//===- DWARFAcceleratorTable.cpp ------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h" #include "llvm/ADT/SmallVector.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DJB.h" #include "llvm/Support/Errc.h" #include "llvm/Support/Format.h" #include "llvm/Support/FormatVariadic.h" #include "llvm/Support/ScopedPrinter.h" #include "llvm/Support/raw_ostream.h" #include #include #include using namespace llvm; namespace { struct Atom { unsigned Value; }; static raw_ostream &operator<<(raw_ostream &OS, const Atom &A) { StringRef Str = dwarf::AtomTypeString(A.Value); if (!Str.empty()) return OS << Str; return OS << "DW_ATOM_unknown_" << format("%x", A.Value); } } // namespace static Atom formatAtom(unsigned Atom) { return {Atom}; } DWARFAcceleratorTable::~DWARFAcceleratorTable() = default; Error AppleAcceleratorTable::extract() { uint64_t Offset = 0; // Check that we can at least read the header. if (!AccelSection.isValidOffset(offsetof(Header, HeaderDataLength) + 4)) return createStringError(errc::illegal_byte_sequence, "Section too small: cannot read header."); Hdr.Magic = AccelSection.getU32(&Offset); Hdr.Version = AccelSection.getU16(&Offset); Hdr.HashFunction = AccelSection.getU16(&Offset); Hdr.BucketCount = AccelSection.getU32(&Offset); Hdr.HashCount = AccelSection.getU32(&Offset); Hdr.HeaderDataLength = AccelSection.getU32(&Offset); FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32}; // Check that we can read all the hashes and offsets from the // section (see SourceLevelDebugging.rst for the structure of the index). if (!AccelSection.isValidOffset(getIthBucketBase(Hdr.BucketCount - 1))) return createStringError( errc::illegal_byte_sequence, "Section too small: cannot read buckets and hashes."); HdrData.DIEOffsetBase = AccelSection.getU32(&Offset); uint32_t NumAtoms = AccelSection.getU32(&Offset); HashDataEntryLength = 0; auto MakeUnsupportedFormError = [](dwarf::Form Form) { return createStringError(errc::not_supported, "Unsupported form:" + dwarf::FormEncodingString(Form)); }; for (unsigned i = 0; i < NumAtoms; ++i) { uint16_t AtomType = AccelSection.getU16(&Offset); auto AtomForm = static_cast(AccelSection.getU16(&Offset)); HdrData.Atoms.push_back(std::make_pair(AtomType, AtomForm)); std::optional FormSize = dwarf::getFixedFormByteSize(AtomForm, FormParams); if (!FormSize) return MakeUnsupportedFormError(AtomForm); HashDataEntryLength += *FormSize; } IsValid = true; return Error::success(); } uint32_t AppleAcceleratorTable::getNumBuckets() const { return Hdr.BucketCount; } uint32_t AppleAcceleratorTable::getNumHashes() const { return Hdr.HashCount; } uint32_t AppleAcceleratorTable::getSizeHdr() const { return sizeof(Hdr); } uint32_t AppleAcceleratorTable::getHeaderDataLength() const { return Hdr.HeaderDataLength; } ArrayRef> AppleAcceleratorTable::getAtomsDesc() { return HdrData.Atoms; } bool AppleAcceleratorTable::validateForms() { for (auto Atom : getAtomsDesc()) { DWARFFormValue FormValue(Atom.second); switch (Atom.first) { case dwarf::DW_ATOM_die_offset: case dwarf::DW_ATOM_die_tag: case dwarf::DW_ATOM_type_flags: if ((!FormValue.isFormClass(DWARFFormValue::FC_Constant) && !FormValue.isFormClass(DWARFFormValue::FC_Flag)) || FormValue.getForm() == dwarf::DW_FORM_sdata) return false; break; default: break; } } return true; } std::pair AppleAcceleratorTable::readAtoms(uint64_t *HashDataOffset) { uint64_t DieOffset = dwarf::DW_INVALID_OFFSET; dwarf::Tag DieTag = dwarf::DW_TAG_null; for (auto Atom : getAtomsDesc()) { DWARFFormValue FormValue(Atom.second); FormValue.extractValue(AccelSection, HashDataOffset, FormParams); switch (Atom.first) { case dwarf::DW_ATOM_die_offset: DieOffset = *FormValue.getAsUnsignedConstant(); break; case dwarf::DW_ATOM_die_tag: DieTag = (dwarf::Tag)*FormValue.getAsUnsignedConstant(); break; default: break; } } return {DieOffset, DieTag}; } void AppleAcceleratorTable::Header::dump(ScopedPrinter &W) const { DictScope HeaderScope(W, "Header"); W.printHex("Magic", Magic); W.printHex("Version", Version); W.printHex("Hash function", HashFunction); W.printNumber("Bucket count", BucketCount); W.printNumber("Hashes count", HashCount); W.printNumber("HeaderData length", HeaderDataLength); } std::optional AppleAcceleratorTable::HeaderData::extractOffset( std::optional Value) const { if (!Value) return std::nullopt; switch (Value->getForm()) { case dwarf::DW_FORM_ref1: case dwarf::DW_FORM_ref2: case dwarf::DW_FORM_ref4: case dwarf::DW_FORM_ref8: case dwarf::DW_FORM_ref_udata: return Value->getRawUValue() + DIEOffsetBase; default: return Value->getAsSectionOffset(); } } bool AppleAcceleratorTable::dumpName(ScopedPrinter &W, SmallVectorImpl &AtomForms, uint64_t *DataOffset) const { uint64_t NameOffset = *DataOffset; if (!AccelSection.isValidOffsetForDataOfSize(*DataOffset, 4)) { W.printString("Incorrectly terminated list."); return false; } uint64_t StringOffset = AccelSection.getRelocatedValue(4, DataOffset); if (!StringOffset) return false; // End of list DictScope NameScope(W, ("Name@0x" + Twine::utohexstr(NameOffset)).str()); W.startLine() << format("String: 0x%08" PRIx64, StringOffset); W.getOStream() << " \"" << StringSection.getCStr(&StringOffset) << "\"\n"; unsigned NumData = AccelSection.getU32(DataOffset); for (unsigned Data = 0; Data < NumData; ++Data) { ListScope DataScope(W, ("Data " + Twine(Data)).str()); unsigned i = 0; for (auto &Atom : AtomForms) { W.startLine() << format("Atom[%d]: ", i); if (Atom.extractValue(AccelSection, DataOffset, FormParams)) { Atom.dump(W.getOStream()); if (std::optional Val = Atom.getAsUnsignedConstant()) { StringRef Str = dwarf::AtomValueString(HdrData.Atoms[i].first, *Val); if (!Str.empty()) W.getOStream() << " (" << Str << ")"; } } else W.getOStream() << "Error extracting the value"; W.getOStream() << "\n"; i++; } } return true; // more entries follow } LLVM_DUMP_METHOD void AppleAcceleratorTable::dump(raw_ostream &OS) const { if (!IsValid) return; ScopedPrinter W(OS); Hdr.dump(W); W.printNumber("DIE offset base", HdrData.DIEOffsetBase); W.printNumber("Number of atoms", uint64_t(HdrData.Atoms.size())); W.printNumber("Size of each hash data entry", getHashDataEntryLength()); SmallVector AtomForms; { ListScope AtomsScope(W, "Atoms"); unsigned i = 0; for (const auto &Atom : HdrData.Atoms) { DictScope AtomScope(W, ("Atom " + Twine(i++)).str()); W.startLine() << "Type: " << formatAtom(Atom.first) << '\n'; W.startLine() << "Form: " << formatv("{0}", Atom.second) << '\n'; AtomForms.push_back(DWARFFormValue(Atom.second)); } } // Now go through the actual tables and dump them. uint64_t Offset = sizeof(Hdr) + Hdr.HeaderDataLength; uint64_t HashesBase = Offset + Hdr.BucketCount * 4; uint64_t OffsetsBase = HashesBase + Hdr.HashCount * 4; for (unsigned Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket) { unsigned Index = AccelSection.getU32(&Offset); ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str()); if (Index == UINT32_MAX) { W.printString("EMPTY"); continue; } for (unsigned HashIdx = Index; HashIdx < Hdr.HashCount; ++HashIdx) { uint64_t HashOffset = HashesBase + HashIdx*4; uint64_t OffsetsOffset = OffsetsBase + HashIdx*4; uint32_t Hash = AccelSection.getU32(&HashOffset); if (Hash % Hdr.BucketCount != Bucket) break; uint64_t DataOffset = AccelSection.getU32(&OffsetsOffset); ListScope HashScope(W, ("Hash 0x" + Twine::utohexstr(Hash)).str()); if (!AccelSection.isValidOffset(DataOffset)) { W.printString("Invalid section offset"); continue; } while (dumpName(W, AtomForms, &DataOffset)) /*empty*/; } } } AppleAcceleratorTable::Entry::Entry(const AppleAcceleratorTable &Table) : Table(Table) { Values.reserve(Table.HdrData.Atoms.size()); for (const auto &Atom : Table.HdrData.Atoms) Values.push_back(DWARFFormValue(Atom.second)); } void AppleAcceleratorTable::Entry::extract(uint64_t *Offset) { for (auto &FormValue : Values) FormValue.extractValue(Table.AccelSection, Offset, Table.FormParams); } std::optional AppleAcceleratorTable::Entry::lookup(HeaderData::AtomType AtomToFind) const { for (auto [Atom, FormValue] : zip_equal(Table.HdrData.Atoms, Values)) if (Atom.first == AtomToFind) return FormValue; return std::nullopt; } std::optional AppleAcceleratorTable::Entry::getDIESectionOffset() const { return Table.HdrData.extractOffset(lookup(dwarf::DW_ATOM_die_offset)); } std::optional AppleAcceleratorTable::Entry::getCUOffset() const { return Table.HdrData.extractOffset(lookup(dwarf::DW_ATOM_cu_offset)); } std::optional AppleAcceleratorTable::Entry::getTag() const { std::optional Tag = lookup(dwarf::DW_ATOM_die_tag); if (!Tag) return std::nullopt; if (std::optional Value = Tag->getAsUnsignedConstant()) return dwarf::Tag(*Value); return std::nullopt; } AppleAcceleratorTable::SameNameIterator::SameNameIterator( const AppleAcceleratorTable &AccelTable, uint64_t DataOffset) : Current(AccelTable), Offset(DataOffset) {} void AppleAcceleratorTable::Iterator::prepareNextEntryOrEnd() { if (NumEntriesToCome == 0) prepareNextStringOrEnd(); if (isEnd()) return; uint64_t OffsetCopy = Offset; Current.BaseEntry.extract(&OffsetCopy); NumEntriesToCome--; Offset += getTable().getHashDataEntryLength(); } void AppleAcceleratorTable::Iterator::prepareNextStringOrEnd() { std::optional StrOffset = getTable().readStringOffsetAt(Offset); if (!StrOffset) return setToEnd(); // A zero denotes the end of the collision list. Read the next string // again. if (*StrOffset == 0) return prepareNextStringOrEnd(); Current.StrOffset = *StrOffset; std::optional MaybeNumEntries = getTable().readU32FromAccel(Offset); if (!MaybeNumEntries || *MaybeNumEntries == 0) return setToEnd(); NumEntriesToCome = *MaybeNumEntries; } AppleAcceleratorTable::Iterator::Iterator(const AppleAcceleratorTable &Table, bool SetEnd) : Current(Table), Offset(Table.getEntriesBase()), NumEntriesToCome(0) { if (SetEnd) setToEnd(); else prepareNextEntryOrEnd(); } iterator_range AppleAcceleratorTable::equal_range(StringRef Key) const { const auto EmptyRange = make_range(SameNameIterator(*this, 0), SameNameIterator(*this, 0)); if (!IsValid) return EmptyRange; // Find the bucket. uint32_t SearchHash = djbHash(Key); uint32_t BucketIdx = hashToBucketIdx(SearchHash); std::optional HashIdx = idxOfHashInBucket(SearchHash, BucketIdx); if (!HashIdx) return EmptyRange; std::optional MaybeDataOffset = readIthOffset(*HashIdx); if (!MaybeDataOffset) return EmptyRange; uint64_t DataOffset = *MaybeDataOffset; if (DataOffset >= AccelSection.size()) return EmptyRange; std::optional StrOffset = readStringOffsetAt(DataOffset); // Valid input and still have strings in this hash. while (StrOffset && *StrOffset) { std::optional MaybeStr = readStringFromStrSection(*StrOffset); std::optional NumEntries = this->readU32FromAccel(DataOffset); if (!MaybeStr || !NumEntries) return EmptyRange; uint64_t EndOffset = DataOffset + *NumEntries * getHashDataEntryLength(); if (Key == *MaybeStr) return make_range({*this, DataOffset}, SameNameIterator{*this, EndOffset}); DataOffset = EndOffset; StrOffset = readStringOffsetAt(DataOffset); } return EmptyRange; } std::optional AppleAcceleratorTable::idxOfHashInBucket(uint32_t HashToFind, uint32_t BucketIdx) const { std::optional HashStartIdx = readIthBucket(BucketIdx); if (!HashStartIdx) return std::nullopt; for (uint32_t HashIdx = *HashStartIdx; HashIdx < getNumHashes(); HashIdx++) { std::optional MaybeHash = readIthHash(HashIdx); if (!MaybeHash || !wouldHashBeInBucket(*MaybeHash, BucketIdx)) break; if (*MaybeHash == HashToFind) return HashIdx; } return std::nullopt; } std::optional AppleAcceleratorTable::readStringFromStrSection( uint64_t StringSectionOffset) const { Error E = Error::success(); StringRef Str = StringSection.getCStrRef(&StringSectionOffset, &E); if (E) { consumeError(std::move(E)); return std::nullopt; } return Str; } std::optional AppleAcceleratorTable::readU32FromAccel(uint64_t &Offset, bool UseRelocation) const { Error E = Error::success(); uint32_t Data = UseRelocation ? AccelSection.getRelocatedValue(4, &Offset, nullptr, &E) : AccelSection.getU32(&Offset, &E); if (E) { consumeError(std::move(E)); return std::nullopt; } return Data; } void DWARFDebugNames::Header::dump(ScopedPrinter &W) const { DictScope HeaderScope(W, "Header"); W.printHex("Length", UnitLength); W.printString("Format", dwarf::FormatString(Format)); W.printNumber("Version", Version); W.printNumber("CU count", CompUnitCount); W.printNumber("Local TU count", LocalTypeUnitCount); W.printNumber("Foreign TU count", ForeignTypeUnitCount); W.printNumber("Bucket count", BucketCount); W.printNumber("Name count", NameCount); W.printHex("Abbreviations table size", AbbrevTableSize); W.startLine() << "Augmentation: '" << AugmentationString << "'\n"; } Error DWARFDebugNames::Header::extract(const DWARFDataExtractor &AS, uint64_t *Offset) { auto HeaderError = [Offset = *Offset](Error E) { return createStringError(errc::illegal_byte_sequence, "parsing .debug_names header at 0x%" PRIx64 ": %s", Offset, toString(std::move(E)).c_str()); }; DataExtractor::Cursor C(*Offset); std::tie(UnitLength, Format) = AS.getInitialLength(C); Version = AS.getU16(C); AS.skip(C, 2); // padding CompUnitCount = AS.getU32(C); LocalTypeUnitCount = AS.getU32(C); ForeignTypeUnitCount = AS.getU32(C); BucketCount = AS.getU32(C); NameCount = AS.getU32(C); AbbrevTableSize = AS.getU32(C); AugmentationStringSize = alignTo(AS.getU32(C), 4); if (!C) return HeaderError(C.takeError()); if (!AS.isValidOffsetForDataOfSize(C.tell(), AugmentationStringSize)) return HeaderError(createStringError(errc::illegal_byte_sequence, "cannot read header augmentation")); AugmentationString.resize(AugmentationStringSize); AS.getU8(C, reinterpret_cast(AugmentationString.data()), AugmentationStringSize); *Offset = C.tell(); return C.takeError(); } void DWARFDebugNames::Abbrev::dump(ScopedPrinter &W) const { DictScope AbbrevScope(W, ("Abbreviation 0x" + Twine::utohexstr(Code)).str()); W.startLine() << formatv("Tag: {0}\n", Tag); for (const auto &Attr : Attributes) W.startLine() << formatv("{0}: {1}\n", Attr.Index, Attr.Form); } static constexpr DWARFDebugNames::AttributeEncoding sentinelAttrEnc() { return {dwarf::Index(0), dwarf::Form(0)}; } static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE) { return AE == sentinelAttrEnc(); } static DWARFDebugNames::Abbrev sentinelAbbrev() { return DWARFDebugNames::Abbrev(0, dwarf::Tag(0), 0, {}); } static bool isSentinel(const DWARFDebugNames::Abbrev &Abbr) { return Abbr.Code == 0; } DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getEmptyKey() { return sentinelAbbrev(); } DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getTombstoneKey() { return DWARFDebugNames::Abbrev(~0, dwarf::Tag(0), 0, {}); } Expected DWARFDebugNames::NameIndex::extractAttributeEncoding(uint64_t *Offset) { if (*Offset >= Offsets.EntriesBase) { return createStringError(errc::illegal_byte_sequence, "Incorrectly terminated abbreviation table."); } uint32_t Index = Section.AccelSection.getULEB128(Offset); uint32_t Form = Section.AccelSection.getULEB128(Offset); return AttributeEncoding(dwarf::Index(Index), dwarf::Form(Form)); } Expected> DWARFDebugNames::NameIndex::extractAttributeEncodings(uint64_t *Offset) { std::vector Result; for (;;) { auto AttrEncOr = extractAttributeEncoding(Offset); if (!AttrEncOr) return AttrEncOr.takeError(); if (isSentinel(*AttrEncOr)) return std::move(Result); Result.emplace_back(*AttrEncOr); } } Expected DWARFDebugNames::NameIndex::extractAbbrev(uint64_t *Offset) { if (*Offset >= Offsets.EntriesBase) { return createStringError(errc::illegal_byte_sequence, "Incorrectly terminated abbreviation table."); } const uint64_t AbbrevOffset = *Offset; uint32_t Code = Section.AccelSection.getULEB128(Offset); if (Code == 0) return sentinelAbbrev(); uint32_t Tag = Section.AccelSection.getULEB128(Offset); auto AttrEncOr = extractAttributeEncodings(Offset); if (!AttrEncOr) return AttrEncOr.takeError(); return Abbrev(Code, dwarf::Tag(Tag), AbbrevOffset, std::move(*AttrEncOr)); } DWARFDebugNames::DWARFDebugNamesOffsets dwarf::findDebugNamesOffsets(uint64_t EndOfHeaderOffset, const DWARFDebugNames::Header &Hdr) { uint64_t DwarfSize = getDwarfOffsetByteSize(Hdr.Format); DWARFDebugNames::DWARFDebugNamesOffsets Ret; Ret.CUsBase = EndOfHeaderOffset; Ret.BucketsBase = Ret.CUsBase + Hdr.CompUnitCount * DwarfSize + Hdr.LocalTypeUnitCount * DwarfSize + Hdr.ForeignTypeUnitCount * 8; Ret.HashesBase = Ret.BucketsBase + Hdr.BucketCount * 4; Ret.StringOffsetsBase = Ret.HashesBase + (Hdr.BucketCount > 0 ? Hdr.NameCount * 4 : 0); Ret.EntryOffsetsBase = Ret.StringOffsetsBase + Hdr.NameCount * DwarfSize; Ret.EntriesBase = Ret.EntryOffsetsBase + Hdr.NameCount * DwarfSize + Hdr.AbbrevTableSize; return Ret; } Error DWARFDebugNames::NameIndex::extract() { const DWARFDataExtractor &AS = Section.AccelSection; uint64_t EndOfHeaderOffset = Base; if (Error E = Hdr.extract(AS, &EndOfHeaderOffset)) return E; const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format); Offsets = dwarf::findDebugNamesOffsets(EndOfHeaderOffset, Hdr); uint64_t Offset = Offsets.EntryOffsetsBase + (Hdr.NameCount * SectionOffsetSize); if (!AS.isValidOffsetForDataOfSize(Offset, Hdr.AbbrevTableSize)) return createStringError(errc::illegal_byte_sequence, "Section too small: cannot read abbreviations."); Offsets.EntriesBase = Offset + Hdr.AbbrevTableSize; for (;;) { auto AbbrevOr = extractAbbrev(&Offset); if (!AbbrevOr) return AbbrevOr.takeError(); if (isSentinel(*AbbrevOr)) return Error::success(); if (!Abbrevs.insert(std::move(*AbbrevOr)).second) return createStringError(errc::invalid_argument, "Duplicate abbreviation code."); } } DWARFDebugNames::Entry::Entry(const NameIndex &NameIdx, const Abbrev &Abbr) : NameIdx(&NameIdx), Abbr(&Abbr) { // This merely creates form values. It is up to the caller // (NameIndex::getEntry) to populate them. Values.reserve(Abbr.Attributes.size()); for (const auto &Attr : Abbr.Attributes) Values.emplace_back(Attr.Form); } std::optional DWARFDebugNames::Entry::lookup(dwarf::Index Index) const { assert(Abbr->Attributes.size() == Values.size()); for (auto Tuple : zip_first(Abbr->Attributes, Values)) { if (std::get<0>(Tuple).Index == Index) return std::get<1>(Tuple); } return std::nullopt; } bool DWARFDebugNames::Entry::hasParentInformation() const { return lookup(dwarf::DW_IDX_parent).has_value(); } std::optional DWARFDebugNames::Entry::getDIEUnitOffset() const { if (std::optional Off = lookup(dwarf::DW_IDX_die_offset)) return Off->getAsReferenceUVal(); return std::nullopt; } std::optional DWARFDebugNames::Entry::getRelatedCUIndex() const { // Return the DW_IDX_compile_unit attribute value if it is specified. if (std::optional Off = lookup(dwarf::DW_IDX_compile_unit)) return Off->getAsUnsignedConstant(); // In a per-CU index, the entries without a DW_IDX_compile_unit attribute // implicitly refer to the single CU. if (NameIdx->getCUCount() == 1) return 0; return std::nullopt; } std::optional DWARFDebugNames::Entry::getCUIndex() const { // Return the DW_IDX_compile_unit attribute value but only if we don't have a // DW_IDX_type_unit attribute. Use Entry::getRelatedCUIndex() to get the // associated CU index if this behaviour is not desired. if (lookup(dwarf::DW_IDX_type_unit).has_value()) return std::nullopt; return getRelatedCUIndex(); } std::optional DWARFDebugNames::Entry::getCUOffset() const { std::optional Index = getCUIndex(); if (!Index || *Index >= NameIdx->getCUCount()) return std::nullopt; return NameIdx->getCUOffset(*Index); } std::optional DWARFDebugNames::Entry::getRelatedCUOffset() const { std::optional Index = getRelatedCUIndex(); if (!Index || *Index >= NameIdx->getCUCount()) return std::nullopt; return NameIdx->getCUOffset(*Index); } std::optional DWARFDebugNames::Entry::getLocalTUOffset() const { std::optional Index = getLocalTUIndex(); if (!Index || *Index >= NameIdx->getLocalTUCount()) return std::nullopt; return NameIdx->getLocalTUOffset(*Index); } std::optional DWARFDebugNames::Entry::getForeignTUTypeSignature() const { std::optional Index = getLocalTUIndex(); const uint32_t NumLocalTUs = NameIdx->getLocalTUCount(); if (!Index || *Index < NumLocalTUs) return std::nullopt; // Invalid TU index or TU index is for a local TU // The foreign TU index is the TU index minus the number of local TUs. const uint64_t ForeignTUIndex = *Index - NumLocalTUs; if (ForeignTUIndex >= NameIdx->getForeignTUCount()) return std::nullopt; // Invalid foreign TU index. return NameIdx->getForeignTUSignature(ForeignTUIndex); } std::optional DWARFDebugNames::Entry::getLocalTUIndex() const { if (std::optional Off = lookup(dwarf::DW_IDX_type_unit)) return Off->getAsUnsignedConstant(); return std::nullopt; } Expected> DWARFDebugNames::Entry::getParentDIEEntry() const { // The offset of the accelerator table entry for the parent. std::optional ParentEntryOff = lookup(dwarf::DW_IDX_parent); assert(ParentEntryOff.has_value() && "hasParentInformation() must be called"); if (ParentEntryOff->getForm() == dwarf::Form::DW_FORM_flag_present) return std::nullopt; return NameIdx->getEntryAtRelativeOffset(ParentEntryOff->getRawUValue()); } void DWARFDebugNames::Entry::dumpParentIdx( ScopedPrinter &W, const DWARFFormValue &FormValue) const { Expected> ParentEntry = getParentDIEEntry(); if (!ParentEntry) { W.getOStream() << ""; consumeError(ParentEntry.takeError()); return; } if (!ParentEntry->has_value()) { W.getOStream() << ""; return; } auto AbsoluteOffset = NameIdx->Offsets.EntriesBase + FormValue.getRawUValue(); W.getOStream() << "Entry @ 0x" + Twine::utohexstr(AbsoluteOffset); } void DWARFDebugNames::Entry::dump(ScopedPrinter &W) const { W.startLine() << formatv("Abbrev: {0:x}\n", Abbr->Code); W.startLine() << formatv("Tag: {0}\n", Abbr->Tag); assert(Abbr->Attributes.size() == Values.size()); for (auto Tuple : zip_first(Abbr->Attributes, Values)) { auto Index = std::get<0>(Tuple).Index; W.startLine() << formatv("{0}: ", Index); auto FormValue = std::get<1>(Tuple); if (Index == dwarf::Index::DW_IDX_parent) dumpParentIdx(W, FormValue); else FormValue.dump(W.getOStream()); W.getOStream() << '\n'; } } char DWARFDebugNames::SentinelError::ID; std::error_code DWARFDebugNames::SentinelError::convertToErrorCode() const { return inconvertibleErrorCode(); } uint64_t DWARFDebugNames::NameIndex::getCUOffset(uint32_t CU) const { assert(CU < Hdr.CompUnitCount); const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format); uint64_t Offset = Offsets.CUsBase + SectionOffsetSize * CU; return Section.AccelSection.getRelocatedValue(SectionOffsetSize, &Offset); } uint64_t DWARFDebugNames::NameIndex::getLocalTUOffset(uint32_t TU) const { assert(TU < Hdr.LocalTypeUnitCount); const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format); uint64_t Offset = Offsets.CUsBase + SectionOffsetSize * (Hdr.CompUnitCount + TU); return Section.AccelSection.getRelocatedValue(SectionOffsetSize, &Offset); } uint64_t DWARFDebugNames::NameIndex::getForeignTUSignature(uint32_t TU) const { assert(TU < Hdr.ForeignTypeUnitCount); const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format); uint64_t Offset = Offsets.CUsBase + SectionOffsetSize * (Hdr.CompUnitCount + Hdr.LocalTypeUnitCount) + 8 * TU; return Section.AccelSection.getU64(&Offset); } Expected DWARFDebugNames::NameIndex::getEntry(uint64_t *Offset) const { const DWARFDataExtractor &AS = Section.AccelSection; if (!AS.isValidOffset(*Offset)) return createStringError(errc::illegal_byte_sequence, "Incorrectly terminated entry list."); uint32_t AbbrevCode = AS.getULEB128(Offset); if (AbbrevCode == 0) return make_error(); const auto AbbrevIt = Abbrevs.find_as(AbbrevCode); if (AbbrevIt == Abbrevs.end()) return createStringError(errc::invalid_argument, "Invalid abbreviation."); Entry E(*this, *AbbrevIt); dwarf::FormParams FormParams = {Hdr.Version, 0, Hdr.Format}; for (auto &Value : E.Values) { if (!Value.extractValue(AS, Offset, FormParams)) return createStringError(errc::io_error, "Error extracting index attribute values."); } return std::move(E); } DWARFDebugNames::NameTableEntry DWARFDebugNames::NameIndex::getNameTableEntry(uint32_t Index) const { assert(0 < Index && Index <= Hdr.NameCount); const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format); uint64_t StringOffsetOffset = Offsets.StringOffsetsBase + SectionOffsetSize * (Index - 1); uint64_t EntryOffsetOffset = Offsets.EntryOffsetsBase + SectionOffsetSize * (Index - 1); const DWARFDataExtractor &AS = Section.AccelSection; uint64_t StringOffset = AS.getRelocatedValue(SectionOffsetSize, &StringOffsetOffset); uint64_t EntryOffset = AS.getUnsigned(&EntryOffsetOffset, SectionOffsetSize); EntryOffset += Offsets.EntriesBase; return {Section.StringSection, Index, StringOffset, EntryOffset}; } uint32_t DWARFDebugNames::NameIndex::getBucketArrayEntry(uint32_t Bucket) const { assert(Bucket < Hdr.BucketCount); uint64_t BucketOffset = Offsets.BucketsBase + 4 * Bucket; return Section.AccelSection.getU32(&BucketOffset); } uint32_t DWARFDebugNames::NameIndex::getHashArrayEntry(uint32_t Index) const { assert(0 < Index && Index <= Hdr.NameCount); uint64_t HashOffset = Offsets.HashesBase + 4 * (Index - 1); return Section.AccelSection.getU32(&HashOffset); } // Returns true if we should continue scanning for entries, false if this is the // last (sentinel) entry). In case of a parsing error we also return false, as // it's not possible to recover this entry list (but the other lists may still // parse OK). bool DWARFDebugNames::NameIndex::dumpEntry(ScopedPrinter &W, uint64_t *Offset) const { uint64_t EntryId = *Offset; auto EntryOr = getEntry(Offset); if (!EntryOr) { handleAllErrors(EntryOr.takeError(), [](const SentinelError &) {}, [&W](const ErrorInfoBase &EI) { EI.log(W.startLine()); }); return false; } DictScope EntryScope(W, ("Entry @ 0x" + Twine::utohexstr(EntryId)).str()); EntryOr->dump(W); return true; } void DWARFDebugNames::NameIndex::dumpName(ScopedPrinter &W, const NameTableEntry &NTE, std::optional Hash) const { DictScope NameScope(W, ("Name " + Twine(NTE.getIndex())).str()); if (Hash) W.printHex("Hash", *Hash); W.startLine() << format("String: 0x%08" PRIx64, NTE.getStringOffset()); W.getOStream() << " \"" << NTE.getString() << "\"\n"; uint64_t EntryOffset = NTE.getEntryOffset(); while (dumpEntry(W, &EntryOffset)) /*empty*/; } void DWARFDebugNames::NameIndex::dumpCUs(ScopedPrinter &W) const { ListScope CUScope(W, "Compilation Unit offsets"); for (uint32_t CU = 0; CU < Hdr.CompUnitCount; ++CU) W.startLine() << format("CU[%u]: 0x%08" PRIx64 "\n", CU, getCUOffset(CU)); } void DWARFDebugNames::NameIndex::dumpLocalTUs(ScopedPrinter &W) const { if (Hdr.LocalTypeUnitCount == 0) return; ListScope TUScope(W, "Local Type Unit offsets"); for (uint32_t TU = 0; TU < Hdr.LocalTypeUnitCount; ++TU) W.startLine() << format("LocalTU[%u]: 0x%08" PRIx64 "\n", TU, getLocalTUOffset(TU)); } void DWARFDebugNames::NameIndex::dumpForeignTUs(ScopedPrinter &W) const { if (Hdr.ForeignTypeUnitCount == 0) return; ListScope TUScope(W, "Foreign Type Unit signatures"); for (uint32_t TU = 0; TU < Hdr.ForeignTypeUnitCount; ++TU) { W.startLine() << format("ForeignTU[%u]: 0x%016" PRIx64 "\n", TU, getForeignTUSignature(TU)); } } void DWARFDebugNames::NameIndex::dumpAbbreviations(ScopedPrinter &W) const { ListScope AbbrevsScope(W, "Abbreviations"); std::vector AbbrevsVect; for (const DWARFDebugNames::Abbrev &Abbr : Abbrevs) AbbrevsVect.push_back(&Abbr); llvm::sort(AbbrevsVect, [](const Abbrev *LHS, const Abbrev *RHS) { return LHS->AbbrevOffset < RHS->AbbrevOffset; }); for (const DWARFDebugNames::Abbrev *Abbr : AbbrevsVect) Abbr->dump(W); } void DWARFDebugNames::NameIndex::dumpBucket(ScopedPrinter &W, uint32_t Bucket) const { ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str()); uint32_t Index = getBucketArrayEntry(Bucket); if (Index == 0) { W.printString("EMPTY"); return; } if (Index > Hdr.NameCount) { W.printString("Name index is invalid"); return; } for (; Index <= Hdr.NameCount; ++Index) { uint32_t Hash = getHashArrayEntry(Index); if (Hash % Hdr.BucketCount != Bucket) break; dumpName(W, getNameTableEntry(Index), Hash); } } LLVM_DUMP_METHOD void DWARFDebugNames::NameIndex::dump(ScopedPrinter &W) const { DictScope UnitScope(W, ("Name Index @ 0x" + Twine::utohexstr(Base)).str()); Hdr.dump(W); dumpCUs(W); dumpLocalTUs(W); dumpForeignTUs(W); dumpAbbreviations(W); if (Hdr.BucketCount > 0) { for (uint32_t Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket) dumpBucket(W, Bucket); return; } W.startLine() << "Hash table not present\n"; for (const NameTableEntry &NTE : *this) dumpName(W, NTE, std::nullopt); } Error DWARFDebugNames::extract() { uint64_t Offset = 0; while (AccelSection.isValidOffset(Offset)) { NameIndex Next(*this, Offset); if (Error E = Next.extract()) return E; Offset = Next.getNextUnitOffset(); NameIndices.push_back(std::move(Next)); } return Error::success(); } iterator_range DWARFDebugNames::NameIndex::equal_range(StringRef Key) const { return make_range(ValueIterator(*this, Key), ValueIterator()); } LLVM_DUMP_METHOD void DWARFDebugNames::dump(raw_ostream &OS) const { ScopedPrinter W(OS); for (const NameIndex &NI : NameIndices) NI.dump(W); } std::optional DWARFDebugNames::ValueIterator::findEntryOffsetInCurrentIndex() { const Header &Hdr = CurrentIndex->Hdr; if (Hdr.BucketCount == 0) { // No Hash Table, We need to search through all names in the Name Index. for (const NameTableEntry &NTE : *CurrentIndex) { if (NTE.sameNameAs(Key)) return NTE.getEntryOffset(); } return std::nullopt; } // The Name Index has a Hash Table, so use that to speed up the search. // Compute the Key Hash, if it has not been done already. if (!Hash) Hash = caseFoldingDjbHash(Key); uint32_t Bucket = *Hash % Hdr.BucketCount; uint32_t Index = CurrentIndex->getBucketArrayEntry(Bucket); if (Index == 0) return std::nullopt; // Empty bucket for (; Index <= Hdr.NameCount; ++Index) { uint32_t HashAtIndex = CurrentIndex->getHashArrayEntry(Index); if (HashAtIndex % Hdr.BucketCount != Bucket) return std::nullopt; // End of bucket // Only compare names if the hashes match. if (HashAtIndex != Hash) continue; NameTableEntry NTE = CurrentIndex->getNameTableEntry(Index); if (NTE.sameNameAs(Key)) return NTE.getEntryOffset(); } return std::nullopt; } bool DWARFDebugNames::ValueIterator::getEntryAtCurrentOffset() { auto EntryOr = CurrentIndex->getEntry(&DataOffset); if (!EntryOr) { consumeError(EntryOr.takeError()); return false; } CurrentEntry = std::move(*EntryOr); return true; } bool DWARFDebugNames::ValueIterator::findInCurrentIndex() { std::optional Offset = findEntryOffsetInCurrentIndex(); if (!Offset) return false; DataOffset = *Offset; return getEntryAtCurrentOffset(); } void DWARFDebugNames::ValueIterator::searchFromStartOfCurrentIndex() { for (const NameIndex *End = CurrentIndex->Section.NameIndices.end(); CurrentIndex != End; ++CurrentIndex) { if (findInCurrentIndex()) return; } setEnd(); } void DWARFDebugNames::ValueIterator::next() { assert(CurrentIndex && "Incrementing an end() iterator?"); // First try the next entry in the current Index. if (getEntryAtCurrentOffset()) return; // If we're a local iterator or we have reached the last Index, we're done. if (IsLocal || CurrentIndex == &CurrentIndex->Section.NameIndices.back()) { setEnd(); return; } // Otherwise, try the next index. ++CurrentIndex; searchFromStartOfCurrentIndex(); } DWARFDebugNames::ValueIterator::ValueIterator(const DWARFDebugNames &AccelTable, StringRef Key) : CurrentIndex(AccelTable.NameIndices.begin()), IsLocal(false), Key(std::string(Key)) { searchFromStartOfCurrentIndex(); } DWARFDebugNames::ValueIterator::ValueIterator( const DWARFDebugNames::NameIndex &NI, StringRef Key) : CurrentIndex(&NI), IsLocal(true), Key(std::string(Key)) { if (!findInCurrentIndex()) setEnd(); } iterator_range DWARFDebugNames::equal_range(StringRef Key) const { if (NameIndices.empty()) return make_range(ValueIterator(), ValueIterator()); return make_range(ValueIterator(*this, Key), ValueIterator()); } const DWARFDebugNames::NameIndex * DWARFDebugNames::getCUNameIndex(uint64_t CUOffset) { if (CUToNameIndex.size() == 0 && NameIndices.size() > 0) { for (const auto &NI : *this) { for (uint32_t CU = 0; CU < NI.getCUCount(); ++CU) CUToNameIndex.try_emplace(NI.getCUOffset(CU), &NI); } } return CUToNameIndex.lookup(CUOffset); } static bool isObjCSelector(StringRef Name) { return Name.size() > 2 && (Name[0] == '-' || Name[0] == '+') && (Name[1] == '['); } std::optional llvm::getObjCNamesIfSelector(StringRef Name) { if (!isObjCSelector(Name)) return std::nullopt; // "-[Atom setMass:]" StringRef ClassNameStart(Name.drop_front(2)); size_t FirstSpace = ClassNameStart.find(' '); if (FirstSpace == StringRef::npos) return std::nullopt; StringRef SelectorStart = ClassNameStart.drop_front(FirstSpace + 1); if (!SelectorStart.size()) return std::nullopt; ObjCSelectorNames Ans; Ans.ClassName = ClassNameStart.take_front(FirstSpace); Ans.Selector = SelectorStart.drop_back(); // drop ']'; // "-[Class(Category) selector :withArg ...]" if (Ans.ClassName.back() == ')') { size_t OpenParens = Ans.ClassName.find('('); if (OpenParens != StringRef::npos) { Ans.ClassNameNoCategory = Ans.ClassName.take_front(OpenParens); Ans.MethodNameNoCategory = Name.take_front(OpenParens + 2); // FIXME: The missing space here may be a bug, but dsymutil-classic also // does it this way. append_range(*Ans.MethodNameNoCategory, SelectorStart); } } return Ans; } std::optional llvm::StripTemplateParameters(StringRef Name) { // We are looking for template parameters to strip from Name. e.g. // // operator< // // We look for > at the end but if it does not contain any < then we // have something like operator>>. We check for the operator<=> case. if (!Name.ends_with(">") || Name.count("<") == 0 || Name.ends_with("<=>")) return {}; // How many < until we have the start of the template parameters. size_t NumLeftAnglesToSkip = 1; // If we have operator<=> then we need to skip its < as well. NumLeftAnglesToSkip += Name.count("<=>"); size_t RightAngleCount = Name.count('>'); size_t LeftAngleCount = Name.count('<'); // If we have more < than > we have operator< or operator<< // we to account for their < as well. if (LeftAngleCount > RightAngleCount) NumLeftAnglesToSkip += LeftAngleCount - RightAngleCount; size_t StartOfTemplate = 0; while (NumLeftAnglesToSkip--) StartOfTemplate = Name.find('<', StartOfTemplate) + 1; return Name.substr(0, StartOfTemplate - 1); }