiresNullTerminator=*/false); if (std::error_code EC = CovMappingBufOrErr.getError()) return createFileError(Filename, errorCodeToError(EC)); MemoryBufferRef CovMappingBufRef = CovMappingBufOrErr.get()->getMemBufferRef(); SmallVector, 4> Buffers; SmallVector BinaryIDs; auto CoverageReadersOrErr = BinaryCoverageReader::create( CovMappingBufRef, Arch, Buffers, CompilationDir, FoundBinaryIDs ? &BinaryIDs : nullptr); if (Error E = CoverageReadersOrErr.takeError()) { E = handleMaybeNoDataFoundError(std::move(E)); if (E) return createFileError(Filename, std::move(E)); return E; } SmallVector, 4> Readers; for (auto &Reader : CoverageReadersOrErr.get()) Readers.push_back(std::move(Reader)); if (FoundBinaryIDs && !Readers.empty()) { llvm::append_range(*FoundBinaryIDs, llvm::map_range(BinaryIDs, [](object::BuildIDRef BID) { return object::BuildID(BID); })); } DataFound |= !Readers.empty(); if (Error E = loadFromReaders(Readers, ProfileReader, Coverage)) return createFileError(Filename, std::move(E)); return Error::success(); } Expected> CoverageMapping::load( ArrayRef ObjectFilenames, StringRef ProfileFilename, vfs::FileSystem &FS, ArrayRef Arches, StringRef CompilationDir, const object::BuildIDFetcher *BIDFetcher, bool CheckBinaryIDs) { auto ProfileReaderOrErr = IndexedInstrProfReader::create(ProfileFilename, FS); if (Error E = ProfileReaderOrErr.takeError()) return createFileError(ProfileFilename, std::move(E)); auto ProfileReader = std::move(ProfileReaderOrErr.get()); auto Coverage = std::unique_ptr(new CoverageMapping()); bool DataFound = false; auto GetArch = [&](size_t Idx) { if (Arches.empty()) return StringRef(); if (Arches.size() == 1) return Arches.front(); return Arches[Idx]; }; SmallVector FoundBinaryIDs; for (const auto &File : llvm::enumerate(ObjectFilenames)) { if (Error E = loadFromFile(File.value(), GetArch(File.index()), CompilationDir, *ProfileReader, *Coverage, DataFound, &FoundBinaryIDs)) return std::move(E); } if (BIDFetcher) { std::vector ProfileBinaryIDs; if (Error E = ProfileReader->readBinaryIds(ProfileBinaryIDs)) return createFileError(ProfileFilename, std::move(E)); SmallVector BinaryIDsToFetch; if (!ProfileBinaryIDs.empty()) { const auto &Compare = [](object::BuildIDRef A, object::BuildIDRef B) { return std::lexicographical_compare(A.begin(), A.end(), B.begin(), B.end()); }; llvm::sort(FoundBinaryIDs, Compare); std::set_difference( ProfileBinaryIDs.begin(), ProfileBinaryIDs.end(), FoundBinaryIDs.begin(), FoundBinaryIDs.end(), std::inserter(BinaryIDsToFetch, BinaryIDsToFetch.end()), Compare); } for (object::BuildIDRef BinaryID : BinaryIDsToFetch) { std::optional PathOpt = BIDFetcher->fetch(BinaryID); if (PathOpt) { std::string Path = std::move(*PathOpt); StringRef Arch = Arches.size() == 1 ? Arches.front() : StringRef(); if (Error E = loadFromFile(Path, Arch, CompilationDir, *ProfileReader, *Coverage, DataFound)) return std::move(E); } else if (CheckBinaryIDs) { return createFileError( ProfileFilename, createStringError(errc::no_such_file_or_directory, "Missing binary ID: " + llvm::toHex(BinaryID, /*LowerCase=*/true))); } } } if (!DataFound) return createFileError( join(ObjectFilenames.begin(), ObjectFilenames.end(), ", "), make_error(coveragemap_error::no_data_found)); return std::move(Coverage); } namespace { /// Distributes functions into instantiation sets. /// /// An instantiation set is a collection of functions that have the same source /// code, ie, template functions specializations. class FunctionInstantiationSetCollector { using MapT = std::map>; MapT InstantiatedFunctions; public: void insert(const FunctionRecord &Function, unsigned FileID) { auto I = Function.CountedRegions.begin(), E = Function.CountedRegions.end(); while (I != E && I->FileID != FileID) ++I; assert(I != E && "function does not cover the given file"); auto &Functions = InstantiatedFunctions[I->startLoc()]; Functions.push_back(&Function); } MapT::iterator begin() { return InstantiatedFunctions.begin(); } MapT::iterator end() { return InstantiatedFunctions.end(); } }; class SegmentBuilder { std::vector &Segments; SmallVector ActiveRegions; SegmentBuilder(std::vector &Segments) : Segments(Segments) {} /// Emit a segment with the count from \p Region starting at \p StartLoc. // /// \p IsRegionEntry: The segment is at the start of a new non-gap region. /// \p EmitSkippedRegion: The segment must be emitted as a skipped region. void startSegment(const CountedRegion &Region, LineColPair StartLoc, bool IsRegionEntry, bool EmitSkippedRegion = false) { bool HasCount = !EmitSkippedRegion && (Region.Kind != CounterMappingRegion::SkippedRegion); // If the new segment wouldn't affect coverage rendering, skip it. if (!Segments.empty() && !IsRegionEntry && !EmitSkippedRegion) { const auto &Last = Segments.back(); if (Last.HasCount == HasCount && Last.Count == Region.ExecutionCount && !Last.IsRegionEntry) return; } if (HasCount) Segments.emplace_back(StartLoc.first, StartLoc.second, Region.ExecutionCount, IsRegionEntry, Region.Kind == CounterMappingRegion::GapRegion); else Segments.emplace_back(StartLoc.first, StartLoc.second, IsRegionEntry); LLVM_DEBUG({ const auto &Last = Segments.back(); dbgs() << "Segment at " << Last.Line << ":" << Last.Col << " (count = " << Last.Count << ")" << (Last.IsRegionEntry ? ", RegionEntry" : "") << (!Last.HasCount ? ", Skipped" : "") << (Last.IsGapRegion ? ", Gap" : "") << "\n"; }); } /// Emit segments for active regions which end before \p Loc. /// /// \p Loc: The start location of the next region. If std::nullopt, all active /// regions are completed. /// \p FirstCompletedRegion: Index of the first completed region. void completeRegionsUntil(std::optional Loc, unsigned FirstCompletedRegion) { // Sort the completed regions by end location. This makes it simple to // emit closing segments in sorted order. auto CompletedRegionsIt = ActiveRegions.begin() + FirstCompletedRegion; std::stable_sort(CompletedRegionsIt, ActiveRegions.end(), [](const CountedRegion *L, const CountedRegion *R) { return L->endLoc() < R->endLoc(); }); // Emit segments for all completed regions. for (unsigned I = FirstCompletedRegion + 1, E = ActiveRegions.size(); I < E; ++I) { const auto *CompletedRegion = ActiveRegions[I]; assert((!Loc || CompletedRegion->endLoc() <= *Loc) && "Completed region ends after start of new region"); const auto *PrevCompletedRegion = ActiveRegions[I - 1]; auto CompletedSegmentLoc = PrevCompletedRegion->endLoc(); // Don't emit any more segments if they start where the new region begins. if (Loc && CompletedSegmentLoc == *Loc) break; // Don't emit a segment if the next completed region ends at the same // location as this one. if (CompletedSegmentLoc == CompletedRegion->endLoc()) continue; // Use the count from the last completed region which ends at this loc. for (unsigned J = I + 1; J < E; ++J) if (CompletedRegion->endLoc() == ActiveRegions[J]->endLoc()) CompletedRegion = ActiveRegions[J]; startSegment(*CompletedRegion, CompletedSegmentLoc, false); } auto Last = ActiveRegions.back(); if (FirstCompletedRegion && Last->endLoc() != *Loc) { // If there's a gap after the end of the last completed region and the // start of the new region, use the last active region to fill the gap. startSegment(*ActiveRegions[FirstCompletedRegion - 1], Last->endLoc(), false); } else if (!FirstCompletedRegion && (!Loc || *Loc != Last->endLoc())) { // Emit a skipped segment if there are no more active regions. This // ensures that gaps between functions are marked correctly. startSegment(*Last, Last->endLoc(), false, true); } // Pop the completed regions. ActiveRegions.erase(CompletedRegionsIt, ActiveRegions.end()); } void buildSegmentsImpl(ArrayRef Regions) { for (const auto &CR : enumerate(Regions)) { auto CurStartLoc = CR.value().startLoc(); // Active regions which end before the current region need to be popped. auto CompletedRegions = std::stable_partition(ActiveRegions.begin(), ActiveRegions.end(), [&](const CountedRegion *Region) { return !(Region->endLoc() <= CurStartLoc); }); if (CompletedRegions != ActiveRegions.end()) { unsigned FirstCompletedRegion = std::distance(ActiveRegions.begin(), CompletedRegions); completeRegionsUntil(CurStartLoc, FirstCompletedRegion); } bool GapRegion = CR.value().Kind == CounterMappingRegion::GapRegion; // Try to emit a segment for the current region. if (CurStartLoc == CR.value().endLoc()) { // Avoid making zero-length regions active. If it's the last region, // emit a skipped segment. Otherwise use its predecessor's count. const bool Skipped = (CR.index() + 1) == Regions.size() || CR.value().Kind == CounterMappingRegion::SkippedRegion; startSegment(ActiveRegions.empty() ? CR.value() : *ActiveRegions.back(), CurStartLoc, !GapRegion, Skipped); // If it is skipped segment, create a segment with last pushed // regions's count at CurStartLoc. if (Skipped && !ActiveRegions.empty()) startSegment(*ActiveRegions.back(), CurStartLoc, false); continue; } if (CR.index() + 1 == Regions.size() || CurStartLoc != Regions[CR.index() + 1].startLoc()) { // Emit a segment if the next region doesn't start at the same location // as this one. startSegment(CR.value(), CurStartLoc, !GapRegion); } // This region is active (i.e not completed). ActiveRegions.push_back(&CR.value()); } // Complete any remaining active regions. if (!ActiveRegions.empty()) completeRegionsUntil(std::nullopt, 0); } /// Sort a nested sequence of regions from a single file. static void sortNestedRegions(MutableArrayRef Regions) { llvm::sort(Regions, [](const CountedRegion &LHS, const CountedRegion &RHS) { if (LHS.startLoc() != RHS.startLoc()) return LHS.startLoc() < RHS.startLoc(); if (LHS.endLoc() != RHS.endLoc()) // When LHS completely contains RHS, we sort LHS first. return RHS.endLoc() < LHS.endLoc(); // If LHS and RHS cover the same area, we need to sort them according // to their kinds so that the most suitable region will become "active" // in combineRegions(). Because we accumulate counter values only from // regions of the same kind as the first region of the area, prefer // CodeRegion to ExpansionRegion and ExpansionRegion to SkippedRegion. static_assert(CounterMappingRegion::CodeRegion < CounterMappingRegion::ExpansionRegion && CounterMappingRegion::ExpansionRegion < CounterMappingRegion::SkippedRegion, "Unexpected order of region kind values"); return LHS.Kind < RHS.Kind; }); } /// Combine counts of regions which cover the same area. static ArrayRef combineRegions(MutableArrayRef Regions) { if (Regions.empty()) return Regions; auto Active = Regions.begin(); auto End = Regions.end(); for (auto I = Regions.begin() + 1; I != End; ++I) { if (Active->startLoc() != I->startLoc() || Active->endLoc() != I->endLoc()) { // Shift to the next region. ++Active; if (Active != I) *Active = *I; continue; } // Merge duplicate region. // If CodeRegions and ExpansionRegions cover the same area, it's probably // a macro which is fully expanded to another macro. In that case, we need // to accumulate counts only from CodeRegions, or else the area will be // counted twice. // On the other hand, a macro may have a nested macro in its body. If the // outer macro is used several times, the ExpansionRegion for the nested // macro will also be added several times. These ExpansionRegions cover // the same source locations and have to be combined to reach the correct // value for that area. // We add counts of the regions of the same kind as the active region // to handle the both situations. if (I->Kind == Active->Kind) { assert(I->HasSingleByteCoverage == Active->HasSingleByteCoverage && "Regions are generated in different coverage modes"); if (I->HasSingleByteCoverage) Active->ExecutionCount = Active->ExecutionCount || I->ExecutionCount; else Active->ExecutionCount += I->ExecutionCount; } } return Regions.drop_back(std::distance(++Active, End)); } public: /// Build a sorted list of CoverageSegments from a list of Regions. static std::vector buildSegments(MutableArrayRef Regions) { std::vector Segments; SegmentBuilder Builder(Segments); sortNestedRegions(Regions); ArrayRef CombinedRegions = combineRegions(Regions); LLVM_DEBUG({ dbgs() << "Combined regions:\n"; for (const auto &CR : CombinedRegions) dbgs() << " " << CR.LineStart << ":" << CR.ColumnStart << " -> " << CR.LineEnd << ":" << CR.ColumnEnd << " (count=" << CR.ExecutionCount << ")\n"; }); Builder.buildSegmentsImpl(CombinedRegions); #ifndef NDEBUG for (unsigned I = 1, E = Segments.size(); I < E; ++I) { const auto &L = Segments[I - 1]; const auto &R = Segments[I]; if (!(L.Line < R.Line) && !(L.Line == R.Line && L.Col < R.Col)) { if (L.Line == R.Line && L.Col == R.Col && !L.HasCount) continue; LLVM_DEBUG(dbgs() << " ! Segment " << L.Line << ":" << L.Col << " followed by " << R.Line << ":" << R.Col << "\n"); assert(false && "Coverage segments not unique or sorted"); } } #endif return Segments; } }; } // end anonymous namespace std::vector CoverageMapping::getUniqueSourceFiles() const { std::vector Filenames; for (const auto &Function : getCoveredFunctions()) llvm::append_range(Filenames, Function.Filenames); llvm::sort(Filenames); auto Last = llvm::unique(Filenames); Filenames.erase(Last, Filenames.end()); return Filenames; } static SmallBitVector gatherFileIDs(StringRef SourceFile, const FunctionRecord &Function) { SmallBitVector FilenameEquivalence(Function.Filenames.size(), false); for (unsigned I = 0, E = Function.Filenames.size(); I < E; ++I) if (SourceFile == Function.Filenames[I]) FilenameEquivalence[I] = true; return FilenameEquivalence; } /// Return the ID of the file where the definition of the function is located. static std::optional findMainViewFileID(const FunctionRecord &Function) { SmallBitVector IsNotExpandedFile(Function.Filenames.size(), true); for (const auto &CR : Function.CountedRegions) if (CR.Kind == CounterMappingRegion::ExpansionRegion) IsNotExpandedFile[CR.ExpandedFileID] = false; int I = IsNotExpandedFile.find_first(); if (I == -1) return std::nullopt; return I; } /// Check if SourceFile is the file that contains the definition of /// the Function. Return the ID of the file in that case or std::nullopt /// otherwise. static std::optional findMainViewFileID(StringRef SourceFile, const FunctionRecord &Function) { std::optional I = findMainViewFileID(Function); if (I && SourceFile == Function.Filenames[*I]) return I; return std::nullopt; } static bool isExpansion(const CountedRegion &R, unsigned FileID) { return R.Kind == CounterMappingRegion::ExpansionRegion && R.FileID == FileID; } CoverageData CoverageMapping::getCoverageForFile(StringRef Filename) const { CoverageData FileCoverage(Filename); std::vector Regions; // Look up the function records in the given file. Due to hash collisions on // the filename, we may get back some records that are not in the file. ArrayRef RecordIndices = getImpreciseRecordIndicesForFilename(Filename); for (unsigned RecordIndex : RecordIndices) { const FunctionRecord &Function = Functions[RecordIndex]; auto MainFileID = findMainViewFileID(Filename, Function); auto FileIDs = gatherFileIDs(Filename, Function); for (const auto &CR : Function.CountedRegions) if (FileIDs.test(CR.FileID)) { Regions.push_back(CR); if (MainFileID && isExpansion(CR, *MainFileID)) FileCoverage.Expansions.emplace_back(CR, Function); } // Capture branch regions specific to the function (excluding expansions). for (const auto &CR : Function.CountedBranchRegions) if (FileIDs.test(CR.FileID) && (CR.FileID == CR.ExpandedFileID)) FileCoverage.BranchRegions.push_back(CR); // Capture MCDC records specific to the function. for (const auto &MR : Function.MCDCRecords) if (FileIDs.test(MR.getDecisionRegion().FileID)) FileCoverage.MCDCRecords.push_back(MR); } LLVM_DEBUG(dbgs() << "Emitting segments for file: " << Filename << "\n"); FileCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FileCoverage; } std::vector CoverageMapping::getInstantiationGroups(StringRef Filename) const { FunctionInstantiationSetCollector InstantiationSetCollector; // Look up the function records in the given file. Due to hash collisions on // the filename, we may get back some records that are not in the file. ArrayRef RecordIndices = getImpreciseRecordIndicesForFilename(Filename); for (unsigned RecordIndex : RecordIndices) { const FunctionRecord &Function = Functions[RecordIndex]; auto MainFileID = findMainViewFileID(Filename, Function); if (!MainFileID) continue; InstantiationSetCollector.insert(Function, *MainFileID); } std::vector Result; for (auto &InstantiationSet : InstantiationSetCollector) { InstantiationGroup IG{InstantiationSet.first.first, InstantiationSet.first.second, std::move(InstantiationSet.second)}; Result.emplace_back(std::move(IG)); } return Result; } CoverageData CoverageMapping::getCoverageForFunction(const FunctionRecord &Function) const { auto MainFileID = findMainViewFileID(Function); if (!MainFileID) return CoverageData(); CoverageData FunctionCoverage(Function.Filenames[*MainFileID]); std::vector Regions; for (const auto &CR : Function.CountedRegions) if (CR.FileID == *MainFileID) { Regions.push_back(CR); if (isExpansion(CR, *MainFileID)) FunctionCoverage.Expansions.emplace_back(CR, Function); } // Capture branch regions specific to the function (excluding expansions). for (const auto &CR : Function.CountedBranchRegions) if (CR.FileID == *MainFileID) FunctionCoverage.BranchRegions.push_back(CR); // Capture MCDC records specific to the function. for (const auto &MR : Function.MCDCRecords) if (MR.getDecisionRegion().FileID == *MainFileID) FunctionCoverage.MCDCRecords.push_back(MR); LLVM_DEBUG(dbgs() << "Emitting segments for function: " << Function.Name << "\n"); FunctionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return FunctionCoverage; } CoverageData CoverageMapping::getCoverageForExpansion( const ExpansionRecord &Expansion) const { CoverageData ExpansionCoverage( Expansion.Function.Filenames[Expansion.FileID]); std::vector Regions; for (const auto &CR : Expansion.Function.CountedRegions) if (CR.FileID == Expansion.FileID) { Regions.push_back(CR); if (isExpansion(CR, Expansion.FileID)) ExpansionCoverage.Expansions.emplace_back(CR, Expansion.Function); } for (const auto &CR : Expansion.Function.CountedBranchRegions) // Capture branch regions that only pertain to the corresponding expansion. if (CR.FileID == Expansion.FileID) ExpansionCoverage.BranchRegions.push_back(CR); LLVM_DEBUG(dbgs() << "Emitting segments for expansion of file " << Expansion.FileID << "\n"); ExpansionCoverage.Segments = SegmentBuilder::buildSegments(Regions); return ExpansionCoverage; } LineCoverageStats::LineCoverageStats( ArrayRef LineSegments, const CoverageSegment *WrappedSegment, unsigned Line) : ExecutionCount(0), HasMultipleRegions(false), Mapped(false), Line(Line), LineSegments(LineSegments), WrappedSegment(WrappedSegment) { // Find the minimum number of regions which start in this line. unsigned MinRegionCount = 0; auto isStartOfRegion = [](const CoverageSegment *S) { return !S->IsGapRegion && S->HasCount && S->IsRegionEntry; }; for (unsigned I = 0; I < LineSegments.size() && MinRegionCount < 2; ++I) if (isStartOfRegion(LineSegments[I])) ++MinRegionCount; bool StartOfSkippedRegion = !LineSegments.empty() && !LineSegments.front()->HasCount && LineSegments.front()->IsRegionEntry; HasMultipleRegions = MinRegionCount > 1; Mapped = !StartOfSkippedRegion && ((WrappedSegment && WrappedSegment->HasCount) || (MinRegionCount > 0)); // if there is any starting segment at this line with a counter, it must be // mapped Mapped |= std::any_of( LineSegments.begin(), LineSegments.end(), [](const auto *Seq) { return Seq->IsRegionEntry && Seq->HasCount; }); if (!Mapped) { return; } // Pick the max count from the non-gap, region entry segments and the // wrapped count. if (WrappedSegment) ExecutionCount = WrappedSegment->Count; if (!MinRegionCount) return; for (const auto *LS : LineSegments) if (isStartOfRegion(LS)) ExecutionCount = std::max(ExecutionCount, LS->Count); } LineCoverageIterator &LineCoverageIterator::operator++() { if (Next == CD.end()) { Stats = LineCoverageStats(); Ended = true; return *this; } if (Segments.size()) WrappedSegment = Segments.back(); Segments.clear(); while (Next != CD.end() && Next->Line == Line) Segments.push_back(&*Next++); Stats = LineCoverageStats(Segments, WrappedSegment, Line); ++Line; return *this; } static std::string getCoverageMapErrString(coveragemap_error Err, const std::string &ErrMsg = "") { std::string Msg; raw_string_ostream OS(Msg); switch (Err) { case coveragemap_error::success: OS << "success"; break; case coveragemap_error::eof: OS << "end of File"; break; case coveragemap_error::no_data_found: OS << "no coverage data found"; break; case coveragemap_error::unsupported_version: OS << "unsupported coverage format version"; break; case coveragemap_error::truncated: OS << "truncated coverage data"; break; case coveragemap_error::malformed: OS << "malformed coverage data"; break; case coveragemap_error::decompression_failed: OS << "failed to decompress coverage data (zlib)"; break; case coveragemap_error::invalid_or_missing_arch_specifier: OS << "`-arch` specifier is invalid or missing for universal binary"; break; } // If optional error message is not empty, append it to the message. if (!ErrMsg.empty()) OS << ": " << ErrMsg; return Msg; } namespace { // FIXME: This class is only here to support the transition to llvm::Error. It // will be removed once this transition is complete. Clients should prefer to // deal with the Error value directly, rather than converting to error_code. class CoverageMappingErrorCategoryType : public std::error_category { const char *name() const noexcept override { return "llvm.coveragemap"; } std::string message(int IE) const override { return getCoverageMapErrString(static_cast(IE)); } }; } // end anonymous namespace std::string CoverageMapError::message() const { return getCoverageMapErrString(Err, Msg); } const std::error_category &llvm::coverage::coveragemap_category() { static CoverageMappingErrorCategoryType ErrorCategory; return ErrorCategory; } char CoverageMapError::ID = 0;