//===- WasmObjectFile.cpp - Wasm object file implementation ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/StringSet.h" #include "llvm/ADT/StringSwitch.h" #include "llvm/BinaryFormat/Wasm.h" #include "llvm/Object/Binary.h" #include "llvm/Object/Error.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Object/SymbolicFile.h" #include "llvm/Object/Wasm.h" #include "llvm/Support/Endian.h" #include "llvm/Support/Error.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/TargetParser/SubtargetFeature.h" #include "llvm/TargetParser/Triple.h" #include #include #include #include #include #define DEBUG_TYPE "wasm-object" using namespace llvm; using namespace object; void WasmSymbol::print(raw_ostream &Out) const { Out << "Name=" << Info.Name << ", Kind=" << toString(wasm::WasmSymbolType(Info.Kind)) << ", Flags=0x" << Twine::utohexstr(Info.Flags) << " ["; switch (getBinding()) { case wasm::WASM_SYMBOL_BINDING_GLOBAL: Out << "global"; break; case wasm::WASM_SYMBOL_BINDING_LOCAL: Out << "local"; break; case wasm::WASM_SYMBOL_BINDING_WEAK: Out << "weak"; break; } if (isHidden()) { Out << ", hidden"; } else { Out << ", default"; } Out << "]"; if (!isTypeData()) { Out << ", ElemIndex=" << Info.ElementIndex; } else if (isDefined()) { Out << ", Segment=" << Info.DataRef.Segment; Out << ", Offset=" << Info.DataRef.Offset; Out << ", Size=" << Info.DataRef.Size; } } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void WasmSymbol::dump() const { print(dbgs()); } #endif Expected> ObjectFile::createWasmObjectFile(MemoryBufferRef Buffer) { Error Err = Error::success(); auto ObjectFile = std::make_unique(Buffer, Err); if (Err) return std::move(Err); return std::move(ObjectFile); } #define VARINT7_MAX ((1 << 7) - 1) #define VARINT7_MIN (-(1 << 7)) #define VARUINT7_MAX (1 << 7) #define VARUINT1_MAX (1) static uint8_t readUint8(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr == Ctx.End) report_fatal_error("EOF while reading uint8"); return *Ctx.Ptr++; } static uint32_t readUint32(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr + 4 > Ctx.End) report_fatal_error("EOF while reading uint32"); uint32_t Result = support::endian::read32le(Ctx.Ptr); Ctx.Ptr += 4; return Result; } static int32_t readFloat32(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr + 4 > Ctx.End) report_fatal_error("EOF while reading float64"); int32_t Result = 0; memcpy(&Result, Ctx.Ptr, sizeof(Result)); Ctx.Ptr += sizeof(Result); return Result; } static int64_t readFloat64(WasmObjectFile::ReadContext &Ctx) { if (Ctx.Ptr + 8 > Ctx.End) report_fatal_error("EOF while reading float64"); int64_t Result = 0; memcpy(&Result, Ctx.Ptr, sizeof(Result)); Ctx.Ptr += sizeof(Result); return Result; } static uint64_t readULEB128(WasmObjectFile::ReadContext &Ctx) { unsigned Count; const char *Error = nullptr; uint64_t Result = decodeULEB128(Ctx.Ptr, &Count, Ctx.End, &Error); if (Error) report_fatal_error(Error); Ctx.Ptr += Count; return Result; } static StringRef readString(WasmObjectFile::ReadContext &Ctx) { uint32_t StringLen = readULEB128(Ctx); if (Ctx.Ptr + StringLen > Ctx.End) report_fatal_error("EOF while reading string"); StringRef Return = StringRef(reinterpret_cast(Ctx.Ptr), StringLen); Ctx.Ptr += StringLen; return Return; } static int64_t readLEB128(WasmObjectFile::ReadContext &Ctx) { unsigned Count; const char *Error = nullptr; uint64_t Result = decodeSLEB128(Ctx.Ptr, &Count, Ctx.End, &Error); if (Error) report_fatal_error(Error); Ctx.Ptr += Count; return Result; } static uint8_t readVaruint1(WasmObjectFile::ReadContext &Ctx) { int64_t Result = readLEB128(Ctx); if (Result > VARUINT1_MAX || Result < 0) report_fatal_error("LEB is outside Varuint1 range"); return Result; } static int32_t readVarint32(WasmObjectFile::ReadContext &Ctx) { int64_t Result = readLEB128(Ctx); if (Result > INT32_MAX || Result < INT32_MIN) report_fatal_error("LEB is outside Varint32 range"); return Result; } static uint32_t readVaruint32(WasmObjectFile::ReadContext &Ctx) { uint64_t Result = readULEB128(Ctx); if (Result > UINT32_MAX) report_fatal_error("LEB is outside Varuint32 range"); return Result; } static int64_t readVarint64(WasmObjectFile::ReadContext &Ctx) { return readLEB128(Ctx); } static uint64_t readVaruint64(WasmObjectFile::ReadContext &Ctx) { return readULEB128(Ctx); } static uint8_t readOpcode(WasmObjectFile::ReadContext &Ctx) { return readUint8(Ctx); } static wasm::ValType parseValType(WasmObjectFile::ReadContext &Ctx, uint32_t Code) { // only directly encoded FUNCREF/EXTERNREF/EXNREF are supported // (not ref null func, ref null extern, or ref null exn) switch (Code) { case wasm::WASM_TYPE_I32: case wasm::WASM_TYPE_I64: case wasm::WASM_TYPE_F32: case wasm::WASM_TYPE_F64: case wasm::WASM_TYPE_V128: case wasm::WASM_TYPE_FUNCREF: case wasm::WASM_TYPE_EXTERNREF: case wasm::WASM_TYPE_EXNREF: return wasm::ValType(Code); } if (Code == wasm::WASM_TYPE_NULLABLE || Code == wasm::WASM_TYPE_NONNULLABLE) { /* Discard HeapType */ readVarint64(Ctx); } return wasm::ValType(wasm::ValType::OTHERREF); } static Error readInitExpr(wasm::WasmInitExpr &Expr, WasmObjectFile::ReadContext &Ctx) { auto Start = Ctx.Ptr; Expr.Extended = false; Expr.Inst.Opcode = readOpcode(Ctx); switch (Expr.Inst.Opcode) { case wasm::WASM_OPCODE_I32_CONST: Expr.Inst.Value.Int32 = readVarint32(Ctx); break; case wasm::WASM_OPCODE_I64_CONST: Expr.Inst.Value.Int64 = readVarint64(Ctx); break; case wasm::WASM_OPCODE_F32_CONST: Expr.Inst.Value.Float32 = readFloat32(Ctx); break; case wasm::WASM_OPCODE_F64_CONST: Expr.Inst.Value.Float64 = readFloat64(Ctx); break; case wasm::WASM_OPCODE_GLOBAL_GET: Expr.Inst.Value.Global = readULEB128(Ctx); break; case wasm::WASM_OPCODE_REF_NULL: { /* Discard type */ parseValType(Ctx, readVaruint32(Ctx)); break; } default: Expr.Extended = true; } if (!Expr.Extended) { uint8_t EndOpcode = readOpcode(Ctx); if (EndOpcode != wasm::WASM_OPCODE_END) Expr.Extended = true; } if (Expr.Extended) { Ctx.Ptr = Start; while (true) { uint8_t Opcode = readOpcode(Ctx); switch (Opcode) { case wasm::WASM_OPCODE_I32_CONST: case wasm::WASM_OPCODE_GLOBAL_GET: case wasm::WASM_OPCODE_REF_NULL: case wasm::WASM_OPCODE_REF_FUNC: case wasm::WASM_OPCODE_I64_CONST: readULEB128(Ctx); break; case wasm::WASM_OPCODE_F32_CONST: readFloat32(Ctx); break; case wasm::WASM_OPCODE_F64_CONST: readFloat64(Ctx); break; case wasm::WASM_OPCODE_I32_ADD: case wasm::WASM_OPCODE_I32_SUB: case wasm::WASM_OPCODE_I32_MUL: case wasm::WASM_OPCODE_I64_ADD: case wasm::WASM_OPCODE_I64_SUB: case wasm::WASM_OPCODE_I64_MUL: break; case wasm::WASM_OPCODE_GC_PREFIX: break; // The GC opcodes are in a separate (prefixed space). This flat switch // structure works as long as there is no overlap between the GC and // general opcodes used in init exprs. case wasm::WASM_OPCODE_STRUCT_NEW: case wasm::WASM_OPCODE_STRUCT_NEW_DEFAULT: case wasm::WASM_OPCODE_ARRAY_NEW: case wasm::WASM_OPCODE_ARRAY_NEW_DEFAULT: readULEB128(Ctx); // heap type index break; case wasm::WASM_OPCODE_ARRAY_NEW_FIXED: readULEB128(Ctx); // heap type index readULEB128(Ctx); // array size break; case wasm::WASM_OPCODE_REF_I31: break; case wasm::WASM_OPCODE_END: Expr.Body = ArrayRef(Start, Ctx.Ptr - Start); return Error::success(); default: return make_error( Twine("invalid opcode in init_expr: ") + Twine(unsigned(Opcode)), object_error::parse_failed); } } } return Error::success(); } static wasm::WasmLimits readLimits(WasmObjectFile::ReadContext &Ctx) { wasm::WasmLimits Result; Result.Flags = readVaruint32(Ctx); Result.Minimum = readVaruint64(Ctx); if (Result.Flags & wasm::WASM_LIMITS_FLAG_HAS_MAX) Result.Maximum = readVaruint64(Ctx); return Result; } static wasm::WasmTableType readTableType(WasmObjectFile::ReadContext &Ctx) { wasm::WasmTableType TableType; auto ElemType = parseValType(Ctx, readVaruint32(Ctx)); TableType.ElemType = ElemType; TableType.Limits = readLimits(Ctx); return TableType; } static Error readSection(WasmSection &Section, WasmObjectFile::ReadContext &Ctx, WasmSectionOrderChecker &Checker) { Section.Type = readUint8(Ctx); LLVM_DEBUG(dbgs() << "readSection type=" << Section.Type << "\n"); // When reading the section's size, store the size of the LEB used to encode // it. This allows objcopy/strip to reproduce the binary identically. const uint8_t *PreSizePtr = Ctx.Ptr; uint32_t Size = readVaruint32(Ctx); Section.HeaderSecSizeEncodingLen = Ctx.Ptr - PreSizePtr; Section.Offset = Ctx.Ptr - Ctx.Start; if (Size == 0) return make_error("zero length section", object_error::parse_failed); if (Ctx.Ptr + Size > Ctx.End) return make_error("section too large", object_error::parse_failed); if (Section.Type == wasm::WASM_SEC_CUSTOM) { WasmObjectFile::ReadContext SectionCtx; SectionCtx.Start = Ctx.Ptr; SectionCtx.Ptr = Ctx.Ptr; SectionCtx.End = Ctx.Ptr + Size; Section.Name = readString(SectionCtx); uint32_t SectionNameSize = SectionCtx.Ptr - SectionCtx.Start; Ctx.Ptr += SectionNameSize; Size -= SectionNameSize; } if (!Checker.isValidSectionOrder(Section.Type, Section.Name)) { return make_error("out of order section type: " + llvm::to_string(Section.Type), object_error::parse_failed); } Section.Content = ArrayRef(Ctx.Ptr, Size); Ctx.Ptr += Size; return Error::success(); } WasmObjectFile::WasmObjectFile(MemoryBufferRef Buffer, Error &Err) : ObjectFile(Binary::ID_Wasm, Buffer) { ErrorAsOutParameter ErrAsOutParam(&Err); Header.Magic = getData().substr(0, 4); if (Header.Magic != StringRef("\0asm", 4)) { Err = make_error("invalid magic number", object_error::parse_failed); return; } ReadContext Ctx; Ctx.Start = getData().bytes_begin(); Ctx.Ptr = Ctx.Start + 4; Ctx.End = Ctx.Start + getData().size(); if (Ctx.Ptr + 4 > Ctx.End) { Err = make_error("missing version number", object_error::parse_failed); return; } Header.Version = readUint32(Ctx); if (Header.Version != wasm::WasmVersion) { Err = make_error("invalid version number: " + Twine(Header.Version), object_error::parse_failed); return; } WasmSectionOrderChecker Checker; while (Ctx.Ptr < Ctx.End) { WasmSection Sec; if ((Err = readSection(Sec, Ctx, Checker))) return; if ((Err = parseSection(Sec))) return; Sections.push_back(Sec); } } Error WasmObjectFile::parseSection(WasmSection &Sec) { ReadContext Ctx; Ctx.Start = Sec.Content.data(); Ctx.End = Ctx.Start + Sec.Content.size(); Ctx.Ptr = Ctx.Start; switch (Sec.Type) { case wasm::WASM_SEC_CUSTOM: return parseCustomSection(Sec, Ctx); case wasm::WASM_SEC_TYPE: return parseTypeSection(Ctx); case wasm::WASM_SEC_IMPORT: return parseImportSection(Ctx); case wasm::WASM_SEC_FUNCTION: return parseFunctionSection(Ctx); case wasm::WASM_SEC_TABLE: return parseTableSection(Ctx); case wasm::WASM_SEC_MEMORY: return parseMemorySection(Ctx); case wasm::WASM_SEC_TAG: return parseTagSection(Ctx); case wasm::WASM_SEC_GLOBAL: return parseGlobalSection(Ctx); case wasm::WASM_SEC_EXPORT: return parseExportSection(Ctx); case wasm::WASM_SEC_START: return parseStartSection(Ctx); case wasm::WASM_SEC_ELEM: return parseElemSection(Ctx); case wasm::WASM_SEC_CODE: return parseCodeSection(Ctx); case wasm::WASM_SEC_DATA: return parseDataSection(Ctx); case wasm::WASM_SEC_DATACOUNT: return parseDataCountSection(Ctx); default: return make_error( "invalid section type: " + Twine(Sec.Type), object_error::parse_failed); } } Error WasmObjectFile::parseDylinkSection(ReadContext &Ctx) { // Legacy "dylink" section support. // See parseDylink0Section for the current "dylink.0" section parsing. HasDylinkSection = true; DylinkInfo.MemorySize = readVaruint32(Ctx); DylinkInfo.MemoryAlignment = readVaruint32(Ctx); DylinkInfo.TableSize = readVaruint32(Ctx); DylinkInfo.TableAlignment = readVaruint32(Ctx); uint32_t Count = readVaruint32(Ctx); while (Count--) { DylinkInfo.Needed.push_back(readString(Ctx)); } if (Ctx.Ptr != Ctx.End) return make_error("dylink section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseDylink0Section(ReadContext &Ctx) { // See // https://github.com/WebAssembly/tool-conventions/blob/main/DynamicLinking.md HasDylinkSection = true; const uint8_t *OrigEnd = Ctx.End; while (Ctx.Ptr < OrigEnd) { Ctx.End = OrigEnd; uint8_t Type = readUint8(Ctx); uint32_t Size = readVaruint32(Ctx); LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size << "\n"); Ctx.End = Ctx.Ptr + Size; uint32_t Count; switch (Type) { case wasm::WASM_DYLINK_MEM_INFO: DylinkInfo.MemorySize = readVaruint32(Ctx); DylinkInfo.MemoryAlignment = readVaruint32(Ctx); DylinkInfo.TableSize = readVaruint32(Ctx); DylinkInfo.TableAlignment = readVaruint32(Ctx); break; case wasm::WASM_DYLINK_NEEDED: Count = readVaruint32(Ctx); while (Count--) { DylinkInfo.Needed.push_back(readString(Ctx)); } break; case wasm::WASM_DYLINK_EXPORT_INFO: { uint32_t Count = readVaruint32(Ctx); while (Count--) { DylinkInfo.ExportInfo.push_back({readString(Ctx), readVaruint32(Ctx)}); } break; } case wasm::WASM_DYLINK_IMPORT_INFO: { uint32_t Count = readVaruint32(Ctx); while (Count--) { DylinkInfo.ImportInfo.push_back( {readString(Ctx), readString(Ctx), readVaruint32(Ctx)}); } break; } default: LLVM_DEBUG(dbgs() << "unknown dylink.0 sub-section: " << Type << "\n"); Ctx.Ptr += Size; break; } if (Ctx.Ptr != Ctx.End) { return make_error( "dylink.0 sub-section ended prematurely", object_error::parse_failed); } } if (Ctx.Ptr != Ctx.End) return make_error("dylink.0 section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseNameSection(ReadContext &Ctx) { llvm::DenseSet SeenFunctions; llvm::DenseSet SeenGlobals; llvm::DenseSet SeenSegments; // If we have linking section (symbol table) or if we are parsing a DSO // then we don't use the name section for symbol information. bool PopulateSymbolTable = !HasLinkingSection && !HasDylinkSection; // If we are using the name section for symbol information then it will // supersede any symbols created by the export section. if (PopulateSymbolTable) Symbols.clear(); while (Ctx.Ptr < Ctx.End) { uint8_t Type = readUint8(Ctx); uint32_t Size = readVaruint32(Ctx); const uint8_t *SubSectionEnd = Ctx.Ptr + Size; switch (Type) { case wasm::WASM_NAMES_FUNCTION: case wasm::WASM_NAMES_GLOBAL: case wasm::WASM_NAMES_DATA_SEGMENT: { uint32_t Count = readVaruint32(Ctx); while (Count--) { uint32_t Index = readVaruint32(Ctx); StringRef Name = readString(Ctx); wasm::NameType nameType = wasm::NameType::FUNCTION; wasm::WasmSymbolInfo Info{Name, /*Kind */ wasm::WASM_SYMBOL_TYPE_FUNCTION, /* Flags */ 0, /* ImportModule */ std::nullopt, /* ImportName */ std::nullopt, /* ExportName */ std::nullopt, {/* ElementIndex */ Index}}; const wasm::WasmSignature *Signature = nullptr; const wasm::WasmGlobalType *GlobalType = nullptr; const wasm::WasmTableType *TableType = nullptr; if (Type == wasm::WASM_NAMES_FUNCTION) { if (!SeenFunctions.insert(Index).second) return make_error( "function named more than once", object_error::parse_failed); if (!isValidFunctionIndex(Index) || Name.empty()) return make_error("invalid function name entry", object_error::parse_failed); if (isDefinedFunctionIndex(Index)) { wasm::WasmFunction &F = getDefinedFunction(Index); F.DebugName = Name; Signature = &Signatures[F.SigIndex]; if (F.ExportName) { Info.ExportName = F.ExportName; Info.Flags |= wasm::WASM_SYMBOL_BINDING_GLOBAL; } else { Info.Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; } } else { Info.Flags |= wasm::WASM_SYMBOL_UNDEFINED; } } else if (Type == wasm::WASM_NAMES_GLOBAL) { if (!SeenGlobals.insert(Index).second) return make_error("global named more than once", object_error::parse_failed); if (!isValidGlobalIndex(Index) || Name.empty()) return make_error("invalid global name entry", object_error::parse_failed); nameType = wasm::NameType::GLOBAL; Info.Kind = wasm::WASM_SYMBOL_TYPE_GLOBAL; if (isDefinedGlobalIndex(Index)) { GlobalType = &getDefinedGlobal(Index).Type; } else { Info.Flags |= wasm::WASM_SYMBOL_UNDEFINED; } } else { if (!SeenSegments.insert(Index).second) return make_error( "segment named more than once", object_error::parse_failed); if (Index > DataSegments.size()) return make_error("invalid data segment name entry", object_error::parse_failed); nameType = wasm::NameType::DATA_SEGMENT; Info.Kind = wasm::WASM_SYMBOL_TYPE_DATA; Info.Flags |= wasm::WASM_SYMBOL_BINDING_LOCAL; assert(Index < DataSegments.size()); Info.DataRef = wasm::WasmDataReference{ Index, 0, DataSegments[Index].Data.Content.size()}; } DebugNames.push_back(wasm::WasmDebugName{nameType, Index, Name}); if (PopulateSymbolTable) Symbols.emplace_back(Info, GlobalType, TableType, Signature); } break; } // Ignore local names for now case wasm::WASM_NAMES_LOCAL: default: Ctx.Ptr += Size; break; } if (Ctx.Ptr != SubSectionEnd) return make_error( "name sub-section ended prematurely", object_error::parse_failed); } if (Ctx.Ptr != Ctx.End) return make_error("name section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseLinkingSection(ReadContext &Ctx) { HasLinkingSection = true; LinkingData.Version = readVaruint32(Ctx); if (LinkingData.Version != wasm::WasmMetadataVersion) { return make_error( "unexpected metadata version: " + Twine(LinkingData.Version) + " (Expected: " + Twine(wasm::WasmMetadataVersion) + ")", object_error::parse_failed); } const uint8_t *OrigEnd = Ctx.End; while (Ctx.Ptr < OrigEnd) { Ctx.End = OrigEnd; uint8_t Type = readUint8(Ctx); uint32_t Size = readVaruint32(Ctx); LLVM_DEBUG(dbgs() << "readSubsection type=" << int(Type) << " size=" << Size << "\n"); Ctx.End = Ctx.Ptr + Size; switch (Type) { case wasm::WASM_SYMBOL_TABLE: if (Error Err = parseLinkingSectionSymtab(Ctx)) return Err; break; case wasm::WASM_SEGMENT_INFO: { uint32_t Count = readVaruint32(Ctx); if (Count > DataSegments.size()) return make_error("too many segment names", object_error::parse_failed); for (uint32_t I = 0; I < Count; I++) { DataSegments[I].Data.Name = readString(Ctx); DataSegments[I].Data.Alignment = readVaruint32(Ctx); DataSegments[I].Data.LinkingFlags = readVaruint32(Ctx); } break; } case wasm::WASM_INIT_FUNCS: { uint32_t Count = readVaruint32(Ctx); LinkingData.InitFunctions.reserve(Count); for (uint32_t I = 0; I < Count; I++) { wasm::WasmInitFunc Init; Init.Priority = readVaruint32(Ctx); Init.Symbol = readVaruint32(Ctx); if (!isValidFunctionSymbol(Init.Symbol)) return make_error("invalid function symbol: " + Twine(Init.Symbol), object_error::parse_failed); LinkingData.InitFunctions.emplace_back(Init); } break; } case wasm::WASM_COMDAT_INFO: if (Error Err = parseLinkingSectionComdat(Ctx)) return Err; break; default: Ctx.Ptr += Size; break; } if (Ctx.Ptr != Ctx.End) return make_error( "linking sub-section ended prematurely", object_error::parse_failed); } if (Ctx.Ptr != OrigEnd) return make_error("linking section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseLinkingSectionSymtab(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); // Clear out any symbol information that was derived from the exports // section. Symbols.clear(); Symbols.reserve(Count); StringSet<> SymbolNames; std::vector ImportedGlobals; std::vector ImportedFunctions; std::vector ImportedTags; std::vector ImportedTables; ImportedGlobals.reserve(Imports.size()); ImportedFunctions.reserve(Imports.size()); ImportedTags.reserve(Imports.size()); ImportedTables.reserve(Imports.size()); for (auto &I : Imports) { if (I.Kind == wasm::WASM_EXTERNAL_FUNCTION) ImportedFunctions.emplace_back(&I); else if (I.Kind == wasm::WASM_EXTERNAL_GLOBAL) ImportedGlobals.emplace_back(&I); else if (I.Kind == wasm::WASM_EXTERNAL_TAG) ImportedTags.emplace_back(&I); else if (I.Kind == wasm::WASM_EXTERNAL_TABLE) ImportedTables.emplace_back(&I); } while (Count--) { wasm::WasmSymbolInfo Info; const wasm::WasmSignature *Signature = nullptr; const wasm::WasmGlobalType *GlobalType = nullptr; const wasm::WasmTableType *TableType = nullptr; Info.Kind = readUint8(Ctx); Info.Flags = readVaruint32(Ctx); bool IsDefined = (Info.Flags & wasm::WASM_SYMBOL_UNDEFINED) == 0; switch (Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: Info.ElementIndex = readVaruint32(Ctx); if (!isValidFunctionIndex(Info.ElementIndex) || IsDefined != isDefinedFunctionIndex(Info.ElementIndex)) return make_error("invalid function symbol index", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions; wasm::WasmFunction &Function = Functions[FuncIndex]; Signature = &Signatures[Function.SigIndex]; if (Function.SymbolName.empty()) Function.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedFunctions[Info.ElementIndex]; if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) { Info.Name = readString(Ctx); Info.ImportName = Import.Field; } else { Info.Name = Import.Field; } Signature = &Signatures[Import.SigIndex]; Info.ImportModule = Import.Module; } break; case wasm::WASM_SYMBOL_TYPE_GLOBAL: Info.ElementIndex = readVaruint32(Ctx); if (!isValidGlobalIndex(Info.ElementIndex) || IsDefined != isDefinedGlobalIndex(Info.ElementIndex)) return make_error("invalid global symbol index", object_error::parse_failed); if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) == wasm::WASM_SYMBOL_BINDING_WEAK) return make_error("undefined weak global symbol", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned GlobalIndex = Info.ElementIndex - NumImportedGlobals; wasm::WasmGlobal &Global = Globals[GlobalIndex]; GlobalType = &Global.Type; if (Global.SymbolName.empty()) Global.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedGlobals[Info.ElementIndex]; if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) { Info.Name = readString(Ctx); Info.ImportName = Import.Field; } else { Info.Name = Import.Field; } GlobalType = &Import.Global; Info.ImportModule = Import.Module; } break; case wasm::WASM_SYMBOL_TYPE_TABLE: Info.ElementIndex = readVaruint32(Ctx); if (!isValidTableNumber(Info.ElementIndex) || IsDefined != isDefinedTableNumber(Info.ElementIndex)) return make_error("invalid table symbol index", object_error::parse_failed); if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) == wasm::WASM_SYMBOL_BINDING_WEAK) return make_error("undefined weak table symbol", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned TableNumber = Info.ElementIndex - NumImportedTables; wasm::WasmTable &Table = Tables[TableNumber]; TableType = &Table.Type; if (Table.SymbolName.empty()) Table.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedTables[Info.ElementIndex]; if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) { Info.Name = readString(Ctx); Info.ImportName = Import.Field; } else { Info.Name = Import.Field; } TableType = &Import.Table; Info.ImportModule = Import.Module; } break; case wasm::WASM_SYMBOL_TYPE_DATA: Info.Name = readString(Ctx); if (IsDefined) { auto Index = readVaruint32(Ctx); auto Offset = readVaruint64(Ctx); auto Size = readVaruint64(Ctx); if (!(Info.Flags & wasm::WASM_SYMBOL_ABSOLUTE)) { if (static_cast(Index) >= DataSegments.size()) return make_error( "invalid data segment index: " + Twine(Index), object_error::parse_failed); size_t SegmentSize = DataSegments[Index].Data.Content.size(); if (Offset > SegmentSize) return make_error( "invalid data symbol offset: `" + Info.Name + "` (offset: " + Twine(Offset) + " segment size: " + Twine(SegmentSize) + ")", object_error::parse_failed); } Info.DataRef = wasm::WasmDataReference{Index, Offset, Size}; } break; case wasm::WASM_SYMBOL_TYPE_SECTION: { if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) != wasm::WASM_SYMBOL_BINDING_LOCAL) return make_error( "section symbols must have local binding", object_error::parse_failed); Info.ElementIndex = readVaruint32(Ctx); // Use somewhat unique section name as symbol name. StringRef SectionName = Sections[Info.ElementIndex].Name; Info.Name = SectionName; break; } case wasm::WASM_SYMBOL_TYPE_TAG: { Info.ElementIndex = readVaruint32(Ctx); if (!isValidTagIndex(Info.ElementIndex) || IsDefined != isDefinedTagIndex(Info.ElementIndex)) return make_error("invalid tag symbol index", object_error::parse_failed); if (!IsDefined && (Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) == wasm::WASM_SYMBOL_BINDING_WEAK) return make_error("undefined weak global symbol", object_error::parse_failed); if (IsDefined) { Info.Name = readString(Ctx); unsigned TagIndex = Info.ElementIndex - NumImportedTags; wasm::WasmTag &Tag = Tags[TagIndex]; Signature = &Signatures[Tag.SigIndex]; if (Tag.SymbolName.empty()) Tag.SymbolName = Info.Name; } else { wasm::WasmImport &Import = *ImportedTags[Info.ElementIndex]; if ((Info.Flags & wasm::WASM_SYMBOL_EXPLICIT_NAME) != 0) { Info.Name = readString(Ctx); Info.ImportName = Import.Field; } else { Info.Name = Import.Field; } Signature = &Signatures[Import.SigIndex]; Info.ImportModule = Import.Module; } break; } default: return make_error("invalid symbol type: " + Twine(unsigned(Info.Kind)), object_error::parse_failed); } if ((Info.Flags & wasm::WASM_SYMBOL_BINDING_MASK) != wasm::WASM_SYMBOL_BINDING_LOCAL && !SymbolNames.insert(Info.Name).second) return make_error("duplicate symbol name " + Twine(Info.Name), object_error::parse_failed); Symbols.emplace_back(Info, GlobalType, TableType, Signature); LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n"); } return Error::success(); } Error WasmObjectFile::parseLinkingSectionComdat(ReadContext &Ctx) { uint32_t ComdatCount = readVaruint32(Ctx); StringSet<> ComdatSet; for (unsigned ComdatIndex = 0; ComdatIndex < ComdatCount; ++ComdatIndex) { StringRef Name = readString(Ctx); if (Name.empty() || !ComdatSet.insert(Name).second) return make_error("bad/duplicate COMDAT name " + Twine(Name), object_error::parse_failed); LinkingData.Comdats.emplace_back(Name); uint32_t Flags = readVaruint32(Ctx); if (Flags != 0) return make_error("unsupported COMDAT flags", object_error::parse_failed); uint32_t EntryCount = readVaruint32(Ctx); while (EntryCount--) { unsigned Kind = readVaruint32(Ctx); unsigned Index = readVaruint32(Ctx); switch (Kind) { default: return make_error("invalid COMDAT entry type", object_error::parse_failed); case wasm::WASM_COMDAT_DATA: if (Index >= DataSegments.size()) return make_error( "COMDAT data index out of range", object_error::parse_failed); if (DataSegments[Index].Data.Comdat != UINT32_MAX) return make_error("data segment in two COMDATs", object_error::parse_failed); DataSegments[Index].Data.Comdat = ComdatIndex; break; case wasm::WASM_COMDAT_FUNCTION: if (!isDefinedFunctionIndex(Index)) return make_error( "COMDAT function index out of range", object_error::parse_failed); if (getDefinedFunction(Index).Comdat != UINT32_MAX) return make_error("function in two COMDATs", object_error::parse_failed); getDefinedFunction(Index).Comdat = ComdatIndex; break; case wasm::WASM_COMDAT_SECTION: if (Index >= Sections.size()) return make_error( "COMDAT section index out of range", object_error::parse_failed); if (Sections[Index].Type != wasm::WASM_SEC_CUSTOM) return make_error( "non-custom section in a COMDAT", object_error::parse_failed); Sections[Index].Comdat = ComdatIndex; break; } } } return Error::success(); } Error WasmObjectFile::parseProducersSection(ReadContext &Ctx) { llvm::SmallSet FieldsSeen; uint32_t Fields = readVaruint32(Ctx); for (size_t I = 0; I < Fields; ++I) { StringRef FieldName = readString(Ctx); if (!FieldsSeen.insert(FieldName).second) return make_error( "producers section does not have unique fields", object_error::parse_failed); std::vector> *ProducerVec = nullptr; if (FieldName == "language") { ProducerVec = &ProducerInfo.Languages; } else if (FieldName == "processed-by") { ProducerVec = &ProducerInfo.Tools; } else if (FieldName == "sdk") { ProducerVec = &ProducerInfo.SDKs; } else { return make_error( "producers section field is not named one of language, processed-by, " "or sdk", object_error::parse_failed); } uint32_t ValueCount = readVaruint32(Ctx); llvm::SmallSet ProducersSeen; for (size_t J = 0; J < ValueCount; ++J) { StringRef Name = readString(Ctx); StringRef Version = readString(Ctx); if (!ProducersSeen.insert(Name).second) { return make_error( "producers section contains repeated producer", object_error::parse_failed); } ProducerVec->emplace_back(std::string(Name), std::string(Version)); } } if (Ctx.Ptr != Ctx.End) return make_error("producers section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseTargetFeaturesSection(ReadContext &Ctx) { llvm::SmallSet FeaturesSeen; uint32_t FeatureCount = readVaruint32(Ctx); for (size_t I = 0; I < FeatureCount; ++I) { wasm::WasmFeatureEntry Feature; Feature.Prefix = readUint8(Ctx); switch (Feature.Prefix) { case wasm::WASM_FEATURE_PREFIX_USED: case wasm::WASM_FEATURE_PREFIX_REQUIRED: case wasm::WASM_FEATURE_PREFIX_DISALLOWED: break; default: return make_error("unknown feature policy prefix", object_error::parse_failed); } Feature.Name = std::string(readString(Ctx)); if (!FeaturesSeen.insert(Feature.Name).second) return make_error( "target features section contains repeated feature \"" + Feature.Name + "\"", object_error::parse_failed); TargetFeatures.push_back(Feature); } if (Ctx.Ptr != Ctx.End) return make_error( "target features section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseRelocSection(StringRef Name, ReadContext &Ctx) { uint32_t SectionIndex = readVaruint32(Ctx); if (SectionIndex >= Sections.size()) return make_error("invalid section index", object_error::parse_failed); WasmSection &Section = Sections[SectionIndex]; uint32_t RelocCount = readVaruint32(Ctx); uint32_t EndOffset = Section.Content.size(); uint32_t PreviousOffset = 0; while (RelocCount--) { wasm::WasmRelocation Reloc = {}; uint32_t type = readVaruint32(Ctx); Reloc.Type = type; Reloc.Offset = readVaruint32(Ctx); if (Reloc.Offset < PreviousOffset) return make_error("relocations not in offset order", object_error::parse_failed); auto badReloc = [&](StringRef msg) { return make_error( msg + ": " + Twine(Symbols[Reloc.Index].Info.Name), object_error::parse_failed); }; PreviousOffset = Reloc.Offset; Reloc.Index = readVaruint32(Ctx); switch (type) { case wasm::R_WASM_FUNCTION_INDEX_LEB: case wasm::R_WASM_FUNCTION_INDEX_I32: case wasm::R_WASM_TABLE_INDEX_SLEB: case wasm::R_WASM_TABLE_INDEX_SLEB64: case wasm::R_WASM_TABLE_INDEX_I32: case wasm::R_WASM_TABLE_INDEX_I64: case wasm::R_WASM_TABLE_INDEX_REL_SLEB: case wasm::R_WASM_TABLE_INDEX_REL_SLEB64: if (!isValidFunctionSymbol(Reloc.Index)) return badReloc("invalid function relocation"); break; case wasm::R_WASM_TABLE_NUMBER_LEB: if (!isValidTableSymbol(Reloc.Index)) return badReloc("invalid table relocation"); break; case wasm::R_WASM_TYPE_INDEX_LEB: if (Reloc.Index >= Signatures.size()) return badReloc("invalid relocation type index"); break; case wasm::R_WASM_GLOBAL_INDEX_LEB: // R_WASM_GLOBAL_INDEX_LEB are can be used against function and data // symbols to refer to their GOT entries. if (!isValidGlobalSymbol(Reloc.Index) && !isValidDataSymbol(Reloc.Index) && !isValidFunctionSymbol(Reloc.Index)) return badReloc("invalid global relocation"); break; case wasm::R_WASM_GLOBAL_INDEX_I32: if (!isValidGlobalSymbol(Reloc.Index)) return badReloc("invalid global relocation"); break; case wasm::R_WASM_TAG_INDEX_LEB: if (!isValidTagSymbol(Reloc.Index)) return badReloc("invalid tag relocation"); break; case wasm::R_WASM_MEMORY_ADDR_LEB: case wasm::R_WASM_MEMORY_ADDR_SLEB: case wasm::R_WASM_MEMORY_ADDR_I32: case wasm::R_WASM_MEMORY_ADDR_REL_SLEB: case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB: case wasm::R_WASM_MEMORY_ADDR_LOCREL_I32: if (!isValidDataSymbol(Reloc.Index)) return badReloc("invalid data relocation"); Reloc.Addend = readVarint32(Ctx); break; case wasm::R_WASM_MEMORY_ADDR_LEB64: case wasm::R_WASM_MEMORY_ADDR_SLEB64: case wasm::R_WASM_MEMORY_ADDR_I64: case wasm::R_WASM_MEMORY_ADDR_REL_SLEB64: case wasm::R_WASM_MEMORY_ADDR_TLS_SLEB64: if (!isValidDataSymbol(Reloc.Index)) return badReloc("invalid data relocation"); Reloc.Addend = readVarint64(Ctx); break; case wasm::R_WASM_FUNCTION_OFFSET_I32: if (!isValidFunctionSymbol(Reloc.Index)) return badReloc("invalid function relocation"); Reloc.Addend = readVarint32(Ctx); break; case wasm::R_WASM_FUNCTION_OFFSET_I64: if (!isValidFunctionSymbol(Reloc.Index)) return badReloc("invalid function relocation"); Reloc.Addend = readVarint64(Ctx); break; case wasm::R_WASM_SECTION_OFFSET_I32: if (!isValidSectionSymbol(Reloc.Index)) return badReloc("invalid section relocation"); Reloc.Addend = readVarint32(Ctx); break; default: return make_error("invalid relocation type: " + Twine(type), object_error::parse_failed); } // Relocations must fit inside the section, and must appear in order. They // also shouldn't overlap a function/element boundary, but we don't bother // to check that. uint64_t Size = 5; if (Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LEB64 || Reloc.Type == wasm::R_WASM_MEMORY_ADDR_SLEB64 || Reloc.Type == wasm::R_WASM_MEMORY_ADDR_REL_SLEB64) Size = 10; if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I32 || Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I32 || Reloc.Type == wasm::R_WASM_MEMORY_ADDR_LOCREL_I32 || Reloc.Type == wasm::R_WASM_SECTION_OFFSET_I32 || Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I32 || Reloc.Type == wasm::R_WASM_FUNCTION_INDEX_I32 || Reloc.Type == wasm::R_WASM_GLOBAL_INDEX_I32) Size = 4; if (Reloc.Type == wasm::R_WASM_TABLE_INDEX_I64 || Reloc.Type == wasm::R_WASM_MEMORY_ADDR_I64 || Reloc.Type == wasm::R_WASM_FUNCTION_OFFSET_I64) Size = 8; if (Reloc.Offset + Size > EndOffset) return make_error("invalid relocation offset", object_error::parse_failed); Section.Relocations.push_back(Reloc); } if (Ctx.Ptr != Ctx.End) return make_error("reloc section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseCustomSection(WasmSection &Sec, ReadContext &Ctx) { if (Sec.Name == "dylink") { if (Error Err = parseDylinkSection(Ctx)) return Err; } else if (Sec.Name == "dylink.0") { if (Error Err = parseDylink0Section(Ctx)) return Err; } else if (Sec.Name == "name") { if (Error Err = parseNameSection(Ctx)) return Err; } else if (Sec.Name == "linking") { if (Error Err = parseLinkingSection(Ctx)) return Err; } else if (Sec.Name == "producers") { if (Error Err = parseProducersSection(Ctx)) return Err; } else if (Sec.Name == "target_features") { if (Error Err = parseTargetFeaturesSection(Ctx)) return Err; } else if (Sec.Name.starts_with("reloc.")) { if (Error Err = parseRelocSection(Sec.Name, Ctx)) return Err; } return Error::success(); } Error WasmObjectFile::parseTypeSection(ReadContext &Ctx) { auto parseFieldDef = [&]() { uint32_t TypeCode = readVaruint32((Ctx)); /* Discard StorageType */ parseValType(Ctx, TypeCode); /* Discard Mutability */ readVaruint32(Ctx); }; uint32_t Count = readVaruint32(Ctx); Signatures.reserve(Count); while (Count--) { wasm::WasmSignature Sig; uint8_t Form = readUint8(Ctx); if (Form == wasm::WASM_TYPE_REC) { // Rec groups expand the type index space (beyond what was declared at // the top of the section, and also consume one element in that space. uint32_t RecSize = readVaruint32(Ctx); if (RecSize == 0) return make_error("Rec group size cannot be 0", object_error::parse_failed); Signatures.reserve(Signatures.size() + RecSize); Count += RecSize; Sig.Kind = wasm::WasmSignature::Placeholder; Signatures.push_back(std::move(Sig)); HasUnmodeledTypes = true; continue; } if (Form != wasm::WASM_TYPE_FUNC) { // Currently LLVM only models function types, and not other composite // types. Here we parse the type declarations just enough to skip past // them in the binary. if (Form == wasm::WASM_TYPE_SUB || Form == wasm::WASM_TYPE_SUB_FINAL) { uint32_t Supers = readVaruint32(Ctx); if (Supers > 0) { if (Supers != 1) return make_error( "Invalid number of supertypes", object_error::parse_failed); /* Discard SuperIndex */ readVaruint32(Ctx); } Form = readVaruint32(Ctx); } if (Form == wasm::WASM_TYPE_STRUCT) { uint32_t FieldCount = readVaruint32(Ctx); while (FieldCount--) { parseFieldDef(); } } else if (Form == wasm::WASM_TYPE_ARRAY) { parseFieldDef(); } else { return make_error("bad form", object_error::parse_failed); } Sig.Kind = wasm::WasmSignature::Placeholder; Signatures.push_back(std::move(Sig)); HasUnmodeledTypes = true; continue; } uint32_t ParamCount = readVaruint32(Ctx); Sig.Params.reserve(ParamCount); while (ParamCount--) { uint32_t ParamType = readUint8(Ctx); Sig.Params.push_back(parseValType(Ctx, ParamType)); continue; } uint32_t ReturnCount = readVaruint32(Ctx); while (ReturnCount--) { uint32_t ReturnType = readUint8(Ctx); Sig.Returns.push_back(parseValType(Ctx, ReturnType)); } Signatures.push_back(std::move(Sig)); } if (Ctx.Ptr != Ctx.End) return make_error("type section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseImportSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); uint32_t NumTypes = Signatures.size(); Imports.reserve(Count); for (uint32_t I = 0; I < Count; I++) { wasm::WasmImport Im; Im.Module = readString(Ctx); Im.Field = readString(Ctx); Im.Kind = readUint8(Ctx); switch (Im.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: NumImportedFunctions++; Im.SigIndex = readVaruint32(Ctx); if (Im.SigIndex >= NumTypes) return make_error("invalid function type", object_error::parse_failed); break; case wasm::WASM_EXTERNAL_GLOBAL: NumImportedGlobals++; Im.Global.Type = readUint8(Ctx); Im.Global.Mutable = readVaruint1(Ctx); break; case wasm::WASM_EXTERNAL_MEMORY: Im.Memory = readLimits(Ctx); if (Im.Memory.Flags & wasm::WASM_LIMITS_FLAG_IS_64) HasMemory64 = true; break; case wasm::WASM_EXTERNAL_TABLE: { Im.Table = readTableType(Ctx); NumImportedTables++; auto ElemType = Im.Table.ElemType; if (ElemType != wasm::ValType::FUNCREF && ElemType != wasm::ValType::EXTERNREF && ElemType != wasm::ValType::EXNREF && ElemType != wasm::ValType::OTHERREF) return make_error("invalid table element type", object_error::parse_failed); break; } case wasm::WASM_EXTERNAL_TAG: NumImportedTags++; if (readUint8(Ctx) != 0) // Reserved 'attribute' field return make_error("invalid attribute", object_error::parse_failed); Im.SigIndex = readVaruint32(Ctx); if (Im.SigIndex >= NumTypes) return make_error("invalid tag type", object_error::parse_failed); break; default: return make_error("unexpected import kind", object_error::parse_failed); } Imports.push_back(Im); } if (Ctx.Ptr != Ctx.End) return make_error("import section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseFunctionSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Functions.reserve(Count); uint32_t NumTypes = Signatures.size(); while (Count--) { uint32_t Type = readVaruint32(Ctx); if (Type >= NumTypes) return make_error("invalid function type", object_error::parse_failed); wasm::WasmFunction F; F.SigIndex = Type; Functions.push_back(F); } if (Ctx.Ptr != Ctx.End) return make_error("function section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseTableSection(ReadContext &Ctx) { TableSection = Sections.size(); uint32_t Count = readVaruint32(Ctx); Tables.reserve(Count); while (Count--) { wasm::WasmTable T; T.Type = readTableType(Ctx); T.Index = NumImportedTables + Tables.size(); Tables.push_back(T); auto ElemType = Tables.back().Type.ElemType; if (ElemType != wasm::ValType::FUNCREF && ElemType != wasm::ValType::EXTERNREF && ElemType != wasm::ValType::EXNREF && ElemType != wasm::ValType::OTHERREF) { return make_error("invalid table element type", object_error::parse_failed); } } if (Ctx.Ptr != Ctx.End) return make_error("table section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseMemorySection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Memories.reserve(Count); while (Count--) { auto Limits = readLimits(Ctx); if (Limits.Flags & wasm::WASM_LIMITS_FLAG_IS_64) HasMemory64 = true; Memories.push_back(Limits); } if (Ctx.Ptr != Ctx.End) return make_error("memory section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseTagSection(ReadContext &Ctx) { TagSection = Sections.size(); uint32_t Count = readVaruint32(Ctx); Tags.reserve(Count); uint32_t NumTypes = Signatures.size(); while (Count--) { if (readUint8(Ctx) != 0) // Reserved 'attribute' field return make_error("invalid attribute", object_error::parse_failed); uint32_t Type = readVaruint32(Ctx); if (Type >= NumTypes) return make_error("invalid tag type", object_error::parse_failed); wasm::WasmTag Tag; Tag.Index = NumImportedTags + Tags.size(); Tag.SigIndex = Type; Signatures[Type].Kind = wasm::WasmSignature::Tag; Tags.push_back(Tag); } if (Ctx.Ptr != Ctx.End) return make_error("tag section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseGlobalSection(ReadContext &Ctx) { GlobalSection = Sections.size(); const uint8_t *SectionStart = Ctx.Ptr; uint32_t Count = readVaruint32(Ctx); Globals.reserve(Count); while (Count--) { wasm::WasmGlobal Global; Global.Index = NumImportedGlobals + Globals.size(); const uint8_t *GlobalStart = Ctx.Ptr; Global.Offset = static_cast(GlobalStart - SectionStart); auto GlobalOpcode = readVaruint32(Ctx); Global.Type.Type = (uint8_t)parseValType(Ctx, GlobalOpcode); Global.Type.Mutable = readVaruint1(Ctx); if (Error Err = readInitExpr(Global.InitExpr, Ctx)) return Err; Global.Size = static_cast(Ctx.Ptr - GlobalStart); Globals.push_back(Global); } if (Ctx.Ptr != Ctx.End) return make_error("global section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseExportSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); Exports.reserve(Count); Symbols.reserve(Count); for (uint32_t I = 0; I < Count; I++) { wasm::WasmExport Ex; Ex.Name = readString(Ctx); Ex.Kind = readUint8(Ctx); Ex.Index = readVaruint32(Ctx); const wasm::WasmSignature *Signature = nullptr; const wasm::WasmGlobalType *GlobalType = nullptr; const wasm::WasmTableType *TableType = nullptr; wasm::WasmSymbolInfo Info; Info.Name = Ex.Name; Info.Flags = 0; switch (Ex.Kind) { case wasm::WASM_EXTERNAL_FUNCTION: { if (!isDefinedFunctionIndex(Ex.Index)) return make_error("invalid function export", object_error::parse_failed); getDefinedFunction(Ex.Index).ExportName = Ex.Name; Info.Kind = wasm::WASM_SYMBOL_TYPE_FUNCTION; Info.ElementIndex = Ex.Index; unsigned FuncIndex = Info.ElementIndex - NumImportedFunctions; wasm::WasmFunction &Function = Functions[FuncIndex]; Signature = &Signatures[Function.SigIndex]; break; } case wasm::WASM_EXTERNAL_GLOBAL: { if (!isValidGlobalIndex(Ex.Index)) return make_error("invalid global export", object_error::parse_failed); Info.Kind = wasm::WASM_SYMBOL_TYPE_DATA; uint64_t Offset = 0; if (isDefinedGlobalIndex(Ex.Index)) { auto Global = getDefinedGlobal(Ex.Index); if (!Global.InitExpr.Extended) { auto Inst = Global.InitExpr.Inst; if (Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) { Offset = Inst.Value.Int32; } else if (Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) { Offset = Inst.Value.Int64; } } } Info.DataRef = wasm::WasmDataReference{0, Offset, 0}; break; } case wasm::WASM_EXTERNAL_TAG: if (!isValidTagIndex(Ex.Index)) return make_error("invalid tag export", object_error::parse_failed); Info.Kind = wasm::WASM_SYMBOL_TYPE_TAG; Info.ElementIndex = Ex.Index; break; case wasm::WASM_EXTERNAL_MEMORY: break; case wasm::WASM_EXTERNAL_TABLE: Info.Kind = wasm::WASM_SYMBOL_TYPE_TABLE; Info.ElementIndex = Ex.Index; break; default: return make_error("unexpected export kind", object_error::parse_failed); } Exports.push_back(Ex); if (Ex.Kind != wasm::WASM_EXTERNAL_MEMORY) { Symbols.emplace_back(Info, GlobalType, TableType, Signature); LLVM_DEBUG(dbgs() << "Adding symbol: " << Symbols.back() << "\n"); } } if (Ctx.Ptr != Ctx.End) return make_error("export section ended prematurely", object_error::parse_failed); return Error::success(); } bool WasmObjectFile::isValidFunctionIndex(uint32_t Index) const { return Index < NumImportedFunctions + Functions.size(); } bool WasmObjectFile::isDefinedFunctionIndex(uint32_t Index) const { return Index >= NumImportedFunctions && isValidFunctionIndex(Index); } bool WasmObjectFile::isValidGlobalIndex(uint32_t Index) const { return Index < NumImportedGlobals + Globals.size(); } bool WasmObjectFile::isValidTableNumber(uint32_t Index) const { return Index < NumImportedTables + Tables.size(); } bool WasmObjectFile::isDefinedGlobalIndex(uint32_t Index) const { return Index >= NumImportedGlobals && isValidGlobalIndex(Index); } bool WasmObjectFile::isDefinedTableNumber(uint32_t Index) const { return Index >= NumImportedTables && isValidTableNumber(Index); } bool WasmObjectFile::isValidTagIndex(uint32_t Index) const { return Index < NumImportedTags + Tags.size(); } bool WasmObjectFile::isDefinedTagIndex(uint32_t Index) const { return Index >= NumImportedTags && isValidTagIndex(Index); } bool WasmObjectFile::isValidFunctionSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeFunction(); } bool WasmObjectFile::isValidTableSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeTable(); } bool WasmObjectFile::isValidGlobalSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeGlobal(); } bool WasmObjectFile::isValidTagSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeTag(); } bool WasmObjectFile::isValidDataSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeData(); } bool WasmObjectFile::isValidSectionSymbol(uint32_t Index) const { return Index < Symbols.size() && Symbols[Index].isTypeSection(); } wasm::WasmFunction &WasmObjectFile::getDefinedFunction(uint32_t Index) { assert(isDefinedFunctionIndex(Index)); return Functions[Index - NumImportedFunctions]; } const wasm::WasmFunction & WasmObjectFile::getDefinedFunction(uint32_t Index) const { assert(isDefinedFunctionIndex(Index)); return Functions[Index - NumImportedFunctions]; } const wasm::WasmGlobal &WasmObjectFile::getDefinedGlobal(uint32_t Index) const { assert(isDefinedGlobalIndex(Index)); return Globals[Index - NumImportedGlobals]; } wasm::WasmTag &WasmObjectFile::getDefinedTag(uint32_t Index) { assert(isDefinedTagIndex(Index)); return Tags[Index - NumImportedTags]; } Error WasmObjectFile::parseStartSection(ReadContext &Ctx) { StartFunction = readVaruint32(Ctx); if (!isValidFunctionIndex(StartFunction)) return make_error("invalid start function", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseCodeSection(ReadContext &Ctx) { CodeSection = Sections.size(); uint32_t FunctionCount = readVaruint32(Ctx); if (FunctionCount != Functions.size()) { return make_error("invalid function count", object_error::parse_failed); } for (uint32_t i = 0; i < FunctionCount; i++) { wasm::WasmFunction& Function = Functions[i]; const uint8_t *FunctionStart = Ctx.Ptr; uint32_t Size = readVaruint32(Ctx); const uint8_t *FunctionEnd = Ctx.Ptr + Size; Function.CodeOffset = Ctx.Ptr - FunctionStart; Function.Index = NumImportedFunctions + i; Function.CodeSectionOffset = FunctionStart - Ctx.Start; Function.Size = FunctionEnd - FunctionStart; uint32_t NumLocalDecls = readVaruint32(Ctx); Function.Locals.reserve(NumLocalDecls); while (NumLocalDecls--) { wasm::WasmLocalDecl Decl; Decl.Count = readVaruint32(Ctx); Decl.Type = readUint8(Ctx); Function.Locals.push_back(Decl); } uint32_t BodySize = FunctionEnd - Ctx.Ptr; // Ensure that Function is within Ctx's buffer. if (Ctx.Ptr + BodySize > Ctx.End) { return make_error("Function extends beyond buffer", object_error::parse_failed); } Function.Body = ArrayRef(Ctx.Ptr, BodySize); // This will be set later when reading in the linking metadata section. Function.Comdat = UINT32_MAX; Ctx.Ptr += BodySize; assert(Ctx.Ptr == FunctionEnd); } if (Ctx.Ptr != Ctx.End) return make_error("code section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseElemSection(ReadContext &Ctx) { uint32_t Count = readVaruint32(Ctx); ElemSegments.reserve(Count); while (Count--) { wasm::WasmElemSegment Segment; Segment.Flags = readVaruint32(Ctx); uint32_t SupportedFlags = wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER | wasm::WASM_ELEM_SEGMENT_IS_PASSIVE | wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS; if (Segment.Flags & ~SupportedFlags) return make_error( "Unsupported flags for element segment", object_error::parse_failed); bool IsPassive = (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_PASSIVE) != 0; bool IsDeclarative = IsPassive && (Segment.Flags & wasm::WASM_ELEM_SEGMENT_IS_DECLARATIVE); bool HasTableNumber = !IsPassive && (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_TABLE_NUMBER); bool HasInitExprs = (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS); bool HasElemKind = (Segment.Flags & wasm::WASM_ELEM_SEGMENT_MASK_HAS_ELEM_KIND) && !HasInitExprs; if (HasTableNumber) Segment.TableNumber = readVaruint32(Ctx); else Segment.TableNumber = 0; if (!isValidTableNumber(Segment.TableNumber)) return make_error("invalid TableNumber", object_error::parse_failed); if (IsPassive || IsDeclarative) { Segment.Offset.Extended = false; Segment.Offset.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; Segment.Offset.Inst.Value.Int32 = 0; } else { if (Error Err = readInitExpr(Segment.Offset, Ctx)) return Err; } if (HasElemKind) { auto ElemKind = readVaruint32(Ctx); if (Segment.Flags & wasm::WASM_ELEM_SEGMENT_HAS_INIT_EXPRS) { Segment.ElemKind = parseValType(Ctx, ElemKind); if (Segment.ElemKind != wasm::ValType::FUNCREF && Segment.ElemKind != wasm::ValType::EXTERNREF && Segment.ElemKind != wasm::ValType::EXNREF && Segment.ElemKind != wasm::ValType::OTHERREF) { return make_error("invalid elem type", object_error::parse_failed); } } else { if (ElemKind != 0) return make_error("invalid elem type", object_error::parse_failed); Segment.ElemKind = wasm::ValType::FUNCREF; } } else if (HasInitExprs) { auto ElemType = parseValType(Ctx, readVaruint32(Ctx)); Segment.ElemKind = ElemType; } else { Segment.ElemKind = wasm::ValType::FUNCREF; } uint32_t NumElems = readVaruint32(Ctx); if (HasInitExprs) { while (NumElems--) { wasm::WasmInitExpr Expr; if (Error Err = readInitExpr(Expr, Ctx)) return Err; } } else { while (NumElems--) { Segment.Functions.push_back(readVaruint32(Ctx)); } } ElemSegments.push_back(Segment); } if (Ctx.Ptr != Ctx.End) return make_error("elem section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseDataSection(ReadContext &Ctx) { DataSection = Sections.size(); uint32_t Count = readVaruint32(Ctx); if (DataCount && Count != *DataCount) return make_error( "number of data segments does not match DataCount section"); DataSegments.reserve(Count); while (Count--) { WasmSegment Segment; Segment.Data.InitFlags = readVaruint32(Ctx); Segment.Data.MemoryIndex = (Segment.Data.InitFlags & wasm::WASM_DATA_SEGMENT_HAS_MEMINDEX) ? readVaruint32(Ctx) : 0; if ((Segment.Data.InitFlags & wasm::WASM_DATA_SEGMENT_IS_PASSIVE) == 0) { if (Error Err = readInitExpr(Segment.Data.Offset, Ctx)) return Err; } else { Segment.Data.Offset.Extended = false; Segment.Data.Offset.Inst.Opcode = wasm::WASM_OPCODE_I32_CONST; Segment.Data.Offset.Inst.Value.Int32 = 0; } uint32_t Size = readVaruint32(Ctx); if (Size > (size_t)(Ctx.End - Ctx.Ptr)) return make_error("invalid segment size", object_error::parse_failed); Segment.Data.Content = ArrayRef(Ctx.Ptr, Size); // The rest of these Data fields are set later, when reading in the linking // metadata section. Segment.Data.Alignment = 0; Segment.Data.LinkingFlags = 0; Segment.Data.Comdat = UINT32_MAX; Segment.SectionOffset = Ctx.Ptr - Ctx.Start; Ctx.Ptr += Size; DataSegments.push_back(Segment); } if (Ctx.Ptr != Ctx.End) return make_error("data section ended prematurely", object_error::parse_failed); return Error::success(); } Error WasmObjectFile::parseDataCountSection(ReadContext &Ctx) { DataCount = readVaruint32(Ctx); return Error::success(); } const wasm::WasmObjectHeader &WasmObjectFile::getHeader() const { return Header; } void WasmObjectFile::moveSymbolNext(DataRefImpl &Symb) const { Symb.d.b++; } Expected WasmObjectFile::getSymbolFlags(DataRefImpl Symb) const { uint32_t Result = SymbolRef::SF_None; const WasmSymbol &Sym = getWasmSymbol(Symb); LLVM_DEBUG(dbgs() << "getSymbolFlags: ptr=" << &Sym << " " << Sym << "\n"); if (Sym.isBindingWeak()) Result |= SymbolRef::SF_Weak; if (!Sym.isBindingLocal()) Result |= SymbolRef::SF_Global; if (Sym.isHidden()) Result |= SymbolRef::SF_Hidden; if (!Sym.isDefined()) Result |= SymbolRef::SF_Undefined; if (Sym.isTypeFunction()) Result |= SymbolRef::SF_Executable; return Result; } basic_symbol_iterator WasmObjectFile::symbol_begin() const { DataRefImpl Ref; Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null Ref.d.b = 0; // Symbol index return BasicSymbolRef(Ref, this); } basic_symbol_iterator WasmObjectFile::symbol_end() const { DataRefImpl Ref; Ref.d.a = 1; // Arbitrary non-zero value so that Ref.p is non-null Ref.d.b = Symbols.size(); // Symbol index return BasicSymbolRef(Ref, this); } const WasmSymbol &WasmObjectFile::getWasmSymbol(const DataRefImpl &Symb) const { return Symbols[Symb.d.b]; } const WasmSymbol &WasmObjectFile::getWasmSymbol(const SymbolRef &Symb) const { return getWasmSymbol(Symb.getRawDataRefImpl()); } Expected WasmObjectFile::getSymbolName(DataRefImpl Symb) const { return getWasmSymbol(Symb).Info.Name; } Expected WasmObjectFile::getSymbolAddress(DataRefImpl Symb) const { auto &Sym = getWasmSymbol(Symb); if (!Sym.isDefined()) return 0; Expected Sec = getSymbolSection(Symb); if (!Sec) return Sec.takeError(); uint32_t SectionAddress = getSectionAddress(Sec.get()->getRawDataRefImpl()); if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_FUNCTION && isDefinedFunctionIndex(Sym.Info.ElementIndex)) { return getDefinedFunction(Sym.Info.ElementIndex).CodeSectionOffset + SectionAddress; } if (Sym.Info.Kind == wasm::WASM_SYMBOL_TYPE_GLOBAL && isDefinedGlobalIndex(Sym.Info.ElementIndex)) { return getDefinedGlobal(Sym.Info.ElementIndex).Offset + SectionAddress; } return getSymbolValue(Symb); } uint64_t WasmObjectFile::getWasmSymbolValue(const WasmSymbol &Sym) const { switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: case wasm::WASM_SYMBOL_TYPE_GLOBAL: case wasm::WASM_SYMBOL_TYPE_TAG: case wasm::WASM_SYMBOL_TYPE_TABLE: return Sym.Info.ElementIndex; case wasm::WASM_SYMBOL_TYPE_DATA: { // The value of a data symbol is the segment offset, plus the symbol // offset within the segment. uint32_t SegmentIndex = Sym.Info.DataRef.Segment; const wasm::WasmDataSegment &Segment = DataSegments[SegmentIndex].Data; if (Segment.Offset.Extended) { llvm_unreachable("extended init exprs not supported"); } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I32_CONST) { return Segment.Offset.Inst.Value.Int32 + Sym.Info.DataRef.Offset; } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_I64_CONST) { return Segment.Offset.Inst.Value.Int64 + Sym.Info.DataRef.Offset; } else if (Segment.Offset.Inst.Opcode == wasm::WASM_OPCODE_GLOBAL_GET) { return Sym.Info.DataRef.Offset; } else { llvm_unreachable("unknown init expr opcode"); } } case wasm::WASM_SYMBOL_TYPE_SECTION: return 0; } llvm_unreachable("invalid symbol type"); } uint64_t WasmObjectFile::getSymbolValueImpl(DataRefImpl Symb) const { return getWasmSymbolValue(getWasmSymbol(Symb)); } uint32_t WasmObjectFile::getSymbolAlignment(DataRefImpl Symb) const { llvm_unreachable("not yet implemented"); return 0; } uint64_t WasmObjectFile::getCommonSymbolSizeImpl(DataRefImpl Symb) const { llvm_unreachable("not yet implemented"); return 0; } Expected WasmObjectFile::getSymbolType(DataRefImpl Symb) const { const WasmSymbol &Sym = getWasmSymbol(Symb); switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: return SymbolRef::ST_Function; case wasm::WASM_SYMBOL_TYPE_GLOBAL: return SymbolRef::ST_Other; case wasm::WASM_SYMBOL_TYPE_DATA: return SymbolRef::ST_Data; case wasm::WASM_SYMBOL_TYPE_SECTION: return SymbolRef::ST_Debug; case wasm::WASM_SYMBOL_TYPE_TAG: return SymbolRef::ST_Other; case wasm::WASM_SYMBOL_TYPE_TABLE: return SymbolRef::ST_Other; } llvm_unreachable("unknown WasmSymbol::SymbolType"); return SymbolRef::ST_Other; } Expected WasmObjectFile::getSymbolSection(DataRefImpl Symb) const { const WasmSymbol &Sym = getWasmSymbol(Symb); if (Sym.isUndefined()) return section_end(); DataRefImpl Ref; Ref.d.a = getSymbolSectionIdImpl(Sym); return section_iterator(SectionRef(Ref, this)); } uint32_t WasmObjectFile::getSymbolSectionId(SymbolRef Symb) const { const WasmSymbol &Sym = getWasmSymbol(Symb); return getSymbolSectionIdImpl(Sym); } uint32_t WasmObjectFile::getSymbolSectionIdImpl(const WasmSymbol &Sym) const { switch (Sym.Info.Kind) { case wasm::WASM_SYMBOL_TYPE_FUNCTION: return CodeSection; case wasm::WASM_SYMBOL_TYPE_GLOBAL: return GlobalSection; case wasm::WASM_SYMBOL_TYPE_DATA: return DataSection; case wasm::WASM_SYMBOL_TYPE_SECTION: return Sym.Info.ElementIndex; case wasm::WASM_SYMBOL_TYPE_TAG: return TagSection; case wasm::WASM_SYMBOL_TYPE_TABLE: return TableSection; default: llvm_unreachable("unknown WasmSymbol::SymbolType"); } } uint32_t WasmObjectFile::getSymbolSize(SymbolRef Symb) const { const WasmSymbol &Sym = getWasmSymbol(Symb); if (!Sym.isDefined()) return 0; if (Sym.isTypeGlobal()) return getDefinedGlobal(Sym.Info.ElementIndex).Size; if (Sym.isTypeData()) return Sym.Info.DataRef.Size; if (Sym.isTypeFunction()) return functions()[Sym.Info.ElementIndex - getNumImportedFunctions()].Size; // Currently symbol size is only tracked for data segments and functions. In // principle we could also track size (e.g. binary size) for tables, globals // and element segments etc too. return 0; } void WasmObjectFile::moveSectionNext(DataRefImpl &Sec) const { Sec.d.a++; } Expected WasmObjectFile::getSectionName(DataRefImpl Sec) const { const WasmSection &S = Sections[Sec.d.a]; if (S.Type == wasm::WASM_SEC_CUSTOM) return S.Name; if (S.Type > wasm::WASM_SEC_LAST_KNOWN) return createStringError(object_error::invalid_section_index, ""); return wasm::sectionTypeToString(S.Type); } uint64_t WasmObjectFile::getSectionAddress(DataRefImpl Sec) const { // For object files, use 0 for section addresses, and section offsets for // symbol addresses. For linked files, use file offsets. // See also getSymbolAddress. return isRelocatableObject() || isSharedObject() ? 0 : Sections[Sec.d.a].Offset; } uint64_t WasmObjectFile::getSectionIndex(DataRefImpl Sec) const { return Sec.d.a; } uint64_t WasmObjectFile::getSectionSize(DataRefImpl Sec) const { const WasmSection &S = Sections[Sec.d.a]; return S.Content.size(); } Expected> WasmObjectFile::getSectionContents(DataRefImpl Sec) const { const WasmSection &S = Sections[Sec.d.a]; // This will never fail since wasm sections can never be empty (user-sections // must have a name and non-user sections each have a defined structure). return S.Content; } uint64_t WasmObjectFile::getSectionAlignment(DataRefImpl Sec) const { return 1; } bool WasmObjectFile::isSectionCompressed(DataRefImpl Sec) const { return false; } bool WasmObjectFile::isSectionText(DataRefImpl Sec) const { return getWasmSection(Sec).Type == wasm::WASM_SEC_CODE; } bool WasmObjectFile::isSectionData(DataRefImpl Sec) const { return getWasmSection(Sec).Type == wasm::WASM_SEC_DATA; } bool WasmObjectFile::isSectionBSS(DataRefImpl Sec) const { return false; } bool WasmObjectFile::isSectionVirtual(DataRefImpl Sec) const { return false; } relocation_iterator WasmObjectFile::section_rel_begin(DataRefImpl Ref) const { DataRefImpl RelocRef; RelocRef.d.a = Ref.d.a; RelocRef.d.b = 0; return relocation_iterator(RelocationRef(RelocRef, this)); } relocation_iterator WasmObjectFile::section_rel_end(DataRefImpl Ref) const { const WasmSection &Sec = getWasmSection(Ref); DataRefImpl RelocRef; RelocRef.d.a = Ref.d.a; RelocRef.d.b = Sec.Relocations.size(); return relocation_iterator(RelocationRef(RelocRef, this)); } void WasmObjectFile::moveRelocationNext(DataRefImpl &Rel) const { Rel.d.b++; } uint64_t WasmObjectFile::getRelocationOffset(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); return Rel.Offset; } symbol_iterator WasmObjectFile::getRelocationSymbol(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); if (Rel.Type == wasm::R_WASM_TYPE_INDEX_LEB) return symbol_end(); DataRefImpl Sym; Sym.d.a = 1; Sym.d.b = Rel.Index; return symbol_iterator(SymbolRef(Sym, this)); } uint64_t WasmObjectFile::getRelocationType(DataRefImpl Ref) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); return Rel.Type; } void WasmObjectFile::getRelocationTypeName( DataRefImpl Ref, SmallVectorImpl &Result) const { const wasm::WasmRelocation &Rel = getWasmRelocation(Ref); StringRef Res = "Unknown"; #define WASM_RELOC(name, value) \ case wasm::name: \ Res = #name; \ break; switch (Rel.Type) { #include "llvm/BinaryFormat/WasmRelocs.def" } #undef WASM_RELOC Result.append(Res.begin(), Res.end()); } section_iterator WasmObjectFile::section_begin() const { DataRefImpl Ref; Ref.d.a = 0; return section_iterator(SectionRef(Ref, this)); } section_iterator WasmObjectFile::section_end() const { DataRefImpl Ref; Ref.d.a = Sections.size(); return section_iterator(SectionRef(Ref, this)); } uint8_t WasmObjectFile::getBytesInAddress() const { return HasMemory64 ? 8 : 4; } StringRef WasmObjectFile::getFileFormatName() const { return "WASM"; } Triple::ArchType WasmObjectFile::getArch() const { return HasMemory64 ? Triple::wasm64 : Triple::wasm32; } Expected WasmObjectFile::getFeatures() const { return SubtargetFeatures(); } bool WasmObjectFile::isRelocatableObject() const { return HasLinkingSection; } bool WasmObjectFile::isSharedObject() const { return HasDylinkSection; } const WasmSection &WasmObjectFile::getWasmSection(DataRefImpl Ref) const { assert(Ref.d.a < Sections.size()); return Sections[Ref.d.a]; } const WasmSection & WasmObjectFile::getWasmSection(const SectionRef &Section) const { return getWasmSection(Section.getRawDataRefImpl()); } const wasm::WasmRelocation & WasmObjectFile::getWasmRelocation(const RelocationRef &Ref) const { return getWasmRelocation(Ref.getRawDataRefImpl()); } const wasm::WasmRelocation & WasmObjectFile::getWasmRelocation(DataRefImpl Ref) const { assert(Ref.d.a < Sections.size()); const WasmSection &Sec = Sections[Ref.d.a]; assert(Ref.d.b < Sec.Relocations.size()); return Sec.Relocations[Ref.d.b]; } int WasmSectionOrderChecker::getSectionOrder(unsigned ID, StringRef CustomSectionName) { switch (ID) { case wasm::WASM_SEC_CUSTOM: return StringSwitch(CustomSectionName) .Case("dylink", WASM_SEC_ORDER_DYLINK) .Case("dylink.0", WASM_SEC_ORDER_DYLINK) .Case("linking", WASM_SEC_ORDER_LINKING) .StartsWith("reloc.", WASM_SEC_ORDER_RELOC) .Case("name", WASM_SEC_ORDER_NAME) .Case("producers", WASM_SEC_ORDER_PRODUCERS) .Case("target_features", WASM_SEC_ORDER_TARGET_FEATURES) .Default(WASM_SEC_ORDER_NONE); case wasm::WASM_SEC_TYPE: return WASM_SEC_ORDER_TYPE; case wasm::WASM_SEC_IMPORT: return WASM_SEC_ORDER_IMPORT; case wasm::WASM_SEC_FUNCTION: return WASM_SEC_ORDER_FUNCTION; case wasm::WASM_SEC_TABLE: return WASM_SEC_ORDER_TABLE; case wasm::WASM_SEC_MEMORY: return WASM_SEC_ORDER_MEMORY; case wasm::WASM_SEC_GLOBAL: return WASM_SEC_ORDER_GLOBAL; case wasm::WASM_SEC_EXPORT: return WASM_SEC_ORDER_EXPORT; case wasm::WASM_SEC_START: return WASM_SEC_ORDER_START; case wasm::WASM_SEC_ELEM: return WASM_SEC_ORDER_ELEM; case wasm::WASM_SEC_CODE: return WASM_SEC_ORDER_CODE; case wasm::WASM_SEC_DATA: return WASM_SEC_ORDER_DATA; case wasm::WASM_SEC_DATACOUNT: return WASM_SEC_ORDER_DATACOUNT; case wasm::WASM_SEC_TAG: return WASM_SEC_ORDER_TAG; default: return WASM_SEC_ORDER_NONE; } } // Represents the edges in a directed graph where any node B reachable from node // A is not allowed to appear before A in the section ordering, but may appear // afterward. int WasmSectionOrderChecker::DisallowedPredecessors [WASM_NUM_SEC_ORDERS][WASM_NUM_SEC_ORDERS] = { // WASM_SEC_ORDER_NONE {}, // WASM_SEC_ORDER_TYPE {WASM_SEC_ORDER_TYPE, WASM_SEC_ORDER_IMPORT}, // WASM_SEC_ORDER_IMPORT {WASM_SEC_ORDER_IMPORT, WASM_SEC_ORDER_FUNCTION}, // WASM_SEC_ORDER_FUNCTION {WASM_SEC_ORDER_FUNCTION, WASM_SEC_ORDER_TABLE}, // WASM_SEC_ORDER_TABLE {WASM_SEC_ORDER_TABLE, WASM_SEC_ORDER_MEMORY}, // WASM_SEC_ORDER_MEMORY {WASM_SEC_ORDER_MEMORY, WASM_SEC_ORDER_TAG}, // WASM_SEC_ORDER_TAG {WASM_SEC_ORDER_TAG, WASM_SEC_ORDER_GLOBAL}, // WASM_SEC_ORDER_GLOBAL {WASM_SEC_ORDER_GLOBAL, WASM_SEC_ORDER_EXPORT}, // WASM_SEC_ORDER_EXPORT {WASM_SEC_ORDER_EXPORT, WASM_SEC_ORDER_START}, // WASM_SEC_ORDER_START {WASM_SEC_ORDER_START, WASM_SEC_ORDER_ELEM}, // WASM_SEC_ORDER_ELEM {WASM_SEC_ORDER_ELEM, WASM_SEC_ORDER_DATACOUNT}, // WASM_SEC_ORDER_DATACOUNT {WASM_SEC_ORDER_DATACOUNT, WASM_SEC_ORDER_CODE}, // WASM_SEC_ORDER_CODE {WASM_SEC_ORDER_CODE, WASM_SEC_ORDER_DATA}, // WASM_SEC_ORDER_DATA {WASM_SEC_ORDER_DATA, WASM_SEC_ORDER_LINKING}, // Custom Sections // WASM_SEC_ORDER_DYLINK {WASM_SEC_ORDER_DYLINK, WASM_SEC_ORDER_TYPE}, // WASM_SEC_ORDER_LINKING {WASM_SEC_ORDER_LINKING, WASM_SEC_ORDER_RELOC, WASM_SEC_ORDER_NAME}, // WASM_SEC_ORDER_RELOC (can be repeated) {}, // WASM_SEC_ORDER_NAME {WASM_SEC_ORDER_NAME, WASM_SEC_ORDER_PRODUCERS}, // WASM_SEC_ORDER_PRODUCERS {WASM_SEC_ORDER_PRODUCERS, WASM_SEC_ORDER_TARGET_FEATURES}, // WASM_SEC_ORDER_TARGET_FEATURES {WASM_SEC_ORDER_TARGET_FEATURES}}; bool WasmSectionOrderChecker::isValidSectionOrder(unsigned ID, StringRef CustomSectionName) { int Order = getSectionOrder(ID, CustomSectionName); if (Order == WASM_SEC_ORDER_NONE) return true; // Disallowed predecessors we need to check for SmallVector WorkList; // Keep track of completed checks to avoid repeating work bool Checked[WASM_NUM_SEC_ORDERS] = {}; int Curr = Order; while (true) { // Add new disallowed predecessors to work list for (size_t I = 0;; ++I) { int Next = DisallowedPredecessors[Curr][I]; if (Next == WASM_SEC_ORDER_NONE) break; if (Checked[Next]) continue; WorkList.push_back(Next); Checked[Next] = true; } if (WorkList.empty()) break; // Consider next disallowed predecessor Curr = WorkList.pop_back_val(); if (Seen[Curr]) return false; } // Have not seen any disallowed predecessors Seen[Order] = true; return true; }