//===- StackSlotColoring.cpp - Stack slot coloring pass. ------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the stack slot coloring pass. // //===----------------------------------------------------------------------===// #include "llvm/ADT/BitVector.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/CodeGen/LiveDebugVariables.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervalUnion.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LiveStacks.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/Passes.h" #include "llvm/CodeGen/PseudoSourceValue.h" #include "llvm/CodeGen/PseudoSourceValueManager.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "stack-slot-coloring" static cl::opt DisableSharing("no-stack-slot-sharing", cl::init(false), cl::Hidden, cl::desc("Suppress slot sharing during stack coloring")); static cl::opt DCELimit("ssc-dce-limit", cl::init(-1), cl::Hidden); STATISTIC(NumEliminated, "Number of stack slots eliminated due to coloring"); STATISTIC(NumDead, "Number of trivially dead stack accesses eliminated"); namespace { class StackSlotColoring : public MachineFunctionPass { LiveStacks *LS = nullptr; MachineFrameInfo *MFI = nullptr; const TargetInstrInfo *TII = nullptr; const MachineBlockFrequencyInfo *MBFI = nullptr; SlotIndexes *Indexes = nullptr; // SSIntervals - Spill slot intervals. std::vector SSIntervals; // SSRefs - Keep a list of MachineMemOperands for each spill slot. // MachineMemOperands can be shared between instructions, so we need // to be careful that renames like [FI0, FI1] -> [FI1, FI2] do not // become FI0 -> FI1 -> FI2. SmallVector, 16> SSRefs; // OrigAlignments - Alignments of stack objects before coloring. SmallVector OrigAlignments; // OrigSizes - Sizes of stack objects before coloring. SmallVector OrigSizes; // AllColors - If index is set, it's a spill slot, i.e. color. // FIXME: This assumes PEI locate spill slot with smaller indices // closest to stack pointer / frame pointer. Therefore, smaller // index == better color. This is per stack ID. SmallVector AllColors; // NextColor - Next "color" that's not yet used. This is per stack ID. SmallVector NextColors = { -1 }; // UsedColors - "Colors" that have been assigned. This is per stack ID SmallVector UsedColors; // Join all intervals sharing one color into a single LiveIntervalUnion to // speedup range overlap test. class ColorAssignmentInfo { // Single liverange (used to avoid creation of LiveIntervalUnion). LiveInterval *SingleLI = nullptr; // LiveIntervalUnion to perform overlap test. LiveIntervalUnion *LIU = nullptr; // LiveIntervalUnion has a parameter in its constructor so doing this // dirty magic. uint8_t LIUPad[sizeof(LiveIntervalUnion)]; public: ~ColorAssignmentInfo() { if (LIU) LIU->~LiveIntervalUnion(); // Dirty magic again. } // Return true if LiveInterval overlaps with any // intervals that have already been assigned to this color. bool overlaps(LiveInterval *LI) const { if (LIU) return LiveIntervalUnion::Query(*LI, *LIU).checkInterference(); return SingleLI ? SingleLI->overlaps(*LI) : false; } // Add new LiveInterval to this color. void add(LiveInterval *LI, LiveIntervalUnion::Allocator &Alloc) { assert(!overlaps(LI)); if (LIU) { LIU->unify(*LI, *LI); } else if (SingleLI) { LIU = new (LIUPad) LiveIntervalUnion(Alloc); LIU->unify(*SingleLI, *SingleLI); LIU->unify(*LI, *LI); SingleLI = nullptr; } else SingleLI = LI; } }; LiveIntervalUnion::Allocator LIUAlloc; // Assignments - Color to intervals mapping. SmallVector Assignments; public: static char ID; // Pass identification StackSlotColoring() : MachineFunctionPass(ID) { initializeStackSlotColoringPass(*PassRegistry::getPassRegistry()); } void getAnalysisUsage(AnalysisUsage &AU) const override { AU.setPreservesCFG(); AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addPreserved(); AU.addPreservedID(MachineDominatorsID); // In some Target's pipeline, register allocation (RA) might be // split into multiple phases based on register class. So, this pass // may be invoked multiple times requiring it to save these analyses to be // used by RA later. AU.addPreserved(); AU.addPreserved(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &MF) override; private: void InitializeSlots(); void ScanForSpillSlotRefs(MachineFunction &MF); int ColorSlot(LiveInterval *li); bool ColorSlots(MachineFunction &MF); void RewriteInstruction(MachineInstr &MI, SmallVectorImpl &SlotMapping, MachineFunction &MF); bool RemoveDeadStores(MachineBasicBlock* MBB); }; } // end anonymous namespace char StackSlotColoring::ID = 0; char &llvm::StackSlotColoringID = StackSlotColoring::ID; INITIALIZE_PASS_BEGIN(StackSlotColoring, DEBUG_TYPE, "Stack Slot Coloring", false, false) INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) INITIALIZE_PASS_DEPENDENCY(LiveStacks) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) INITIALIZE_PASS_END(StackSlotColoring, DEBUG_TYPE, "Stack Slot Coloring", false, false) namespace { // IntervalSorter - Comparison predicate that sort live intervals by // their weight. struct IntervalSorter { bool operator()(LiveInterval* LHS, LiveInterval* RHS) const { return LHS->weight() > RHS->weight(); } }; } // end anonymous namespace /// ScanForSpillSlotRefs - Scan all the machine instructions for spill slot /// references and update spill slot weights. void StackSlotColoring::ScanForSpillSlotRefs(MachineFunction &MF) { SSRefs.resize(MFI->getObjectIndexEnd()); // FIXME: Need the equivalent of MachineRegisterInfo for frameindex operands. for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isFI()) continue; int FI = MO.getIndex(); if (FI < 0) continue; if (!LS->hasInterval(FI)) continue; LiveInterval &li = LS->getInterval(FI); if (!MI.isDebugInstr()) li.incrementWeight( LiveIntervals::getSpillWeight(false, true, MBFI, MI)); } for (MachineMemOperand *MMO : MI.memoperands()) { if (const FixedStackPseudoSourceValue *FSV = dyn_cast_or_null( MMO->getPseudoValue())) { int FI = FSV->getFrameIndex(); if (FI >= 0) SSRefs[FI].push_back(MMO); } } } } } /// InitializeSlots - Process all spill stack slot liveintervals and add them /// to a sorted (by weight) list. void StackSlotColoring::InitializeSlots() { int LastFI = MFI->getObjectIndexEnd(); // There is always at least one stack ID. AllColors.resize(1); UsedColors.resize(1); OrigAlignments.resize(LastFI); OrigSizes.resize(LastFI); AllColors[0].resize(LastFI); UsedColors[0].resize(LastFI); Assignments.resize(LastFI); using Pair = std::iterator_traits::value_type; SmallVector Intervals; Intervals.reserve(LS->getNumIntervals()); for (auto &I : *LS) Intervals.push_back(&I); llvm::sort(Intervals, [](Pair *LHS, Pair *RHS) { return LHS->first < RHS->first; }); // Gather all spill slots into a list. LLVM_DEBUG(dbgs() << "Spill slot intervals:\n"); for (auto *I : Intervals) { LiveInterval &li = I->second; LLVM_DEBUG(li.dump()); int FI = Register::stackSlot2Index(li.reg()); if (MFI->isDeadObjectIndex(FI)) continue; SSIntervals.push_back(&li); OrigAlignments[FI] = MFI->getObjectAlign(FI); OrigSizes[FI] = MFI->getObjectSize(FI); auto StackID = MFI->getStackID(FI); if (StackID != 0) { AllColors.resize(StackID + 1); UsedColors.resize(StackID + 1); AllColors[StackID].resize(LastFI); UsedColors[StackID].resize(LastFI); } AllColors[StackID].set(FI); } LLVM_DEBUG(dbgs() << '\n'); // Sort them by weight. llvm::stable_sort(SSIntervals, IntervalSorter()); NextColors.resize(AllColors.size()); // Get first "color". for (unsigned I = 0, E = AllColors.size(); I != E; ++I) NextColors[I] = AllColors[I].find_first(); } /// ColorSlot - Assign a "color" (stack slot) to the specified stack slot. int StackSlotColoring::ColorSlot(LiveInterval *li) { int Color = -1; bool Share = false; int FI = Register::stackSlot2Index(li->reg()); uint8_t StackID = MFI->getStackID(FI); if (!DisableSharing) { // Check if it's possible to reuse any of the used colors. Color = UsedColors[StackID].find_first(); while (Color != -1) { if (!Assignments[Color].overlaps(li)) { Share = true; ++NumEliminated; break; } Color = UsedColors[StackID].find_next(Color); } } if (Color != -1 && MFI->getStackID(Color) != MFI->getStackID(FI)) { LLVM_DEBUG(dbgs() << "cannot share FIs with different stack IDs\n"); Share = false; } // Assign it to the first available color (assumed to be the best) if it's // not possible to share a used color with other objects. if (!Share) { assert(NextColors[StackID] != -1 && "No more spill slots?"); Color = NextColors[StackID]; UsedColors[StackID].set(Color); NextColors[StackID] = AllColors[StackID].find_next(NextColors[StackID]); } assert(MFI->getStackID(Color) == MFI->getStackID(FI)); // Record the assignment. Assignments[Color].add(li, LIUAlloc); LLVM_DEBUG(dbgs() << "Assigning fi#" << FI << " to fi#" << Color << "\n"); // Change size and alignment of the allocated slot. If there are multiple // objects sharing the same slot, then make sure the size and alignment // are large enough for all. Align Alignment = OrigAlignments[FI]; if (!Share || Alignment > MFI->getObjectAlign(Color)) MFI->setObjectAlignment(Color, Alignment); int64_t Size = OrigSizes[FI]; if (!Share || Size > MFI->getObjectSize(Color)) MFI->setObjectSize(Color, Size); return Color; } /// Colorslots - Color all spill stack slots and rewrite all frameindex machine /// operands in the function. bool StackSlotColoring::ColorSlots(MachineFunction &MF) { unsigned NumObjs = MFI->getObjectIndexEnd(); SmallVector SlotMapping(NumObjs, -1); SmallVector SlotWeights(NumObjs, 0.0); SmallVector, 16> RevMap(NumObjs); BitVector UsedColors(NumObjs); LLVM_DEBUG(dbgs() << "Color spill slot intervals:\n"); bool Changed = false; for (LiveInterval *li : SSIntervals) { int SS = Register::stackSlot2Index(li->reg()); int NewSS = ColorSlot(li); assert(NewSS >= 0 && "Stack coloring failed?"); SlotMapping[SS] = NewSS; RevMap[NewSS].push_back(SS); SlotWeights[NewSS] += li->weight(); UsedColors.set(NewSS); Changed |= (SS != NewSS); } LLVM_DEBUG(dbgs() << "\nSpill slots after coloring:\n"); for (LiveInterval *li : SSIntervals) { int SS = Register::stackSlot2Index(li->reg()); li->setWeight(SlotWeights[SS]); } // Sort them by new weight. llvm::stable_sort(SSIntervals, IntervalSorter()); #ifndef NDEBUG for (LiveInterval *li : SSIntervals) LLVM_DEBUG(li->dump()); LLVM_DEBUG(dbgs() << '\n'); #endif if (!Changed) return false; // Rewrite all MachineMemOperands. for (unsigned SS = 0, SE = SSRefs.size(); SS != SE; ++SS) { int NewFI = SlotMapping[SS]; if (NewFI == -1 || (NewFI == (int)SS)) continue; const PseudoSourceValue *NewSV = MF.getPSVManager().getFixedStack(NewFI); SmallVectorImpl &RefMMOs = SSRefs[SS]; for (MachineMemOperand *MMO : RefMMOs) MMO->setValue(NewSV); } // Rewrite all MO_FrameIndex operands. Look for dead stores. for (MachineBasicBlock &MBB : MF) { for (MachineInstr &MI : MBB) RewriteInstruction(MI, SlotMapping, MF); RemoveDeadStores(&MBB); } // Delete unused stack slots. for (int StackID = 0, E = AllColors.size(); StackID != E; ++StackID) { int NextColor = NextColors[StackID]; while (NextColor != -1) { LLVM_DEBUG(dbgs() << "Removing unused stack object fi#" << NextColor << "\n"); MFI->RemoveStackObject(NextColor); NextColor = AllColors[StackID].find_next(NextColor); } } return true; } /// RewriteInstruction - Rewrite specified instruction by replacing references /// to old frame index with new one. void StackSlotColoring::RewriteInstruction(MachineInstr &MI, SmallVectorImpl &SlotMapping, MachineFunction &MF) { // Update the operands. for (MachineOperand &MO : MI.operands()) { if (!MO.isFI()) continue; int OldFI = MO.getIndex(); if (OldFI < 0) continue; int NewFI = SlotMapping[OldFI]; if (NewFI == -1 || NewFI == OldFI) continue; assert(MFI->getStackID(OldFI) == MFI->getStackID(NewFI)); MO.setIndex(NewFI); } // The MachineMemOperands have already been updated. } /// RemoveDeadStores - Scan through a basic block and look for loads followed /// by stores. If they're both using the same stack slot, then the store is /// definitely dead. This could obviously be much more aggressive (consider /// pairs with instructions between them), but such extensions might have a /// considerable compile time impact. bool StackSlotColoring::RemoveDeadStores(MachineBasicBlock* MBB) { // FIXME: This could be much more aggressive, but we need to investigate // the compile time impact of doing so. bool changed = false; SmallVector toErase; for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ++I) { if (DCELimit != -1 && (int)NumDead >= DCELimit) break; int FirstSS, SecondSS; if (TII->isStackSlotCopy(*I, FirstSS, SecondSS) && FirstSS == SecondSS && FirstSS != -1) { ++NumDead; changed = true; toErase.push_back(&*I); continue; } MachineBasicBlock::iterator NextMI = std::next(I); MachineBasicBlock::iterator ProbableLoadMI = I; unsigned LoadReg = 0; unsigned StoreReg = 0; unsigned LoadSize = 0; unsigned StoreSize = 0; if (!(LoadReg = TII->isLoadFromStackSlot(*I, FirstSS, LoadSize))) continue; // Skip the ...pseudo debugging... instructions between a load and store. while ((NextMI != E) && NextMI->isDebugInstr()) { ++NextMI; ++I; } if (NextMI == E) continue; if (!(StoreReg = TII->isStoreToStackSlot(*NextMI, SecondSS, StoreSize))) continue; if (FirstSS != SecondSS || LoadReg != StoreReg || FirstSS == -1 || LoadSize != StoreSize || !MFI->isSpillSlotObjectIndex(FirstSS)) continue; ++NumDead; changed = true; if (NextMI->findRegisterUseOperandIdx(LoadReg, /*TRI=*/nullptr, true) != -1) { ++NumDead; toErase.push_back(&*ProbableLoadMI); } toErase.push_back(&*NextMI); ++I; } for (MachineInstr *MI : toErase) { if (Indexes) Indexes->removeMachineInstrFromMaps(*MI); MI->eraseFromParent(); } return changed; } bool StackSlotColoring::runOnMachineFunction(MachineFunction &MF) { LLVM_DEBUG({ dbgs() << "********** Stack Slot Coloring **********\n" << "********** Function: " << MF.getName() << '\n'; }); if (skipFunction(MF.getFunction())) return false; MFI = &MF.getFrameInfo(); TII = MF.getSubtarget().getInstrInfo(); LS = &getAnalysis(); MBFI = &getAnalysis().getMBFI(); Indexes = &getAnalysis().getSI(); bool Changed = false; unsigned NumSlots = LS->getNumIntervals(); if (NumSlots == 0) // Nothing to do! return false; // If there are calls to setjmp or sigsetjmp, don't perform stack slot // coloring. The stack could be modified before the longjmp is executed, // resulting in the wrong value being used afterwards. if (MF.exposesReturnsTwice()) return false; // Gather spill slot references ScanForSpillSlotRefs(MF); InitializeSlots(); Changed = ColorSlots(MF); for (int &Next : NextColors) Next = -1; SSIntervals.clear(); for (auto &RefMMOs : SSRefs) RefMMOs.clear(); SSRefs.clear(); OrigAlignments.clear(); OrigSizes.clear(); AllColors.clear(); UsedColors.clear(); Assignments.clear(); return Changed; }