//===- AsmParser.cpp - Parser for Assembly Files --------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This class implements a parser for assembly files similar to gas syntax. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/DebugInfo/CodeView/SymbolRecord.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCCodeView.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDirectives.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInstPrinter.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCParser/AsmCond.h" #include "llvm/MC/MCParser/AsmLexer.h" #include "llvm/MC/MCParser/MCAsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserExtension.h" #include "llvm/MC/MCParser/MCAsmParserUtils.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCSymbolMachO.h" #include "llvm/MC/MCTargetOptions.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MD5.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SMLoc.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; MCAsmParserSemaCallback::~MCAsmParserSemaCallback() = default; namespace { /// Helper types for tracking macro definitions. typedef std::vector MCAsmMacroArgument; typedef std::vector MCAsmMacroArguments; /// Helper class for storing information about an active macro /// instantiation. struct MacroInstantiation { /// The location of the instantiation. SMLoc InstantiationLoc; /// The buffer where parsing should resume upon instantiation completion. unsigned ExitBuffer; /// The location where parsing should resume upon instantiation completion. SMLoc ExitLoc; /// The depth of TheCondStack at the start of the instantiation. size_t CondStackDepth; }; struct ParseStatementInfo { /// The parsed operands from the last parsed statement. SmallVector, 8> ParsedOperands; /// The opcode from the last parsed instruction. unsigned Opcode = ~0U; /// Was there an error parsing the inline assembly? bool ParseError = false; SmallVectorImpl *AsmRewrites = nullptr; ParseStatementInfo() = delete; ParseStatementInfo(SmallVectorImpl *rewrites) : AsmRewrites(rewrites) {} }; /// The concrete assembly parser instance. class AsmParser : public MCAsmParser { private: AsmLexer Lexer; MCContext &Ctx; MCStreamer &Out; const MCAsmInfo &MAI; SourceMgr &SrcMgr; SourceMgr::DiagHandlerTy SavedDiagHandler; void *SavedDiagContext; std::unique_ptr PlatformParser; SMLoc StartTokLoc; std::optional CFIStartProcLoc; /// This is the current buffer index we're lexing from as managed by the /// SourceMgr object. unsigned CurBuffer; AsmCond TheCondState; std::vector TheCondStack; /// maps directive names to handler methods in parser /// extensions. Extensions register themselves in this map by calling /// addDirectiveHandler. StringMap ExtensionDirectiveMap; /// Stack of active macro instantiations. std::vector ActiveMacros; /// List of bodies of anonymous macros. std::deque MacroLikeBodies; /// Boolean tracking whether macro substitution is enabled. unsigned MacrosEnabledFlag : 1; /// Keeps track of how many .macro's have been instantiated. unsigned NumOfMacroInstantiations; /// The values from the last parsed cpp hash file line comment if any. struct CppHashInfoTy { StringRef Filename; int64_t LineNumber; SMLoc Loc; unsigned Buf; CppHashInfoTy() : LineNumber(0), Buf(0) {} }; CppHashInfoTy CppHashInfo; /// The filename from the first cpp hash file line comment, if any. StringRef FirstCppHashFilename; /// List of forward directional labels for diagnosis at the end. SmallVector, 4> DirLabels; SmallSet LTODiscardSymbols; /// AssemblerDialect. ~OU means unset value and use value provided by MAI. unsigned AssemblerDialect = ~0U; /// is Darwin compatibility enabled? bool IsDarwin = false; /// Are we parsing ms-style inline assembly? bool ParsingMSInlineAsm = false; /// Did we already inform the user about inconsistent MD5 usage? bool ReportedInconsistentMD5 = false; // Is alt macro mode enabled. bool AltMacroMode = false; protected: virtual bool parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); /// This routine uses the target specific ParseInstruction function to /// parse an instruction into Operands, and then call the target specific /// MatchAndEmit function to match and emit the instruction. bool parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, StringRef IDVal, AsmToken ID, SMLoc IDLoc); /// Should we emit DWARF describing this assembler source? (Returns false if /// the source has .file directives, which means we don't want to generate /// info describing the assembler source itself.) bool enabledGenDwarfForAssembly(); public: AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI, unsigned CB); AsmParser(const AsmParser &) = delete; AsmParser &operator=(const AsmParser &) = delete; ~AsmParser() override; bool Run(bool NoInitialTextSection, bool NoFinalize = false) override; void addDirectiveHandler(StringRef Directive, ExtensionDirectiveHandler Handler) override { ExtensionDirectiveMap[Directive] = Handler; } void addAliasForDirective(StringRef Directive, StringRef Alias) override { DirectiveKindMap[Directive.lower()] = DirectiveKindMap[Alias.lower()]; } /// @name MCAsmParser Interface /// { SourceMgr &getSourceManager() override { return SrcMgr; } MCAsmLexer &getLexer() override { return Lexer; } MCContext &getContext() override { return Ctx; } MCStreamer &getStreamer() override { return Out; } CodeViewContext &getCVContext() { return Ctx.getCVContext(); } unsigned getAssemblerDialect() override { if (AssemblerDialect == ~0U) return MAI.getAssemblerDialect(); else return AssemblerDialect; } void setAssemblerDialect(unsigned i) override { AssemblerDialect = i; } void Note(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; bool Warning(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; bool printError(SMLoc L, const Twine &Msg, SMRange Range = std::nullopt) override; const AsmToken &Lex() override; void setParsingMSInlineAsm(bool V) override { ParsingMSInlineAsm = V; // When parsing MS inline asm, we must lex 0b1101 and 0ABCH as binary and // hex integer literals. Lexer.setLexMasmIntegers(V); } bool isParsingMSInlineAsm() override { return ParsingMSInlineAsm; } bool discardLTOSymbol(StringRef Name) const override { return LTODiscardSymbols.contains(Name); } bool parseMSInlineAsm(std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl> &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) override; bool parseExpression(const MCExpr *&Res); bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, AsmTypeInfo *TypeInfo) override; bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) override; bool parseAbsoluteExpression(int64_t &Res) override; /// Parse a floating point expression using the float \p Semantics /// and set \p Res to the value. bool parseRealValue(const fltSemantics &Semantics, APInt &Res); /// Parse an identifier or string (as a quoted identifier) /// and set \p Res to the identifier contents. bool parseIdentifier(StringRef &Res) override; void eatToEndOfStatement() override; bool checkForValidSection() override; /// } private: bool parseCurlyBlockScope(SmallVectorImpl& AsmStrRewrites); bool parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo = true); void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, ArrayRef Parameters); bool expandMacro(raw_svector_ostream &OS, MCAsmMacro &Macro, ArrayRef Parameters, ArrayRef A, bool EnableAtPseudoVariable); /// Are macros enabled in the parser? bool areMacrosEnabled() {return MacrosEnabledFlag;} /// Control a flag in the parser that enables or disables macros. void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;} /// Are we inside a macro instantiation? bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} /// Handle entry to macro instantiation. /// /// \param M The macro. /// \param NameLoc Instantiation location. bool handleMacroEntry(MCAsmMacro *M, SMLoc NameLoc); /// Handle exit from macro instantiation. void handleMacroExit(); /// Extract AsmTokens for a macro argument. bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg); /// Parse all macro arguments for a given macro. bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A); void printMacroInstantiations(); void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, SMRange Range = std::nullopt) const { ArrayRef Ranges(Range); SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); } static void DiagHandler(const SMDiagnostic &Diag, void *Context); /// Enter the specified file. This returns true on failure. bool enterIncludeFile(const std::string &Filename); /// Process the specified file for the .incbin directive. /// This returns true on failure. bool processIncbinFile(const std::string &Filename, int64_t Skip = 0, const MCExpr *Count = nullptr, SMLoc Loc = SMLoc()); /// Reset the current lexer position to that given by \p Loc. The /// current token is not set; clients should ensure Lex() is called /// subsequently. /// /// \param InBuffer If not 0, should be the known buffer id that contains the /// location. void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0); /// Parse up to the end of statement and a return the contents from the /// current token until the end of the statement; the current token on exit /// will be either the EndOfStatement or EOF. StringRef parseStringToEndOfStatement() override; /// Parse until the end of a statement or a comma is encountered, /// return the contents from the current token up to the end or comma. StringRef parseStringToComma(); enum class AssignmentKind { Set, Equiv, Equal, LTOSetConditional, }; bool parseAssignment(StringRef Name, AssignmentKind Kind); unsigned getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind); bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); bool parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName); bool parseCVFileId(int64_t &FileId, StringRef DirectiveName); // Generic (target and platform independent) directive parsing. enum DirectiveKind { DK_NO_DIRECTIVE, // Placeholder DK_SET, DK_EQU, DK_EQUIV, DK_ASCII, DK_ASCIZ, DK_STRING, DK_BYTE, DK_SHORT, DK_RELOC, DK_VALUE, DK_2BYTE, DK_LONG, DK_INT, DK_4BYTE, DK_QUAD, DK_8BYTE, DK_OCTA, DK_DC, DK_DC_A, DK_DC_B, DK_DC_D, DK_DC_L, DK_DC_S, DK_DC_W, DK_DC_X, DK_DCB, DK_DCB_B, DK_DCB_D, DK_DCB_L, DK_DCB_S, DK_DCB_W, DK_DCB_X, DK_DS, DK_DS_B, DK_DS_D, DK_DS_L, DK_DS_P, DK_DS_S, DK_DS_W, DK_DS_X, DK_SINGLE, DK_FLOAT, DK_DOUBLE, DK_ALIGN, DK_ALIGN32, DK_BALIGN, DK_BALIGNW, DK_BALIGNL, DK_P2ALIGN, DK_P2ALIGNW, DK_P2ALIGNL, DK_ORG, DK_FILL, DK_ENDR, DK_BUNDLE_ALIGN_MODE, DK_BUNDLE_LOCK, DK_BUNDLE_UNLOCK, DK_ZERO, DK_EXTERN, DK_GLOBL, DK_GLOBAL, DK_LAZY_REFERENCE, DK_NO_DEAD_STRIP, DK_SYMBOL_RESOLVER, DK_PRIVATE_EXTERN, DK_REFERENCE, DK_WEAK_DEFINITION, DK_WEAK_REFERENCE, DK_WEAK_DEF_CAN_BE_HIDDEN, DK_COLD, DK_COMM, DK_COMMON, DK_LCOMM, DK_ABORT, DK_INCLUDE, DK_INCBIN, DK_CODE16, DK_CODE16GCC, DK_REPT, DK_IRP, DK_IRPC, DK_IF, DK_IFEQ, DK_IFGE, DK_IFGT, DK_IFLE, DK_IFLT, DK_IFNE, DK_IFB, DK_IFNB, DK_IFC, DK_IFEQS, DK_IFNC, DK_IFNES, DK_IFDEF, DK_IFNDEF, DK_IFNOTDEF, DK_ELSEIF, DK_ELSE, DK_ENDIF, DK_SPACE, DK_SKIP, DK_FILE, DK_LINE, DK_LOC, DK_STABS, DK_CV_FILE, DK_CV_FUNC_ID, DK_CV_INLINE_SITE_ID, DK_CV_LOC, DK_CV_LINETABLE, DK_CV_INLINE_LINETABLE, DK_CV_DEF_RANGE, DK_CV_STRINGTABLE, DK_CV_STRING, DK_CV_FILECHECKSUMS, DK_CV_FILECHECKSUM_OFFSET, DK_CV_FPO_DATA, DK_CFI_SECTIONS, DK_CFI_STARTPROC, DK_CFI_ENDPROC, DK_CFI_DEF_CFA, DK_CFI_DEF_CFA_OFFSET, DK_CFI_ADJUST_CFA_OFFSET, DK_CFI_DEF_CFA_REGISTER, DK_CFI_LLVM_DEF_ASPACE_CFA, DK_CFI_OFFSET, DK_CFI_REL_OFFSET, DK_CFI_PERSONALITY, DK_CFI_LSDA, DK_CFI_REMEMBER_STATE, DK_CFI_RESTORE_STATE, DK_CFI_SAME_VALUE, DK_CFI_RESTORE, DK_CFI_ESCAPE, DK_CFI_RETURN_COLUMN, DK_CFI_SIGNAL_FRAME, DK_CFI_UNDEFINED, DK_CFI_REGISTER, DK_CFI_WINDOW_SAVE, DK_CFI_LABEL, DK_CFI_B_KEY_FRAME, DK_MACROS_ON, DK_MACROS_OFF, DK_ALTMACRO, DK_NOALTMACRO, DK_MACRO, DK_EXITM, DK_ENDM, DK_ENDMACRO, DK_PURGEM, DK_SLEB128, DK_ULEB128, DK_ERR, DK_ERROR, DK_WARNING, DK_PRINT, DK_ADDRSIG, DK_ADDRSIG_SYM, DK_PSEUDO_PROBE, DK_LTO_DISCARD, DK_LTO_SET_CONDITIONAL, DK_CFI_MTE_TAGGED_FRAME, DK_MEMTAG, DK_END }; /// Maps directive name --> DirectiveKind enum, for /// directives parsed by this class. StringMap DirectiveKindMap; // Codeview def_range type parsing. enum CVDefRangeType { CVDR_DEFRANGE = 0, // Placeholder CVDR_DEFRANGE_REGISTER, CVDR_DEFRANGE_FRAMEPOINTER_REL, CVDR_DEFRANGE_SUBFIELD_REGISTER, CVDR_DEFRANGE_REGISTER_REL }; /// Maps Codeview def_range types --> CVDefRangeType enum, for /// Codeview def_range types parsed by this class. StringMap CVDefRangeTypeMap; // ".ascii", ".asciz", ".string" bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc" bool parseDirectiveValue(StringRef IDVal, unsigned Size); // ".byte", ".long", ... bool parseDirectiveOctaValue(StringRef IDVal); // ".octa", ... bool parseDirectiveRealValue(StringRef IDVal, const fltSemantics &); // ".single", ... bool parseDirectiveFill(); // ".fill" bool parseDirectiveZero(); // ".zero" // ".set", ".equ", ".equiv", ".lto_set_conditional" bool parseDirectiveSet(StringRef IDVal, AssignmentKind Kind); bool parseDirectiveOrg(); // ".org" // ".align{,32}", ".p2align{,w,l}" bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize); // ".file", ".line", ".loc", ".stabs" bool parseDirectiveFile(SMLoc DirectiveLoc); bool parseDirectiveLine(); bool parseDirectiveLoc(); bool parseDirectiveStabs(); // ".cv_file", ".cv_func_id", ".cv_inline_site_id", ".cv_loc", ".cv_linetable", // ".cv_inline_linetable", ".cv_def_range", ".cv_string" bool parseDirectiveCVFile(); bool parseDirectiveCVFuncId(); bool parseDirectiveCVInlineSiteId(); bool parseDirectiveCVLoc(); bool parseDirectiveCVLinetable(); bool parseDirectiveCVInlineLinetable(); bool parseDirectiveCVDefRange(); bool parseDirectiveCVString(); bool parseDirectiveCVStringTable(); bool parseDirectiveCVFileChecksums(); bool parseDirectiveCVFileChecksumOffset(); bool parseDirectiveCVFPOData(); // .cfi directives bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); bool parseDirectiveCFIWindowSave(SMLoc DirectiveLoc); bool parseDirectiveCFISections(); bool parseDirectiveCFIStartProc(); bool parseDirectiveCFIEndProc(); bool parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); bool parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); bool parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc); bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); bool parseDirectiveCFIRememberState(SMLoc DirectiveLoc); bool parseDirectiveCFIRestoreState(SMLoc DirectiveLoc); bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); bool parseDirectiveCFIEscape(SMLoc DirectiveLoc); bool parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc); bool parseDirectiveCFISignalFrame(SMLoc DirectiveLoc); bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); bool parseDirectiveCFILabel(SMLoc DirectiveLoc); // macro directives bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); bool parseDirectiveExitMacro(StringRef Directive); bool parseDirectiveEndMacro(StringRef Directive); bool parseDirectiveMacro(SMLoc DirectiveLoc); bool parseDirectiveMacrosOnOff(StringRef Directive); // alternate macro mode directives bool parseDirectiveAltmacro(StringRef Directive); // ".bundle_align_mode" bool parseDirectiveBundleAlignMode(); // ".bundle_lock" bool parseDirectiveBundleLock(); // ".bundle_unlock" bool parseDirectiveBundleUnlock(); // ".space", ".skip" bool parseDirectiveSpace(StringRef IDVal); // ".dcb" bool parseDirectiveDCB(StringRef IDVal, unsigned Size); bool parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &); // ".ds" bool parseDirectiveDS(StringRef IDVal, unsigned Size); // .sleb128 (Signed=true) and .uleb128 (Signed=false) bool parseDirectiveLEB128(bool Signed); /// Parse a directive like ".globl" which /// accepts a single symbol (which should be a label or an external). bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" bool parseDirectiveAbort(SMLoc DirectiveLoc); // ".abort" bool parseDirectiveInclude(); // ".include" bool parseDirectiveIncbin(); // ".incbin" // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne" bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); // ".ifb" or ".ifnb", depending on ExpectBlank. bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); // ".ifc" or ".ifnc", depending on ExpectEqual. bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual); // ".ifeqs" or ".ifnes", depending on ExpectEqual. bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual); // ".ifdef" or ".ifndef", depending on expect_defined bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif" bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else" bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif bool parseEscapedString(std::string &Data) override; bool parseAngleBracketString(std::string &Data) override; const MCExpr *applyModifierToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant); // Macro-like directives MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS); bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive); bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp" bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc" bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr" // "_emit" or "__emit" bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, size_t Len); // "align" bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); // "end" bool parseDirectiveEnd(SMLoc DirectiveLoc); // ".err" or ".error" bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage); // ".warning" bool parseDirectiveWarning(SMLoc DirectiveLoc); // .print bool parseDirectivePrint(SMLoc DirectiveLoc); // .pseudoprobe bool parseDirectivePseudoProbe(); // ".lto_discard" bool parseDirectiveLTODiscard(); // Directives to support address-significance tables. bool parseDirectiveAddrsig(); bool parseDirectiveAddrsigSym(); void initializeDirectiveKindMap(); void initializeCVDefRangeTypeMap(); }; class HLASMAsmParser final : public AsmParser { private: MCAsmLexer &Lexer; MCStreamer &Out; void lexLeadingSpaces() { while (Lexer.is(AsmToken::Space)) Lexer.Lex(); } bool parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); bool parseAsMachineInstruction(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI); public: HLASMAsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI, unsigned CB = 0) : AsmParser(SM, Ctx, Out, MAI, CB), Lexer(getLexer()), Out(Out) { Lexer.setSkipSpace(false); Lexer.setAllowHashInIdentifier(true); Lexer.setLexHLASMIntegers(true); Lexer.setLexHLASMStrings(true); } ~HLASMAsmParser() { Lexer.setSkipSpace(true); } bool parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) override; }; } // end anonymous namespace namespace llvm { extern cl::opt AsmMacroMaxNestingDepth; extern MCAsmParserExtension *createDarwinAsmParser(); extern MCAsmParserExtension *createELFAsmParser(); extern MCAsmParserExtension *createCOFFAsmParser(); extern MCAsmParserExtension *createGOFFAsmParser(); extern MCAsmParserExtension *createXCOFFAsmParser(); extern MCAsmParserExtension *createWasmAsmParser(); } // end namespace llvm enum { DEFAULT_ADDRSPACE = 0 }; AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI, unsigned CB = 0) : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), CurBuffer(CB ? CB : SM.getMainFileID()), MacrosEnabledFlag(true) { HadError = false; // Save the old handler. SavedDiagHandler = SrcMgr.getDiagHandler(); SavedDiagContext = SrcMgr.getDiagContext(); // Set our own handler which calls the saved handler. SrcMgr.setDiagHandler(DiagHandler, this); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); // Make MCStreamer aware of the StartTokLoc for locations in diagnostics. Out.setStartTokLocPtr(&StartTokLoc); // Initialize the platform / file format parser. switch (Ctx.getObjectFileType()) { case MCContext::IsCOFF: PlatformParser.reset(createCOFFAsmParser()); break; case MCContext::IsMachO: PlatformParser.reset(createDarwinAsmParser()); IsDarwin = true; break; case MCContext::IsELF: PlatformParser.reset(createELFAsmParser()); break; case MCContext::IsGOFF: PlatformParser.reset(createGOFFAsmParser()); break; case MCContext::IsSPIRV: report_fatal_error( "Need to implement createSPIRVAsmParser for SPIRV format."); break; case MCContext::IsWasm: PlatformParser.reset(createWasmAsmParser()); break; case MCContext::IsXCOFF: PlatformParser.reset(createXCOFFAsmParser()); break; case MCContext::IsDXContainer: report_fatal_error("DXContainer is not supported yet"); break; } PlatformParser->Initialize(*this); initializeDirectiveKindMap(); initializeCVDefRangeTypeMap(); NumOfMacroInstantiations = 0; } AsmParser::~AsmParser() { assert((HadError || ActiveMacros.empty()) && "Unexpected active macro instantiation!"); // Remove MCStreamer's reference to the parser SMLoc. Out.setStartTokLocPtr(nullptr); // Restore the saved diagnostics handler and context for use during // finalization. SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); } void AsmParser::printMacroInstantiations() { // Print the active macro instantiation stack. for (MacroInstantiation *M : reverse(ActiveMacros)) printMessage(M->InstantiationLoc, SourceMgr::DK_Note, "while in macro instantiation"); } void AsmParser::Note(SMLoc L, const Twine &Msg, SMRange Range) { printPendingErrors(); printMessage(L, SourceMgr::DK_Note, Msg, Range); printMacroInstantiations(); } bool AsmParser::Warning(SMLoc L, const Twine &Msg, SMRange Range) { if(getTargetParser().getTargetOptions().MCNoWarn) return false; if (getTargetParser().getTargetOptions().MCFatalWarnings) return Error(L, Msg, Range); printMessage(L, SourceMgr::DK_Warning, Msg, Range); printMacroInstantiations(); return false; } bool AsmParser::printError(SMLoc L, const Twine &Msg, SMRange Range) { HadError = true; printMessage(L, SourceMgr::DK_Error, Msg, Range); printMacroInstantiations(); return true; } bool AsmParser::enterIncludeFile(const std::string &Filename) { std::string IncludedFile; unsigned NewBuf = SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); if (!NewBuf) return true; CurBuffer = NewBuf; Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); return false; } /// Process the specified .incbin file by searching for it in the include paths /// then just emitting the byte contents of the file to the streamer. This /// returns true on failure. bool AsmParser::processIncbinFile(const std::string &Filename, int64_t Skip, const MCExpr *Count, SMLoc Loc) { std::string IncludedFile; unsigned NewBuf = SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); if (!NewBuf) return true; // Pick up the bytes from the file and emit them. StringRef Bytes = SrcMgr.getMemoryBuffer(NewBuf)->getBuffer(); Bytes = Bytes.drop_front(Skip); if (Count) { int64_t Res; if (!Count->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) return Error(Loc, "expected absolute expression"); if (Res < 0) return Warning(Loc, "negative count has no effect"); Bytes = Bytes.take_front(Res); } getStreamer().emitBytes(Bytes); return false; } void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) { CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), Loc.getPointer()); } const AsmToken &AsmParser::Lex() { if (Lexer.getTok().is(AsmToken::Error)) Error(Lexer.getErrLoc(), Lexer.getErr()); // if it's a end of statement with a comment in it if (getTok().is(AsmToken::EndOfStatement)) { // if this is a line comment output it. if (!getTok().getString().empty() && getTok().getString().front() != '\n' && getTok().getString().front() != '\r' && MAI.preserveAsmComments()) Out.addExplicitComment(Twine(getTok().getString())); } const AsmToken *tok = &Lexer.Lex(); // Parse comments here to be deferred until end of next statement. while (tok->is(AsmToken::Comment)) { if (MAI.preserveAsmComments()) Out.addExplicitComment(Twine(tok->getString())); tok = &Lexer.Lex(); } if (tok->is(AsmToken::Eof)) { // If this is the end of an included file, pop the parent file off the // include stack. SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc != SMLoc()) { jumpToLoc(ParentIncludeLoc); return Lex(); } } return *tok; } bool AsmParser::enabledGenDwarfForAssembly() { // Check whether the user specified -g. if (!getContext().getGenDwarfForAssembly()) return false; // If we haven't encountered any .file directives (which would imply that // the assembler source was produced with debug info already) then emit one // describing the assembler source file itself. if (getContext().getGenDwarfFileNumber() == 0) { // Use the first #line directive for this, if any. It's preprocessed, so // there is no checksum, and of course no source directive. if (!FirstCppHashFilename.empty()) getContext().setMCLineTableRootFile( /*CUID=*/0, getContext().getCompilationDir(), FirstCppHashFilename, /*Cksum=*/std::nullopt, /*Source=*/std::nullopt); const MCDwarfFile &RootFile = getContext().getMCDwarfLineTable(/*CUID=*/0).getRootFile(); getContext().setGenDwarfFileNumber(getStreamer().emitDwarfFileDirective( /*CUID=*/0, getContext().getCompilationDir(), RootFile.Name, RootFile.Checksum, RootFile.Source)); } return true; } bool AsmParser::Run(bool NoInitialTextSection, bool NoFinalize) { LTODiscardSymbols.clear(); // Create the initial section, if requested. if (!NoInitialTextSection) Out.initSections(false, getTargetParser().getSTI()); // Prime the lexer. Lex(); HadError = false; AsmCond StartingCondState = TheCondState; SmallVector AsmStrRewrites; // If we are generating dwarf for assembly source files save the initial text // section. (Don't use enabledGenDwarfForAssembly() here, as we aren't // emitting any actual debug info yet and haven't had a chance to parse any // embedded .file directives.) if (getContext().getGenDwarfForAssembly()) { MCSection *Sec = getStreamer().getCurrentSectionOnly(); if (!Sec->getBeginSymbol()) { MCSymbol *SectionStartSym = getContext().createTempSymbol(); getStreamer().emitLabel(SectionStartSym); Sec->setBeginSymbol(SectionStartSym); } bool InsertResult = getContext().addGenDwarfSection(Sec); assert(InsertResult && ".text section should not have debug info yet"); (void)InsertResult; } getTargetParser().onBeginOfFile(); // While we have input, parse each statement. while (Lexer.isNot(AsmToken::Eof)) { ParseStatementInfo Info(&AsmStrRewrites); bool Parsed = parseStatement(Info, nullptr); // If we have a Lexer Error we are on an Error Token. Load in Lexer Error // for printing ErrMsg via Lex() only if no (presumably better) parser error // exists. if (Parsed && !hasPendingError() && Lexer.getTok().is(AsmToken::Error)) { Lex(); } // parseStatement returned true so may need to emit an error. printPendingErrors(); // Skipping to the next line if needed. if (Parsed && !getLexer().isAtStartOfStatement()) eatToEndOfStatement(); } getTargetParser().onEndOfFile(); printPendingErrors(); // All errors should have been emitted. assert(!hasPendingError() && "unexpected error from parseStatement"); getTargetParser().flushPendingInstructions(getStreamer()); if (TheCondState.TheCond != StartingCondState.TheCond || TheCondState.Ignore != StartingCondState.Ignore) printError(getTok().getLoc(), "unmatched .ifs or .elses"); // Check to see there are no empty DwarfFile slots. const auto &LineTables = getContext().getMCDwarfLineTables(); if (!LineTables.empty()) { unsigned Index = 0; for (const auto &File : LineTables.begin()->second.getMCDwarfFiles()) { if (File.Name.empty() && Index != 0) printError(getTok().getLoc(), "unassigned file number: " + Twine(Index) + " for .file directives"); ++Index; } } // Check to see that all assembler local symbols were actually defined. // Targets that don't do subsections via symbols may not want this, though, // so conservatively exclude them. Only do this if we're finalizing, though, // as otherwise we won't necessarilly have seen everything yet. if (!NoFinalize) { if (MAI.hasSubsectionsViaSymbols()) { for (const auto &TableEntry : getContext().getSymbols()) { MCSymbol *Sym = TableEntry.getValue().Symbol; // Variable symbols may not be marked as defined, so check those // explicitly. If we know it's a variable, we have a definition for // the purposes of this check. if (Sym && Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) // FIXME: We would really like to refer back to where the symbol was // first referenced for a source location. We need to add something // to track that. Currently, we just point to the end of the file. printError(getTok().getLoc(), "assembler local symbol '" + Sym->getName() + "' not defined"); } } // Temporary symbols like the ones for directional jumps don't go in the // symbol table. They also need to be diagnosed in all (final) cases. for (std::tuple &LocSym : DirLabels) { if (std::get<2>(LocSym)->isUndefined()) { // Reset the state of any "# line file" directives we've seen to the // context as it was at the diagnostic site. CppHashInfo = std::get<1>(LocSym); printError(std::get<0>(LocSym), "directional label undefined"); } } } // Finalize the output stream if there are no errors and if the client wants // us to. if (!HadError && !NoFinalize) { if (auto *TS = Out.getTargetStreamer()) TS->emitConstantPools(); Out.finish(Lexer.getLoc()); } return HadError || getContext().hadError(); } bool AsmParser::checkForValidSection() { if (!ParsingMSInlineAsm && !getStreamer().getCurrentFragment()) { Out.initSections(false, getTargetParser().getSTI()); return Error(getTok().getLoc(), "expected section directive before assembly directive"); } return false; } /// Throw away the rest of the line for testing purposes. void AsmParser::eatToEndOfStatement() { while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); // Eat EOL. if (Lexer.is(AsmToken::EndOfStatement)) Lexer.Lex(); } StringRef AsmParser::parseStringToEndOfStatement() { const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); const char *End = getTok().getLoc().getPointer(); return StringRef(Start, End - Start); } StringRef AsmParser::parseStringToComma() { const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); const char *End = getTok().getLoc().getPointer(); return StringRef(Start, End - Start); } /// Parse a paren expression and return it. /// NOTE: This assumes the leading '(' has already been consumed. /// /// parenexpr ::= expr) /// bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; EndLoc = Lexer.getTok().getEndLoc(); return parseRParen(); } /// Parse a bracket expression and return it. /// NOTE: This assumes the leading '[' has already been consumed. /// /// bracketexpr ::= expr] /// bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; EndLoc = getTok().getEndLoc(); if (parseToken(AsmToken::RBrac, "expected ']' in brackets expression")) return true; return false; } /// Parse a primary expression and return it. /// primaryexpr ::= (parenexpr /// primaryexpr ::= symbol /// primaryexpr ::= number /// primaryexpr ::= '.' /// primaryexpr ::= ~,+,- primaryexpr bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc, AsmTypeInfo *TypeInfo) { SMLoc FirstTokenLoc = getLexer().getLoc(); AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); switch (FirstTokenKind) { default: return TokError("unknown token in expression"); // If we have an error assume that we've already handled it. case AsmToken::Error: return true; case AsmToken::Exclaim: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) return true; Res = MCUnaryExpr::createLNot(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Dollar: case AsmToken::Star: case AsmToken::At: case AsmToken::String: case AsmToken::Identifier: { StringRef Identifier; if (parseIdentifier(Identifier)) { // We may have failed but '$'|'*' may be a valid token in context of // the current PC. if (getTok().is(AsmToken::Dollar) || getTok().is(AsmToken::Star)) { bool ShouldGenerateTempSymbol = false; if ((getTok().is(AsmToken::Dollar) && MAI.getDollarIsPC()) || (getTok().is(AsmToken::Star) && MAI.getStarIsPC())) ShouldGenerateTempSymbol = true; if (!ShouldGenerateTempSymbol) return Error(FirstTokenLoc, "invalid token in expression"); // Eat the '$'|'*' token. Lex(); // This is either a '$'|'*' reference, which references the current PC. // Emit a temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.emitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = FirstTokenLoc; return false; } } // Parse symbol variant std::pair Split; if (!MAI.useParensForSymbolVariant()) { if (FirstTokenKind == AsmToken::String) { if (Lexer.is(AsmToken::At)) { Lex(); // eat @ SMLoc AtLoc = getLexer().getLoc(); StringRef VName; if (parseIdentifier(VName)) return Error(AtLoc, "expected symbol variant after '@'"); Split = std::make_pair(Identifier, VName); } } else { Split = Identifier.split('@'); } } else if (Lexer.is(AsmToken::LParen)) { Lex(); // eat '('. StringRef VName; parseIdentifier(VName); if (parseRParen()) return true; Split = std::make_pair(Identifier, VName); } EndLoc = SMLoc::getFromPointer(Identifier.end()); // This is a symbol reference. StringRef SymbolName = Identifier; if (SymbolName.empty()) return Error(getLexer().getLoc(), "expected a symbol reference"); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; // Lookup the symbol variant if used. if (!Split.second.empty()) { Variant = getTargetParser().getVariantKindForName(Split.second); if (Variant != MCSymbolRefExpr::VK_Invalid) { SymbolName = Split.first; } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { Variant = MCSymbolRefExpr::VK_None; } else { return Error(SMLoc::getFromPointer(Split.second.begin()), "invalid variant '" + Split.second + "'"); } } MCSymbol *Sym = getContext().getInlineAsmLabel(SymbolName); if (!Sym) Sym = getContext().getOrCreateSymbol( MAI.shouldEmitLabelsInUpperCase() ? SymbolName.upper() : SymbolName); // If this is an absolute variable reference, substitute it now to preserve // semantics in the face of reassignment. if (Sym->isVariable()) { auto V = Sym->getVariableValue(/*SetUsed*/ false); bool DoInline = isa(V) && !Variant; if (auto TV = dyn_cast(V)) DoInline = TV->inlineAssignedExpr(); if (DoInline) { if (Variant) return Error(EndLoc, "unexpected modifier on variable reference"); Res = Sym->getVariableValue(/*SetUsed*/ false); return false; } } // Otherwise create a symbol ref. Res = MCSymbolRefExpr::create(Sym, Variant, getContext(), FirstTokenLoc); return false; } case AsmToken::BigNum: return TokError("literal value out of range for directive"); case AsmToken::Integer: { SMLoc Loc = getTok().getLoc(); int64_t IntVal = getTok().getIntVal(); Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. // Look for 'b' or 'f' following an Integer as a directional label if (Lexer.getKind() == AsmToken::Identifier) { StringRef IDVal = getTok().getString(); // Lookup the symbol variant if used. std::pair Split = IDVal.split('@'); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; if (Split.first.size() != IDVal.size()) { Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); if (Variant == MCSymbolRefExpr::VK_Invalid) return TokError("invalid variant '" + Split.second + "'"); IDVal = Split.first; } if (IDVal == "f" || IDVal == "b") { MCSymbol *Sym = Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b"); Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); if (IDVal == "b" && Sym->isUndefined()) return Error(Loc, "directional label undefined"); DirLabels.push_back(std::make_tuple(Loc, CppHashInfo, Sym)); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat identifier. } } return false; } case AsmToken::Real: { APFloat RealVal(APFloat::IEEEdouble(), getTok().getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. return false; } case AsmToken::Dot: { if (!MAI.getDotIsPC()) return TokError("cannot use . as current PC"); // This is a '.' reference, which references the current PC. Emit a // temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.emitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat identifier. return false; } case AsmToken::LParen: Lex(); // Eat the '('. return parseParenExpr(Res, EndLoc); case AsmToken::LBrac: if (!PlatformParser->HasBracketExpressions()) return TokError("brackets expression not supported on this target"); Lex(); // Eat the '['. return parseBracketExpr(Res, EndLoc); case AsmToken::Minus: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) return true; Res = MCUnaryExpr::createMinus(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Plus: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) return true; Res = MCUnaryExpr::createPlus(Res, getContext(), FirstTokenLoc); return false; case AsmToken::Tilde: Lex(); // Eat the operator. if (parsePrimaryExpr(Res, EndLoc, TypeInfo)) return true; Res = MCUnaryExpr::createNot(Res, getContext(), FirstTokenLoc); return false; // MIPS unary expression operators. The lexer won't generate these tokens if // MCAsmInfo::HasMipsExpressions is false for the target. case AsmToken::PercentCall16: case AsmToken::PercentCall_Hi: case AsmToken::PercentCall_Lo: case AsmToken::PercentDtprel_Hi: case AsmToken::PercentDtprel_Lo: case AsmToken::PercentGot: case AsmToken::PercentGot_Disp: case AsmToken::PercentGot_Hi: case AsmToken::PercentGot_Lo: case AsmToken::PercentGot_Ofst: case AsmToken::PercentGot_Page: case AsmToken::PercentGottprel: case AsmToken::PercentGp_Rel: case AsmToken::PercentHi: case AsmToken::PercentHigher: case AsmToken::PercentHighest: case AsmToken::PercentLo: case AsmToken::PercentNeg: case AsmToken::PercentPcrel_Hi: case AsmToken::PercentPcrel_Lo: case AsmToken::PercentTlsgd: case AsmToken::PercentTlsldm: case AsmToken::PercentTprel_Hi: case AsmToken::PercentTprel_Lo: Lex(); // Eat the operator. if (Lexer.isNot(AsmToken::LParen)) return TokError("expected '(' after operator"); Lex(); // Eat the operator. if (parseExpression(Res, EndLoc)) return true; if (parseRParen()) return true; Res = getTargetParser().createTargetUnaryExpr(Res, FirstTokenKind, Ctx); return !Res; } } bool AsmParser::parseExpression(const MCExpr *&Res) { SMLoc EndLoc; return parseExpression(Res, EndLoc); } const MCExpr * AsmParser::applyModifierToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant) { // Ask the target implementation about this expression first. const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx); if (NewE) return NewE; // Recurse over the given expression, rebuilding it to apply the given variant // if there is exactly one symbol. switch (E->getKind()) { case MCExpr::Target: case MCExpr::Constant: return nullptr; case MCExpr::SymbolRef: { const MCSymbolRefExpr *SRE = cast(E); if (SRE->getKind() != MCSymbolRefExpr::VK_None) { TokError("invalid variant on expression '" + getTok().getIdentifier() + "' (already modified)"); return E; } return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext()); } case MCExpr::Unary: { const MCUnaryExpr *UE = cast(E); const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant); if (!Sub) return nullptr; return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext()); } case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant); const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant); if (!LHS && !RHS) return nullptr; if (!LHS) LHS = BE->getLHS(); if (!RHS) RHS = BE->getRHS(); return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext()); } } llvm_unreachable("Invalid expression kind!"); } /// This function checks if the next token is type or arithmetic. /// string that begin with character '<' must end with character '>'. /// otherwise it is arithmetics. /// If the function returns a 'true' value, /// the End argument will be filled with the last location pointed to the '>' /// character. /// There is a gap between the AltMacro's documentation and the single quote /// implementation. GCC does not fully support this feature and so we will not /// support it. /// TODO: Adding single quote as a string. static bool isAngleBracketString(SMLoc &StrLoc, SMLoc &EndLoc) { assert((StrLoc.getPointer() != nullptr) && "Argument to the function cannot be a NULL value"); const char *CharPtr = StrLoc.getPointer(); while ((*CharPtr != '>') && (*CharPtr != '\n') && (*CharPtr != '\r') && (*CharPtr != '\0')) { if (*CharPtr == '!') CharPtr++; CharPtr++; } if (*CharPtr == '>') { EndLoc = StrLoc.getFromPointer(CharPtr + 1); return true; } return false; } /// creating a string without the escape characters '!'. static std::string angleBracketString(StringRef AltMacroStr) { std::string Res; for (size_t Pos = 0; Pos < AltMacroStr.size(); Pos++) { if (AltMacroStr[Pos] == '!') Pos++; Res += AltMacroStr[Pos]; } return Res; } /// Parse an expression and return it. /// /// expr ::= expr &&,|| expr -> lowest. /// expr ::= expr |,^,&,! expr /// expr ::= expr ==,!=,<>,<,<=,>,>= expr /// expr ::= expr <<,>> expr /// expr ::= expr +,- expr /// expr ::= expr *,/,% expr -> highest. /// expr ::= primaryexpr /// bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { // Parse the expression. Res = nullptr; if (getTargetParser().parsePrimaryExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc)) return true; // As a special case, we support 'a op b @ modifier' by rewriting the // expression to include the modifier. This is inefficient, but in general we // expect users to use 'a@modifier op b'. if (parseOptionalToken(AsmToken::At)) { if (Lexer.isNot(AsmToken::Identifier)) return TokError("unexpected symbol modifier following '@'"); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier()); if (Variant == MCSymbolRefExpr::VK_Invalid) return TokError("invalid variant '" + getTok().getIdentifier() + "'"); const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant); if (!ModifiedRes) { return TokError("invalid modifier '" + getTok().getIdentifier() + "' (no symbols present)"); } Res = ModifiedRes; Lex(); } // Try to constant fold it up front, if possible. Do not exploit // assembler here. int64_t Value; if (Res->evaluateAsAbsolute(Value)) Res = MCConstantExpr::create(Value, getContext()); return false; } bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { Res = nullptr; return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); } bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) { if (parseParenExpr(Res, EndLoc)) return true; for (; ParenDepth > 0; --ParenDepth) { if (parseBinOpRHS(1, Res, EndLoc)) return true; // We don't Lex() the last RParen. // This is the same behavior as parseParenExpression(). if (ParenDepth - 1 > 0) { EndLoc = getTok().getEndLoc(); if (parseRParen()) return true; } } return false; } bool AsmParser::parseAbsoluteExpression(int64_t &Res) { const MCExpr *Expr; SMLoc StartLoc = Lexer.getLoc(); if (parseExpression(Expr)) return true; if (!Expr->evaluateAsAbsolute(Res, getStreamer().getAssemblerPtr())) return Error(StartLoc, "expected absolute expression"); return false; } static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind, bool ShouldUseLogicalShr) { switch (K) { default: return 0; // not a binop. // Lowest Precedence: &&, || case AsmToken::AmpAmp: Kind = MCBinaryExpr::LAnd; return 1; case AsmToken::PipePipe: Kind = MCBinaryExpr::LOr; return 1; // Low Precedence: |, &, ^ case AsmToken::Pipe: Kind = MCBinaryExpr::Or; return 2; case AsmToken::Caret: Kind = MCBinaryExpr::Xor; return 2; case AsmToken::Amp: Kind = MCBinaryExpr::And; return 2; // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >= case AsmToken::EqualEqual: Kind = MCBinaryExpr::EQ; return 3; case AsmToken::ExclaimEqual: case AsmToken::LessGreater: Kind = MCBinaryExpr::NE; return 3; case AsmToken::Less: Kind = MCBinaryExpr::LT; return 3; case AsmToken::LessEqual: Kind = MCBinaryExpr::LTE; return 3; case AsmToken::Greater: Kind = MCBinaryExpr::GT; return 3; case AsmToken::GreaterEqual: Kind = MCBinaryExpr::GTE; return 3; // Intermediate Precedence: <<, >> case AsmToken::LessLess: Kind = MCBinaryExpr::Shl; return 4; case AsmToken::GreaterGreater: Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; return 4; // High Intermediate Precedence: +, - case AsmToken::Plus: Kind = MCBinaryExpr::Add; return 5; case AsmToken::Minus: Kind = MCBinaryExpr::Sub; return 5; // Highest Precedence: *, /, % case AsmToken::Star: Kind = MCBinaryExpr::Mul; return 6; case AsmToken::Slash: Kind = MCBinaryExpr::Div; return 6; case AsmToken::Percent: Kind = MCBinaryExpr::Mod; return 6; } } static unsigned getGNUBinOpPrecedence(const MCAsmInfo &MAI, AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind, bool ShouldUseLogicalShr) { switch (K) { default: return 0; // not a binop. // Lowest Precedence: &&, || case AsmToken::AmpAmp: Kind = MCBinaryExpr::LAnd; return 2; case AsmToken::PipePipe: Kind = MCBinaryExpr::LOr; return 1; // Low Precedence: ==, !=, <>, <, <=, >, >= case AsmToken::EqualEqual: Kind = MCBinaryExpr::EQ; return 3; case AsmToken::ExclaimEqual: case AsmToken::LessGreater: Kind = MCBinaryExpr::NE; return 3; case AsmToken::Less: Kind = MCBinaryExpr::LT; return 3; case AsmToken::LessEqual: Kind = MCBinaryExpr::LTE; return 3; case AsmToken::Greater: Kind = MCBinaryExpr::GT; return 3; case AsmToken::GreaterEqual: Kind = MCBinaryExpr::GTE; return 3; // Low Intermediate Precedence: +, - case AsmToken::Plus: Kind = MCBinaryExpr::Add; return 4; case AsmToken::Minus: Kind = MCBinaryExpr::Sub; return 4; // High Intermediate Precedence: |, !, &, ^ // case AsmToken::Pipe: Kind = MCBinaryExpr::Or; return 5; case AsmToken::Exclaim: // Hack to support ARM compatible aliases (implied 'sp' operand in 'srs*' // instructions like 'srsda #31!') and not parse ! as an infix operator. if (MAI.getCommentString() == "@") return 0; Kind = MCBinaryExpr::OrNot; return 5; case AsmToken::Caret: Kind = MCBinaryExpr::Xor; return 5; case AsmToken::Amp: Kind = MCBinaryExpr::And; return 5; // Highest Precedence: *, /, %, <<, >> case AsmToken::Star: Kind = MCBinaryExpr::Mul; return 6; case AsmToken::Slash: Kind = MCBinaryExpr::Div; return 6; case AsmToken::Percent: Kind = MCBinaryExpr::Mod; return 6; case AsmToken::LessLess: Kind = MCBinaryExpr::Shl; return 6; case AsmToken::GreaterGreater: Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; return 6; } } unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind) { bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr) : getGNUBinOpPrecedence(MAI, K, Kind, ShouldUseLogicalShr); } /// Parse all binary operators with precedence >= 'Precedence'. /// Res contains the LHS of the expression on input. bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc) { SMLoc StartLoc = Lexer.getLoc(); while (true) { MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind); // If the next token is lower precedence than we are allowed to eat, return // successfully with what we ate already. if (TokPrec < Precedence) return false; Lex(); // Eat the next primary expression. const MCExpr *RHS; if (getTargetParser().parsePrimaryExpr(RHS, EndLoc)) return true; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. MCBinaryExpr::Opcode Dummy; unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) return true; // Merge LHS and RHS according to operator. Res = MCBinaryExpr::create(Kind, Res, RHS, getContext(), StartLoc); } } /// ParseStatement: /// ::= EndOfStatement /// ::= Label* Directive ...Operands... EndOfStatement /// ::= Label* Identifier OperandList* EndOfStatement bool AsmParser::parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) { assert(!hasPendingError() && "parseStatement started with pending error"); // Eat initial spaces and comments while (Lexer.is(AsmToken::Space)) Lex(); if (Lexer.is(AsmToken::EndOfStatement)) { // if this is a line comment we can drop it safely if (getTok().getString().empty() || getTok().getString().front() == '\r' || getTok().getString().front() == '\n') Out.addBlankLine(); Lex(); return false; } // Statements always start with an identifier. AsmToken ID = getTok(); SMLoc IDLoc = ID.getLoc(); StringRef IDVal; int64_t LocalLabelVal = -1; StartTokLoc = ID.getLoc(); if (Lexer.is(AsmToken::HashDirective)) return parseCppHashLineFilenameComment(IDLoc, !isInsideMacroInstantiation()); // Allow an integer followed by a ':' as a directional local label. if (Lexer.is(AsmToken::Integer)) { LocalLabelVal = getTok().getIntVal(); if (LocalLabelVal < 0) { if (!TheCondState.Ignore) { Lex(); // always eat a token return Error(IDLoc, "unexpected token at start of statement"); } IDVal = ""; } else { IDVal = getTok().getString(); Lex(); // Consume the integer token to be used as an identifier token. if (Lexer.getKind() != AsmToken::Colon) { if (!TheCondState.Ignore) { Lex(); // always eat a token return Error(IDLoc, "unexpected token at start of statement"); } } } } else if (Lexer.is(AsmToken::Dot)) { // Treat '.' as a valid identifier in this context. Lex(); IDVal = "."; } else if (Lexer.is(AsmToken::LCurly)) { // Treat '{' as a valid identifier in this context. Lex(); IDVal = "{"; } else if (Lexer.is(AsmToken::RCurly)) { // Treat '}' as a valid identifier in this context. Lex(); IDVal = "}"; } else if (Lexer.is(AsmToken::Star) && getTargetParser().starIsStartOfStatement()) { // Accept '*' as a valid start of statement. Lex(); IDVal = "*"; } else if (parseIdentifier(IDVal)) { if (!TheCondState.Ignore) { Lex(); // always eat a token return Error(IDLoc, "unexpected token at start of statement"); } IDVal = ""; } // Handle conditional assembly here before checking for skipping. We // have to do this so that .endif isn't skipped in a ".if 0" block for // example. StringMap::const_iterator DirKindIt = DirectiveKindMap.find(IDVal.lower()); DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) ? DK_NO_DIRECTIVE : DirKindIt->getValue(); switch (DirKind) { default: break; case DK_IF: case DK_IFEQ: case DK_IFGE: case DK_IFGT: case DK_IFLE: case DK_IFLT: case DK_IFNE: return parseDirectiveIf(IDLoc, DirKind); case DK_IFB: return parseDirectiveIfb(IDLoc, true); case DK_IFNB: return parseDirectiveIfb(IDLoc, false); case DK_IFC: return parseDirectiveIfc(IDLoc, true); case DK_IFEQS: return parseDirectiveIfeqs(IDLoc, true); case DK_IFNC: return parseDirectiveIfc(IDLoc, false); case DK_IFNES: return parseDirectiveIfeqs(IDLoc, false); case DK_IFDEF: return parseDirectiveIfdef(IDLoc, true); case DK_IFNDEF: case DK_IFNOTDEF: return parseDirectiveIfdef(IDLoc, false); case DK_ELSEIF: return parseDirectiveElseIf(IDLoc); case DK_ELSE: return parseDirectiveElse(IDLoc); case DK_ENDIF: return parseDirectiveEndIf(IDLoc); } // Ignore the statement if in the middle of inactive conditional // (e.g. ".if 0"). if (TheCondState.Ignore) { eatToEndOfStatement(); return false; } // FIXME: Recurse on local labels? // Check for a label. // ::= identifier ':' // ::= number ':' if (Lexer.is(AsmToken::Colon) && getTargetParser().isLabel(ID)) { if (checkForValidSection()) return true; Lex(); // Consume the ':'. // Diagnose attempt to use '.' as a label. if (IDVal == ".") return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); // Diagnose attempt to use a variable as a label. // // FIXME: Diagnostics. Note the location of the definition as a label. // FIXME: This doesn't diagnose assignment to a symbol which has been // implicitly marked as external. MCSymbol *Sym; if (LocalLabelVal == -1) { if (ParsingMSInlineAsm && SI) { StringRef RewrittenLabel = SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); assert(!RewrittenLabel.empty() && "We should have an internal name here."); Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), RewrittenLabel); IDVal = RewrittenLabel; } Sym = getContext().getOrCreateSymbol(IDVal); } else Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal); // End of Labels should be treated as end of line for lexing // purposes but that information is not available to the Lexer who // does not understand Labels. This may cause us to see a Hash // here instead of a preprocessor line comment. if (getTok().is(AsmToken::Hash)) { StringRef CommentStr = parseStringToEndOfStatement(); Lexer.Lex(); Lexer.UnLex(AsmToken(AsmToken::EndOfStatement, CommentStr)); } // Consume any end of statement token, if present, to avoid spurious // addBlankLine calls(). if (getTok().is(AsmToken::EndOfStatement)) { Lex(); } if (MAI.hasSubsectionsViaSymbols() && CFIStartProcLoc && Sym->isExternal() && !cast(Sym)->isAltEntry()) return Error(StartTokLoc, "non-private labels cannot appear between " ".cfi_startproc / .cfi_endproc pairs") && Error(*CFIStartProcLoc, "previous .cfi_startproc was here"); if (discardLTOSymbol(IDVal)) return false; getTargetParser().doBeforeLabelEmit(Sym, IDLoc); // Emit the label. if (!getTargetParser().isParsingMSInlineAsm()) Out.emitLabel(Sym, IDLoc); // If we are generating dwarf for assembly source files then gather the // info to make a dwarf label entry for this label if needed. if (enabledGenDwarfForAssembly()) MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), IDLoc); getTargetParser().onLabelParsed(Sym); return false; } // Check for an assignment statement. // ::= identifier '=' if (Lexer.is(AsmToken::Equal) && getTargetParser().equalIsAsmAssignment()) { Lex(); return parseAssignment(IDVal, AssignmentKind::Equal); } // If macros are enabled, check to see if this is a macro instantiation. if (areMacrosEnabled()) if (MCAsmMacro *M = getContext().lookupMacro(IDVal)) return handleMacroEntry(M, IDLoc); // Otherwise, we have a normal instruction or directive. // Directives start with "." if (IDVal.starts_with(".") && IDVal != ".") { // There are several entities interested in parsing directives: // // 1. The target-specific assembly parser. Some directives are target // specific or may potentially behave differently on certain targets. // 2. Asm parser extensions. For example, platform-specific parsers // (like the ELF parser) register themselves as extensions. // 3. The generic directive parser implemented by this class. These are // all the directives that behave in a target and platform independent // manner, or at least have a default behavior that's shared between // all targets and platforms. getTargetParser().flushPendingInstructions(getStreamer()); ParseStatus TPDirectiveReturn = getTargetParser().parseDirective(ID); assert(TPDirectiveReturn.isFailure() == hasPendingError() && "Should only return Failure iff there was an error"); if (TPDirectiveReturn.isFailure()) return true; if (TPDirectiveReturn.isSuccess()) return false; // Next, check the extension directive map to see if any extension has // registered itself to parse this directive. std::pair Handler = ExtensionDirectiveMap.lookup(IDVal); if (Handler.first) return (*Handler.second)(Handler.first, IDVal, IDLoc); // Finally, if no one else is interested in this directive, it must be // generic and familiar to this class. switch (DirKind) { default: break; case DK_SET: case DK_EQU: return parseDirectiveSet(IDVal, AssignmentKind::Set); case DK_EQUIV: return parseDirectiveSet(IDVal, AssignmentKind::Equiv); case DK_LTO_SET_CONDITIONAL: return parseDirectiveSet(IDVal, AssignmentKind::LTOSetConditional); case DK_ASCII: return parseDirectiveAscii(IDVal, false); case DK_ASCIZ: case DK_STRING: return parseDirectiveAscii(IDVal, true); case DK_BYTE: case DK_DC_B: return parseDirectiveValue(IDVal, 1); case DK_DC: case DK_DC_W: case DK_SHORT: case DK_VALUE: case DK_2BYTE: return parseDirectiveValue(IDVal, 2); case DK_LONG: case DK_INT: case DK_4BYTE: case DK_DC_L: return parseDirectiveValue(IDVal, 4); case DK_QUAD: case DK_8BYTE: return parseDirectiveValue(IDVal, 8); case DK_DC_A: return parseDirectiveValue( IDVal, getContext().getAsmInfo()->getCodePointerSize()); case DK_OCTA: return parseDirectiveOctaValue(IDVal); case DK_SINGLE: case DK_FLOAT: case DK_DC_S: return parseDirectiveRealValue(IDVal, APFloat::IEEEsingle()); case DK_DOUBLE: case DK_DC_D: return parseDirectiveRealValue(IDVal, APFloat::IEEEdouble()); case DK_ALIGN: { bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); return parseDirectiveAlign(IsPow2, /*ExprSize=*/1); } case DK_ALIGN32: { bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); return parseDirectiveAlign(IsPow2, /*ExprSize=*/4); } case DK_BALIGN: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1); case DK_BALIGNW: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2); case DK_BALIGNL: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4); case DK_P2ALIGN: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1); case DK_P2ALIGNW: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2); case DK_P2ALIGNL: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4); case DK_ORG: return parseDirectiveOrg(); case DK_FILL: return parseDirectiveFill(); case DK_ZERO: return parseDirectiveZero(); case DK_EXTERN: eatToEndOfStatement(); // .extern is the default, ignore it. return false; case DK_GLOBL: case DK_GLOBAL: return parseDirectiveSymbolAttribute(MCSA_Global); case DK_LAZY_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_LazyReference); case DK_NO_DEAD_STRIP: return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip); case DK_SYMBOL_RESOLVER: return parseDirectiveSymbolAttribute(MCSA_SymbolResolver); case DK_PRIVATE_EXTERN: return parseDirectiveSymbolAttribute(MCSA_PrivateExtern); case DK_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_Reference); case DK_WEAK_DEFINITION: return parseDirectiveSymbolAttribute(MCSA_WeakDefinition); case DK_WEAK_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_WeakReference); case DK_WEAK_DEF_CAN_BE_HIDDEN: return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate); case DK_COLD: return parseDirectiveSymbolAttribute(MCSA_Cold); case DK_COMM: case DK_COMMON: return parseDirectiveComm(/*IsLocal=*/false); case DK_LCOMM: return parseDirectiveComm(/*IsLocal=*/true); case DK_ABORT: return parseDirectiveAbort(IDLoc); case DK_INCLUDE: return parseDirectiveInclude(); case DK_INCBIN: return parseDirectiveIncbin(); case DK_CODE16: case DK_CODE16GCC: return TokError(Twine(IDVal) + " not currently supported for this target"); case DK_REPT: return parseDirectiveRept(IDLoc, IDVal); case DK_IRP: return parseDirectiveIrp(IDLoc); case DK_IRPC: return parseDirectiveIrpc(IDLoc); case DK_ENDR: return parseDirectiveEndr(IDLoc); case DK_BUNDLE_ALIGN_MODE: return parseDirectiveBundleAlignMode(); case DK_BUNDLE_LOCK: return parseDirectiveBundleLock(); case DK_BUNDLE_UNLOCK: return parseDirectiveBundleUnlock(); case DK_SLEB128: return parseDirectiveLEB128(true); case DK_ULEB128: return parseDirectiveLEB128(false); case DK_SPACE: case DK_SKIP: return parseDirectiveSpace(IDVal); case DK_FILE: return parseDirectiveFile(IDLoc); case DK_LINE: return parseDirectiveLine(); case DK_LOC: return parseDirectiveLoc(); case DK_STABS: return parseDirectiveStabs(); case DK_CV_FILE: return parseDirectiveCVFile(); case DK_CV_FUNC_ID: return parseDirectiveCVFuncId(); case DK_CV_INLINE_SITE_ID: return parseDirectiveCVInlineSiteId(); case DK_CV_LOC: return parseDirectiveCVLoc(); case DK_CV_LINETABLE: return parseDirectiveCVLinetable(); case DK_CV_INLINE_LINETABLE: return parseDirectiveCVInlineLinetable(); case DK_CV_DEF_RANGE: return parseDirectiveCVDefRange(); case DK_CV_STRING: return parseDirectiveCVString(); case DK_CV_STRINGTABLE: return parseDirectiveCVStringTable(); case DK_CV_FILECHECKSUMS: return parseDirectiveCVFileChecksums(); case DK_CV_FILECHECKSUM_OFFSET: return parseDirectiveCVFileChecksumOffset(); case DK_CV_FPO_DATA: return parseDirectiveCVFPOData(); case DK_CFI_SECTIONS: return parseDirectiveCFISections(); case DK_CFI_STARTPROC: return parseDirectiveCFIStartProc(); case DK_CFI_ENDPROC: return parseDirectiveCFIEndProc(); case DK_CFI_DEF_CFA: return parseDirectiveCFIDefCfa(IDLoc); case DK_CFI_DEF_CFA_OFFSET: return parseDirectiveCFIDefCfaOffset(IDLoc); case DK_CFI_ADJUST_CFA_OFFSET: return parseDirectiveCFIAdjustCfaOffset(IDLoc); case DK_CFI_DEF_CFA_REGISTER: return parseDirectiveCFIDefCfaRegister(IDLoc); case DK_CFI_LLVM_DEF_ASPACE_CFA: return parseDirectiveCFILLVMDefAspaceCfa(IDLoc); case DK_CFI_OFFSET: return parseDirectiveCFIOffset(IDLoc); case DK_CFI_REL_OFFSET: return parseDirectiveCFIRelOffset(IDLoc); case DK_CFI_PERSONALITY: return parseDirectiveCFIPersonalityOrLsda(true); case DK_CFI_LSDA: return parseDirectiveCFIPersonalityOrLsda(false); case DK_CFI_REMEMBER_STATE: return parseDirectiveCFIRememberState(IDLoc); case DK_CFI_RESTORE_STATE: return parseDirectiveCFIRestoreState(IDLoc); case DK_CFI_SAME_VALUE: return parseDirectiveCFISameValue(IDLoc); case DK_CFI_RESTORE: return parseDirectiveCFIRestore(IDLoc); case DK_CFI_ESCAPE: return parseDirectiveCFIEscape(IDLoc); case DK_CFI_RETURN_COLUMN: return parseDirectiveCFIReturnColumn(IDLoc); case DK_CFI_SIGNAL_FRAME: return parseDirectiveCFISignalFrame(IDLoc); case DK_CFI_UNDEFINED: return parseDirectiveCFIUndefined(IDLoc); case DK_CFI_REGISTER: return parseDirectiveCFIRegister(IDLoc); case DK_CFI_WINDOW_SAVE: return parseDirectiveCFIWindowSave(IDLoc); case DK_CFI_LABEL: return parseDirectiveCFILabel(IDLoc); case DK_MACROS_ON: case DK_MACROS_OFF: return parseDirectiveMacrosOnOff(IDVal); case DK_MACRO: return parseDirectiveMacro(IDLoc); case DK_ALTMACRO: case DK_NOALTMACRO: return parseDirectiveAltmacro(IDVal); case DK_EXITM: return parseDirectiveExitMacro(IDVal); case DK_ENDM: case DK_ENDMACRO: return parseDirectiveEndMacro(IDVal); case DK_PURGEM: return parseDirectivePurgeMacro(IDLoc); case DK_END: return parseDirectiveEnd(IDLoc); case DK_ERR: return parseDirectiveError(IDLoc, false); case DK_ERROR: return parseDirectiveError(IDLoc, true); case DK_WARNING: return parseDirectiveWarning(IDLoc); case DK_RELOC: return parseDirectiveReloc(IDLoc); case DK_DCB: case DK_DCB_W: return parseDirectiveDCB(IDVal, 2); case DK_DCB_B: return parseDirectiveDCB(IDVal, 1); case DK_DCB_D: return parseDirectiveRealDCB(IDVal, APFloat::IEEEdouble()); case DK_DCB_L: return parseDirectiveDCB(IDVal, 4); case DK_DCB_S: return parseDirectiveRealDCB(IDVal, APFloat::IEEEsingle()); case DK_DC_X: case DK_DCB_X: return TokError(Twine(IDVal) + " not currently supported for this target"); case DK_DS: case DK_DS_W: return parseDirectiveDS(IDVal, 2); case DK_DS_B: return parseDirectiveDS(IDVal, 1); case DK_DS_D: return parseDirectiveDS(IDVal, 8); case DK_DS_L: case DK_DS_S: return parseDirectiveDS(IDVal, 4); case DK_DS_P: case DK_DS_X: return parseDirectiveDS(IDVal, 12); case DK_PRINT: return parseDirectivePrint(IDLoc); case DK_ADDRSIG: return parseDirectiveAddrsig(); case DK_ADDRSIG_SYM: return parseDirectiveAddrsigSym(); case DK_PSEUDO_PROBE: return parseDirectivePseudoProbe(); case DK_LTO_DISCARD: return parseDirectiveLTODiscard(); case DK_MEMTAG: return parseDirectiveSymbolAttribute(MCSA_Memtag); } return Error(IDLoc, "unknown directive"); } // __asm _emit or __asm __emit if (ParsingMSInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || IDVal == "_EMIT" || IDVal == "__EMIT")) return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); // __asm align if (ParsingMSInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) return parseDirectiveMSAlign(IDLoc, Info); if (ParsingMSInlineAsm && (IDVal == "even" || IDVal == "EVEN")) Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); if (checkForValidSection()) return true; return parseAndMatchAndEmitTargetInstruction(Info, IDVal, ID, IDLoc); } bool AsmParser::parseAndMatchAndEmitTargetInstruction(ParseStatementInfo &Info, StringRef IDVal, AsmToken ID, SMLoc IDLoc) { // Canonicalize the opcode to lower case. std::string OpcodeStr = IDVal.lower(); ParseInstructionInfo IInfo(Info.AsmRewrites); bool ParseHadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, Info.ParsedOperands); Info.ParseError = ParseHadError; // Dump the parsed representation, if requested. if (getShowParsedOperands()) { SmallString<256> Str; raw_svector_ostream OS(Str); OS << "parsed instruction: ["; for (unsigned i = 0; i != Info.ParsedOperands.size(); ++i) { if (i != 0) OS << ", "; Info.ParsedOperands[i]->print(OS); } OS << "]"; printMessage(IDLoc, SourceMgr::DK_Note, OS.str()); } // Fail even if ParseInstruction erroneously returns false. if (hasPendingError() || ParseHadError) return true; // If we are generating dwarf for the current section then generate a .loc // directive for the instruction. if (!ParseHadError && enabledGenDwarfForAssembly() && getContext().getGenDwarfSectionSyms().count( getStreamer().getCurrentSectionOnly())) { unsigned Line; if (ActiveMacros.empty()) Line = SrcMgr.FindLineNumber(IDLoc, CurBuffer); else Line = SrcMgr.FindLineNumber(ActiveMacros.front()->InstantiationLoc, ActiveMacros.front()->ExitBuffer); // If we previously parsed a cpp hash file line comment then make sure the // current Dwarf File is for the CppHashFilename if not then emit the // Dwarf File table for it and adjust the line number for the .loc. if (!CppHashInfo.Filename.empty()) { unsigned FileNumber = getStreamer().emitDwarfFileDirective( 0, StringRef(), CppHashInfo.Filename); getContext().setGenDwarfFileNumber(FileNumber); unsigned CppHashLocLineNo = SrcMgr.FindLineNumber(CppHashInfo.Loc, CppHashInfo.Buf); Line = CppHashInfo.LineNumber - 1 + (Line - CppHashLocLineNo); } getStreamer().emitDwarfLocDirective( getContext().getGenDwarfFileNumber(), Line, 0, DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0, 0, 0, StringRef()); } // If parsing succeeded, match the instruction. if (!ParseHadError) { uint64_t ErrorInfo; if (getTargetParser().MatchAndEmitInstruction( IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, getTargetParser().isParsingMSInlineAsm())) return true; } return false; } // Parse and erase curly braces marking block start/end bool AsmParser::parseCurlyBlockScope(SmallVectorImpl &AsmStrRewrites) { // Identify curly brace marking block start/end if (Lexer.isNot(AsmToken::LCurly) && Lexer.isNot(AsmToken::RCurly)) return false; SMLoc StartLoc = Lexer.getLoc(); Lex(); // Eat the brace if (Lexer.is(AsmToken::EndOfStatement)) Lex(); // Eat EndOfStatement following the brace // Erase the block start/end brace from the output asm string AsmStrRewrites.emplace_back(AOK_Skip, StartLoc, Lexer.getLoc().getPointer() - StartLoc.getPointer()); return true; } /// parseCppHashLineFilenameComment as this: /// ::= # number "filename" bool AsmParser::parseCppHashLineFilenameComment(SMLoc L, bool SaveLocInfo) { Lex(); // Eat the hash token. // Lexer only ever emits HashDirective if it fully formed if it's // done the checking already so this is an internal error. assert(getTok().is(AsmToken::Integer) && "Lexing Cpp line comment: Expected Integer"); int64_t LineNumber = getTok().getIntVal(); Lex(); assert(getTok().is(AsmToken::String) && "Lexing Cpp line comment: Expected String"); StringRef Filename = getTok().getString(); Lex(); if (!SaveLocInfo) return false; // Get rid of the enclosing quotes. Filename = Filename.substr(1, Filename.size() - 2); // Save the SMLoc, Filename and LineNumber for later use by diagnostics // and possibly DWARF file info. CppHashInfo.Loc = L; CppHashInfo.Filename = Filename; CppHashInfo.LineNumber = LineNumber; CppHashInfo.Buf = CurBuffer; if (FirstCppHashFilename.empty()) FirstCppHashFilename = Filename; return false; } /// will use the last parsed cpp hash line filename comment /// for the Filename and LineNo if any in the diagnostic. void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { auto *Parser = static_cast(Context); raw_ostream &OS = errs(); const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); SMLoc DiagLoc = Diag.getLoc(); unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); unsigned CppHashBuf = Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashInfo.Loc); // Like SourceMgr::printMessage() we need to print the include stack if any // before printing the message. unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); if (!Parser->SavedDiagHandler && DiagCurBuffer && DiagCurBuffer != DiagSrcMgr.getMainFileID()) { SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); } // If we have not parsed a cpp hash line filename comment or the source // manager changed or buffer changed (like in a nested include) then just // print the normal diagnostic using its Filename and LineNo. if (!Parser->CppHashInfo.LineNumber || DiagBuf != CppHashBuf) { if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); else Parser->getContext().diagnose(Diag); return; } // Use the CppHashFilename and calculate a line number based on the // CppHashInfo.Loc and CppHashInfo.LineNumber relative to this Diag's SMLoc // for the diagnostic. const std::string &Filename = std::string(Parser->CppHashInfo.Filename); int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); int CppHashLocLineNo = Parser->SrcMgr.FindLineNumber(Parser->CppHashInfo.Loc, CppHashBuf); int LineNo = Parser->CppHashInfo.LineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), Diag.getLineContents(), Diag.getRanges()); if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); else Parser->getContext().diagnose(NewDiag); } // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The // difference being that that function accepts '@' as part of identifiers and // we can't do that. AsmLexer.cpp should probably be changed to handle // '@' as a special case when needed. static bool isIdentifierChar(char c) { return isalnum(static_cast(c)) || c == '_' || c == '$' || c == '.'; } bool AsmParser::expandMacro(raw_svector_ostream &OS, MCAsmMacro &Macro, ArrayRef Parameters, ArrayRef A, bool EnableAtPseudoVariable) { unsigned NParameters = Parameters.size(); auto expandArg = [&](unsigned Index) { bool HasVararg = NParameters ? Parameters.back().Vararg : false; bool VarargParameter = HasVararg && Index == (NParameters - 1); for (const AsmToken &Token : A[Index]) // For altmacro mode, you can write '%expr'. // The prefix '%' evaluates the expression 'expr' // and uses the result as a string (e.g. replace %(1+2) with the // string "3"). // Here, we identify the integer token which is the result of the // absolute expression evaluation and replace it with its string // representation. if (AltMacroMode && Token.getString().front() == '%' && Token.is(AsmToken::Integer)) // Emit an integer value to the buffer. OS << Token.getIntVal(); // Only Token that was validated as a string and begins with '<' // is considered altMacroString!!! else if (AltMacroMode && Token.getString().front() == '<' && Token.is(AsmToken::String)) { OS << angleBracketString(Token.getStringContents()); } // We expect no quotes around the string's contents when // parsing for varargs. else if (Token.isNot(AsmToken::String) || VarargParameter) OS << Token.getString(); else OS << Token.getStringContents(); }; // A macro without parameters is handled differently on Darwin: // gas accepts no arguments and does no substitutions StringRef Body = Macro.Body; size_t I = 0, End = Body.size(); while (I != End) { if (Body[I] == '\\' && I + 1 != End) { // Check for \@ and \+ pseudo variables. if (EnableAtPseudoVariable && Body[I + 1] == '@') { OS << NumOfMacroInstantiations; I += 2; continue; } if (Body[I + 1] == '+') { OS << Macro.Count; I += 2; continue; } if (Body[I + 1] == '(' && Body[I + 2] == ')') { I += 3; continue; } size_t Pos = ++I; while (I != End && isIdentifierChar(Body[I])) ++I; StringRef Argument(Body.data() + Pos, I - Pos); if (AltMacroMode && I != End && Body[I] == '&') ++I; unsigned Index = 0; for (; Index < NParameters; ++Index) if (Parameters[Index].Name == Argument) break; if (Index == NParameters) OS << '\\' << Argument; else expandArg(Index); continue; } // In Darwin mode, $ is used for macro expansion, not considered an // identifier char. if (Body[I] == '$' && I + 1 != End && IsDarwin && !NParameters) { // This macro has no parameters, look for $0, $1, etc. switch (Body[I + 1]) { // $$ => $ case '$': OS << '$'; I += 2; continue; // $n => number of arguments case 'n': OS << A.size(); I += 2; continue; default: { if (!isDigit(Body[I + 1])) break; // $[0-9] => argument // Missing arguments are ignored. unsigned Index = Body[I + 1] - '0'; if (Index < A.size()) for (const AsmToken &Token : A[Index]) OS << Token.getString(); I += 2; continue; } } } if (!isIdentifierChar(Body[I]) || IsDarwin) { OS << Body[I++]; continue; } const size_t Start = I; while (++I && isIdentifierChar(Body[I])) { } StringRef Token(Body.data() + Start, I - Start); if (AltMacroMode) { unsigned Index = 0; for (; Index != NParameters; ++Index) if (Parameters[Index].Name == Token) break; if (Index != NParameters) { expandArg(Index); if (I != End && Body[I] == '&') ++I; continue; } } OS << Token; } ++Macro.Count; return false; } static bool isOperator(AsmToken::TokenKind kind) { switch (kind) { default: return false; case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Tilde: case AsmToken::Slash: case AsmToken::Star: case AsmToken::Dot: case AsmToken::Equal: case AsmToken::EqualEqual: case AsmToken::Pipe: case AsmToken::PipePipe: case AsmToken::Caret: case AsmToken::Amp: case AsmToken::AmpAmp: case AsmToken::Exclaim: case AsmToken::ExclaimEqual: case AsmToken::Less: case AsmToken::LessEqual: case AsmToken::LessLess: case AsmToken::LessGreater: case AsmToken::Greater: case AsmToken::GreaterEqual: case AsmToken::GreaterGreater: return true; } } namespace { class AsmLexerSkipSpaceRAII { public: AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { Lexer.setSkipSpace(SkipSpace); } ~AsmLexerSkipSpaceRAII() { Lexer.setSkipSpace(true); } private: AsmLexer &Lexer; }; } // end anonymous namespace bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) { if (Vararg) { if (Lexer.isNot(AsmToken::EndOfStatement)) { StringRef Str = parseStringToEndOfStatement(); MA.emplace_back(AsmToken::String, Str); } return false; } unsigned ParenLevel = 0; // Darwin doesn't use spaces to delmit arguments. AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); bool SpaceEaten; while (true) { SpaceEaten = false; if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) return TokError("unexpected token in macro instantiation"); if (ParenLevel == 0) { if (Lexer.is(AsmToken::Comma)) break; if (parseOptionalToken(AsmToken::Space)) SpaceEaten = true; // Spaces can delimit parameters, but could also be part an expression. // If the token after a space is an operator, add the token and the next // one into this argument if (!IsDarwin) { if (isOperator(Lexer.getKind())) { MA.push_back(getTok()); Lexer.Lex(); // Whitespace after an operator can be ignored. parseOptionalToken(AsmToken::Space); continue; } } if (SpaceEaten) break; } // handleMacroEntry relies on not advancing the lexer here // to be able to fill in the remaining default parameter values if (Lexer.is(AsmToken::EndOfStatement)) break; // Adjust the current parentheses level. if (Lexer.is(AsmToken::LParen)) ++ParenLevel; else if (Lexer.is(AsmToken::RParen) && ParenLevel) --ParenLevel; // Append the token to the current argument list. MA.push_back(getTok()); Lexer.Lex(); } if (ParenLevel != 0) return TokError("unbalanced parentheses in macro argument"); return false; } // Parse the macro instantiation arguments. bool AsmParser::parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A) { const unsigned NParameters = M ? M->Parameters.size() : 0; bool NamedParametersFound = false; SmallVector FALocs; A.resize(NParameters); FALocs.resize(NParameters); // Parse two kinds of macro invocations: // - macros defined without any parameters accept an arbitrary number of them // - macros defined with parameters accept at most that many of them bool HasVararg = NParameters ? M->Parameters.back().Vararg : false; for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; ++Parameter) { SMLoc IDLoc = Lexer.getLoc(); MCAsmMacroParameter FA; if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) { if (parseIdentifier(FA.Name)) return Error(IDLoc, "invalid argument identifier for formal argument"); if (Lexer.isNot(AsmToken::Equal)) return TokError("expected '=' after formal parameter identifier"); Lex(); NamedParametersFound = true; } bool Vararg = HasVararg && Parameter == (NParameters - 1); if (NamedParametersFound && FA.Name.empty()) return Error(IDLoc, "cannot mix positional and keyword arguments"); SMLoc StrLoc = Lexer.getLoc(); SMLoc EndLoc; if (AltMacroMode && Lexer.is(AsmToken::Percent)) { const MCExpr *AbsoluteExp; int64_t Value; /// Eat '%' Lex(); if (parseExpression(AbsoluteExp, EndLoc)) return false; if (!AbsoluteExp->evaluateAsAbsolute(Value, getStreamer().getAssemblerPtr())) return Error(StrLoc, "expected absolute expression"); const char *StrChar = StrLoc.getPointer(); const char *EndChar = EndLoc.getPointer(); AsmToken newToken(AsmToken::Integer, StringRef(StrChar, EndChar - StrChar), Value); FA.Value.push_back(newToken); } else if (AltMacroMode && Lexer.is(AsmToken::Less) && isAngleBracketString(StrLoc, EndLoc)) { const char *StrChar = StrLoc.getPointer(); const char *EndChar = EndLoc.getPointer(); jumpToLoc(EndLoc, CurBuffer); /// Eat from '<' to '>' Lex(); AsmToken newToken(AsmToken::String, StringRef(StrChar, EndChar - StrChar)); FA.Value.push_back(newToken); } else if(parseMacroArgument(FA.Value, Vararg)) return true; unsigned PI = Parameter; if (!FA.Name.empty()) { unsigned FAI = 0; for (FAI = 0; FAI < NParameters; ++FAI) if (M->Parameters[FAI].Name == FA.Name) break; if (FAI >= NParameters) { assert(M && "expected macro to be defined"); return Error(IDLoc, "parameter named '" + FA.Name + "' does not exist for macro '" + M->Name + "'"); } PI = FAI; } if (!FA.Value.empty()) { if (A.size() <= PI) A.resize(PI + 1); A[PI] = FA.Value; if (FALocs.size() <= PI) FALocs.resize(PI + 1); FALocs[PI] = Lexer.getLoc(); } // At the end of the statement, fill in remaining arguments that have // default values. If there aren't any, then the next argument is // required but missing if (Lexer.is(AsmToken::EndOfStatement)) { bool Failure = false; for (unsigned FAI = 0; FAI < NParameters; ++FAI) { if (A[FAI].empty()) { if (M->Parameters[FAI].Required) { Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), "missing value for required parameter " "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); Failure = true; } if (!M->Parameters[FAI].Value.empty()) A[FAI] = M->Parameters[FAI].Value; } } return Failure; } parseOptionalToken(AsmToken::Comma); } return TokError("too many positional arguments"); } bool AsmParser::handleMacroEntry(MCAsmMacro *M, SMLoc NameLoc) { // Arbitrarily limit macro nesting depth (default matches 'as'). We can // eliminate this, although we should protect against infinite loops. unsigned MaxNestingDepth = AsmMacroMaxNestingDepth; if (ActiveMacros.size() == MaxNestingDepth) { std::ostringstream MaxNestingDepthError; MaxNestingDepthError << "macros cannot be nested more than " << MaxNestingDepth << " levels deep." << " Use -asm-macro-max-nesting-depth to increase " "this limit."; return TokError(MaxNestingDepthError.str()); } MCAsmMacroArguments A; if (parseMacroArguments(M, A)) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); if ((!IsDarwin || M->Parameters.size()) && M->Parameters.size() != A.size()) return Error(getTok().getLoc(), "Wrong number of arguments"); if (expandMacro(OS, *M, M->Parameters, A, true)) return true; // We include the .endmacro in the buffer as our cue to exit the macro // instantiation. OS << ".endmacro\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation{ NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; ActiveMacros.push_back(MI); ++NumOfMacroInstantiations; // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); Lex(); return false; } void AsmParser::handleMacroExit() { // Jump to the EndOfStatement we should return to, and consume it. jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer); Lex(); // If .endm/.endr is followed by \n instead of a comment, consume it so that // we don't print an excess \n. if (getTok().is(AsmToken::EndOfStatement)) Lex(); // Pop the instantiation entry. delete ActiveMacros.back(); ActiveMacros.pop_back(); } bool AsmParser::parseAssignment(StringRef Name, AssignmentKind Kind) { MCSymbol *Sym; const MCExpr *Value; SMLoc ExprLoc = getTok().getLoc(); bool AllowRedef = Kind == AssignmentKind::Set || Kind == AssignmentKind::Equal; if (MCParserUtils::parseAssignmentExpression(Name, AllowRedef, *this, Sym, Value)) return true; if (!Sym) { // In the case where we parse an expression starting with a '.', we will // not generate an error, nor will we create a symbol. In this case we // should just return out. return false; } if (discardLTOSymbol(Name)) return false; // Do the assignment. switch (Kind) { case AssignmentKind::Equal: Out.emitAssignment(Sym, Value); break; case AssignmentKind::Set: case AssignmentKind::Equiv: Out.emitAssignment(Sym, Value); Out.emitSymbolAttribute(Sym, MCSA_NoDeadStrip); break; case AssignmentKind::LTOSetConditional: if (Value->getKind() != MCExpr::SymbolRef) return Error(ExprLoc, "expected identifier"); Out.emitConditionalAssignment(Sym, Value); break; } return false; } /// parseIdentifier: /// ::= identifier /// ::= string bool AsmParser::parseIdentifier(StringRef &Res) { // The assembler has relaxed rules for accepting identifiers, in particular we // allow things like '.globl $foo' and '.def @feat.00', which would normally be // separate tokens. At this level, we have already lexed so we cannot (currently) // handle this as a context dependent token, instead we detect adjacent tokens // and return the combined identifier. if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { SMLoc PrefixLoc = getLexer().getLoc(); // Consume the prefix character, and check for a following identifier. AsmToken Buf[1]; Lexer.peekTokens(Buf, false); if (Buf[0].isNot(AsmToken::Identifier) && Buf[0].isNot(AsmToken::Integer)) return true; // We have a '$' or '@' followed by an identifier or integer token, make // sure they are adjacent. if (PrefixLoc.getPointer() + 1 != Buf[0].getLoc().getPointer()) return true; // eat $ or @ Lexer.Lex(); // Lexer's Lex guarantees consecutive token. // Construct the joined identifier and consume the token. Res = StringRef(PrefixLoc.getPointer(), getTok().getString().size() + 1); Lex(); // Parser Lex to maintain invariants. return false; } if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) return true; Res = getTok().getIdentifier(); Lex(); // Consume the identifier token. return false; } /// parseDirectiveSet: /// ::= .equ identifier ',' expression /// ::= .equiv identifier ',' expression /// ::= .set identifier ',' expression /// ::= .lto_set_conditional identifier ',' expression bool AsmParser::parseDirectiveSet(StringRef IDVal, AssignmentKind Kind) { StringRef Name; if (check(parseIdentifier(Name), "expected identifier") || parseComma() || parseAssignment(Name, Kind)) return true; return false; } bool AsmParser::parseEscapedString(std::string &Data) { if (check(getTok().isNot(AsmToken::String), "expected string")) return true; Data = ""; StringRef Str = getTok().getStringContents(); for (unsigned i = 0, e = Str.size(); i != e; ++i) { if (Str[i] != '\\') { if (Str[i] == '\n') { SMLoc NewlineLoc = SMLoc::getFromPointer(Str.data() + i); if (Warning(NewlineLoc, "unterminated string; newline inserted")) return true; } Data += Str[i]; continue; } // Recognize escaped characters. Note that this escape semantics currently // loosely follows Darwin 'as'. ++i; if (i == e) return TokError("unexpected backslash at end of string"); // Recognize hex sequences similarly to GNU 'as'. if (Str[i] == 'x' || Str[i] == 'X') { size_t length = Str.size(); if (i + 1 >= length || !isHexDigit(Str[i + 1])) return TokError("invalid hexadecimal escape sequence"); // Consume hex characters. GNU 'as' reads all hexadecimal characters and // then truncates to the lower 16 bits. Seems reasonable. unsigned Value = 0; while (i + 1 < length && isHexDigit(Str[i + 1])) Value = Value * 16 + hexDigitValue(Str[++i]); Data += (unsigned char)(Value & 0xFF); continue; } // Recognize octal sequences. if ((unsigned)(Str[i] - '0') <= 7) { // Consume up to three octal characters. unsigned Value = Str[i] - '0'; if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { ++i; Value = Value * 8 + (Str[i] - '0'); if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { ++i; Value = Value * 8 + (Str[i] - '0'); } } if (Value > 255) return TokError("invalid octal escape sequence (out of range)"); Data += (unsigned char)Value; continue; } // Otherwise recognize individual escapes. switch (Str[i]) { default: // Just reject invalid escape sequences for now. return TokError("invalid escape sequence (unrecognized character)"); case 'b': Data += '\b'; break; case 'f': Data += '\f'; break; case 'n': Data += '\n'; break; case 'r': Data += '\r'; break; case 't': Data += '\t'; break; case '"': Data += '"'; break; case '\\': Data += '\\'; break; } } Lex(); return false; } bool AsmParser::parseAngleBracketString(std::string &Data) { SMLoc EndLoc, StartLoc = getTok().getLoc(); if (isAngleBracketString(StartLoc, EndLoc)) { const char *StartChar = StartLoc.getPointer() + 1; const char *EndChar = EndLoc.getPointer() - 1; jumpToLoc(EndLoc, CurBuffer); /// Eat from '<' to '>' Lex(); Data = angleBracketString(StringRef(StartChar, EndChar - StartChar)); return false; } return true; } /// parseDirectiveAscii: // ::= .ascii [ "string"+ ( , "string"+ )* ] /// ::= ( .asciz | .string ) [ "string" ( , "string" )* ] bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { auto parseOp = [&]() -> bool { std::string Data; if (checkForValidSection()) return true; // Only support spaces as separators for .ascii directive for now. See the // discusssion at https://reviews.llvm.org/D91460 for more details. do { if (parseEscapedString(Data)) return true; getStreamer().emitBytes(Data); } while (!ZeroTerminated && getTok().is(AsmToken::String)); if (ZeroTerminated) getStreamer().emitBytes(StringRef("\0", 1)); return false; }; return parseMany(parseOp); } /// parseDirectiveReloc /// ::= .reloc expression , identifier [ , expression ] bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) { const MCExpr *Offset; const MCExpr *Expr = nullptr; SMLoc OffsetLoc = Lexer.getTok().getLoc(); if (parseExpression(Offset)) return true; if (parseComma() || check(getTok().isNot(AsmToken::Identifier), "expected relocation name")) return true; SMLoc NameLoc = Lexer.getTok().getLoc(); StringRef Name = Lexer.getTok().getIdentifier(); Lex(); if (Lexer.is(AsmToken::Comma)) { Lex(); SMLoc ExprLoc = Lexer.getLoc(); if (parseExpression(Expr)) return true; MCValue Value; if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) return Error(ExprLoc, "expression must be relocatable"); } if (parseEOL()) return true; const MCTargetAsmParser &MCT = getTargetParser(); const MCSubtargetInfo &STI = MCT.getSTI(); if (std::optional> Err = getStreamer().emitRelocDirective(*Offset, Name, Expr, DirectiveLoc, STI)) return Error(Err->first ? NameLoc : OffsetLoc, Err->second); return false; } /// parseDirectiveValue /// ::= (.byte | .short | ... ) [ expression (, expression)* ] bool AsmParser::parseDirectiveValue(StringRef IDVal, unsigned Size) { auto parseOp = [&]() -> bool { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (checkForValidSection() || parseExpression(Value)) return true; // Special case constant expressions to match code generator. if (const MCConstantExpr *MCE = dyn_cast(Value)) { assert(Size <= 8 && "Invalid size"); uint64_t IntValue = MCE->getValue(); if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) return Error(ExprLoc, "out of range literal value"); getStreamer().emitIntValue(IntValue, Size); } else getStreamer().emitValue(Value, Size, ExprLoc); return false; }; return parseMany(parseOp); } static bool parseHexOcta(AsmParser &Asm, uint64_t &hi, uint64_t &lo) { if (Asm.getTok().isNot(AsmToken::Integer) && Asm.getTok().isNot(AsmToken::BigNum)) return Asm.TokError("unknown token in expression"); SMLoc ExprLoc = Asm.getTok().getLoc(); APInt IntValue = Asm.getTok().getAPIntVal(); Asm.Lex(); if (!IntValue.isIntN(128)) return Asm.Error(ExprLoc, "out of range literal value"); if (!IntValue.isIntN(64)) { hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); lo = IntValue.getLoBits(64).getZExtValue(); } else { hi = 0; lo = IntValue.getZExtValue(); } return false; } /// ParseDirectiveOctaValue /// ::= .octa [ hexconstant (, hexconstant)* ] bool AsmParser::parseDirectiveOctaValue(StringRef IDVal) { auto parseOp = [&]() -> bool { if (checkForValidSection()) return true; uint64_t hi, lo; if (parseHexOcta(*this, hi, lo)) return true; if (MAI.isLittleEndian()) { getStreamer().emitInt64(lo); getStreamer().emitInt64(hi); } else { getStreamer().emitInt64(hi); getStreamer().emitInt64(lo); } return false; }; return parseMany(parseOp); } bool AsmParser::parseRealValue(const fltSemantics &Semantics, APInt &Res) { // We don't truly support arithmetic on floating point expressions, so we // have to manually parse unary prefixes. bool IsNeg = false; if (getLexer().is(AsmToken::Minus)) { Lexer.Lex(); IsNeg = true; } else if (getLexer().is(AsmToken::Plus)) Lexer.Lex(); if (Lexer.is(AsmToken::Error)) return TokError(Lexer.getErr()); if (Lexer.isNot(AsmToken::Integer) && Lexer.isNot(AsmToken::Real) && Lexer.isNot(AsmToken::Identifier)) return TokError("unexpected token in directive"); // Convert to an APFloat. APFloat Value(Semantics); StringRef IDVal = getTok().getString(); if (getLexer().is(AsmToken::Identifier)) { if (!IDVal.compare_insensitive("infinity") || !IDVal.compare_insensitive("inf")) Value = APFloat::getInf(Semantics); else if (!IDVal.compare_insensitive("nan")) Value = APFloat::getNaN(Semantics, false, ~0); else return TokError("invalid floating point literal"); } else if (errorToBool( Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) .takeError())) return TokError("invalid floating point literal"); if (IsNeg) Value.changeSign(); // Consume the numeric token. Lex(); Res = Value.bitcastToAPInt(); return false; } /// parseDirectiveRealValue /// ::= (.single | .double) [ expression (, expression)* ] bool AsmParser::parseDirectiveRealValue(StringRef IDVal, const fltSemantics &Semantics) { auto parseOp = [&]() -> bool { APInt AsInt; if (checkForValidSection() || parseRealValue(Semantics, AsInt)) return true; getStreamer().emitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8); return false; }; return parseMany(parseOp); } /// parseDirectiveZero /// ::= .zero expression bool AsmParser::parseDirectiveZero() { SMLoc NumBytesLoc = Lexer.getLoc(); const MCExpr *NumBytes; if (checkForValidSection() || parseExpression(NumBytes)) return true; int64_t Val = 0; if (getLexer().is(AsmToken::Comma)) { Lex(); if (parseAbsoluteExpression(Val)) return true; } if (parseEOL()) return true; getStreamer().emitFill(*NumBytes, Val, NumBytesLoc); return false; } /// parseDirectiveFill /// ::= .fill expression [ , expression [ , expression ] ] bool AsmParser::parseDirectiveFill() { SMLoc NumValuesLoc = Lexer.getLoc(); const MCExpr *NumValues; if (checkForValidSection() || parseExpression(NumValues)) return true; int64_t FillSize = 1; int64_t FillExpr = 0; SMLoc SizeLoc, ExprLoc; if (parseOptionalToken(AsmToken::Comma)) { SizeLoc = getTok().getLoc(); if (parseAbsoluteExpression(FillSize)) return true; if (parseOptionalToken(AsmToken::Comma)) { ExprLoc = getTok().getLoc(); if (parseAbsoluteExpression(FillExpr)) return true; } } if (parseEOL()) return true; if (FillSize < 0) { Warning(SizeLoc, "'.fill' directive with negative size has no effect"); return false; } if (FillSize > 8) { Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8"); FillSize = 8; } if (!isUInt<32>(FillExpr) && FillSize > 4) Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits"); getStreamer().emitFill(*NumValues, FillSize, FillExpr, NumValuesLoc); return false; } /// parseDirectiveOrg /// ::= .org expression [ , expression ] bool AsmParser::parseDirectiveOrg() { const MCExpr *Offset; SMLoc OffsetLoc = Lexer.getLoc(); if (checkForValidSection() || parseExpression(Offset)) return true; // Parse optional fill expression. int64_t FillExpr = 0; if (parseOptionalToken(AsmToken::Comma)) if (parseAbsoluteExpression(FillExpr)) return true; if (parseEOL()) return true; getStreamer().emitValueToOffset(Offset, FillExpr, OffsetLoc); return false; } /// parseDirectiveAlign /// ::= {.align, ...} expression [ , expression [ , expression ]] bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) { SMLoc AlignmentLoc = getLexer().getLoc(); int64_t Alignment; SMLoc MaxBytesLoc; bool HasFillExpr = false; int64_t FillExpr = 0; int64_t MaxBytesToFill = 0; SMLoc FillExprLoc; auto parseAlign = [&]() -> bool { if (parseAbsoluteExpression(Alignment)) return true; if (parseOptionalToken(AsmToken::Comma)) { // The fill expression can be omitted while specifying a maximum number of // alignment bytes, e.g: // .align 3,,4 if (getTok().isNot(AsmToken::Comma)) { HasFillExpr = true; if (parseTokenLoc(FillExprLoc) || parseAbsoluteExpression(FillExpr)) return true; } if (parseOptionalToken(AsmToken::Comma)) if (parseTokenLoc(MaxBytesLoc) || parseAbsoluteExpression(MaxBytesToFill)) return true; } return parseEOL(); }; if (checkForValidSection()) return true; // Ignore empty '.p2align' directives for GNU-as compatibility if (IsPow2 && (ValueSize == 1) && getTok().is(AsmToken::EndOfStatement)) { Warning(AlignmentLoc, "p2align directive with no operand(s) is ignored"); return parseEOL(); } if (parseAlign()) return true; // Always emit an alignment here even if we thrown an error. bool ReturnVal = false; // Compute alignment in bytes. if (IsPow2) { // FIXME: Diagnose overflow. if (Alignment >= 32) { ReturnVal |= Error(AlignmentLoc, "invalid alignment value"); Alignment = 31; } Alignment = 1ULL << Alignment; } else { // Reject alignments that aren't either a power of two or zero, // for gas compatibility. Alignment of zero is silently rounded // up to one. if (Alignment == 0) Alignment = 1; else if (!isPowerOf2_64(Alignment)) { ReturnVal |= Error(AlignmentLoc, "alignment must be a power of 2"); Alignment = llvm::bit_floor(Alignment); } if (!isUInt<32>(Alignment)) { ReturnVal |= Error(AlignmentLoc, "alignment must be smaller than 2**32"); Alignment = 1u << 31; } } if (HasFillExpr && FillExpr != 0) { MCSection *Sec = getStreamer().getCurrentSectionOnly(); if (Sec && Sec->isVirtualSection()) { ReturnVal |= Warning(FillExprLoc, "ignoring non-zero fill value in " + Sec->getVirtualSectionKind() + " section '" + Sec->getName() + "'"); FillExpr = 0; } } // Diagnose non-sensical max bytes to align. if (MaxBytesLoc.isValid()) { if (MaxBytesToFill < 1) { ReturnVal |= Error(MaxBytesLoc, "alignment directive can never be satisfied in this " "many bytes, ignoring maximum bytes expression"); MaxBytesToFill = 0; } if (MaxBytesToFill >= Alignment) { Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and " "has no effect"); MaxBytesToFill = 0; } } // Check whether we should use optimal code alignment for this .align // directive. const MCSection *Section = getStreamer().getCurrentSectionOnly(); assert(Section && "must have section to emit alignment"); bool useCodeAlign = Section->useCodeAlign(); if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) && ValueSize == 1 && useCodeAlign) { getStreamer().emitCodeAlignment( Align(Alignment), &getTargetParser().getSTI(), MaxBytesToFill); } else { // FIXME: Target specific behavior about how the "extra" bytes are filled. getStreamer().emitValueToAlignment(Align(Alignment), FillExpr, ValueSize, MaxBytesToFill); } return ReturnVal; } /// parseDirectiveFile /// ::= .file filename /// ::= .file number [directory] filename [md5 checksum] [source source-text] bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) { // FIXME: I'm not sure what this is. int64_t FileNumber = -1; if (getLexer().is(AsmToken::Integer)) { FileNumber = getTok().getIntVal(); Lex(); if (FileNumber < 0) return TokError("negative file number"); } std::string Path; // Usually the directory and filename together, otherwise just the directory. // Allow the strings to have escaped octal character sequence. if (parseEscapedString(Path)) return true; StringRef Directory; StringRef Filename; std::string FilenameData; if (getLexer().is(AsmToken::String)) { if (check(FileNumber == -1, "explicit path specified, but no file number") || parseEscapedString(FilenameData)) return true; Filename = FilenameData; Directory = Path; } else { Filename = Path; } uint64_t MD5Hi, MD5Lo; bool HasMD5 = false; std::optional Source; bool HasSource = false; std::string SourceString; while (!parseOptionalToken(AsmToken::EndOfStatement)) { StringRef Keyword; if (check(getTok().isNot(AsmToken::Identifier), "unexpected token in '.file' directive") || parseIdentifier(Keyword)) return true; if (Keyword == "md5") { HasMD5 = true; if (check(FileNumber == -1, "MD5 checksum specified, but no file number") || parseHexOcta(*this, MD5Hi, MD5Lo)) return true; } else if (Keyword == "source") { HasSource = true; if (check(FileNumber == -1, "source specified, but no file number") || check(getTok().isNot(AsmToken::String), "unexpected token in '.file' directive") || parseEscapedString(SourceString)) return true; } else { return TokError("unexpected token in '.file' directive"); } } if (FileNumber == -1) { // Ignore the directive if there is no number and the target doesn't support // numberless .file directives. This allows some portability of assembler // between different object file formats. if (getContext().getAsmInfo()->hasSingleParameterDotFile()) getStreamer().emitFileDirective(Filename); } else { // In case there is a -g option as well as debug info from directive .file, // we turn off the -g option, directly use the existing debug info instead. // Throw away any implicit file table for the assembler source. if (Ctx.getGenDwarfForAssembly()) { Ctx.getMCDwarfLineTable(0).resetFileTable(); Ctx.setGenDwarfForAssembly(false); } std::optional CKMem; if (HasMD5) { MD5::MD5Result Sum; for (unsigned i = 0; i != 8; ++i) { Sum[i] = uint8_t(MD5Hi >> ((7 - i) * 8)); Sum[i + 8] = uint8_t(MD5Lo >> ((7 - i) * 8)); } CKMem = Sum; } if (HasSource) { char *SourceBuf = static_cast(Ctx.allocate(SourceString.size())); memcpy(SourceBuf, SourceString.data(), SourceString.size()); Source = StringRef(SourceBuf, SourceString.size()); } if (FileNumber == 0) { // Upgrade to Version 5 for assembly actions like clang -c a.s. if (Ctx.getDwarfVersion() < 5) Ctx.setDwarfVersion(5); getStreamer().emitDwarfFile0Directive(Directory, Filename, CKMem, Source); } else { Expected FileNumOrErr = getStreamer().tryEmitDwarfFileDirective( FileNumber, Directory, Filename, CKMem, Source); if (!FileNumOrErr) return Error(DirectiveLoc, toString(FileNumOrErr.takeError())); } // Alert the user if there are some .file directives with MD5 and some not. // But only do that once. if (!ReportedInconsistentMD5 && !Ctx.isDwarfMD5UsageConsistent(0)) { ReportedInconsistentMD5 = true; return Warning(DirectiveLoc, "inconsistent use of MD5 checksums"); } } return false; } /// parseDirectiveLine /// ::= .line [number] bool AsmParser::parseDirectiveLine() { int64_t LineNumber; if (getLexer().is(AsmToken::Integer)) { if (parseIntToken(LineNumber, "unexpected token in '.line' directive")) return true; (void)LineNumber; // FIXME: Do something with the .line. } return parseEOL(); } /// parseDirectiveLoc /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool AsmParser::parseDirectiveLoc() { int64_t FileNumber = 0, LineNumber = 0; SMLoc Loc = getTok().getLoc(); if (parseIntToken(FileNumber, "unexpected token in '.loc' directive") || check(FileNumber < 1 && Ctx.getDwarfVersion() < 5, Loc, "file number less than one in '.loc' directive") || check(!getContext().isValidDwarfFileNumber(FileNumber), Loc, "unassigned file number in '.loc' directive")) return true; // optional if (getLexer().is(AsmToken::Integer)) { LineNumber = getTok().getIntVal(); if (LineNumber < 0) return TokError("line number less than zero in '.loc' directive"); Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { ColumnPos = getTok().getIntVal(); if (ColumnPos < 0) return TokError("column position less than zero in '.loc' directive"); Lex(); } auto PrevFlags = getContext().getCurrentDwarfLoc().getFlags(); unsigned Flags = PrevFlags & DWARF2_FLAG_IS_STMT; unsigned Isa = 0; int64_t Discriminator = 0; auto parseLocOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return TokError("unexpected token in '.loc' directive"); if (Name == "basic_block") Flags |= DWARF2_FLAG_BASIC_BLOCK; else if (Name == "prologue_end") Flags |= DWARF2_FLAG_PROLOGUE_END; else if (Name == "epilogue_begin") Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be the constant 0 or 1. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value == 0) Flags &= ~DWARF2_FLAG_IS_STMT; else if (Value == 1) Flags |= DWARF2_FLAG_IS_STMT; else return Error(Loc, "is_stmt value not 0 or 1"); } else { return Error(Loc, "is_stmt value not the constant value of 0 or 1"); } } else if (Name == "isa") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be a constant greater or equal to 0. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value < 0) return Error(Loc, "isa number less than zero"); Isa = Value; } else { return Error(Loc, "isa number not a constant value"); } } else if (Name == "discriminator") { if (parseAbsoluteExpression(Discriminator)) return true; } else { return Error(Loc, "unknown sub-directive in '.loc' directive"); } return false; }; if (parseMany(parseLocOp, false /*hasComma*/)) return true; getStreamer().emitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, Isa, Discriminator, StringRef()); return false; } /// parseDirectiveStabs /// ::= .stabs string, number, number, number bool AsmParser::parseDirectiveStabs() { return TokError("unsupported directive '.stabs'"); } /// parseDirectiveCVFile /// ::= .cv_file number filename [checksum] [checksumkind] bool AsmParser::parseDirectiveCVFile() { SMLoc FileNumberLoc = getTok().getLoc(); int64_t FileNumber; std::string Filename; std::string Checksum; int64_t ChecksumKind = 0; if (parseIntToken(FileNumber, "expected file number in '.cv_file' directive") || check(FileNumber < 1, FileNumberLoc, "file number less than one") || check(getTok().isNot(AsmToken::String), "unexpected token in '.cv_file' directive") || parseEscapedString(Filename)) return true; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (check(getTok().isNot(AsmToken::String), "unexpected token in '.cv_file' directive") || parseEscapedString(Checksum) || parseIntToken(ChecksumKind, "expected checksum kind in '.cv_file' directive") || parseEOL()) return true; } Checksum = fromHex(Checksum); void *CKMem = Ctx.allocate(Checksum.size(), 1); memcpy(CKMem, Checksum.data(), Checksum.size()); ArrayRef ChecksumAsBytes(reinterpret_cast(CKMem), Checksum.size()); if (!getStreamer().emitCVFileDirective(FileNumber, Filename, ChecksumAsBytes, static_cast(ChecksumKind))) return Error(FileNumberLoc, "file number already allocated"); return false; } bool AsmParser::parseCVFunctionId(int64_t &FunctionId, StringRef DirectiveName) { SMLoc Loc; return parseTokenLoc(Loc) || parseIntToken(FunctionId, "expected function id in '" + DirectiveName + "' directive") || check(FunctionId < 0 || FunctionId >= UINT_MAX, Loc, "expected function id within range [0, UINT_MAX)"); } bool AsmParser::parseCVFileId(int64_t &FileNumber, StringRef DirectiveName) { SMLoc Loc; return parseTokenLoc(Loc) || parseIntToken(FileNumber, "expected integer in '" + DirectiveName + "' directive") || check(FileNumber < 1, Loc, "file number less than one in '" + DirectiveName + "' directive") || check(!getCVContext().isValidFileNumber(FileNumber), Loc, "unassigned file number in '" + DirectiveName + "' directive"); } /// parseDirectiveCVFuncId /// ::= .cv_func_id FunctionId /// /// Introduces a function ID that can be used with .cv_loc. bool AsmParser::parseDirectiveCVFuncId() { SMLoc FunctionIdLoc = getTok().getLoc(); int64_t FunctionId; if (parseCVFunctionId(FunctionId, ".cv_func_id") || parseEOL()) return true; if (!getStreamer().emitCVFuncIdDirective(FunctionId)) return Error(FunctionIdLoc, "function id already allocated"); return false; } /// parseDirectiveCVInlineSiteId /// ::= .cv_inline_site_id FunctionId /// "within" IAFunc /// "inlined_at" IAFile IALine [IACol] /// /// Introduces a function ID that can be used with .cv_loc. Includes "inlined /// at" source location information for use in the line table of the caller, /// whether the caller is a real function or another inlined call site. bool AsmParser::parseDirectiveCVInlineSiteId() { SMLoc FunctionIdLoc = getTok().getLoc(); int64_t FunctionId; int64_t IAFunc; int64_t IAFile; int64_t IALine; int64_t IACol = 0; // FunctionId if (parseCVFunctionId(FunctionId, ".cv_inline_site_id")) return true; // "within" if (check((getLexer().isNot(AsmToken::Identifier) || getTok().getIdentifier() != "within"), "expected 'within' identifier in '.cv_inline_site_id' directive")) return true; Lex(); // IAFunc if (parseCVFunctionId(IAFunc, ".cv_inline_site_id")) return true; // "inlined_at" if (check((getLexer().isNot(AsmToken::Identifier) || getTok().getIdentifier() != "inlined_at"), "expected 'inlined_at' identifier in '.cv_inline_site_id' " "directive") ) return true; Lex(); // IAFile IALine if (parseCVFileId(IAFile, ".cv_inline_site_id") || parseIntToken(IALine, "expected line number after 'inlined_at'")) return true; // [IACol] if (getLexer().is(AsmToken::Integer)) { IACol = getTok().getIntVal(); Lex(); } if (parseEOL()) return true; if (!getStreamer().emitCVInlineSiteIdDirective(FunctionId, IAFunc, IAFile, IALine, IACol, FunctionIdLoc)) return Error(FunctionIdLoc, "function id already allocated"); return false; } /// parseDirectiveCVLoc /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] /// [is_stmt VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool AsmParser::parseDirectiveCVLoc() { SMLoc DirectiveLoc = getTok().getLoc(); int64_t FunctionId, FileNumber; if (parseCVFunctionId(FunctionId, ".cv_loc") || parseCVFileId(FileNumber, ".cv_loc")) return true; int64_t LineNumber = 0; if (getLexer().is(AsmToken::Integer)) { LineNumber = getTok().getIntVal(); if (LineNumber < 0) return TokError("line number less than zero in '.cv_loc' directive"); Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { ColumnPos = getTok().getIntVal(); if (ColumnPos < 0) return TokError("column position less than zero in '.cv_loc' directive"); Lex(); } bool PrologueEnd = false; uint64_t IsStmt = 0; auto parseOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return TokError("unexpected token in '.cv_loc' directive"); if (Name == "prologue_end") PrologueEnd = true; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be the constant 0 or 1. IsStmt = ~0ULL; if (const auto *MCE = dyn_cast(Value)) IsStmt = MCE->getValue(); if (IsStmt > 1) return Error(Loc, "is_stmt value not 0 or 1"); } else { return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); } return false; }; if (parseMany(parseOp, false /*hasComma*/)) return true; getStreamer().emitCVLocDirective(FunctionId, FileNumber, LineNumber, ColumnPos, PrologueEnd, IsStmt, StringRef(), DirectiveLoc); return false; } /// parseDirectiveCVLinetable /// ::= .cv_linetable FunctionId, FnStart, FnEnd bool AsmParser::parseDirectiveCVLinetable() { int64_t FunctionId; StringRef FnStartName, FnEndName; SMLoc Loc = getTok().getLoc(); if (parseCVFunctionId(FunctionId, ".cv_linetable") || parseComma() || parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, "expected identifier in directive") || parseComma() || parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, "expected identifier in directive")) return true; MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); getStreamer().emitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); return false; } /// parseDirectiveCVInlineLinetable /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum FnStart FnEnd bool AsmParser::parseDirectiveCVInlineLinetable() { int64_t PrimaryFunctionId, SourceFileId, SourceLineNum; StringRef FnStartName, FnEndName; SMLoc Loc = getTok().getLoc(); if (parseCVFunctionId(PrimaryFunctionId, ".cv_inline_linetable") || parseTokenLoc(Loc) || parseIntToken( SourceFileId, "expected SourceField in '.cv_inline_linetable' directive") || check(SourceFileId <= 0, Loc, "File id less than zero in '.cv_inline_linetable' directive") || parseTokenLoc(Loc) || parseIntToken( SourceLineNum, "expected SourceLineNum in '.cv_inline_linetable' directive") || check(SourceLineNum < 0, Loc, "Line number less than zero in '.cv_inline_linetable' directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnStartName), Loc, "expected identifier in directive") || parseTokenLoc(Loc) || check(parseIdentifier(FnEndName), Loc, "expected identifier in directive")) return true; if (parseEOL()) return true; MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); getStreamer().emitCVInlineLinetableDirective(PrimaryFunctionId, SourceFileId, SourceLineNum, FnStartSym, FnEndSym); return false; } void AsmParser::initializeCVDefRangeTypeMap() { CVDefRangeTypeMap["reg"] = CVDR_DEFRANGE_REGISTER; CVDefRangeTypeMap["frame_ptr_rel"] = CVDR_DEFRANGE_FRAMEPOINTER_REL; CVDefRangeTypeMap["subfield_reg"] = CVDR_DEFRANGE_SUBFIELD_REGISTER; CVDefRangeTypeMap["reg_rel"] = CVDR_DEFRANGE_REGISTER_REL; } /// parseDirectiveCVDefRange /// ::= .cv_def_range RangeStart RangeEnd (GapStart GapEnd)*, bytes* bool AsmParser::parseDirectiveCVDefRange() { SMLoc Loc; std::vector> Ranges; while (getLexer().is(AsmToken::Identifier)) { Loc = getLexer().getLoc(); StringRef GapStartName; if (parseIdentifier(GapStartName)) return Error(Loc, "expected identifier in directive"); MCSymbol *GapStartSym = getContext().getOrCreateSymbol(GapStartName); Loc = getLexer().getLoc(); StringRef GapEndName; if (parseIdentifier(GapEndName)) return Error(Loc, "expected identifier in directive"); MCSymbol *GapEndSym = getContext().getOrCreateSymbol(GapEndName); Ranges.push_back({GapStartSym, GapEndSym}); } StringRef CVDefRangeTypeStr; if (parseToken( AsmToken::Comma, "expected comma before def_range type in .cv_def_range directive") || parseIdentifier(CVDefRangeTypeStr)) return Error(Loc, "expected def_range type in directive"); StringMap::const_iterator CVTypeIt = CVDefRangeTypeMap.find(CVDefRangeTypeStr); CVDefRangeType CVDRType = (CVTypeIt == CVDefRangeTypeMap.end()) ? CVDR_DEFRANGE : CVTypeIt->getValue(); switch (CVDRType) { case CVDR_DEFRANGE_REGISTER: { int64_t DRRegister; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register number"); codeview::DefRangeRegisterHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.MayHaveNoName = 0; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_FRAMEPOINTER_REL: { int64_t DROffset; if (parseToken(AsmToken::Comma, "expected comma before offset in .cv_def_range directive") || parseAbsoluteExpression(DROffset)) return Error(Loc, "expected offset value"); codeview::DefRangeFramePointerRelHeader DRHdr; DRHdr.Offset = DROffset; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_SUBFIELD_REGISTER: { int64_t DRRegister; int64_t DROffsetInParent; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register number"); if (parseToken(AsmToken::Comma, "expected comma before offset in .cv_def_range directive") || parseAbsoluteExpression(DROffsetInParent)) return Error(Loc, "expected offset value"); codeview::DefRangeSubfieldRegisterHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.MayHaveNoName = 0; DRHdr.OffsetInParent = DROffsetInParent; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } case CVDR_DEFRANGE_REGISTER_REL: { int64_t DRRegister; int64_t DRFlags; int64_t DRBasePointerOffset; if (parseToken(AsmToken::Comma, "expected comma before register number in " ".cv_def_range directive") || parseAbsoluteExpression(DRRegister)) return Error(Loc, "expected register value"); if (parseToken( AsmToken::Comma, "expected comma before flag value in .cv_def_range directive") || parseAbsoluteExpression(DRFlags)) return Error(Loc, "expected flag value"); if (parseToken(AsmToken::Comma, "expected comma before base pointer offset " "in .cv_def_range directive") || parseAbsoluteExpression(DRBasePointerOffset)) return Error(Loc, "expected base pointer offset value"); codeview::DefRangeRegisterRelHeader DRHdr; DRHdr.Register = DRRegister; DRHdr.Flags = DRFlags; DRHdr.BasePointerOffset = DRBasePointerOffset; getStreamer().emitCVDefRangeDirective(Ranges, DRHdr); break; } default: return Error(Loc, "unexpected def_range type in .cv_def_range directive"); } return true; } /// parseDirectiveCVString /// ::= .cv_stringtable "string" bool AsmParser::parseDirectiveCVString() { std::string Data; if (checkForValidSection() || parseEscapedString(Data)) return true; // Put the string in the table and emit the offset. std::pair Insertion = getCVContext().addToStringTable(Data); getStreamer().emitInt32(Insertion.second); return false; } /// parseDirectiveCVStringTable /// ::= .cv_stringtable bool AsmParser::parseDirectiveCVStringTable() { getStreamer().emitCVStringTableDirective(); return false; } /// parseDirectiveCVFileChecksums /// ::= .cv_filechecksums bool AsmParser::parseDirectiveCVFileChecksums() { getStreamer().emitCVFileChecksumsDirective(); return false; } /// parseDirectiveCVFileChecksumOffset /// ::= .cv_filechecksumoffset fileno bool AsmParser::parseDirectiveCVFileChecksumOffset() { int64_t FileNo; if (parseIntToken(FileNo, "expected identifier in directive")) return true; if (parseEOL()) return true; getStreamer().emitCVFileChecksumOffsetDirective(FileNo); return false; } /// parseDirectiveCVFPOData /// ::= .cv_fpo_data procsym bool AsmParser::parseDirectiveCVFPOData() { SMLoc DirLoc = getLexer().getLoc(); StringRef ProcName; if (parseIdentifier(ProcName)) return TokError("expected symbol name"); if (parseEOL()) return true; MCSymbol *ProcSym = getContext().getOrCreateSymbol(ProcName); getStreamer().emitCVFPOData(ProcSym, DirLoc); return false; } /// parseDirectiveCFISections /// ::= .cfi_sections section [, section] bool AsmParser::parseDirectiveCFISections() { StringRef Name; bool EH = false; bool Debug = false; if (!parseOptionalToken(AsmToken::EndOfStatement)) { for (;;) { if (parseIdentifier(Name)) return TokError("expected .eh_frame or .debug_frame"); if (Name == ".eh_frame") EH = true; else if (Name == ".debug_frame") Debug = true; if (parseOptionalToken(AsmToken::EndOfStatement)) break; if (parseComma()) return true; } } getStreamer().emitCFISections(EH, Debug); return false; } /// parseDirectiveCFIStartProc /// ::= .cfi_startproc [simple] bool AsmParser::parseDirectiveCFIStartProc() { CFIStartProcLoc = StartTokLoc; StringRef Simple; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (check(parseIdentifier(Simple) || Simple != "simple", "unexpected token") || parseEOL()) return true; } // TODO(kristina): Deal with a corner case of incorrect diagnostic context // being produced if this directive is emitted as part of preprocessor macro // expansion which can *ONLY* happen if Clang's cc1as is the API consumer. // Tools like llvm-mc on the other hand are not affected by it, and report // correct context information. getStreamer().emitCFIStartProc(!Simple.empty(), Lexer.getLoc()); return false; } /// parseDirectiveCFIEndProc /// ::= .cfi_endproc bool AsmParser::parseDirectiveCFIEndProc() { CFIStartProcLoc = std::nullopt; if (parseEOL()) return true; getStreamer().emitCFIEndProc(); return false; } /// parse register name or number. bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc) { MCRegister RegNo; if (getLexer().isNot(AsmToken::Integer)) { if (getTargetParser().parseRegister(RegNo, DirectiveLoc, DirectiveLoc)) return true; Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); } else return parseAbsoluteExpression(Register); return false; } /// parseDirectiveCFIDefCfa /// ::= .cfi_def_cfa register, offset bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { int64_t Register = 0, Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || parseAbsoluteExpression(Offset) || parseEOL()) return true; getStreamer().emitCFIDefCfa(Register, Offset, DirectiveLoc); return false; } /// parseDirectiveCFIDefCfaOffset /// ::= .cfi_def_cfa_offset offset bool AsmParser::parseDirectiveCFIDefCfaOffset(SMLoc DirectiveLoc) { int64_t Offset = 0; if (parseAbsoluteExpression(Offset) || parseEOL()) return true; getStreamer().emitCFIDefCfaOffset(Offset, DirectiveLoc); return false; } /// parseDirectiveCFIRegister /// ::= .cfi_register register, register bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { int64_t Register1 = 0, Register2 = 0; if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc) || parseComma() || parseRegisterOrRegisterNumber(Register2, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFIRegister(Register1, Register2, DirectiveLoc); return false; } /// parseDirectiveCFIWindowSave /// ::= .cfi_window_save bool AsmParser::parseDirectiveCFIWindowSave(SMLoc DirectiveLoc) { if (parseEOL()) return true; getStreamer().emitCFIWindowSave(DirectiveLoc); return false; } /// parseDirectiveCFIAdjustCfaOffset /// ::= .cfi_adjust_cfa_offset adjustment bool AsmParser::parseDirectiveCFIAdjustCfaOffset(SMLoc DirectiveLoc) { int64_t Adjustment = 0; if (parseAbsoluteExpression(Adjustment) || parseEOL()) return true; getStreamer().emitCFIAdjustCfaOffset(Adjustment, DirectiveLoc); return false; } /// parseDirectiveCFIDefCfaRegister /// ::= .cfi_def_cfa_register register bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFIDefCfaRegister(Register, DirectiveLoc); return false; } /// parseDirectiveCFILLVMDefAspaceCfa /// ::= .cfi_llvm_def_aspace_cfa register, offset, address_space bool AsmParser::parseDirectiveCFILLVMDefAspaceCfa(SMLoc DirectiveLoc) { int64_t Register = 0, Offset = 0, AddressSpace = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || parseAbsoluteExpression(Offset) || parseComma() || parseAbsoluteExpression(AddressSpace) || parseEOL()) return true; getStreamer().emitCFILLVMDefAspaceCfa(Register, Offset, AddressSpace, DirectiveLoc); return false; } /// parseDirectiveCFIOffset /// ::= .cfi_offset register, offset bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { int64_t Register = 0; int64_t Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || parseAbsoluteExpression(Offset) || parseEOL()) return true; getStreamer().emitCFIOffset(Register, Offset, DirectiveLoc); return false; } /// parseDirectiveCFIRelOffset /// ::= .cfi_rel_offset register, offset bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { int64_t Register = 0, Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseComma() || parseAbsoluteExpression(Offset) || parseEOL()) return true; getStreamer().emitCFIRelOffset(Register, Offset, DirectiveLoc); return false; } static bool isValidEncoding(int64_t Encoding) { if (Encoding & ~0xff) return false; if (Encoding == dwarf::DW_EH_PE_omit) return true; const unsigned Format = Encoding & 0xf; if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) return false; const unsigned Application = Encoding & 0x70; if (Application != dwarf::DW_EH_PE_absptr && Application != dwarf::DW_EH_PE_pcrel) return false; return true; } /// parseDirectiveCFIPersonalityOrLsda /// IsPersonality true for cfi_personality, false for cfi_lsda /// ::= .cfi_personality encoding, [symbol_name] /// ::= .cfi_lsda encoding, [symbol_name] bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { int64_t Encoding = 0; if (parseAbsoluteExpression(Encoding)) return true; if (Encoding == dwarf::DW_EH_PE_omit) return false; StringRef Name; if (check(!isValidEncoding(Encoding), "unsupported encoding.") || parseComma() || check(parseIdentifier(Name), "expected identifier in directive") || parseEOL()) return true; MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (IsPersonality) getStreamer().emitCFIPersonality(Sym, Encoding); else getStreamer().emitCFILsda(Sym, Encoding); return false; } /// parseDirectiveCFIRememberState /// ::= .cfi_remember_state bool AsmParser::parseDirectiveCFIRememberState(SMLoc DirectiveLoc) { if (parseEOL()) return true; getStreamer().emitCFIRememberState(DirectiveLoc); return false; } /// parseDirectiveCFIRestoreState /// ::= .cfi_remember_state bool AsmParser::parseDirectiveCFIRestoreState(SMLoc DirectiveLoc) { if (parseEOL()) return true; getStreamer().emitCFIRestoreState(DirectiveLoc); return false; } /// parseDirectiveCFISameValue /// ::= .cfi_same_value register bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFISameValue(Register, DirectiveLoc); return false; } /// parseDirectiveCFIRestore /// ::= .cfi_restore register bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFIRestore(Register, DirectiveLoc); return false; } /// parseDirectiveCFIEscape /// ::= .cfi_escape expression[,...] bool AsmParser::parseDirectiveCFIEscape(SMLoc DirectiveLoc) { std::string Values; int64_t CurrValue; if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); while (getLexer().is(AsmToken::Comma)) { Lex(); if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); } getStreamer().emitCFIEscape(Values, DirectiveLoc); return false; } /// parseDirectiveCFIReturnColumn /// ::= .cfi_return_column register bool AsmParser::parseDirectiveCFIReturnColumn(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFIReturnColumn(Register); return false; } /// parseDirectiveCFISignalFrame /// ::= .cfi_signal_frame bool AsmParser::parseDirectiveCFISignalFrame(SMLoc DirectiveLoc) { if (parseEOL()) return true; getStreamer().emitCFISignalFrame(); return false; } /// parseDirectiveCFIUndefined /// ::= .cfi_undefined register bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc) || parseEOL()) return true; getStreamer().emitCFIUndefined(Register, DirectiveLoc); return false; } /// parseDirectiveCFILabel /// ::= .cfi_label label bool AsmParser::parseDirectiveCFILabel(SMLoc Loc) { StringRef Name; Loc = Lexer.getLoc(); if (parseIdentifier(Name)) return TokError("expected identifier"); if (parseEOL()) return true; getStreamer().emitCFILabelDirective(Loc, Name); return false; } /// parseDirectiveAltmacro /// ::= .altmacro /// ::= .noaltmacro bool AsmParser::parseDirectiveAltmacro(StringRef Directive) { if (parseEOL()) return true; AltMacroMode = (Directive == ".altmacro"); return false; } /// parseDirectiveMacrosOnOff /// ::= .macros_on /// ::= .macros_off bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) { if (parseEOL()) return true; setMacrosEnabled(Directive == ".macros_on"); return false; } /// parseDirectiveMacro /// ::= .macro name[,] [parameters] bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) { StringRef Name; if (parseIdentifier(Name)) return TokError("expected identifier in '.macro' directive"); if (getLexer().is(AsmToken::Comma)) Lex(); MCAsmMacroParameters Parameters; while (getLexer().isNot(AsmToken::EndOfStatement)) { if (!Parameters.empty() && Parameters.back().Vararg) return Error(Lexer.getLoc(), "vararg parameter '" + Parameters.back().Name + "' should be the last parameter"); MCAsmMacroParameter Parameter; if (parseIdentifier(Parameter.Name)) return TokError("expected identifier in '.macro' directive"); // Emit an error if two (or more) named parameters share the same name for (const MCAsmMacroParameter& CurrParam : Parameters) if (CurrParam.Name == Parameter.Name) return TokError("macro '" + Name + "' has multiple parameters" " named '" + Parameter.Name + "'"); if (Lexer.is(AsmToken::Colon)) { Lex(); // consume ':' SMLoc QualLoc; StringRef Qualifier; QualLoc = Lexer.getLoc(); if (parseIdentifier(Qualifier)) return Error(QualLoc, "missing parameter qualifier for " "'" + Parameter.Name + "' in macro '" + Name + "'"); if (Qualifier == "req") Parameter.Required = true; else if (Qualifier == "vararg") Parameter.Vararg = true; else return Error(QualLoc, Qualifier + " is not a valid parameter qualifier " "for '" + Parameter.Name + "' in macro '" + Name + "'"); } if (getLexer().is(AsmToken::Equal)) { Lex(); SMLoc ParamLoc; ParamLoc = Lexer.getLoc(); if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) return true; if (Parameter.Required) Warning(ParamLoc, "pointless default value for required parameter " "'" + Parameter.Name + "' in macro '" + Name + "'"); } Parameters.push_back(std::move(Parameter)); if (getLexer().is(AsmToken::Comma)) Lex(); } // Eat just the end of statement. Lexer.Lex(); // Consuming deferred text, so use Lexer.Lex to ignore Lexing Errors AsmToken EndToken, StartToken = getTok(); unsigned MacroDepth = 0; // Lex the macro definition. while (true) { // Ignore Lexing errors in macros. while (Lexer.is(AsmToken::Error)) { Lexer.Lex(); } // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) return Error(DirectiveLoc, "no matching '.endmacro' in definition"); // Otherwise, check whether we have reach the .endmacro or the start of a // preprocessor line marker. if (getLexer().is(AsmToken::Identifier)) { if (getTok().getIdentifier() == ".endm" || getTok().getIdentifier() == ".endmacro") { if (MacroDepth == 0) { // Outermost macro. EndToken = getTok(); Lexer.Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + EndToken.getIdentifier() + "' directive"); break; } else { // Otherwise we just found the end of an inner macro. --MacroDepth; } } else if (getTok().getIdentifier() == ".macro") { // We allow nested macros. Those aren't instantiated until the outermost // macro is expanded so just ignore them for now. ++MacroDepth; } } else if (Lexer.is(AsmToken::HashDirective)) { (void)parseCppHashLineFilenameComment(getLexer().getLoc()); } // Otherwise, scan til the end of the statement. eatToEndOfStatement(); } if (getContext().lookupMacro(Name)) { return Error(DirectiveLoc, "macro '" + Name + "' is already defined"); } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); checkForBadMacro(DirectiveLoc, Name, Body, Parameters); MCAsmMacro Macro(Name, Body, std::move(Parameters)); DEBUG_WITH_TYPE("asm-macros", dbgs() << "Defining new macro:\n"; Macro.dump()); getContext().defineMacro(Name, std::move(Macro)); return false; } /// checkForBadMacro /// /// With the support added for named parameters there may be code out there that /// is transitioning from positional parameters. In versions of gas that did /// not support named parameters they would be ignored on the macro definition. /// But to support both styles of parameters this is not possible so if a macro /// definition has named parameters but does not use them and has what appears /// to be positional parameters, strings like $1, $2, ... and $n, then issue a /// warning that the positional parameter found in body which have no effect. /// Hoping the developer will either remove the named parameters from the macro /// definition so the positional parameters get used if that was what was /// intended or change the macro to use the named parameters. It is possible /// this warning will trigger when the none of the named parameters are used /// and the strings like $1 are infact to simply to be passed trough unchanged. void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, ArrayRef Parameters) { // If this macro is not defined with named parameters the warning we are // checking for here doesn't apply. unsigned NParameters = Parameters.size(); if (NParameters == 0) return; bool NamedParametersFound = false; bool PositionalParametersFound = false; // Look at the body of the macro for use of both the named parameters and what // are likely to be positional parameters. This is what expandMacro() is // doing when it finds the parameters in the body. while (!Body.empty()) { // Scan for the next possible parameter. std::size_t End = Body.size(), Pos = 0; for (; Pos != End; ++Pos) { // Check for a substitution or escape. // This macro is defined with parameters, look for \foo, \bar, etc. if (Body[Pos] == '\\' && Pos + 1 != End) break; // This macro should have parameters, but look for $0, $1, ..., $n too. if (Body[Pos] != '$' || Pos + 1 == End) continue; char Next = Body[Pos + 1]; if (Next == '$' || Next == 'n' || isdigit(static_cast(Next))) break; } // Check if we reached the end. if (Pos == End) break; if (Body[Pos] == '$') { switch (Body[Pos + 1]) { // $$ => $ case '$': break; // $n => number of arguments case 'n': PositionalParametersFound = true; break; // $[0-9] => argument default: { PositionalParametersFound = true; break; } } Pos += 2; } else { unsigned I = Pos + 1; while (isIdentifierChar(Body[I]) && I + 1 != End) ++I; const char *Begin = Body.data() + Pos + 1; StringRef Argument(Begin, I - (Pos + 1)); unsigned Index = 0; for (; Index < NParameters; ++Index) if (Parameters[Index].Name == Argument) break; if (Index == NParameters) { if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') Pos += 3; else { Pos = I; } } else { NamedParametersFound = true; Pos += 1 + Argument.size(); } } // Update the scan point. Body = Body.substr(Pos); } if (!NamedParametersFound && PositionalParametersFound) Warning(DirectiveLoc, "macro defined with named parameters which are not " "used in macro body, possible positional parameter " "found in body which will have no effect"); } /// parseDirectiveExitMacro /// ::= .exitm bool AsmParser::parseDirectiveExitMacro(StringRef Directive) { if (parseEOL()) return true; if (!isInsideMacroInstantiation()) return TokError("unexpected '" + Directive + "' in file, " "no current macro definition"); // Exit all conditionals that are active in the current macro. while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } handleMacroExit(); return false; } /// parseDirectiveEndMacro /// ::= .endm /// ::= .endmacro bool AsmParser::parseDirectiveEndMacro(StringRef Directive) { if (getLexer().isNot(AsmToken::EndOfStatement)) return TokError("unexpected token in '" + Directive + "' directive"); // If we are inside a macro instantiation, terminate the current // instantiation. if (isInsideMacroInstantiation()) { handleMacroExit(); return false; } // Otherwise, this .endmacro is a stray entry in the file; well formed // .endmacro directives are handled during the macro definition parsing. return TokError("unexpected '" + Directive + "' in file, " "no current macro definition"); } /// parseDirectivePurgeMacro /// ::= .purgem name bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { StringRef Name; SMLoc Loc; if (parseTokenLoc(Loc) || check(parseIdentifier(Name), Loc, "expected identifier in '.purgem' directive") || parseEOL()) return true; if (!getContext().lookupMacro(Name)) return Error(DirectiveLoc, "macro '" + Name + "' is not defined"); getContext().undefineMacro(Name); DEBUG_WITH_TYPE("asm-macros", dbgs() << "Un-defining macro: " << Name << "\n"); return false; } /// parseDirectiveBundleAlignMode /// ::= {.bundle_align_mode} expression bool AsmParser::parseDirectiveBundleAlignMode() { // Expect a single argument: an expression that evaluates to a constant // in the inclusive range 0-30. SMLoc ExprLoc = getLexer().getLoc(); int64_t AlignSizePow2; if (checkForValidSection() || parseAbsoluteExpression(AlignSizePow2) || parseEOL() || check(AlignSizePow2 < 0 || AlignSizePow2 > 30, ExprLoc, "invalid bundle alignment size (expected between 0 and 30)")) return true; getStreamer().emitBundleAlignMode(Align(1ULL << AlignSizePow2)); return false; } /// parseDirectiveBundleLock /// ::= {.bundle_lock} [align_to_end] bool AsmParser::parseDirectiveBundleLock() { if (checkForValidSection()) return true; bool AlignToEnd = false; StringRef Option; SMLoc Loc = getTok().getLoc(); const char *kInvalidOptionError = "invalid option for '.bundle_lock' directive"; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (check(parseIdentifier(Option), Loc, kInvalidOptionError) || check(Option != "align_to_end", Loc, kInvalidOptionError) || parseEOL()) return true; AlignToEnd = true; } getStreamer().emitBundleLock(AlignToEnd); return false; } /// parseDirectiveBundleLock /// ::= {.bundle_lock} bool AsmParser::parseDirectiveBundleUnlock() { if (checkForValidSection() || parseEOL()) return true; getStreamer().emitBundleUnlock(); return false; } /// parseDirectiveSpace /// ::= (.skip | .space) expression [ , expression ] bool AsmParser::parseDirectiveSpace(StringRef IDVal) { SMLoc NumBytesLoc = Lexer.getLoc(); const MCExpr *NumBytes; if (checkForValidSection() || parseExpression(NumBytes)) return true; int64_t FillExpr = 0; if (parseOptionalToken(AsmToken::Comma)) if (parseAbsoluteExpression(FillExpr)) return true; if (parseEOL()) return true; // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0. getStreamer().emitFill(*NumBytes, FillExpr, NumBytesLoc); return false; } /// parseDirectiveDCB /// ::= .dcb.{b, l, w} expression, expression bool AsmParser::parseDirectiveDCB(StringRef IDVal, unsigned Size) { SMLoc NumValuesLoc = Lexer.getLoc(); int64_t NumValues; if (checkForValidSection() || parseAbsoluteExpression(NumValues)) return true; if (NumValues < 0) { Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); return false; } if (parseComma()) return true; const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) return true; // Special case constant expressions to match code generator. if (const MCConstantExpr *MCE = dyn_cast(Value)) { assert(Size <= 8 && "Invalid size"); uint64_t IntValue = MCE->getValue(); if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) return Error(ExprLoc, "literal value out of range for directive"); for (uint64_t i = 0, e = NumValues; i != e; ++i) getStreamer().emitIntValue(IntValue, Size); } else { for (uint64_t i = 0, e = NumValues; i != e; ++i) getStreamer().emitValue(Value, Size, ExprLoc); } return parseEOL(); } /// parseDirectiveRealDCB /// ::= .dcb.{d, s} expression, expression bool AsmParser::parseDirectiveRealDCB(StringRef IDVal, const fltSemantics &Semantics) { SMLoc NumValuesLoc = Lexer.getLoc(); int64_t NumValues; if (checkForValidSection() || parseAbsoluteExpression(NumValues)) return true; if (NumValues < 0) { Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); return false; } if (parseComma()) return true; APInt AsInt; if (parseRealValue(Semantics, AsInt) || parseEOL()) return true; for (uint64_t i = 0, e = NumValues; i != e; ++i) getStreamer().emitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8); return false; } /// parseDirectiveDS /// ::= .ds.{b, d, l, p, s, w, x} expression bool AsmParser::parseDirectiveDS(StringRef IDVal, unsigned Size) { SMLoc NumValuesLoc = Lexer.getLoc(); int64_t NumValues; if (checkForValidSection() || parseAbsoluteExpression(NumValues) || parseEOL()) return true; if (NumValues < 0) { Warning(NumValuesLoc, "'" + Twine(IDVal) + "' directive with negative repeat count has no effect"); return false; } for (uint64_t i = 0, e = NumValues; i != e; ++i) getStreamer().emitFill(Size, 0); return false; } /// parseDirectiveLEB128 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ] bool AsmParser::parseDirectiveLEB128(bool Signed) { if (checkForValidSection()) return true; auto parseOp = [&]() -> bool { const MCExpr *Value; if (parseExpression(Value)) return true; if (Signed) getStreamer().emitSLEB128Value(Value); else getStreamer().emitULEB128Value(Value); return false; }; return parseMany(parseOp); } /// parseDirectiveSymbolAttribute /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { auto parseOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return Error(Loc, "expected identifier"); if (discardLTOSymbol(Name)) return false; MCSymbol *Sym = getContext().getOrCreateSymbol(Name); // Assembler local symbols don't make any sense here, except for directives // that the symbol should be tagged. if (Sym->isTemporary() && Attr != MCSA_Memtag) return Error(Loc, "non-local symbol required"); if (!getStreamer().emitSymbolAttribute(Sym, Attr)) return Error(Loc, "unable to emit symbol attribute"); return false; }; return parseMany(parseOp); } /// parseDirectiveComm /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] bool AsmParser::parseDirectiveComm(bool IsLocal) { if (checkForValidSection()) return true; SMLoc IDLoc = getLexer().getLoc(); StringRef Name; if (parseIdentifier(Name)) return TokError("expected identifier in directive"); // Handle the identifier as the key symbol. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (parseComma()) return true; int64_t Size; SMLoc SizeLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Size)) return true; int64_t Pow2Alignment = 0; SMLoc Pow2AlignmentLoc; if (getLexer().is(AsmToken::Comma)) { Lex(); Pow2AlignmentLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Pow2Alignment)) return true; LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); if (IsLocal && LCOMM == LCOMM::NoAlignment) return Error(Pow2AlignmentLoc, "alignment not supported on this target"); // If this target takes alignments in bytes (not log) validate and convert. if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || (IsLocal && LCOMM == LCOMM::ByteAlignment)) { if (!isPowerOf2_64(Pow2Alignment)) return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); Pow2Alignment = Log2_64(Pow2Alignment); } } if (parseEOL()) return true; // NOTE: a size of zero for a .comm should create a undefined symbol // but a size of .lcomm creates a bss symbol of size zero. if (Size < 0) return Error(SizeLoc, "size must be non-negative"); Sym->redefineIfPossible(); if (!Sym->isUndefined()) return Error(IDLoc, "invalid symbol redefinition"); // Create the Symbol as a common or local common with Size and Pow2Alignment if (IsLocal) { getStreamer().emitLocalCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); return false; } getStreamer().emitCommonSymbol(Sym, Size, Align(1ULL << Pow2Alignment)); return false; } /// parseDirectiveAbort /// ::= .abort [... message ...] bool AsmParser::parseDirectiveAbort(SMLoc DirectiveLoc) { StringRef Str = parseStringToEndOfStatement(); if (parseEOL()) return true; if (Str.empty()) return Error(DirectiveLoc, ".abort detected. Assembly stopping"); // FIXME: Actually abort assembly here. return Error(DirectiveLoc, ".abort '" + Str + "' detected. Assembly stopping"); } /// parseDirectiveInclude /// ::= .include "filename" bool AsmParser::parseDirectiveInclude() { // Allow the strings to have escaped octal character sequence. std::string Filename; SMLoc IncludeLoc = getTok().getLoc(); if (check(getTok().isNot(AsmToken::String), "expected string in '.include' directive") || parseEscapedString(Filename) || check(getTok().isNot(AsmToken::EndOfStatement), "unexpected token in '.include' directive") || // Attempt to switch the lexer to the included file before consuming the // end of statement to avoid losing it when we switch. check(enterIncludeFile(Filename), IncludeLoc, "Could not find include file '" + Filename + "'")) return true; return false; } /// parseDirectiveIncbin /// ::= .incbin "filename" [ , skip [ , count ] ] bool AsmParser::parseDirectiveIncbin() { // Allow the strings to have escaped octal character sequence. std::string Filename; SMLoc IncbinLoc = getTok().getLoc(); if (check(getTok().isNot(AsmToken::String), "expected string in '.incbin' directive") || parseEscapedString(Filename)) return true; int64_t Skip = 0; const MCExpr *Count = nullptr; SMLoc SkipLoc, CountLoc; if (parseOptionalToken(AsmToken::Comma)) { // The skip expression can be omitted while specifying the count, e.g: // .incbin "filename",,4 if (getTok().isNot(AsmToken::Comma)) { if (parseTokenLoc(SkipLoc) || parseAbsoluteExpression(Skip)) return true; } if (parseOptionalToken(AsmToken::Comma)) { CountLoc = getTok().getLoc(); if (parseExpression(Count)) return true; } } if (parseEOL()) return true; if (check(Skip < 0, SkipLoc, "skip is negative")) return true; // Attempt to process the included file. if (processIncbinFile(Filename, Skip, Count, CountLoc)) return Error(IncbinLoc, "Could not find incbin file '" + Filename + "'"); return false; } /// parseDirectiveIf /// ::= .if{,eq,ge,gt,le,lt,ne} expression bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue) || parseEOL()) return true; switch (DirKind) { default: llvm_unreachable("unsupported directive"); case DK_IF: case DK_IFNE: break; case DK_IFEQ: ExprValue = ExprValue == 0; break; case DK_IFGE: ExprValue = ExprValue >= 0; break; case DK_IFGT: ExprValue = ExprValue > 0; break; case DK_IFLE: ExprValue = ExprValue <= 0; break; case DK_IFLT: ExprValue = ExprValue < 0; break; } TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfb /// ::= .ifb string bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { StringRef Str = parseStringToEndOfStatement(); if (parseEOL()) return true; TheCondState.CondMet = ExpectBlank == Str.empty(); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfc /// ::= .ifc string1, string2 /// ::= .ifnc string1, string2 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { StringRef Str1 = parseStringToComma(); if (parseComma()) return true; StringRef Str2 = parseStringToEndOfStatement(); if (parseEOL()) return true; TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim()); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfeqs /// ::= .ifeqs string1, string2 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) { if (Lexer.isNot(AsmToken::String)) { if (ExpectEqual) return TokError("expected string parameter for '.ifeqs' directive"); return TokError("expected string parameter for '.ifnes' directive"); } StringRef String1 = getTok().getStringContents(); Lex(); if (Lexer.isNot(AsmToken::Comma)) { if (ExpectEqual) return TokError( "expected comma after first string for '.ifeqs' directive"); return TokError("expected comma after first string for '.ifnes' directive"); } Lex(); if (Lexer.isNot(AsmToken::String)) { if (ExpectEqual) return TokError("expected string parameter for '.ifeqs' directive"); return TokError("expected string parameter for '.ifnes' directive"); } StringRef String2 = getTok().getStringContents(); Lex(); TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; TheCondState.CondMet = ExpectEqual == (String1 == String2); TheCondState.Ignore = !TheCondState.CondMet; return false; } /// parseDirectiveIfdef /// ::= .ifdef symbol bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { StringRef Name; TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { if (check(parseIdentifier(Name), "expected identifier after '.ifdef'") || parseEOL()) return true; MCSymbol *Sym = getContext().lookupSymbol(Name); if (expect_defined) TheCondState.CondMet = (Sym && !Sym->isUndefined(false)); else TheCondState.CondMet = (!Sym || Sym->isUndefined(false)); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIf /// ::= .elseif expression bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered a .elseif that doesn't follow an" " .if or an .elseif"); TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue)) return true; if (parseEOL()) return true; TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElse /// ::= .else bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) { if (parseEOL()) return true; if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) return Error(DirectiveLoc, "Encountered a .else that doesn't follow " " an .if or an .elseif"); TheCondState.TheCond = AsmCond::ElseCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) TheCondState.Ignore = true; else TheCondState.Ignore = false; return false; } /// parseDirectiveEnd /// ::= .end bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { if (parseEOL()) return true; while (Lexer.isNot(AsmToken::Eof)) Lexer.Lex(); return false; } /// parseDirectiveError /// ::= .err /// ::= .error [string] bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } if (!WithMessage) return Error(L, ".err encountered"); StringRef Message = ".error directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (Lexer.isNot(AsmToken::String)) return TokError(".error argument must be a string"); Message = getTok().getStringContents(); Lex(); } return Error(L, Message); } /// parseDirectiveWarning /// ::= .warning [string] bool AsmParser::parseDirectiveWarning(SMLoc L) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } StringRef Message = ".warning directive invoked in source file"; if (!parseOptionalToken(AsmToken::EndOfStatement)) { if (Lexer.isNot(AsmToken::String)) return TokError(".warning argument must be a string"); Message = getTok().getStringContents(); Lex(); if (parseEOL()) return true; } return Warning(L, Message); } /// parseDirectiveEndIf /// ::= .endif bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { if (parseEOL()) return true; if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) return Error(DirectiveLoc, "Encountered a .endif that doesn't follow " "an .if or .else"); if (!TheCondStack.empty()) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } return false; } void AsmParser::initializeDirectiveKindMap() { /* Lookup will be done with the directive * converted to lower case, so all these * keys should be lower case. * (target specific directives are handled * elsewhere) */ DirectiveKindMap[".set"] = DK_SET; DirectiveKindMap[".equ"] = DK_EQU; DirectiveKindMap[".equiv"] = DK_EQUIV; DirectiveKindMap[".ascii"] = DK_ASCII; DirectiveKindMap[".asciz"] = DK_ASCIZ; DirectiveKindMap[".string"] = DK_STRING; DirectiveKindMap[".byte"] = DK_BYTE; DirectiveKindMap[".short"] = DK_SHORT; DirectiveKindMap[".value"] = DK_VALUE; DirectiveKindMap[".2byte"] = DK_2BYTE; DirectiveKindMap[".long"] = DK_LONG; DirectiveKindMap[".int"] = DK_INT; DirectiveKindMap[".4byte"] = DK_4BYTE; DirectiveKindMap[".quad"] = DK_QUAD; DirectiveKindMap[".8byte"] = DK_8BYTE; DirectiveKindMap[".octa"] = DK_OCTA; DirectiveKindMap[".single"] = DK_SINGLE; DirectiveKindMap[".float"] = DK_FLOAT; DirectiveKindMap[".double"] = DK_DOUBLE; DirectiveKindMap[".align"] = DK_ALIGN; DirectiveKindMap[".align32"] = DK_ALIGN32; DirectiveKindMap[".balign"] = DK_BALIGN; DirectiveKindMap[".balignw"] = DK_BALIGNW; DirectiveKindMap[".balignl"] = DK_BALIGNL; DirectiveKindMap[".p2align"] = DK_P2ALIGN; DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW; DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL; DirectiveKindMap[".org"] = DK_ORG; DirectiveKindMap[".fill"] = DK_FILL; DirectiveKindMap[".zero"] = DK_ZERO; DirectiveKindMap[".extern"] = DK_EXTERN; DirectiveKindMap[".globl"] = DK_GLOBL; DirectiveKindMap[".global"] = DK_GLOBAL; DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE; DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP; DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER; DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN; DirectiveKindMap[".reference"] = DK_REFERENCE; DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION; DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE; DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN; DirectiveKindMap[".cold"] = DK_COLD; DirectiveKindMap[".comm"] = DK_COMM; DirectiveKindMap[".common"] = DK_COMMON; DirectiveKindMap[".lcomm"] = DK_LCOMM; DirectiveKindMap[".abort"] = DK_ABORT; DirectiveKindMap[".include"] = DK_INCLUDE; DirectiveKindMap[".incbin"] = DK_INCBIN; DirectiveKindMap[".code16"] = DK_CODE16; DirectiveKindMap[".code16gcc"] = DK_CODE16GCC; DirectiveKindMap[".rept"] = DK_REPT; DirectiveKindMap[".rep"] = DK_REPT; DirectiveKindMap[".irp"] = DK_IRP; DirectiveKindMap[".irpc"] = DK_IRPC; DirectiveKindMap[".endr"] = DK_ENDR; DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE; DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK; DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK; DirectiveKindMap[".if"] = DK_IF; DirectiveKindMap[".ifeq"] = DK_IFEQ; DirectiveKindMap[".ifge"] = DK_IFGE; DirectiveKindMap[".ifgt"] = DK_IFGT; DirectiveKindMap[".ifle"] = DK_IFLE; DirectiveKindMap[".iflt"] = DK_IFLT; DirectiveKindMap[".ifne"] = DK_IFNE; DirectiveKindMap[".ifb"] = DK_IFB; DirectiveKindMap[".ifnb"] = DK_IFNB; DirectiveKindMap[".ifc"] = DK_IFC; DirectiveKindMap[".ifeqs"] = DK_IFEQS; DirectiveKindMap[".ifnc"] = DK_IFNC; DirectiveKindMap[".ifnes"] = DK_IFNES; DirectiveKindMap[".ifdef"] = DK_IFDEF; DirectiveKindMap[".ifndef"] = DK_IFNDEF; DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF; DirectiveKindMap[".elseif"] = DK_ELSEIF; DirectiveKindMap[".else"] = DK_ELSE; DirectiveKindMap[".end"] = DK_END; DirectiveKindMap[".endif"] = DK_ENDIF; DirectiveKindMap[".skip"] = DK_SKIP; DirectiveKindMap[".space"] = DK_SPACE; DirectiveKindMap[".file"] = DK_FILE; DirectiveKindMap[".line"] = DK_LINE; DirectiveKindMap[".loc"] = DK_LOC; DirectiveKindMap[".stabs"] = DK_STABS; DirectiveKindMap[".cv_file"] = DK_CV_FILE; DirectiveKindMap[".cv_func_id"] = DK_CV_FUNC_ID; DirectiveKindMap[".cv_loc"] = DK_CV_LOC; DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; DirectiveKindMap[".cv_inline_site_id"] = DK_CV_INLINE_SITE_ID; DirectiveKindMap[".cv_def_range"] = DK_CV_DEF_RANGE; DirectiveKindMap[".cv_string"] = DK_CV_STRING; DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; DirectiveKindMap[".cv_filechecksumoffset"] = DK_CV_FILECHECKSUM_OFFSET; DirectiveKindMap[".cv_fpo_data"] = DK_CV_FPO_DATA; DirectiveKindMap[".sleb128"] = DK_SLEB128; DirectiveKindMap[".uleb128"] = DK_ULEB128; DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; DirectiveKindMap[".cfi_llvm_def_aspace_cfa"] = DK_CFI_LLVM_DEF_ASPACE_CFA; DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; DirectiveKindMap[".cfi_return_column"] = DK_CFI_RETURN_COLUMN; DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; DirectiveKindMap[".cfi_label"] = DK_CFI_LABEL; DirectiveKindMap[".cfi_b_key_frame"] = DK_CFI_B_KEY_FRAME; DirectiveKindMap[".cfi_mte_tagged_frame"] = DK_CFI_MTE_TAGGED_FRAME; DirectiveKindMap[".macros_on"] = DK_MACROS_ON; DirectiveKindMap[".macros_off"] = DK_MACROS_OFF; DirectiveKindMap[".macro"] = DK_MACRO; DirectiveKindMap[".exitm"] = DK_EXITM; DirectiveKindMap[".endm"] = DK_ENDM; DirectiveKindMap[".endmacro"] = DK_ENDMACRO; DirectiveKindMap[".purgem"] = DK_PURGEM; DirectiveKindMap[".err"] = DK_ERR; DirectiveKindMap[".error"] = DK_ERROR; DirectiveKindMap[".warning"] = DK_WARNING; DirectiveKindMap[".altmacro"] = DK_ALTMACRO; DirectiveKindMap[".noaltmacro"] = DK_NOALTMACRO; DirectiveKindMap[".reloc"] = DK_RELOC; DirectiveKindMap[".dc"] = DK_DC; DirectiveKindMap[".dc.a"] = DK_DC_A; DirectiveKindMap[".dc.b"] = DK_DC_B; DirectiveKindMap[".dc.d"] = DK_DC_D; DirectiveKindMap[".dc.l"] = DK_DC_L; DirectiveKindMap[".dc.s"] = DK_DC_S; DirectiveKindMap[".dc.w"] = DK_DC_W; DirectiveKindMap[".dc.x"] = DK_DC_X; DirectiveKindMap[".dcb"] = DK_DCB; DirectiveKindMap[".dcb.b"] = DK_DCB_B; DirectiveKindMap[".dcb.d"] = DK_DCB_D; DirectiveKindMap[".dcb.l"] = DK_DCB_L; DirectiveKindMap[".dcb.s"] = DK_DCB_S; DirectiveKindMap[".dcb.w"] = DK_DCB_W; DirectiveKindMap[".dcb.x"] = DK_DCB_X; DirectiveKindMap[".ds"] = DK_DS; DirectiveKindMap[".ds.b"] = DK_DS_B; DirectiveKindMap[".ds.d"] = DK_DS_D; DirectiveKindMap[".ds.l"] = DK_DS_L; DirectiveKindMap[".ds.p"] = DK_DS_P; DirectiveKindMap[".ds.s"] = DK_DS_S; DirectiveKindMap[".ds.w"] = DK_DS_W; DirectiveKindMap[".ds.x"] = DK_DS_X; DirectiveKindMap[".print"] = DK_PRINT; DirectiveKindMap[".addrsig"] = DK_ADDRSIG; DirectiveKindMap[".addrsig_sym"] = DK_ADDRSIG_SYM; DirectiveKindMap[".pseudoprobe"] = DK_PSEUDO_PROBE; DirectiveKindMap[".lto_discard"] = DK_LTO_DISCARD; DirectiveKindMap[".lto_set_conditional"] = DK_LTO_SET_CONDITIONAL; DirectiveKindMap[".memtag"] = DK_MEMTAG; } MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { AsmToken EndToken, StartToken = getTok(); unsigned NestLevel = 0; while (true) { // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) { printError(DirectiveLoc, "no matching '.endr' in definition"); return nullptr; } if (Lexer.is(AsmToken::Identifier)) { StringRef Ident = getTok().getIdentifier(); if (Ident == ".rep" || Ident == ".rept" || Ident == ".irp" || Ident == ".irpc") { ++NestLevel; } else if (Ident == ".endr") { if (NestLevel == 0) { EndToken = getTok(); Lex(); if (Lexer.is(AsmToken::EndOfStatement)) break; printError(getTok().getLoc(), "expected newline"); return nullptr; } --NestLevel; } } // Otherwise, scan till the end of the statement. eatToEndOfStatement(); } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); // We Are Anonymous. MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); return &MacroLikeBodies.back(); } void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS) { OS << ".endr\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation{ DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()}; ActiveMacros.push_back(MI); // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); Lex(); } /// parseDirectiveRept /// ::= .rep | .rept count bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) { const MCExpr *CountExpr; SMLoc CountLoc = getTok().getLoc(); if (parseExpression(CountExpr)) return true; int64_t Count; if (!CountExpr->evaluateAsAbsolute(Count, getStreamer().getAssemblerPtr())) { return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); } if (check(Count < 0, CountLoc, "Count is negative") || parseEOL()) return true; // Lex the rept definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); while (Count--) { // Note that the AtPseudoVariable is disabled for instantiations of .rep(t). if (expandMacro(OS, *M, std::nullopt, std::nullopt, false)) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveIrp /// ::= .irp symbol,values bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) { MCAsmMacroParameter Parameter; MCAsmMacroArguments A; if (check(parseIdentifier(Parameter.Name), "expected identifier in '.irp' directive") || parseComma() || parseMacroArguments(nullptr, A) || parseEOL()) return true; // Lex the irp definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); for (const MCAsmMacroArgument &Arg : A) { // Note that the AtPseudoVariable is enabled for instantiations of .irp. // This is undocumented, but GAS seems to support it. if (expandMacro(OS, *M, Parameter, Arg, true)) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveIrpc /// ::= .irpc symbol,values bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) { MCAsmMacroParameter Parameter; MCAsmMacroArguments A; if (check(parseIdentifier(Parameter.Name), "expected identifier in '.irpc' directive") || parseComma() || parseMacroArguments(nullptr, A)) return true; if (A.size() != 1 || A.front().size() != 1) return TokError("unexpected token in '.irpc' directive"); if (parseEOL()) return true; // Lex the irpc definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) return true; // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); StringRef Values = A.front().front().getString(); for (std::size_t I = 0, End = Values.size(); I != End; ++I) { MCAsmMacroArgument Arg; Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); // Note that the AtPseudoVariable is enabled for instantiations of .irpc. // This is undocumented, but GAS seems to support it. if (expandMacro(OS, *M, Parameter, Arg, true)) return true; } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) { if (ActiveMacros.empty()) return TokError("unmatched '.endr' directive"); // The only .repl that should get here are the ones created by // instantiateMacroLikeBody. assert(getLexer().is(AsmToken::EndOfStatement)); handleMacroExit(); return false; } bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, size_t Len) { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(ExprLoc, "unexpected expression in _emit"); uint64_t IntValue = MCE->getValue(); if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) return Error(ExprLoc, "literal value out of range for directive"); Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); return false; } bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) return true; const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) return Error(ExprLoc, "unexpected expression in align"); uint64_t IntValue = MCE->getValue(); if (!isPowerOf2_64(IntValue)) return Error(ExprLoc, "literal value not a power of two greater then zero"); Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); return false; } bool AsmParser::parseDirectivePrint(SMLoc DirectiveLoc) { const AsmToken StrTok = getTok(); Lex(); if (StrTok.isNot(AsmToken::String) || StrTok.getString().front() != '"') return Error(DirectiveLoc, "expected double quoted string after .print"); if (parseEOL()) return true; llvm::outs() << StrTok.getStringContents() << '\n'; return false; } bool AsmParser::parseDirectiveAddrsig() { if (parseEOL()) return true; getStreamer().emitAddrsig(); return false; } bool AsmParser::parseDirectiveAddrsigSym() { StringRef Name; if (check(parseIdentifier(Name), "expected identifier") || parseEOL()) return true; MCSymbol *Sym = getContext().getOrCreateSymbol(Name); getStreamer().emitAddrsigSym(Sym); return false; } bool AsmParser::parseDirectivePseudoProbe() { int64_t Guid; int64_t Index; int64_t Type; int64_t Attr; int64_t Discriminator = 0; if (parseIntToken(Guid, "unexpected token in '.pseudoprobe' directive")) return true; if (parseIntToken(Index, "unexpected token in '.pseudoprobe' directive")) return true; if (parseIntToken(Type, "unexpected token in '.pseudoprobe' directive")) return true; if (parseIntToken(Attr, "unexpected token in '.pseudoprobe' directive")) return true; if (hasDiscriminator(Attr)) { if (parseIntToken(Discriminator, "unexpected token in '.pseudoprobe' directive")) return true; } // Parse inline stack like @ GUID:11:12 @ GUID:1:11 @ GUID:3:21 MCPseudoProbeInlineStack InlineStack; while (getLexer().is(AsmToken::At)) { // eat @ Lex(); int64_t CallerGuid = 0; if (getLexer().is(AsmToken::Integer)) { if (parseIntToken(CallerGuid, "unexpected token in '.pseudoprobe' directive")) return true; } // eat colon if (getLexer().is(AsmToken::Colon)) Lex(); int64_t CallerProbeId = 0; if (getLexer().is(AsmToken::Integer)) { if (parseIntToken(CallerProbeId, "unexpected token in '.pseudoprobe' directive")) return true; } InlineSite Site(CallerGuid, CallerProbeId); InlineStack.push_back(Site); } // Parse function entry name StringRef FnName; if (parseIdentifier(FnName)) return Error(getLexer().getLoc(), "unexpected token in '.pseudoprobe' directive"); MCSymbol *FnSym = getContext().lookupSymbol(FnName); if (parseEOL()) return true; getStreamer().emitPseudoProbe(Guid, Index, Type, Attr, Discriminator, InlineStack, FnSym); return false; } /// parseDirectiveLTODiscard /// ::= ".lto_discard" [ identifier ( , identifier )* ] /// The LTO library emits this directive to discard non-prevailing symbols. /// We ignore symbol assignments and attribute changes for the specified /// symbols. bool AsmParser::parseDirectiveLTODiscard() { auto ParseOp = [&]() -> bool { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) return Error(Loc, "expected identifier"); LTODiscardSymbols.insert(Name); return false; }; LTODiscardSymbols.clear(); return parseMany(ParseOp); } // We are comparing pointers, but the pointers are relative to a single string. // Thus, this should always be deterministic. static int rewritesSort(const AsmRewrite *AsmRewriteA, const AsmRewrite *AsmRewriteB) { if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) return -1; if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) return 1; // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output // rewrite to the same location. Make sure the SizeDirective rewrite is // performed first, then the Imm/ImmPrefix and finally the Input/Output. This // ensures the sort algorithm is stable. if (AsmRewritePrecedence[AsmRewriteA->Kind] > AsmRewritePrecedence[AsmRewriteB->Kind]) return -1; if (AsmRewritePrecedence[AsmRewriteA->Kind] < AsmRewritePrecedence[AsmRewriteB->Kind]) return 1; llvm_unreachable("Unstable rewrite sort."); } bool AsmParser::parseMSInlineAsm( std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl> &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, const MCInstPrinter *IP, MCAsmParserSemaCallback &SI) { SmallVector InputDecls; SmallVector OutputDecls; SmallVector InputDeclsAddressOf; SmallVector OutputDeclsAddressOf; SmallVector InputConstraints; SmallVector OutputConstraints; SmallVector ClobberRegs; SmallVector AsmStrRewrites; // Prime the lexer. Lex(); // While we have input, parse each statement. unsigned InputIdx = 0; unsigned OutputIdx = 0; while (getLexer().isNot(AsmToken::Eof)) { // Parse curly braces marking block start/end if (parseCurlyBlockScope(AsmStrRewrites)) continue; ParseStatementInfo Info(&AsmStrRewrites); bool StatementErr = parseStatement(Info, &SI); if (StatementErr || Info.ParseError) { // Emit pending errors if any exist. printPendingErrors(); return true; } // No pending error should exist here. assert(!hasPendingError() && "unexpected error from parseStatement"); if (Info.Opcode == ~0U) continue; const MCInstrDesc &Desc = MII->get(Info.Opcode); // Build the list of clobbers, outputs and inputs. for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; // Register operand. if (Operand.isReg() && !Operand.needAddressOf() && !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { unsigned NumDefs = Desc.getNumDefs(); // Clobber. if (NumDefs && Operand.getMCOperandNum() < NumDefs) ClobberRegs.push_back(Operand.getReg()); continue; } // Expr/Input or Output. StringRef SymName = Operand.getSymName(); if (SymName.empty()) continue; void *OpDecl = Operand.getOpDecl(); if (!OpDecl) continue; StringRef Constraint = Operand.getConstraint(); if (Operand.isImm()) { // Offset as immediate if (Operand.isOffsetOfLocal()) Constraint = "r"; else Constraint = "i"; } bool isOutput = (i == 1) && Desc.mayStore(); bool Restricted = Operand.isMemUseUpRegs(); SMLoc Start = SMLoc::getFromPointer(SymName.data()); if (isOutput) { ++InputIdx; OutputDecls.push_back(OpDecl); OutputDeclsAddressOf.push_back(Operand.needAddressOf()); OutputConstraints.push_back(("=" + Constraint).str()); AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size(), 0, Restricted); } else { InputDecls.push_back(OpDecl); InputDeclsAddressOf.push_back(Operand.needAddressOf()); InputConstraints.push_back(Constraint.str()); if (Desc.operands()[i - 1].isBranchTarget()) AsmStrRewrites.emplace_back(AOK_CallInput, Start, SymName.size(), 0, Restricted); else AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size(), 0, Restricted); } } // Consider implicit defs to be clobbers. Think of cpuid and push. llvm::append_range(ClobberRegs, Desc.implicit_defs()); } // Set the number of Outputs and Inputs. NumOutputs = OutputDecls.size(); NumInputs = InputDecls.size(); // Set the unique clobbers. array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); ClobberRegs.erase(llvm::unique(ClobberRegs), ClobberRegs.end()); Clobbers.assign(ClobberRegs.size(), std::string()); for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { raw_string_ostream OS(Clobbers[I]); IP->printRegName(OS, ClobberRegs[I]); } // Merge the various outputs and inputs. Output are expected first. if (NumOutputs || NumInputs) { unsigned NumExprs = NumOutputs + NumInputs; OpDecls.resize(NumExprs); Constraints.resize(NumExprs); for (unsigned i = 0; i < NumOutputs; ++i) { OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); Constraints[i] = OutputConstraints[i]; } for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); Constraints[j] = InputConstraints[i]; } } // Build the IR assembly string. std::string AsmStringIR; raw_string_ostream OS(AsmStringIR); StringRef ASMString = SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); const char *AsmStart = ASMString.begin(); const char *AsmEnd = ASMString.end(); array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); for (auto I = AsmStrRewrites.begin(), E = AsmStrRewrites.end(); I != E; ++I) { const AsmRewrite &AR = *I; // Check if this has already been covered by another rewrite... if (AR.Done) continue; AsmRewriteKind Kind = AR.Kind; const char *Loc = AR.Loc.getPointer(); assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); // Emit everything up to the immediate/expression. if (unsigned Len = Loc - AsmStart) OS << StringRef(AsmStart, Len); // Skip the original expression. if (Kind == AOK_Skip) { AsmStart = Loc + AR.Len; continue; } unsigned AdditionalSkip = 0; // Rewrite expressions in $N notation. switch (Kind) { default: break; case AOK_IntelExpr: assert(AR.IntelExp.isValid() && "cannot write invalid intel expression"); if (AR.IntelExp.NeedBracs) OS << "["; if (AR.IntelExp.hasBaseReg()) OS << AR.IntelExp.BaseReg; if (AR.IntelExp.hasIndexReg()) OS << (AR.IntelExp.hasBaseReg() ? " + " : "") << AR.IntelExp.IndexReg; if (AR.IntelExp.Scale > 1) OS << " * $$" << AR.IntelExp.Scale; if (AR.IntelExp.hasOffset()) { if (AR.IntelExp.hasRegs()) OS << " + "; // Fuse this rewrite with a rewrite of the offset name, if present. StringRef OffsetName = AR.IntelExp.OffsetName; SMLoc OffsetLoc = SMLoc::getFromPointer(AR.IntelExp.OffsetName.data()); size_t OffsetLen = OffsetName.size(); auto rewrite_it = std::find_if( I, AsmStrRewrites.end(), [&](const AsmRewrite &FusingAR) { return FusingAR.Loc == OffsetLoc && FusingAR.Len == OffsetLen && (FusingAR.Kind == AOK_Input || FusingAR.Kind == AOK_CallInput); }); if (rewrite_it == AsmStrRewrites.end()) { OS << "offset " << OffsetName; } else if (rewrite_it->Kind == AOK_CallInput) { OS << "${" << InputIdx++ << ":P}"; rewrite_it->Done = true; } else { OS << '$' << InputIdx++; rewrite_it->Done = true; } } if (AR.IntelExp.Imm || AR.IntelExp.emitImm()) OS << (AR.IntelExp.emitImm() ? "$$" : " + $$") << AR.IntelExp.Imm; if (AR.IntelExp.NeedBracs) OS << "]"; break; case AOK_Label: OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; break; case AOK_Input: if (AR.IntelExpRestricted) OS << "${" << InputIdx++ << ":P}"; else OS << '$' << InputIdx++; break; case AOK_CallInput: OS << "${" << InputIdx++ << ":P}"; break; case AOK_Output: if (AR.IntelExpRestricted) OS << "${" << OutputIdx++ << ":P}"; else OS << '$' << OutputIdx++; break; case AOK_SizeDirective: switch (AR.Val) { default: break; case 8: OS << "byte ptr "; break; case 16: OS << "word ptr "; break; case 32: OS << "dword ptr "; break; case 64: OS << "qword ptr "; break; case 80: OS << "xword ptr "; break; case 128: OS << "xmmword ptr "; break; case 256: OS << "ymmword ptr "; break; } break; case AOK_Emit: OS << ".byte"; break; case AOK_Align: { // MS alignment directives are measured in bytes. If the native assembler // measures alignment in bytes, we can pass it straight through. OS << ".align"; if (getContext().getAsmInfo()->getAlignmentIsInBytes()) break; // Alignment is in log2 form, so print that instead and skip the original // immediate. unsigned Val = AR.Val; OS << ' ' << Val; assert(Val < 10 && "Expected alignment less then 2^10."); AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; break; } case AOK_EVEN: OS << ".even"; break; case AOK_EndOfStatement: OS << "\n\t"; break; } // Skip the original expression. AsmStart = Loc + AR.Len + AdditionalSkip; } // Emit the remainder of the asm string. if (AsmStart != AsmEnd) OS << StringRef(AsmStart, AsmEnd - AsmStart); AsmString = AsmStringIR; return false; } bool HLASMAsmParser::parseAsHLASMLabel(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) { AsmToken LabelTok = getTok(); SMLoc LabelLoc = LabelTok.getLoc(); StringRef LabelVal; if (parseIdentifier(LabelVal)) return Error(LabelLoc, "The HLASM Label has to be an Identifier"); // We have validated whether the token is an Identifier. // Now we have to validate whether the token is a // valid HLASM Label. if (!getTargetParser().isLabel(LabelTok) || checkForValidSection()) return true; // Lex leading spaces to get to the next operand. lexLeadingSpaces(); // We shouldn't emit the label if there is nothing else after the label. // i.e asm("\n") if (getTok().is(AsmToken::EndOfStatement)) return Error(LabelLoc, "Cannot have just a label for an HLASM inline asm statement"); MCSymbol *Sym = getContext().getOrCreateSymbol( getContext().getAsmInfo()->shouldEmitLabelsInUpperCase() ? LabelVal.upper() : LabelVal); getTargetParser().doBeforeLabelEmit(Sym, LabelLoc); // Emit the label. Out.emitLabel(Sym, LabelLoc); // If we are generating dwarf for assembly source files then gather the // info to make a dwarf label entry for this label if needed. if (enabledGenDwarfForAssembly()) MCGenDwarfLabelEntry::Make(Sym, &getStreamer(), getSourceManager(), LabelLoc); getTargetParser().onLabelParsed(Sym); return false; } bool HLASMAsmParser::parseAsMachineInstruction(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) { AsmToken OperationEntryTok = Lexer.getTok(); SMLoc OperationEntryLoc = OperationEntryTok.getLoc(); StringRef OperationEntryVal; // Attempt to parse the first token as an Identifier if (parseIdentifier(OperationEntryVal)) return Error(OperationEntryLoc, "unexpected token at start of statement"); // Once we've parsed the operation entry successfully, lex // any spaces to get to the OperandEntries. lexLeadingSpaces(); return parseAndMatchAndEmitTargetInstruction( Info, OperationEntryVal, OperationEntryTok, OperationEntryLoc); } bool HLASMAsmParser::parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI) { assert(!hasPendingError() && "parseStatement started with pending error"); // Should the first token be interpreted as a HLASM Label. bool ShouldParseAsHLASMLabel = false; // If a Name Entry exists, it should occur at the very // start of the string. In this case, we should parse the // first non-space token as a Label. // If the Name entry is missing (i.e. there's some other // token), then we attempt to parse the first non-space // token as a Machine Instruction. if (getTok().isNot(AsmToken::Space)) ShouldParseAsHLASMLabel = true; // If we have an EndOfStatement (which includes the target's comment // string) we can appropriately lex it early on) if (Lexer.is(AsmToken::EndOfStatement)) { // if this is a line comment we can drop it safely if (getTok().getString().empty() || getTok().getString().front() == '\r' || getTok().getString().front() == '\n') Out.addBlankLine(); Lex(); return false; } // We have established how to parse the inline asm statement. // Now we can safely lex any leading spaces to get to the // first token. lexLeadingSpaces(); // If we see a new line or carriage return as the first operand, // after lexing leading spaces, emit the new line and lex the // EndOfStatement token. if (Lexer.is(AsmToken::EndOfStatement)) { if (getTok().getString().front() == '\n' || getTok().getString().front() == '\r') { Out.addBlankLine(); Lex(); return false; } } // Handle the label first if we have to before processing the rest // of the tokens as a machine instruction. if (ShouldParseAsHLASMLabel) { // If there were any errors while handling and emitting the label, // early return. if (parseAsHLASMLabel(Info, SI)) { // If we know we've failed in parsing, simply eat until end of the // statement. This ensures that we don't process any other statements. eatToEndOfStatement(); return true; } } return parseAsMachineInstruction(Info, SI); } namespace llvm { namespace MCParserUtils { /// Returns whether the given symbol is used anywhere in the given expression, /// or subexpressions. static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) { switch (Value->getKind()) { case MCExpr::Binary: { const MCBinaryExpr *BE = static_cast(Value); return isSymbolUsedInExpression(Sym, BE->getLHS()) || isSymbolUsedInExpression(Sym, BE->getRHS()); } case MCExpr::Target: case MCExpr::Constant: return false; case MCExpr::SymbolRef: { const MCSymbol &S = static_cast(Value)->getSymbol(); if (S.isVariable() && !S.isWeakExternal()) return isSymbolUsedInExpression(Sym, S.getVariableValue()); return &S == Sym; } case MCExpr::Unary: return isSymbolUsedInExpression( Sym, static_cast(Value)->getSubExpr()); } llvm_unreachable("Unknown expr kind!"); } bool parseAssignmentExpression(StringRef Name, bool allow_redef, MCAsmParser &Parser, MCSymbol *&Sym, const MCExpr *&Value) { // FIXME: Use better location, we should use proper tokens. SMLoc EqualLoc = Parser.getTok().getLoc(); if (Parser.parseExpression(Value)) return Parser.TokError("missing expression"); // Note: we don't count b as used in "a = b". This is to allow // a = b // b = c if (Parser.parseEOL()) return true; // Validate that the LHS is allowed to be a variable (either it has not been // used as a symbol, or it is an absolute symbol). Sym = Parser.getContext().lookupSymbol(Name); if (Sym) { // Diagnose assignment to a label. // // FIXME: Diagnostics. Note the location of the definition as a label. // FIXME: Diagnose assignment to protected identifier (e.g., register name). if (isSymbolUsedInExpression(Sym, Value)) return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'"); else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() && !Sym->isVariable()) ; // Allow redefinitions of undefined symbols only used in directives. else if (Sym->isVariable() && !Sym->isUsed() && allow_redef) ; // Allow redefinitions of variables that haven't yet been used. else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef)) return Parser.Error(EqualLoc, "redefinition of '" + Name + "'"); else if (!Sym->isVariable()) return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'"); else if (!isa(Sym->getVariableValue())) return Parser.Error(EqualLoc, "invalid reassignment of non-absolute variable '" + Name + "'"); } else if (Name == ".") { Parser.getStreamer().emitValueToOffset(Value, 0, EqualLoc); return false; } else Sym = Parser.getContext().getOrCreateSymbol(Name); Sym->setRedefinable(allow_redef); return false; } } // end namespace MCParserUtils } // end namespace llvm /// Create an MCAsmParser instance. MCAsmParser *llvm::createMCAsmParser(SourceMgr &SM, MCContext &C, MCStreamer &Out, const MCAsmInfo &MAI, unsigned CB) { if (C.getTargetTriple().isSystemZ() && C.getTargetTriple().isOSzOS()) return new HLASMAsmParser(SM, C, Out, MAI, CB); return new AsmParser(SM, C, Out, MAI, CB); }