//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. // // This SMS implementation is a target-independent back-end pass. When enabled, // the pass runs just prior to the register allocation pass, while the machine // IR is in SSA form. If software pipelining is successful, then the original // loop is replaced by the optimized loop. The optimized loop contains one or // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If // the instructions cannot be scheduled in a given MII, we increase the MII by // one and try again. // // The SMS implementation is an extension of the ScheduleDAGInstrs class. We // represent loop carried dependences in the DAG as order edges to the Phi // nodes. We also perform several passes over the DAG to eliminate unnecessary // edges that inhibit the ability to pipeline. The implementation uses the // DFAPacketizer class to compute the minimum initiation interval and the check // where an instruction may be inserted in the pipelined schedule. // // In order for the SMS pass to work, several target specific hooks need to be // implemented to get information about the loop structure and to rewrite // instructions. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachinePipeliner.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/PriorityQueue.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetOperations.h" #include "llvm/ADT/SetVector.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/iterator_range.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/CycleAnalysis.h" #include "llvm/Analysis/MemoryLocation.h" #include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/CodeGen/DFAPacketizer.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/ModuloSchedule.h" #include "llvm/CodeGen/Register.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/RegisterPressure.h" #include "llvm/CodeGen/ScheduleDAG.h" #include "llvm/CodeGen/ScheduleDAGMutation.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetPassConfig.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Function.h" #include "llvm/MC/LaneBitmask.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrItineraries.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "pipeliner" STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); STATISTIC(NumPipelined, "Number of loops software pipelined"); STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); /// A command line option to turn software pipelining on or off. static cl::opt EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), cl::desc("Enable Software Pipelining")); /// A command line option to enable SWP at -Os. static cl::opt EnableSWPOptSize("enable-pipeliner-opt-size", cl::desc("Enable SWP at Os."), cl::Hidden, cl::init(false)); /// A command line argument to limit minimum initial interval for pipelining. static cl::opt SwpMaxMii("pipeliner-max-mii", cl::desc("Size limit for the MII."), cl::Hidden, cl::init(27)); /// A command line argument to force pipeliner to use specified initial /// interval. static cl::opt SwpForceII("pipeliner-force-ii", cl::desc("Force pipeliner to use specified II."), cl::Hidden, cl::init(-1)); /// A command line argument to limit the number of stages in the pipeline. static cl::opt SwpMaxStages("pipeliner-max-stages", cl::desc("Maximum stages allowed in the generated scheduled."), cl::Hidden, cl::init(3)); /// A command line option to disable the pruning of chain dependences due to /// an unrelated Phi. static cl::opt SwpPruneDeps("pipeliner-prune-deps", cl::desc("Prune dependences between unrelated Phi nodes."), cl::Hidden, cl::init(true)); /// A command line option to disable the pruning of loop carried order /// dependences. static cl::opt SwpPruneLoopCarried("pipeliner-prune-loop-carried", cl::desc("Prune loop carried order dependences."), cl::Hidden, cl::init(true)); #ifndef NDEBUG static cl::opt SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); #endif static cl::opt SwpIgnoreRecMII("pipeliner-ignore-recmii", cl::ReallyHidden, cl::desc("Ignore RecMII")); static cl::opt SwpShowResMask("pipeliner-show-mask", cl::Hidden, cl::init(false)); static cl::opt SwpDebugResource("pipeliner-dbg-res", cl::Hidden, cl::init(false)); static cl::opt EmitTestAnnotations( "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), cl::desc("Instead of emitting the pipelined code, annotate instructions " "with the generated schedule for feeding into the " "-modulo-schedule-test pass")); static cl::opt ExperimentalCodeGen( "pipeliner-experimental-cg", cl::Hidden, cl::init(false), cl::desc( "Use the experimental peeling code generator for software pipelining")); static cl::opt SwpIISearchRange("pipeliner-ii-search-range", cl::desc("Range to search for II"), cl::Hidden, cl::init(10)); static cl::opt LimitRegPressure("pipeliner-register-pressure", cl::Hidden, cl::init(false), cl::desc("Limit register pressure of scheduled loop")); static cl::opt RegPressureMargin("pipeliner-register-pressure-margin", cl::Hidden, cl::init(5), cl::desc("Margin representing the unused percentage of " "the register pressure limit")); static cl::opt MVECodeGen("pipeliner-mve-cg", cl::Hidden, cl::init(false), cl::desc("Use the MVE code generator for software pipelining")); namespace llvm { // A command line option to enable the CopyToPhi DAG mutation. cl::opt SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, cl::init(true), cl::desc("Enable CopyToPhi DAG Mutation")); /// A command line argument to force pipeliner to use specified issue /// width. cl::opt SwpForceIssueWidth( "pipeliner-force-issue-width", cl::desc("Force pipeliner to use specified issue width."), cl::Hidden, cl::init(-1)); /// A command line argument to set the window scheduling option. cl::opt WindowSchedulingOption( "window-sched", cl::Hidden, cl::init(WindowSchedulingFlag::WS_On), cl::desc("Set how to use window scheduling algorithm."), cl::values(clEnumValN(WindowSchedulingFlag::WS_Off, "off", "Turn off window algorithm."), clEnumValN(WindowSchedulingFlag::WS_On, "on", "Use window algorithm after SMS algorithm fails."), clEnumValN(WindowSchedulingFlag::WS_Force, "force", "Use window algorithm instead of SMS algorithm."))); } // end namespace llvm unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; char MachinePipeliner::ID = 0; #ifndef NDEBUG int MachinePipeliner::NumTries = 0; #endif char &llvm::MachinePipelinerID = MachinePipeliner::ID; INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, "Modulo Software Pipelining", false, false) INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineLoopInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, "Modulo Software Pipelining", false, false) /// The "main" function for implementing Swing Modulo Scheduling. bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { if (skipFunction(mf.getFunction())) return false; if (!EnableSWP) return false; if (mf.getFunction().getAttributes().hasFnAttr(Attribute::OptimizeForSize) && !EnableSWPOptSize.getPosition()) return false; if (!mf.getSubtarget().enableMachinePipeliner()) return false; // Cannot pipeline loops without instruction itineraries if we are using // DFA for the pipeliner. if (mf.getSubtarget().useDFAforSMS() && (!mf.getSubtarget().getInstrItineraryData() || mf.getSubtarget().getInstrItineraryData()->isEmpty())) return false; MF = &mf; MLI = &getAnalysis().getLI(); MDT = &getAnalysis().getDomTree(); ORE = &getAnalysis().getORE(); TII = MF->getSubtarget().getInstrInfo(); RegClassInfo.runOnMachineFunction(*MF); for (const auto &L : *MLI) scheduleLoop(*L); return false; } /// Attempt to perform the SMS algorithm on the specified loop. This function is /// the main entry point for the algorithm. The function identifies candidate /// loops, calculates the minimum initiation interval, and attempts to schedule /// the loop. bool MachinePipeliner::scheduleLoop(MachineLoop &L) { bool Changed = false; for (const auto &InnerLoop : L) Changed |= scheduleLoop(*InnerLoop); #ifndef NDEBUG // Stop trying after reaching the limit (if any). int Limit = SwpLoopLimit; if (Limit >= 0) { if (NumTries >= SwpLoopLimit) return Changed; NumTries++; } #endif setPragmaPipelineOptions(L); if (!canPipelineLoop(L)) { LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); ORE->emit([&]() { return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "Failed to pipeline loop"; }); LI.LoopPipelinerInfo.reset(); return Changed; } ++NumTrytoPipeline; if (useSwingModuloScheduler()) Changed = swingModuloScheduler(L); if (useWindowScheduler(Changed)) Changed = runWindowScheduler(L); LI.LoopPipelinerInfo.reset(); return Changed; } void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { // Reset the pragma for the next loop in iteration. disabledByPragma = false; II_setByPragma = 0; MachineBasicBlock *LBLK = L.getTopBlock(); if (LBLK == nullptr) return; const BasicBlock *BBLK = LBLK->getBasicBlock(); if (BBLK == nullptr) return; const Instruction *TI = BBLK->getTerminator(); if (TI == nullptr) return; MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); if (LoopID == nullptr) return; assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); assert(LoopID->getOperand(0) == LoopID && "invalid loop"); for (const MDOperand &MDO : llvm::drop_begin(LoopID->operands())) { MDNode *MD = dyn_cast(MDO); if (MD == nullptr) continue; MDString *S = dyn_cast(MD->getOperand(0)); if (S == nullptr) continue; if (S->getString() == "llvm.loop.pipeline.initiationinterval") { assert(MD->getNumOperands() == 2 && "Pipeline initiation interval hint metadata should have two operands."); II_setByPragma = mdconst::extract(MD->getOperand(1))->getZExtValue(); assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); } else if (S->getString() == "llvm.loop.pipeline.disable") { disabledByPragma = true; } } } /// Return true if the loop can be software pipelined. The algorithm is /// restricted to loops with a single basic block. Make sure that the /// branch in the loop can be analyzed. bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { if (L.getNumBlocks() != 1) { ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "Not a single basic block: " << ore::NV("NumBlocks", L.getNumBlocks()); }); return false; } if (disabledByPragma) { ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "Disabled by Pragma."; }); return false; } // Check if the branch can't be understood because we can't do pipelining // if that's the case. LI.TBB = nullptr; LI.FBB = nullptr; LI.BrCond.clear(); if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); NumFailBranch++; ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "The branch can't be understood"; }); return false; } LI.LoopInductionVar = nullptr; LI.LoopCompare = nullptr; LI.LoopPipelinerInfo = TII->analyzeLoopForPipelining(L.getTopBlock()); if (!LI.LoopPipelinerInfo) { LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); NumFailLoop++; ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "The loop structure is not supported"; }); return false; } if (!L.getLoopPreheader()) { LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); NumFailPreheader++; ORE->emit([&]() { return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", L.getStartLoc(), L.getHeader()) << "No loop preheader found"; }); return false; } // Remove any subregisters from inputs to phi nodes. preprocessPhiNodes(*L.getHeader()); return true; } void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { MachineRegisterInfo &MRI = MF->getRegInfo(); SlotIndexes &Slots = *getAnalysis().getLIS().getSlotIndexes(); for (MachineInstr &PI : B.phis()) { MachineOperand &DefOp = PI.getOperand(0); assert(DefOp.getSubReg() == 0); auto *RC = MRI.getRegClass(DefOp.getReg()); for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { MachineOperand &RegOp = PI.getOperand(i); if (RegOp.getSubReg() == 0) continue; // If the operand uses a subregister, replace it with a new register // without subregisters, and generate a copy to the new register. Register NewReg = MRI.createVirtualRegister(RC); MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); MachineBasicBlock::iterator At = PredB.getFirstTerminator(); const DebugLoc &DL = PredB.findDebugLoc(At); auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) .addReg(RegOp.getReg(), getRegState(RegOp), RegOp.getSubReg()); Slots.insertMachineInstrInMaps(*Copy); RegOp.setReg(NewReg); RegOp.setSubReg(0); } } } /// The SMS algorithm consists of the following main steps: /// 1. Computation and analysis of the dependence graph. /// 2. Ordering of the nodes (instructions). /// 3. Attempt to Schedule the loop. bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); SwingSchedulerDAG SMS( *this, L, getAnalysis().getLIS(), RegClassInfo, II_setByPragma, LI.LoopPipelinerInfo.get()); MachineBasicBlock *MBB = L.getHeader(); // The kernel should not include any terminator instructions. These // will be added back later. SMS.startBlock(MBB); // Compute the number of 'real' instructions in the basic block by // ignoring terminators. unsigned size = MBB->size(); for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), E = MBB->instr_end(); I != E; ++I, --size) ; SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); SMS.schedule(); SMS.exitRegion(); SMS.finishBlock(); return SMS.hasNewSchedule(); } void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addPreserved(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } bool MachinePipeliner::runWindowScheduler(MachineLoop &L) { MachineSchedContext Context; Context.MF = MF; Context.MLI = MLI; Context.MDT = MDT; Context.PassConfig = &getAnalysis(); Context.AA = &getAnalysis().getAAResults(); Context.LIS = &getAnalysis().getLIS(); Context.RegClassInfo->runOnMachineFunction(*MF); WindowScheduler WS(&Context, L); return WS.run(); } bool MachinePipeliner::useSwingModuloScheduler() { // SwingModuloScheduler does not work when WindowScheduler is forced. return WindowSchedulingOption != WindowSchedulingFlag::WS_Force; } bool MachinePipeliner::useWindowScheduler(bool Changed) { // WindowScheduler does not work for following cases: // 1. when it is off. // 2. when SwingModuloScheduler is successfully scheduled. // 3. when pragma II is enabled. if (II_setByPragma) { LLVM_DEBUG(dbgs() << "Window scheduling is disabled when " "llvm.loop.pipeline.initiationinterval is set.\n"); return false; } return WindowSchedulingOption == WindowSchedulingFlag::WS_Force || (WindowSchedulingOption == WindowSchedulingFlag::WS_On && !Changed); } void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { if (SwpForceII > 0) MII = SwpForceII; else if (II_setByPragma > 0) MII = II_setByPragma; else MII = std::max(ResMII, RecMII); } void SwingSchedulerDAG::setMAX_II() { if (SwpForceII > 0) MAX_II = SwpForceII; else if (II_setByPragma > 0) MAX_II = II_setByPragma; else MAX_II = MII + SwpIISearchRange; } /// We override the schedule function in ScheduleDAGInstrs to implement the /// scheduling part of the Swing Modulo Scheduling algorithm. void SwingSchedulerDAG::schedule() { AliasAnalysis *AA = &Pass.getAnalysis().getAAResults(); buildSchedGraph(AA); addLoopCarriedDependences(AA); updatePhiDependences(); Topo.InitDAGTopologicalSorting(); changeDependences(); postProcessDAG(); LLVM_DEBUG(dump()); NodeSetType NodeSets; findCircuits(NodeSets); NodeSetType Circuits = NodeSets; // Calculate the MII. unsigned ResMII = calculateResMII(); unsigned RecMII = calculateRecMII(NodeSets); fuseRecs(NodeSets); // This flag is used for testing and can cause correctness problems. if (SwpIgnoreRecMII) RecMII = 0; setMII(ResMII, RecMII); setMAX_II(); LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); // Can't schedule a loop without a valid MII. if (MII == 0) { LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); NumFailZeroMII++; Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Invalid Minimal Initiation Interval: 0"; }); return; } // Don't pipeline large loops. if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii << ", we don't pipeline large loops\n"); NumFailLargeMaxMII++; Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Minimal Initiation Interval too large: " << ore::NV("MII", (int)MII) << " > " << ore::NV("SwpMaxMii", SwpMaxMii) << "." << "Refer to -pipeliner-max-mii."; }); return; } computeNodeFunctions(NodeSets); registerPressureFilter(NodeSets); colocateNodeSets(NodeSets); checkNodeSets(NodeSets); LLVM_DEBUG({ for (auto &I : NodeSets) { dbgs() << " Rec NodeSet "; I.dump(); } }); llvm::stable_sort(NodeSets, std::greater()); groupRemainingNodes(NodeSets); removeDuplicateNodes(NodeSets); LLVM_DEBUG({ for (auto &I : NodeSets) { dbgs() << " NodeSet "; I.dump(); } }); computeNodeOrder(NodeSets); // check for node order issues checkValidNodeOrder(Circuits); SMSchedule Schedule(Pass.MF, this); Scheduled = schedulePipeline(Schedule); if (!Scheduled){ LLVM_DEBUG(dbgs() << "No schedule found, return\n"); NumFailNoSchedule++; Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Unable to find schedule"; }); return; } unsigned numStages = Schedule.getMaxStageCount(); // No need to generate pipeline if there are no overlapped iterations. if (numStages == 0) { LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); NumFailZeroStage++; Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "No need to pipeline - no overlapped iterations in schedule."; }); return; } // Check that the maximum stage count is less than user-defined limit. if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages << " : too many stages, abort\n"); NumFailLargeMaxStage++; Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Too many stages in schedule: " << ore::NV("numStages", (int)numStages) << " > " << ore::NV("SwpMaxStages", SwpMaxStages) << ". Refer to -pipeliner-max-stages."; }); return; } Pass.ORE->emit([&]() { return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Pipelined succesfully!"; }); // Generate the schedule as a ModuloSchedule. DenseMap Cycles, Stages; std::vector OrderedInsts; for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); ++Cycle) { for (SUnit *SU : Schedule.getInstructions(Cycle)) { OrderedInsts.push_back(SU->getInstr()); Cycles[SU->getInstr()] = Cycle; Stages[SU->getInstr()] = Schedule.stageScheduled(SU); } } DenseMap> NewInstrChanges; for (auto &KV : NewMIs) { Cycles[KV.first] = Cycles[KV.second]; Stages[KV.first] = Stages[KV.second]; NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; } ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), std::move(Stages)); if (EmitTestAnnotations) { assert(NewInstrChanges.empty() && "Cannot serialize a schedule with InstrChanges!"); ModuloScheduleTestAnnotater MSTI(MF, MS); MSTI.annotate(); return; } // The experimental code generator can't work if there are InstChanges. if (ExperimentalCodeGen && NewInstrChanges.empty()) { PeelingModuloScheduleExpander MSE(MF, MS, &LIS); MSE.expand(); } else if (MVECodeGen && NewInstrChanges.empty() && LoopPipelinerInfo->isMVEExpanderSupported() && ModuloScheduleExpanderMVE::canApply(Loop)) { ModuloScheduleExpanderMVE MSE(MF, MS, LIS); MSE.expand(); } else { ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); MSE.expand(); MSE.cleanup(); } ++NumPipelined; } /// Clean up after the software pipeliner runs. void SwingSchedulerDAG::finishBlock() { for (auto &KV : NewMIs) MF.deleteMachineInstr(KV.second); NewMIs.clear(); // Call the superclass. ScheduleDAGInstrs::finishBlock(); } /// Return the register values for the operands of a Phi instruction. /// This function assume the instruction is a Phi. static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, unsigned &InitVal, unsigned &LoopVal) { assert(Phi.isPHI() && "Expecting a Phi."); InitVal = 0; LoopVal = 0; for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() != Loop) InitVal = Phi.getOperand(i).getReg(); else LoopVal = Phi.getOperand(i).getReg(); assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); } /// Return the Phi register value that comes the loop block. static unsigned getLoopPhiReg(const MachineInstr &Phi, const MachineBasicBlock *LoopBB) { for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) if (Phi.getOperand(i + 1).getMBB() == LoopBB) return Phi.getOperand(i).getReg(); return 0; } /// Return true if SUb can be reached from SUa following the chain edges. static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(SUa); while (!Worklist.empty()) { const SUnit *SU = Worklist.pop_back_val(); for (const auto &SI : SU->Succs) { SUnit *SuccSU = SI.getSUnit(); if (SI.getKind() == SDep::Order) { if (Visited.count(SuccSU)) continue; if (SuccSU == SUb) return true; Worklist.push_back(SuccSU); Visited.insert(SuccSU); } } } return false; } /// Return true if the instruction causes a chain between memory /// references before and after it. static bool isDependenceBarrier(MachineInstr &MI) { return MI.isCall() || MI.mayRaiseFPException() || MI.hasUnmodeledSideEffects() || (MI.hasOrderedMemoryRef() && (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad())); } /// Return the underlying objects for the memory references of an instruction. /// This function calls the code in ValueTracking, but first checks that the /// instruction has a memory operand. static void getUnderlyingObjects(const MachineInstr *MI, SmallVectorImpl &Objs) { if (!MI->hasOneMemOperand()) return; MachineMemOperand *MM = *MI->memoperands_begin(); if (!MM->getValue()) return; getUnderlyingObjects(MM->getValue(), Objs); for (const Value *V : Objs) { if (!isIdentifiedObject(V)) { Objs.clear(); return; } } } /// Add a chain edge between a load and store if the store can be an /// alias of the load on a subsequent iteration, i.e., a loop carried /// dependence. This code is very similar to the code in ScheduleDAGInstrs /// but that code doesn't create loop carried dependences. void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { MapVector> PendingLoads; Value *UnknownValue = UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); for (auto &SU : SUnits) { MachineInstr &MI = *SU.getInstr(); if (isDependenceBarrier(MI)) PendingLoads.clear(); else if (MI.mayLoad()) { SmallVector Objs; ::getUnderlyingObjects(&MI, Objs); if (Objs.empty()) Objs.push_back(UnknownValue); for (const auto *V : Objs) { SmallVector &SUs = PendingLoads[V]; SUs.push_back(&SU); } } else if (MI.mayStore()) { SmallVector Objs; ::getUnderlyingObjects(&MI, Objs); if (Objs.empty()) Objs.push_back(UnknownValue); for (const auto *V : Objs) { MapVector>::iterator I = PendingLoads.find(V); if (I == PendingLoads.end()) continue; for (auto *Load : I->second) { if (isSuccOrder(Load, &SU)) continue; MachineInstr &LdMI = *Load->getInstr(); // First, perform the cheaper check that compares the base register. // If they are the same and the load offset is less than the store // offset, then mark the dependence as loop carried potentially. const MachineOperand *BaseOp1, *BaseOp2; int64_t Offset1, Offset2; bool Offset1IsScalable, Offset2IsScalable; if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, Offset1IsScalable, TRI) && TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, Offset2IsScalable, TRI)) { if (BaseOp1->isIdenticalTo(*BaseOp2) && Offset1IsScalable == Offset2IsScalable && (int)Offset1 < (int)Offset2) { assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && "What happened to the chain edge?"); SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } } // Second, the more expensive check that uses alias analysis on the // base registers. If they alias, and the load offset is less than // the store offset, the mark the dependence as loop carried. if (!AA) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); MachineMemOperand *MMO2 = *MI.memoperands_begin(); if (!MMO1->getValue() || !MMO2->getValue()) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } if (MMO1->getValue() == MMO2->getValue() && MMO1->getOffset() <= MMO2->getOffset()) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); continue; } if (!AA->isNoAlias( MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()))) { SDep Dep(Load, SDep::Barrier); Dep.setLatency(1); SU.addPred(Dep); } } } } } } /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer /// processes dependences for PHIs. This function adds true dependences /// from a PHI to a use, and a loop carried dependence from the use to the /// PHI. The loop carried dependence is represented as an anti dependence /// edge. This function also removes chain dependences between unrelated /// PHIs. void SwingSchedulerDAG::updatePhiDependences() { SmallVector RemoveDeps; const TargetSubtargetInfo &ST = MF.getSubtarget(); // Iterate over each DAG node. for (SUnit &I : SUnits) { RemoveDeps.clear(); // Set to true if the instruction has an operand defined by a Phi. unsigned HasPhiUse = 0; unsigned HasPhiDef = 0; MachineInstr *MI = I.getInstr(); // Iterate over each operand, and we process the definitions. for (const MachineOperand &MO : MI->operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (MO.isDef()) { // If the register is used by a Phi, then create an anti dependence. for (MachineRegisterInfo::use_instr_iterator UI = MRI.use_instr_begin(Reg), UE = MRI.use_instr_end(); UI != UE; ++UI) { MachineInstr *UseMI = &*UI; SUnit *SU = getSUnit(UseMI); if (SU != nullptr && UseMI->isPHI()) { if (!MI->isPHI()) { SDep Dep(SU, SDep::Anti, Reg); Dep.setLatency(1); I.addPred(Dep); } else { HasPhiDef = Reg; // Add a chain edge to a dependent Phi that isn't an existing // predecessor. if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) I.addPred(SDep(SU, SDep::Barrier)); } } } } else if (MO.isUse()) { // If the register is defined by a Phi, then create a true dependence. MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); if (DefMI == nullptr) continue; SUnit *SU = getSUnit(DefMI); if (SU != nullptr && DefMI->isPHI()) { if (!MI->isPHI()) { SDep Dep(SU, SDep::Data, Reg); Dep.setLatency(0); ST.adjustSchedDependency(SU, 0, &I, MO.getOperandNo(), Dep, &SchedModel); I.addPred(Dep); } else { HasPhiUse = Reg; // Add a chain edge to a dependent Phi that isn't an existing // predecessor. if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) I.addPred(SDep(SU, SDep::Barrier)); } } } } // Remove order dependences from an unrelated Phi. if (!SwpPruneDeps) continue; for (auto &PI : I.Preds) { MachineInstr *PMI = PI.getSUnit()->getInstr(); if (PMI->isPHI() && PI.getKind() == SDep::Order) { if (I.getInstr()->isPHI()) { if (PMI->getOperand(0).getReg() == HasPhiUse) continue; if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) continue; } RemoveDeps.push_back(PI); } } for (const SDep &D : RemoveDeps) I.removePred(D); } } /// Iterate over each DAG node and see if we can change any dependences /// in order to reduce the recurrence MII. void SwingSchedulerDAG::changeDependences() { // See if an instruction can use a value from the previous iteration. // If so, we update the base and offset of the instruction and change // the dependences. for (SUnit &I : SUnits) { unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; int64_t NewOffset = 0; if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, NewOffset)) continue; // Get the MI and SUnit for the instruction that defines the original base. Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); if (!DefMI) continue; SUnit *DefSU = getSUnit(DefMI); if (!DefSU) continue; // Get the MI and SUnit for the instruction that defins the new base. MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); if (!LastMI) continue; SUnit *LastSU = getSUnit(LastMI); if (!LastSU) continue; if (Topo.IsReachable(&I, LastSU)) continue; // Remove the dependence. The value now depends on a prior iteration. SmallVector Deps; for (const SDep &P : I.Preds) if (P.getSUnit() == DefSU) Deps.push_back(P); for (const SDep &D : Deps) { Topo.RemovePred(&I, D.getSUnit()); I.removePred(D); } // Remove the chain dependence between the instructions. Deps.clear(); for (auto &P : LastSU->Preds) if (P.getSUnit() == &I && P.getKind() == SDep::Order) Deps.push_back(P); for (const SDep &D : Deps) { Topo.RemovePred(LastSU, D.getSUnit()); LastSU->removePred(D); } // Add a dependence between the new instruction and the instruction // that defines the new base. SDep Dep(&I, SDep::Anti, NewBase); Topo.AddPred(LastSU, &I); LastSU->addPred(Dep); // Remember the base and offset information so that we can update the // instruction during code generation. InstrChanges[&I] = std::make_pair(NewBase, NewOffset); } } /// Create an instruction stream that represents a single iteration and stage of /// each instruction. This function differs from SMSchedule::finalizeSchedule in /// that this doesn't have any side-effect to SwingSchedulerDAG. That is, this /// function is an approximation of SMSchedule::finalizeSchedule with all /// non-const operations removed. static void computeScheduledInsts(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, std::vector &OrderedInsts, DenseMap &Stages) { DenseMap> Instrs; // Move all instructions to the first stage from the later stages. for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); ++Cycle) { for (int Stage = 0, LastStage = Schedule.getMaxStageCount(); Stage <= LastStage; ++Stage) { for (SUnit *SU : llvm::reverse(Schedule.getInstructions( Cycle + Stage * Schedule.getInitiationInterval()))) { Instrs[Cycle].push_front(SU); } } } for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); ++Cycle) { std::deque &CycleInstrs = Instrs[Cycle]; CycleInstrs = Schedule.reorderInstructions(SSD, CycleInstrs); for (SUnit *SU : CycleInstrs) { MachineInstr *MI = SU->getInstr(); OrderedInsts.push_back(MI); Stages[MI] = Schedule.stageScheduled(SU); } } } namespace { // FuncUnitSorter - Comparison operator used to sort instructions by // the number of functional unit choices. struct FuncUnitSorter { const InstrItineraryData *InstrItins; const MCSubtargetInfo *STI; DenseMap Resources; FuncUnitSorter(const TargetSubtargetInfo &TSI) : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} // Compute the number of functional unit alternatives needed // at each stage, and take the minimum value. We prioritize the // instructions by the least number of choices first. unsigned minFuncUnits(const MachineInstr *Inst, InstrStage::FuncUnits &F) const { unsigned SchedClass = Inst->getDesc().getSchedClass(); unsigned min = UINT_MAX; if (InstrItins && !InstrItins->isEmpty()) { for (const InstrStage &IS : make_range(InstrItins->beginStage(SchedClass), InstrItins->endStage(SchedClass))) { InstrStage::FuncUnits funcUnits = IS.getUnits(); unsigned numAlternatives = llvm::popcount(funcUnits); if (numAlternatives < min) { min = numAlternatives; F = funcUnits; } } return min; } if (STI && STI->getSchedModel().hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = STI->getSchedModel().getSchedClassDesc(SchedClass); if (!SCDesc->isValid()) // No valid Schedule Class Desc for schedClass, should be // Pseudo/PostRAPseudo return min; for (const MCWriteProcResEntry &PRE : make_range(STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) { if (!PRE.ReleaseAtCycle) continue; const MCProcResourceDesc *ProcResource = STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); unsigned NumUnits = ProcResource->NumUnits; if (NumUnits < min) { min = NumUnits; F = PRE.ProcResourceIdx; } } return min; } llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); } // Compute the critical resources needed by the instruction. This // function records the functional units needed by instructions that // must use only one functional unit. We use this as a tie breaker // for computing the resource MII. The instrutions that require // the same, highly used, functional unit have high priority. void calcCriticalResources(MachineInstr &MI) { unsigned SchedClass = MI.getDesc().getSchedClass(); if (InstrItins && !InstrItins->isEmpty()) { for (const InstrStage &IS : make_range(InstrItins->beginStage(SchedClass), InstrItins->endStage(SchedClass))) { InstrStage::FuncUnits FuncUnits = IS.getUnits(); if (llvm::popcount(FuncUnits) == 1) Resources[FuncUnits]++; } return; } if (STI && STI->getSchedModel().hasInstrSchedModel()) { const MCSchedClassDesc *SCDesc = STI->getSchedModel().getSchedClassDesc(SchedClass); if (!SCDesc->isValid()) // No valid Schedule Class Desc for schedClass, should be // Pseudo/PostRAPseudo return; for (const MCWriteProcResEntry &PRE : make_range(STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) { if (!PRE.ReleaseAtCycle) continue; Resources[PRE.ProcResourceIdx]++; } return; } llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); } /// Return true if IS1 has less priority than IS2. bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { InstrStage::FuncUnits F1 = 0, F2 = 0; unsigned MFUs1 = minFuncUnits(IS1, F1); unsigned MFUs2 = minFuncUnits(IS2, F2); if (MFUs1 == MFUs2) return Resources.lookup(F1) < Resources.lookup(F2); return MFUs1 > MFUs2; } }; /// Calculate the maximum register pressure of the scheduled instructions stream class HighRegisterPressureDetector { MachineBasicBlock *OrigMBB; const MachineFunction &MF; const MachineRegisterInfo &MRI; const TargetRegisterInfo *TRI; const unsigned PSetNum; // Indexed by PSet ID // InitSetPressure takes into account the register pressure of live-in // registers. It's not depend on how the loop is scheduled, so it's enough to // calculate them once at the beginning. std::vector InitSetPressure; // Indexed by PSet ID // Upper limit for each register pressure set std::vector PressureSetLimit; DenseMap ROMap; using Instr2LastUsesTy = DenseMap>; public: using OrderedInstsTy = std::vector; using Instr2StageTy = DenseMap; private: static void dumpRegisterPressures(const std::vector &Pressures) { if (Pressures.size() == 0) { dbgs() << "[]"; } else { char Prefix = '['; for (unsigned P : Pressures) { dbgs() << Prefix << P; Prefix = ' '; } dbgs() << ']'; } } void dumpPSet(Register Reg) const { dbgs() << "Reg=" << printReg(Reg, TRI, 0, &MRI) << " PSet="; for (auto PSetIter = MRI.getPressureSets(Reg); PSetIter.isValid(); ++PSetIter) { dbgs() << *PSetIter << ' '; } dbgs() << '\n'; } void increaseRegisterPressure(std::vector &Pressure, Register Reg) const { auto PSetIter = MRI.getPressureSets(Reg); unsigned Weight = PSetIter.getWeight(); for (; PSetIter.isValid(); ++PSetIter) Pressure[*PSetIter] += Weight; } void decreaseRegisterPressure(std::vector &Pressure, Register Reg) const { auto PSetIter = MRI.getPressureSets(Reg); unsigned Weight = PSetIter.getWeight(); for (; PSetIter.isValid(); ++PSetIter) { auto &P = Pressure[*PSetIter]; assert(P >= Weight && "register pressure must be greater than or equal weight"); P -= Weight; } } // Return true if Reg is fixed one, for example, stack pointer bool isFixedRegister(Register Reg) const { return Reg.isPhysical() && TRI->isFixedRegister(MF, Reg.asMCReg()); } bool isDefinedInThisLoop(Register Reg) const { return Reg.isVirtual() && MRI.getVRegDef(Reg)->getParent() == OrigMBB; } // Search for live-in variables. They are factored into the register pressure // from the begining. Live-in variables used by every iteration should be // considered as alive throughout the loop. For example, the variable `c` in // following code. \code // int c = ...; // for (int i = 0; i < n; i++) // a[i] += b[i] + c; // \endcode void computeLiveIn() { DenseSet Used; for (auto &MI : *OrigMBB) { if (MI.isDebugInstr()) continue; for (auto &Use : ROMap[&MI].Uses) { auto Reg = Use.RegUnit; // Ignore the variable that appears only on one side of phi instruction // because it's used only at the first iteration. if (MI.isPHI() && Reg != getLoopPhiReg(MI, OrigMBB)) continue; if (isFixedRegister(Reg)) continue; if (isDefinedInThisLoop(Reg)) continue; Used.insert(Reg); } } for (auto LiveIn : Used) increaseRegisterPressure(InitSetPressure, LiveIn); } // Calculate the upper limit of each pressure set void computePressureSetLimit(const RegisterClassInfo &RCI) { for (unsigned PSet = 0; PSet < PSetNum; PSet++) PressureSetLimit[PSet] = TRI->getRegPressureSetLimit(MF, PSet); // We assume fixed registers, such as stack pointer, are already in use. // Therefore subtracting the weight of the fixed registers from the limit of // each pressure set in advance. SmallDenseSet FixedRegs; for (const TargetRegisterClass *TRC : TRI->regclasses()) { for (const MCPhysReg Reg : *TRC) if (isFixedRegister(Reg)) FixedRegs.insert(Reg); } LLVM_DEBUG({ for (auto Reg : FixedRegs) { dbgs() << printReg(Reg, TRI, 0, &MRI) << ": ["; const int *Sets = TRI->getRegUnitPressureSets(Reg); for (; *Sets != -1; Sets++) { dbgs() << TRI->getRegPressureSetName(*Sets) << ", "; } dbgs() << "]\n"; } }); for (auto Reg : FixedRegs) { LLVM_DEBUG(dbgs() << "fixed register: " << printReg(Reg, TRI, 0, &MRI) << "\n"); auto PSetIter = MRI.getPressureSets(Reg); unsigned Weight = PSetIter.getWeight(); for (; PSetIter.isValid(); ++PSetIter) { unsigned &Limit = PressureSetLimit[*PSetIter]; assert(Limit >= Weight && "register pressure limit must be greater than or equal weight"); Limit -= Weight; LLVM_DEBUG(dbgs() << "PSet=" << *PSetIter << " Limit=" << Limit << " (decreased by " << Weight << ")\n"); } } } // There are two patterns of last-use. // - by an instruction of the current iteration // - by a phi instruction of the next iteration (loop carried value) // // Furthermore, following two groups of instructions are executed // simultaneously // - next iteration's phi instructions in i-th stage // - current iteration's instructions in i+1-th stage // // This function calculates the last-use of each register while taking into // account the above two patterns. Instr2LastUsesTy computeLastUses(const OrderedInstsTy &OrderedInsts, Instr2StageTy &Stages) const { // We treat virtual registers that are defined and used in this loop. // Following virtual register will be ignored // - live-in one // - defined but not used in the loop (potentially live-out) DenseSet TargetRegs; const auto UpdateTargetRegs = [this, &TargetRegs](Register Reg) { if (isDefinedInThisLoop(Reg)) TargetRegs.insert(Reg); }; for (MachineInstr *MI : OrderedInsts) { if (MI->isPHI()) { Register Reg = getLoopPhiReg(*MI, OrigMBB); UpdateTargetRegs(Reg); } else { for (auto &Use : ROMap.find(MI)->getSecond().Uses) UpdateTargetRegs(Use.RegUnit); } } const auto InstrScore = [&Stages](MachineInstr *MI) { return Stages[MI] + MI->isPHI(); }; DenseMap LastUseMI; for (MachineInstr *MI : llvm::reverse(OrderedInsts)) { for (auto &Use : ROMap.find(MI)->getSecond().Uses) { auto Reg = Use.RegUnit; if (!TargetRegs.contains(Reg)) continue; auto Ite = LastUseMI.find(Reg); if (Ite == LastUseMI.end()) { LastUseMI[Reg] = MI; } else { MachineInstr *Orig = Ite->second; MachineInstr *New = MI; if (InstrScore(Orig) < InstrScore(New)) LastUseMI[Reg] = New; } } } Instr2LastUsesTy LastUses; for (auto &Entry : LastUseMI) LastUses[Entry.second].insert(Entry.first); return LastUses; } // Compute the maximum register pressure of the kernel. We'll simulate #Stage // iterations and check the register pressure at the point where all stages // overlapping. // // An example of unrolled loop where #Stage is 4.. // Iter i+0 i+1 i+2 i+3 // ------------------------ // Stage 0 // Stage 1 0 // Stage 2 1 0 // Stage 3 2 1 0 <- All stages overlap // std::vector computeMaxSetPressure(const OrderedInstsTy &OrderedInsts, Instr2StageTy &Stages, const unsigned StageCount) const { using RegSetTy = SmallDenseSet; // Indexed by #Iter. To treat "local" variables of each stage separately, we // manage the liveness of the registers independently by iterations. SmallVector LiveRegSets(StageCount); auto CurSetPressure = InitSetPressure; auto MaxSetPressure = InitSetPressure; auto LastUses = computeLastUses(OrderedInsts, Stages); LLVM_DEBUG({ dbgs() << "Ordered instructions:\n"; for (MachineInstr *MI : OrderedInsts) { dbgs() << "Stage " << Stages[MI] << ": "; MI->dump(); } }); const auto InsertReg = [this, &CurSetPressure](RegSetTy &RegSet, Register Reg) { if (!Reg.isValid() || isFixedRegister(Reg)) return; bool Inserted = RegSet.insert(Reg).second; if (!Inserted) return; LLVM_DEBUG(dbgs() << "insert " << printReg(Reg, TRI, 0, &MRI) << "\n"); increaseRegisterPressure(CurSetPressure, Reg); LLVM_DEBUG(dumpPSet(Reg)); }; const auto EraseReg = [this, &CurSetPressure](RegSetTy &RegSet, Register Reg) { if (!Reg.isValid() || isFixedRegister(Reg)) return; // live-in register if (!RegSet.contains(Reg)) return; LLVM_DEBUG(dbgs() << "erase " << printReg(Reg, TRI, 0, &MRI) << "\n"); RegSet.erase(Reg); decreaseRegisterPressure(CurSetPressure, Reg); LLVM_DEBUG(dumpPSet(Reg)); }; for (unsigned I = 0; I < StageCount; I++) { for (MachineInstr *MI : OrderedInsts) { const auto Stage = Stages[MI]; if (I < Stage) continue; const unsigned Iter = I - Stage; for (auto &Def : ROMap.find(MI)->getSecond().Defs) InsertReg(LiveRegSets[Iter], Def.RegUnit); for (auto LastUse : LastUses[MI]) { if (MI->isPHI()) { if (Iter != 0) EraseReg(LiveRegSets[Iter - 1], LastUse); } else { EraseReg(LiveRegSets[Iter], LastUse); } } for (unsigned PSet = 0; PSet < PSetNum; PSet++) MaxSetPressure[PSet] = std::max(MaxSetPressure[PSet], CurSetPressure[PSet]); LLVM_DEBUG({ dbgs() << "CurSetPressure="; dumpRegisterPressures(CurSetPressure); dbgs() << " iter=" << Iter << " stage=" << Stage << ":"; MI->dump(); }); } } return MaxSetPressure; } public: HighRegisterPressureDetector(MachineBasicBlock *OrigMBB, const MachineFunction &MF) : OrigMBB(OrigMBB), MF(MF), MRI(MF.getRegInfo()), TRI(MF.getSubtarget().getRegisterInfo()), PSetNum(TRI->getNumRegPressureSets()), InitSetPressure(PSetNum, 0), PressureSetLimit(PSetNum, 0) {} // Used to calculate register pressure, which is independent of loop // scheduling. void init(const RegisterClassInfo &RCI) { for (MachineInstr &MI : *OrigMBB) { if (MI.isDebugInstr()) continue; ROMap[&MI].collect(MI, *TRI, MRI, false, true); } computeLiveIn(); computePressureSetLimit(RCI); } // Calculate the maximum register pressures of the loop and check if they // exceed the limit bool detect(const SwingSchedulerDAG *SSD, SMSchedule &Schedule, const unsigned MaxStage) const { assert(0 <= RegPressureMargin && RegPressureMargin <= 100 && "the percentage of the margin must be between 0 to 100"); OrderedInstsTy OrderedInsts; Instr2StageTy Stages; computeScheduledInsts(SSD, Schedule, OrderedInsts, Stages); const auto MaxSetPressure = computeMaxSetPressure(OrderedInsts, Stages, MaxStage + 1); LLVM_DEBUG({ dbgs() << "Dump MaxSetPressure:\n"; for (unsigned I = 0; I < MaxSetPressure.size(); I++) { dbgs() << format("MaxSetPressure[%d]=%d\n", I, MaxSetPressure[I]); } dbgs() << '\n'; }); for (unsigned PSet = 0; PSet < PSetNum; PSet++) { unsigned Limit = PressureSetLimit[PSet]; unsigned Margin = Limit * RegPressureMargin / 100; LLVM_DEBUG(dbgs() << "PSet=" << PSet << " Limit=" << Limit << " Margin=" << Margin << "\n"); if (Limit < MaxSetPressure[PSet] + Margin) { LLVM_DEBUG( dbgs() << "Rejected the schedule because of too high register pressure\n"); return true; } } return false; } }; } // end anonymous namespace /// Calculate the resource constrained minimum initiation interval for the /// specified loop. We use the DFA to model the resources needed for /// each instruction, and we ignore dependences. A different DFA is created /// for each cycle that is required. When adding a new instruction, we attempt /// to add it to each existing DFA, until a legal space is found. If the /// instruction cannot be reserved in an existing DFA, we create a new one. unsigned SwingSchedulerDAG::calculateResMII() { LLVM_DEBUG(dbgs() << "calculateResMII:\n"); ResourceManager RM(&MF.getSubtarget(), this); return RM.calculateResMII(); } /// Calculate the recurrence-constrainted minimum initiation interval. /// Iterate over each circuit. Compute the delay(c) and distance(c) /// for each circuit. The II needs to satisfy the inequality /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest /// II that satisfies the inequality, and the RecMII is the maximum /// of those values. unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { unsigned RecMII = 0; for (NodeSet &Nodes : NodeSets) { if (Nodes.empty()) continue; unsigned Delay = Nodes.getLatency(); unsigned Distance = 1; // ii = ceil(delay / distance) unsigned CurMII = (Delay + Distance - 1) / Distance; Nodes.setRecMII(CurMII); if (CurMII > RecMII) RecMII = CurMII; } return RecMII; } /// Swap all the anti dependences in the DAG. That means it is no longer a DAG, /// but we do this to find the circuits, and then change them back. static void swapAntiDependences(std::vector &SUnits) { SmallVector, 8> DepsAdded; for (SUnit &SU : SUnits) { for (SDep &Pred : SU.Preds) if (Pred.getKind() == SDep::Anti) DepsAdded.push_back(std::make_pair(&SU, Pred)); } for (std::pair &P : DepsAdded) { // Remove this anti dependency and add one in the reverse direction. SUnit *SU = P.first; SDep &D = P.second; SUnit *TargetSU = D.getSUnit(); unsigned Reg = D.getReg(); unsigned Lat = D.getLatency(); SU->removePred(D); SDep Dep(SU, SDep::Anti, Reg); Dep.setLatency(Lat); TargetSU->addPred(Dep); } } /// Create the adjacency structure of the nodes in the graph. void SwingSchedulerDAG::Circuits::createAdjacencyStructure( SwingSchedulerDAG *DAG) { BitVector Added(SUnits.size()); DenseMap OutputDeps; for (int i = 0, e = SUnits.size(); i != e; ++i) { Added.reset(); // Add any successor to the adjacency matrix and exclude duplicates. for (auto &SI : SUnits[i].Succs) { // Only create a back-edge on the first and last nodes of a dependence // chain. This records any chains and adds them later. if (SI.getKind() == SDep::Output) { int N = SI.getSUnit()->NodeNum; int BackEdge = i; auto Dep = OutputDeps.find(BackEdge); if (Dep != OutputDeps.end()) { BackEdge = Dep->second; OutputDeps.erase(Dep); } OutputDeps[N] = BackEdge; } // Do not process a boundary node, an artificial node. // A back-edge is processed only if it goes to a Phi. if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) continue; int N = SI.getSUnit()->NodeNum; if (!Added.test(N)) { AdjK[i].push_back(N); Added.set(N); } } // A chain edge between a store and a load is treated as a back-edge in the // adjacency matrix. for (auto &PI : SUnits[i].Preds) { if (!SUnits[i].getInstr()->mayStore() || !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) continue; if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { int N = PI.getSUnit()->NodeNum; if (!Added.test(N)) { AdjK[i].push_back(N); Added.set(N); } } } } // Add back-edges in the adjacency matrix for the output dependences. for (auto &OD : OutputDeps) if (!Added.test(OD.second)) { AdjK[OD.first].push_back(OD.second); Added.set(OD.second); } } /// Identify an elementary circuit in the dependence graph starting at the /// specified node. bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge) { SUnit *SV = &SUnits[V]; bool F = false; Stack.insert(SV); Blocked.set(V); for (auto W : AdjK[V]) { if (NumPaths > MaxPaths) break; if (W < S) continue; if (W == S) { if (!HasBackedge) NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); F = true; ++NumPaths; break; } else if (!Blocked.test(W)) { if (circuit(W, S, NodeSets, Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) F = true; } } if (F) unblock(V); else { for (auto W : AdjK[V]) { if (W < S) continue; B[W].insert(SV); } } Stack.pop_back(); return F; } /// Unblock a node in the circuit finding algorithm. void SwingSchedulerDAG::Circuits::unblock(int U) { Blocked.reset(U); SmallPtrSet &BU = B[U]; while (!BU.empty()) { SmallPtrSet::iterator SI = BU.begin(); assert(SI != BU.end() && "Invalid B set."); SUnit *W = *SI; BU.erase(W); if (Blocked.test(W->NodeNum)) unblock(W->NodeNum); } } /// Identify all the elementary circuits in the dependence graph using /// Johnson's circuit algorithm. void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { // Swap all the anti dependences in the DAG. That means it is no longer a DAG, // but we do this to find the circuits, and then change them back. swapAntiDependences(SUnits); Circuits Cir(SUnits, Topo); // Create the adjacency structure. Cir.createAdjacencyStructure(this); for (int i = 0, e = SUnits.size(); i != e; ++i) { Cir.reset(); Cir.circuit(i, i, NodeSets); } // Change the dependences back so that we've created a DAG again. swapAntiDependences(SUnits); } // Create artificial dependencies between the source of COPY/REG_SEQUENCE that // is loop-carried to the USE in next iteration. This will help pipeliner avoid // additional copies that are needed across iterations. An artificial dependence // edge is added from USE to SOURCE of COPY/REG_SEQUENCE. // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE // PHI-------True-Dep------> USEOfPhi // The mutation creates // USEOfPHI -------Artificial-Dep---> SRCOfCopy // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled // late to avoid additional copies across iterations. The possible scheduling // order would be // USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { for (SUnit &SU : DAG->SUnits) { // Find the COPY/REG_SEQUENCE instruction. if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) continue; // Record the loop carried PHIs. SmallVector PHISUs; // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. SmallVector SrcSUs; for (auto &Dep : SU.Preds) { SUnit *TmpSU = Dep.getSUnit(); MachineInstr *TmpMI = TmpSU->getInstr(); SDep::Kind DepKind = Dep.getKind(); // Save the loop carried PHI. if (DepKind == SDep::Anti && TmpMI->isPHI()) PHISUs.push_back(TmpSU); // Save the source of COPY/REG_SEQUENCE. // If the source has no pre-decessors, we will end up creating cycles. else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) SrcSUs.push_back(TmpSU); } if (PHISUs.size() == 0 || SrcSUs.size() == 0) continue; // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this // SUnit to the container. SmallVector UseSUs; // Do not use iterator based loop here as we are updating the container. for (size_t Index = 0; Index < PHISUs.size(); ++Index) { for (auto &Dep : PHISUs[Index]->Succs) { if (Dep.getKind() != SDep::Data) continue; SUnit *TmpSU = Dep.getSUnit(); MachineInstr *TmpMI = TmpSU->getInstr(); if (TmpMI->isPHI() || TmpMI->isRegSequence()) { PHISUs.push_back(TmpSU); continue; } UseSUs.push_back(TmpSU); } } if (UseSUs.size() == 0) continue; SwingSchedulerDAG *SDAG = cast(DAG); // Add the artificial dependencies if it does not form a cycle. for (auto *I : UseSUs) { for (auto *Src : SrcSUs) { if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { Src->addPred(SDep(I, SDep::Artificial)); SDAG->Topo.AddPred(Src, I); } } } } } /// Return true for DAG nodes that we ignore when computing the cost functions. /// We ignore the back-edge recurrence in order to avoid unbounded recursion /// in the calculation of the ASAP, ALAP, etc functions. static bool ignoreDependence(const SDep &D, bool isPred) { if (D.isArtificial() || D.getSUnit()->isBoundaryNode()) return true; return D.getKind() == SDep::Anti && isPred; } /// Compute several functions need to order the nodes for scheduling. /// ASAP - Earliest time to schedule a node. /// ALAP - Latest time to schedule a node. /// MOV - Mobility function, difference between ALAP and ASAP. /// D - Depth of each node. /// H - Height of each node. void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { ScheduleInfo.resize(SUnits.size()); LLVM_DEBUG({ for (int I : Topo) { const SUnit &SU = SUnits[I]; dumpNode(SU); } }); int maxASAP = 0; // Compute ASAP and ZeroLatencyDepth. for (int I : Topo) { int asap = 0; int zeroLatencyDepth = 0; SUnit *SU = &SUnits[I]; for (const SDep &P : SU->Preds) { SUnit *pred = P.getSUnit(); if (P.getLatency() == 0) zeroLatencyDepth = std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); if (ignoreDependence(P, true)) continue; asap = std::max(asap, (int)(getASAP(pred) + P.getLatency() - getDistance(pred, SU, P) * MII)); } maxASAP = std::max(maxASAP, asap); ScheduleInfo[I].ASAP = asap; ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth; } // Compute ALAP, ZeroLatencyHeight, and MOV. for (int I : llvm::reverse(Topo)) { int alap = maxASAP; int zeroLatencyHeight = 0; SUnit *SU = &SUnits[I]; for (const SDep &S : SU->Succs) { SUnit *succ = S.getSUnit(); if (succ->isBoundaryNode()) continue; if (S.getLatency() == 0) zeroLatencyHeight = std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); if (ignoreDependence(S, true)) continue; alap = std::min(alap, (int)(getALAP(succ) - S.getLatency() + getDistance(SU, succ, S) * MII)); } ScheduleInfo[I].ALAP = alap; ScheduleInfo[I].ZeroLatencyHeight = zeroLatencyHeight; } // After computing the node functions, compute the summary for each node set. for (NodeSet &I : NodeSets) I.computeNodeSetInfo(this); LLVM_DEBUG({ for (unsigned i = 0; i < SUnits.size(); i++) { dbgs() << "\tNode " << i << ":\n"; dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; } }); } /// Compute the Pred_L(O) set, as defined in the paper. The set is defined /// as the predecessors of the elements of NodeOrder that are not also in /// NodeOrder. static bool pred_L(SetVector &NodeOrder, SmallSetVector &Preds, const NodeSet *S = nullptr) { Preds.clear(); for (const SUnit *SU : NodeOrder) { for (const SDep &Pred : SU->Preds) { if (S && S->count(Pred.getSUnit()) == 0) continue; if (ignoreDependence(Pred, true)) continue; if (NodeOrder.count(Pred.getSUnit()) == 0) Preds.insert(Pred.getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (const SDep &Succ : SU->Succs) { if (Succ.getKind() != SDep::Anti) continue; if (S && S->count(Succ.getSUnit()) == 0) continue; if (NodeOrder.count(Succ.getSUnit()) == 0) Preds.insert(Succ.getSUnit()); } } return !Preds.empty(); } /// Compute the Succ_L(O) set, as defined in the paper. The set is defined /// as the successors of the elements of NodeOrder that are not also in /// NodeOrder. static bool succ_L(SetVector &NodeOrder, SmallSetVector &Succs, const NodeSet *S = nullptr) { Succs.clear(); for (const SUnit *SU : NodeOrder) { for (const SDep &Succ : SU->Succs) { if (S && S->count(Succ.getSUnit()) == 0) continue; if (ignoreDependence(Succ, false)) continue; if (NodeOrder.count(Succ.getSUnit()) == 0) Succs.insert(Succ.getSUnit()); } for (const SDep &Pred : SU->Preds) { if (Pred.getKind() != SDep::Anti) continue; if (S && S->count(Pred.getSUnit()) == 0) continue; if (NodeOrder.count(Pred.getSUnit()) == 0) Succs.insert(Pred.getSUnit()); } } return !Succs.empty(); } /// Return true if there is a path from the specified node to any of the nodes /// in DestNodes. Keep track and return the nodes in any path. static bool computePath(SUnit *Cur, SetVector &Path, SetVector &DestNodes, SetVector &Exclude, SmallPtrSet &Visited) { if (Cur->isBoundaryNode()) return false; if (Exclude.contains(Cur)) return false; if (DestNodes.contains(Cur)) return true; if (!Visited.insert(Cur).second) return Path.contains(Cur); bool FoundPath = false; for (auto &SI : Cur->Succs) if (!ignoreDependence(SI, false)) FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); for (auto &PI : Cur->Preds) if (PI.getKind() == SDep::Anti) FoundPath |= computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); if (FoundPath) Path.insert(Cur); return FoundPath; } /// Compute the live-out registers for the instructions in a node-set. /// The live-out registers are those that are defined in the node-set, /// but not used. Except for use operands of Phis. static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, NodeSet &NS) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); MachineRegisterInfo &MRI = MF.getRegInfo(); SmallVector LiveOutRegs; SmallSet Uses; for (SUnit *SU : NS) { const MachineInstr *MI = SU->getInstr(); if (MI->isPHI()) continue; for (const MachineOperand &MO : MI->all_uses()) { Register Reg = MO.getReg(); if (Reg.isVirtual()) Uses.insert(Reg); else if (MRI.isAllocatable(Reg)) for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) Uses.insert(Unit); } } for (SUnit *SU : NS) for (const MachineOperand &MO : SU->getInstr()->all_defs()) if (!MO.isDead()) { Register Reg = MO.getReg(); if (Reg.isVirtual()) { if (!Uses.count(Reg)) LiveOutRegs.push_back(RegisterMaskPair(Reg, LaneBitmask::getNone())); } else if (MRI.isAllocatable(Reg)) { for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) if (!Uses.count(Unit)) LiveOutRegs.push_back( RegisterMaskPair(Unit, LaneBitmask::getNone())); } } RPTracker.addLiveRegs(LiveOutRegs); } /// A heuristic to filter nodes in recurrent node-sets if the register /// pressure of a set is too high. void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { for (auto &NS : NodeSets) { // Skip small node-sets since they won't cause register pressure problems. if (NS.size() <= 2) continue; IntervalPressure RecRegPressure; RegPressureTracker RecRPTracker(RecRegPressure); RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); computeLiveOuts(MF, RecRPTracker, NS); RecRPTracker.closeBottom(); std::vector SUnits(NS.begin(), NS.end()); llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { return A->NodeNum > B->NodeNum; }); for (auto &SU : SUnits) { // Since we're computing the register pressure for a subset of the // instructions in a block, we need to set the tracker for each // instruction in the node-set. The tracker is set to the instruction // just after the one we're interested in. MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); RecRPTracker.setPos(std::next(CurInstI)); RegPressureDelta RPDelta; ArrayRef CriticalPSets; RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, CriticalPSets, RecRegPressure.MaxSetPressure); if (RPDelta.Excess.isValid()) { LLVM_DEBUG( dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess.getUnitInc() << "\n"); NS.setExceedPressure(SU); break; } RecRPTracker.recede(); } } } /// A heuristic to colocate node sets that have the same set of /// successors. void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { unsigned Colocate = 0; for (int i = 0, e = NodeSets.size(); i < e; ++i) { NodeSet &N1 = NodeSets[i]; SmallSetVector S1; if (N1.empty() || !succ_L(N1, S1)) continue; for (int j = i + 1; j < e; ++j) { NodeSet &N2 = NodeSets[j]; if (N1.compareRecMII(N2) != 0) continue; SmallSetVector S2; if (N2.empty() || !succ_L(N2, S2)) continue; if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) { N1.setColocate(++Colocate); N2.setColocate(Colocate); break; } } } } /// Check if the existing node-sets are profitable. If not, then ignore the /// recurrent node-sets, and attempt to schedule all nodes together. This is /// a heuristic. If the MII is large and all the recurrent node-sets are small, /// then it's best to try to schedule all instructions together instead of /// starting with the recurrent node-sets. void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { // Look for loops with a large MII. if (MII < 17) return; // Check if the node-set contains only a simple add recurrence. for (auto &NS : NodeSets) { if (NS.getRecMII() > 2) return; if (NS.getMaxDepth() > MII) return; } NodeSets.clear(); LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); } /// Add the nodes that do not belong to a recurrence set into groups /// based upon connected components. void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { SetVector NodesAdded; SmallPtrSet Visited; // Add the nodes that are on a path between the previous node sets and // the current node set. for (NodeSet &I : NodeSets) { SmallSetVector N; // Add the nodes from the current node set to the previous node set. if (succ_L(I, N)) { SetVector Path; for (SUnit *NI : N) { Visited.clear(); computePath(NI, Path, NodesAdded, I, Visited); } if (!Path.empty()) I.insert(Path.begin(), Path.end()); } // Add the nodes from the previous node set to the current node set. N.clear(); if (succ_L(NodesAdded, N)) { SetVector Path; for (SUnit *NI : N) { Visited.clear(); computePath(NI, Path, I, NodesAdded, Visited); } if (!Path.empty()) I.insert(Path.begin(), Path.end()); } NodesAdded.insert(I.begin(), I.end()); } // Create a new node set with the connected nodes of any successor of a node // in a recurrent set. NodeSet NewSet; SmallSetVector N; if (succ_L(NodesAdded, N)) for (SUnit *I : N) addConnectedNodes(I, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); // Create a new node set with the connected nodes of any predecessor of a node // in a recurrent set. NewSet.clear(); if (pred_L(NodesAdded, N)) for (SUnit *I : N) addConnectedNodes(I, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); // Create new nodes sets with the connected nodes any remaining node that // has no predecessor. for (SUnit &SU : SUnits) { if (NodesAdded.count(&SU) == 0) { NewSet.clear(); addConnectedNodes(&SU, NewSet, NodesAdded); if (!NewSet.empty()) NodeSets.push_back(NewSet); } } } /// Add the node to the set, and add all of its connected nodes to the set. void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, SetVector &NodesAdded) { NewSet.insert(SU); NodesAdded.insert(SU); for (auto &SI : SU->Succs) { SUnit *Successor = SI.getSUnit(); if (!SI.isArtificial() && !Successor->isBoundaryNode() && NodesAdded.count(Successor) == 0) addConnectedNodes(Successor, NewSet, NodesAdded); } for (auto &PI : SU->Preds) { SUnit *Predecessor = PI.getSUnit(); if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) addConnectedNodes(Predecessor, NewSet, NodesAdded); } } /// Return true if Set1 contains elements in Set2. The elements in common /// are returned in a different container. static bool isIntersect(SmallSetVector &Set1, const NodeSet &Set2, SmallSetVector &Result) { Result.clear(); for (SUnit *SU : Set1) { if (Set2.count(SU) != 0) Result.insert(SU); } return !Result.empty(); } /// Merge the recurrence node sets that have the same initial node. void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; ++I) { NodeSet &NI = *I; for (NodeSetType::iterator J = I + 1; J != E;) { NodeSet &NJ = *J; if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { if (NJ.compareRecMII(NI) > 0) NI.setRecMII(NJ.getRecMII()); for (SUnit *SU : *J) I->insert(SU); NodeSets.erase(J); E = NodeSets.end(); } else { ++J; } } } } /// Remove nodes that have been scheduled in previous NodeSets. void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; ++I) for (NodeSetType::iterator J = I + 1; J != E;) { J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); if (J->empty()) { NodeSets.erase(J); E = NodeSets.end(); } else { ++J; } } } /// Compute an ordered list of the dependence graph nodes, which /// indicates the order that the nodes will be scheduled. This is a /// two-level algorithm. First, a partial order is created, which /// consists of a list of sets ordered from highest to lowest priority. void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { SmallSetVector R; NodeOrder.clear(); for (auto &Nodes : NodeSets) { LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); OrderKind Order; SmallSetVector N; if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { R.insert(N.begin(), N.end()); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (preds) "); } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) { R.insert(N.begin(), N.end()); Order = TopDown; LLVM_DEBUG(dbgs() << " Top down (succs) "); } else if (isIntersect(N, Nodes, R)) { // If some of the successors are in the existing node-set, then use the // top-down ordering. Order = TopDown; LLVM_DEBUG(dbgs() << " Top down (intersect) "); } else if (NodeSets.size() == 1) { for (const auto &N : Nodes) if (N->Succs.size() == 0) R.insert(N); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (all) "); } else { // Find the node with the highest ASAP. SUnit *maxASAP = nullptr; for (SUnit *SU : Nodes) { if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) maxASAP = SU; } R.insert(maxASAP); Order = BottomUp; LLVM_DEBUG(dbgs() << " Bottom up (default) "); } while (!R.empty()) { if (Order == TopDown) { // Choose the node with the maximum height. If more than one, choose // the node wiTH the maximum ZeroLatencyHeight. If still more than one, // choose the node with the lowest MOV. while (!R.empty()) { SUnit *maxHeight = nullptr; for (SUnit *I : R) { if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) maxHeight = I; else if (getHeight(I) == getHeight(maxHeight) && getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) maxHeight = I; else if (getHeight(I) == getHeight(maxHeight) && getZeroLatencyHeight(I) == getZeroLatencyHeight(maxHeight) && getMOV(I) < getMOV(maxHeight)) maxHeight = I; } NodeOrder.insert(maxHeight); LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); R.remove(maxHeight); for (const auto &I : maxHeight->Succs) { if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.contains(I.getSUnit())) continue; if (ignoreDependence(I, false)) continue; R.insert(I.getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (const auto &I : maxHeight->Preds) { if (I.getKind() != SDep::Anti) continue; if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.contains(I.getSUnit())) continue; R.insert(I.getSUnit()); } } Order = BottomUp; LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); SmallSetVector N; if (pred_L(NodeOrder, N, &Nodes)) R.insert(N.begin(), N.end()); } else { // Choose the node with the maximum depth. If more than one, choose // the node with the maximum ZeroLatencyDepth. If still more than one, // choose the node with the lowest MOV. while (!R.empty()) { SUnit *maxDepth = nullptr; for (SUnit *I : R) { if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) maxDepth = I; else if (getDepth(I) == getDepth(maxDepth) && getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) maxDepth = I; else if (getDepth(I) == getDepth(maxDepth) && getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && getMOV(I) < getMOV(maxDepth)) maxDepth = I; } NodeOrder.insert(maxDepth); LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); R.remove(maxDepth); if (Nodes.isExceedSU(maxDepth)) { Order = TopDown; R.clear(); R.insert(Nodes.getNode(0)); break; } for (const auto &I : maxDepth->Preds) { if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.contains(I.getSUnit())) continue; R.insert(I.getSUnit()); } // Back-edges are predecessors with an anti-dependence. for (const auto &I : maxDepth->Succs) { if (I.getKind() != SDep::Anti) continue; if (Nodes.count(I.getSUnit()) == 0) continue; if (NodeOrder.contains(I.getSUnit())) continue; R.insert(I.getSUnit()); } } Order = TopDown; LLVM_DEBUG(dbgs() << "\n Switching order to top down "); SmallSetVector N; if (succ_L(NodeOrder, N, &Nodes)) R.insert(N.begin(), N.end()); } } LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); } LLVM_DEBUG({ dbgs() << "Node order: "; for (SUnit *I : NodeOrder) dbgs() << " " << I->NodeNum << " "; dbgs() << "\n"; }); } /// Process the nodes in the computed order and create the pipelined schedule /// of the instructions, if possible. Return true if a schedule is found. bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { if (NodeOrder.empty()){ LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); return false; } bool scheduleFound = false; std::unique_ptr HRPDetector; if (LimitRegPressure) { HRPDetector = std::make_unique(Loop.getHeader(), MF); HRPDetector->init(RegClassInfo); } // Keep increasing II until a valid schedule is found. for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) { Schedule.reset(); Schedule.setInitiationInterval(II); LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); SetVector::iterator NI = NodeOrder.begin(); SetVector::iterator NE = NodeOrder.end(); do { SUnit *SU = *NI; // Compute the schedule time for the instruction, which is based // upon the scheduled time for any predecessors/successors. int EarlyStart = INT_MIN; int LateStart = INT_MAX; Schedule.computeStart(SU, &EarlyStart, &LateStart, II, this); LLVM_DEBUG({ dbgs() << "\n"; dbgs() << "Inst (" << SU->NodeNum << ") "; SU->getInstr()->dump(); dbgs() << "\n"; }); LLVM_DEBUG( dbgs() << format("\tes: %8x ls: %8x\n", EarlyStart, LateStart)); if (EarlyStart > LateStart) scheduleFound = false; else if (EarlyStart != INT_MIN && LateStart == INT_MAX) scheduleFound = Schedule.insert(SU, EarlyStart, EarlyStart + (int)II - 1, II); else if (EarlyStart == INT_MIN && LateStart != INT_MAX) scheduleFound = Schedule.insert(SU, LateStart, LateStart - (int)II + 1, II); else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { LateStart = std::min(LateStart, EarlyStart + (int)II - 1); // When scheduling a Phi it is better to start at the late cycle and // go backwards. The default order may insert the Phi too far away // from its first dependence. // Also, do backward search when all scheduled predecessors are // loop-carried output/order dependencies. Empirically, there are also // cases where scheduling becomes possible with backward search. if (SU->getInstr()->isPHI() || Schedule.onlyHasLoopCarriedOutputOrOrderPreds(SU, this)) scheduleFound = Schedule.insert(SU, LateStart, EarlyStart, II); else scheduleFound = Schedule.insert(SU, EarlyStart, LateStart, II); } else { int FirstCycle = Schedule.getFirstCycle(); scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), FirstCycle + getASAP(SU) + II - 1, II); } // Even if we find a schedule, make sure the schedule doesn't exceed the // allowable number of stages. We keep trying if this happens. if (scheduleFound) if (SwpMaxStages > -1 && Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) scheduleFound = false; LLVM_DEBUG({ if (!scheduleFound) dbgs() << "\tCan't schedule\n"; }); } while (++NI != NE && scheduleFound); // If a schedule is found, ensure non-pipelined instructions are in stage 0 if (scheduleFound) scheduleFound = Schedule.normalizeNonPipelinedInstructions(this, LoopPipelinerInfo); // If a schedule is found, check if it is a valid schedule too. if (scheduleFound) scheduleFound = Schedule.isValidSchedule(this); // If a schedule was found and the option is enabled, check if the schedule // might generate additional register spills/fills. if (scheduleFound && LimitRegPressure) scheduleFound = !HRPDetector->detect(this, Schedule, Schedule.getMaxStageCount()); } LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << Schedule.getInitiationInterval() << ")\n"); if (scheduleFound) { scheduleFound = LoopPipelinerInfo->shouldUseSchedule(*this, Schedule); if (!scheduleFound) LLVM_DEBUG(dbgs() << "Target rejected schedule\n"); } if (scheduleFound) { Schedule.finalizeSchedule(this); Pass.ORE->emit([&]() { return MachineOptimizationRemarkAnalysis( DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) << "Schedule found with Initiation Interval: " << ore::NV("II", Schedule.getInitiationInterval()) << ", MaxStageCount: " << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); }); } else Schedule.reset(); return scheduleFound && Schedule.getMaxStageCount() > 0; } /// Return true if we can compute the amount the instruction changes /// during each iteration. Set Delta to the amount of the change. bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); const MachineOperand *BaseOp; int64_t Offset; bool OffsetIsScalable; if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) return false; // FIXME: This algorithm assumes instructions have fixed-size offsets. if (OffsetIsScalable) return false; if (!BaseOp->isReg()) return false; Register BaseReg = BaseOp->getReg(); MachineRegisterInfo &MRI = MF.getRegInfo(); // Check if there is a Phi. If so, get the definition in the loop. MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); if (BaseDef && BaseDef->isPHI()) { BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); BaseDef = MRI.getVRegDef(BaseReg); } if (!BaseDef) return false; int D = 0; if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) return false; Delta = D; return true; } /// Check if we can change the instruction to use an offset value from the /// previous iteration. If so, return true and set the base and offset values /// so that we can rewrite the load, if necessary. /// v1 = Phi(v0, v3) /// v2 = load v1, 0 /// v3 = post_store v1, 4, x /// This function enables the load to be rewritten as v2 = load v3, 4. bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos, unsigned &OffsetPos, unsigned &NewBase, int64_t &Offset) { // Get the load instruction. if (TII->isPostIncrement(*MI)) return false; unsigned BasePosLd, OffsetPosLd; if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) return false; Register BaseReg = MI->getOperand(BasePosLd).getReg(); // Look for the Phi instruction. MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); MachineInstr *Phi = MRI.getVRegDef(BaseReg); if (!Phi || !Phi->isPHI()) return false; // Get the register defined in the loop block. unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); if (!PrevReg) return false; // Check for the post-increment load/store instruction. MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); if (!PrevDef || PrevDef == MI) return false; if (!TII->isPostIncrement(*PrevDef)) return false; unsigned BasePos1 = 0, OffsetPos1 = 0; if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) return false; // Make sure that the instructions do not access the same memory location in // the next iteration. int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); MachineInstr *NewMI = MF.CloneMachineInstr(MI); NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); MF.deleteMachineInstr(NewMI); if (!Disjoint) return false; // Set the return value once we determine that we return true. BasePos = BasePosLd; OffsetPos = OffsetPosLd; NewBase = PrevReg; Offset = StoreOffset; return true; } /// Apply changes to the instruction if needed. The changes are need /// to improve the scheduling and depend up on the final schedule. void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, SMSchedule &Schedule) { SUnit *SU = getSUnit(MI); DenseMap>::iterator It = InstrChanges.find(SU); if (It != InstrChanges.end()) { std::pair RegAndOffset = It->second; unsigned BasePos, OffsetPos; if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) return; Register BaseReg = MI->getOperand(BasePos).getReg(); MachineInstr *LoopDef = findDefInLoop(BaseReg); int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); int BaseStageNum = Schedule.stageScheduled(SU); int BaseCycleNum = Schedule.cycleScheduled(SU); if (BaseStageNum < DefStageNum) { MachineInstr *NewMI = MF.CloneMachineInstr(MI); int OffsetDiff = DefStageNum - BaseStageNum; if (DefCycleNum < BaseCycleNum) { NewMI->getOperand(BasePos).setReg(RegAndOffset.first); if (OffsetDiff > 0) --OffsetDiff; } int64_t NewOffset = MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; NewMI->getOperand(OffsetPos).setImm(NewOffset); SU->setInstr(NewMI); MISUnitMap[NewMI] = SU; NewMIs[MI] = NewMI; } } } /// Return the instruction in the loop that defines the register. /// If the definition is a Phi, then follow the Phi operand to /// the instruction in the loop. MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { SmallPtrSet Visited; MachineInstr *Def = MRI.getVRegDef(Reg); while (Def->isPHI()) { if (!Visited.insert(Def).second) break; for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) if (Def->getOperand(i + 1).getMBB() == BB) { Def = MRI.getVRegDef(Def->getOperand(i).getReg()); break; } } return Def; } /// Return true for an order or output dependence that is loop carried /// potentially. A dependence is loop carried if the destination defines a value /// that may be used or defined by the source in a subsequent iteration. bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, bool isSucc) { if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || Dep.isArtificial() || Dep.getSUnit()->isBoundaryNode()) return false; if (!SwpPruneLoopCarried) return true; if (Dep.getKind() == SDep::Output) return true; MachineInstr *SI = Source->getInstr(); MachineInstr *DI = Dep.getSUnit()->getInstr(); if (!isSucc) std::swap(SI, DI); assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); // Assume ordered loads and stores may have a loop carried dependence. if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || SI->mayRaiseFPException() || DI->mayRaiseFPException() || SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) return true; if (!DI->mayLoadOrStore() || !SI->mayLoadOrStore()) return false; // The conservative assumption is that a dependence between memory operations // may be loop carried. The following code checks when it can be proved that // there is no loop carried dependence. unsigned DeltaS, DeltaD; if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) return true; const MachineOperand *BaseOpS, *BaseOpD; int64_t OffsetS, OffsetD; bool OffsetSIsScalable, OffsetDIsScalable; const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, TRI) || !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, TRI)) return true; assert(!OffsetSIsScalable && !OffsetDIsScalable && "Expected offsets to be byte offsets"); MachineInstr *DefS = MRI.getVRegDef(BaseOpS->getReg()); MachineInstr *DefD = MRI.getVRegDef(BaseOpD->getReg()); if (!DefS || !DefD || !DefS->isPHI() || !DefD->isPHI()) return true; unsigned InitValS = 0; unsigned LoopValS = 0; unsigned InitValD = 0; unsigned LoopValD = 0; getPhiRegs(*DefS, BB, InitValS, LoopValS); getPhiRegs(*DefD, BB, InitValD, LoopValD); MachineInstr *InitDefS = MRI.getVRegDef(InitValS); MachineInstr *InitDefD = MRI.getVRegDef(InitValD); if (!InitDefS->isIdenticalTo(*InitDefD)) return true; // Check that the base register is incremented by a constant value for each // iteration. MachineInstr *LoopDefS = MRI.getVRegDef(LoopValS); int D = 0; if (!LoopDefS || !TII->getIncrementValue(*LoopDefS, D)) return true; LocationSize AccessSizeS = (*SI->memoperands_begin())->getSize(); LocationSize AccessSizeD = (*DI->memoperands_begin())->getSize(); // This is the main test, which checks the offset values and the loop // increment value to determine if the accesses may be loop carried. if (!AccessSizeS.hasValue() || !AccessSizeD.hasValue()) return true; if (DeltaS != DeltaD || DeltaS < AccessSizeS.getValue() || DeltaD < AccessSizeD.getValue()) return true; return (OffsetS + (int64_t)AccessSizeS.getValue() < OffsetD + (int64_t)AccessSizeD.getValue()); } void SwingSchedulerDAG::postProcessDAG() { for (auto &M : Mutations) M->apply(this); } /// Try to schedule the node at the specified StartCycle and continue /// until the node is schedule or the EndCycle is reached. This function /// returns true if the node is scheduled. This routine may search either /// forward or backward for a place to insert the instruction based upon /// the relative values of StartCycle and EndCycle. bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { bool forward = true; LLVM_DEBUG({ dbgs() << "Trying to insert node between " << StartCycle << " and " << EndCycle << " II: " << II << "\n"; }); if (StartCycle > EndCycle) forward = false; // The terminating condition depends on the direction. int termCycle = forward ? EndCycle + 1 : EndCycle - 1; for (int curCycle = StartCycle; curCycle != termCycle; forward ? ++curCycle : --curCycle) { if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || ProcItinResources.canReserveResources(*SU, curCycle)) { LLVM_DEBUG({ dbgs() << "\tinsert at cycle " << curCycle << " "; SU->getInstr()->dump(); }); if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode())) ProcItinResources.reserveResources(*SU, curCycle); ScheduledInstrs[curCycle].push_back(SU); InstrToCycle.insert(std::make_pair(SU, curCycle)); if (curCycle > LastCycle) LastCycle = curCycle; if (curCycle < FirstCycle) FirstCycle = curCycle; return true; } LLVM_DEBUG({ dbgs() << "\tfailed to insert at cycle " << curCycle << " "; SU->getInstr()->dump(); }); } return false; } // Return the cycle of the earliest scheduled instruction in the chain. int SMSchedule::earliestCycleInChain(const SDep &Dep) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(Dep); int EarlyCycle = INT_MAX; while (!Worklist.empty()) { const SDep &Cur = Worklist.pop_back_val(); SUnit *PrevSU = Cur.getSUnit(); if (Visited.count(PrevSU)) continue; std::map::const_iterator it = InstrToCycle.find(PrevSU); if (it == InstrToCycle.end()) continue; EarlyCycle = std::min(EarlyCycle, it->second); for (const auto &PI : PrevSU->Preds) if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) Worklist.push_back(PI); Visited.insert(PrevSU); } return EarlyCycle; } // Return the cycle of the latest scheduled instruction in the chain. int SMSchedule::latestCycleInChain(const SDep &Dep) { SmallPtrSet Visited; SmallVector Worklist; Worklist.push_back(Dep); int LateCycle = INT_MIN; while (!Worklist.empty()) { const SDep &Cur = Worklist.pop_back_val(); SUnit *SuccSU = Cur.getSUnit(); if (Visited.count(SuccSU) || SuccSU->isBoundaryNode()) continue; std::map::const_iterator it = InstrToCycle.find(SuccSU); if (it == InstrToCycle.end()) continue; LateCycle = std::max(LateCycle, it->second); for (const auto &SI : SuccSU->Succs) if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) Worklist.push_back(SI); Visited.insert(SuccSU); } return LateCycle; } /// If an instruction has a use that spans multiple iterations, then /// return true. These instructions are characterized by having a back-ege /// to a Phi, which contains a reference to another Phi. static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { for (auto &P : SU->Preds) if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) for (auto &S : P.getSUnit()->Succs) if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) return P.getSUnit(); return nullptr; } /// Compute the scheduling start slot for the instruction. The start slot /// depends on any predecessor or successor nodes scheduled already. void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, int II, SwingSchedulerDAG *DAG) { // Iterate over each instruction that has been scheduled already. The start // slot computation depends on whether the previously scheduled instruction // is a predecessor or successor of the specified instruction. for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { // Iterate over each instruction in the current cycle. for (SUnit *I : getInstructions(cycle)) { // Because we're processing a DAG for the dependences, we recognize // the back-edge in recurrences by anti dependences. for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { const SDep &Dep = SU->Preds[i]; if (Dep.getSUnit() == I) { if (!DAG->isBackedge(SU, Dep)) { int EarlyStart = cycle + Dep.getLatency() - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); if (DAG->isLoopCarriedDep(SU, Dep, false)) { int End = earliestCycleInChain(Dep) + (II - 1); *MinLateStart = std::min(*MinLateStart, End); } } else { int LateStart = cycle - Dep.getLatency() + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; *MinLateStart = std::min(*MinLateStart, LateStart); } } // For instruction that requires multiple iterations, make sure that // the dependent instruction is not scheduled past the definition. SUnit *BE = multipleIterations(I, DAG); if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && !SU->isPred(I)) *MinLateStart = std::min(*MinLateStart, cycle); } for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { if (SU->Succs[i].getSUnit() == I) { const SDep &Dep = SU->Succs[i]; if (!DAG->isBackedge(SU, Dep)) { int LateStart = cycle - Dep.getLatency() + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; *MinLateStart = std::min(*MinLateStart, LateStart); if (DAG->isLoopCarriedDep(SU, Dep)) { int Start = latestCycleInChain(Dep) + 1 - II; *MaxEarlyStart = std::max(*MaxEarlyStart, Start); } } else { int EarlyStart = cycle + Dep.getLatency() - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); } } } } } } /// Order the instructions within a cycle so that the definitions occur /// before the uses. Returns true if the instruction is added to the start /// of the list, or false if added to the end. void SMSchedule::orderDependence(const SwingSchedulerDAG *SSD, SUnit *SU, std::deque &Insts) const { MachineInstr *MI = SU->getInstr(); bool OrderBeforeUse = false; bool OrderAfterDef = false; bool OrderBeforeDef = false; unsigned MoveDef = 0; unsigned MoveUse = 0; int StageInst1 = stageScheduled(SU); unsigned Pos = 0; for (std::deque::iterator I = Insts.begin(), E = Insts.end(); I != E; ++I, ++Pos) { for (MachineOperand &MO : MI->operands()) { if (!MO.isReg() || !MO.getReg().isVirtual()) continue; Register Reg = MO.getReg(); unsigned BasePos, OffsetPos; if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) if (MI->getOperand(BasePos).getReg() == Reg) if (unsigned NewReg = SSD->getInstrBaseReg(SU)) Reg = NewReg; bool Reads, Writes; std::tie(Reads, Writes) = (*I)->getInstr()->readsWritesVirtualRegister(Reg); if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { // Add the instruction after the scheduled instruction. OrderAfterDef = true; MoveDef = Pos; } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else { OrderAfterDef = true; MoveDef = Pos; } } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; if (MoveUse != 0) { OrderAfterDef = true; MoveDef = Pos - 1; } } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { // Add the instruction before the scheduled instruction. OrderBeforeUse = true; if (MoveUse == 0) MoveUse = Pos; } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { if (MoveUse == 0) { OrderBeforeDef = true; MoveUse = Pos; } } } // Check for order dependences between instructions. Make sure the source // is ordered before the destination. for (auto &S : SU->Succs) { if (S.getSUnit() != *I) continue; if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { OrderBeforeUse = true; if (Pos < MoveUse) MoveUse = Pos; } // We did not handle HW dependences in previous for loop, // and we normally set Latency = 0 for Anti deps, // so may have nodes in same cycle with Anti denpendent on HW regs. else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { OrderBeforeUse = true; if ((MoveUse == 0) || (Pos < MoveUse)) MoveUse = Pos; } } for (auto &P : SU->Preds) { if (P.getSUnit() != *I) continue; if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { OrderAfterDef = true; MoveDef = Pos; } } } // A circular dependence. if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) OrderBeforeUse = false; // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due // to a loop-carried dependence. if (OrderBeforeDef) OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); // The uncommon case when the instruction order needs to be updated because // there is both a use and def. if (OrderBeforeUse && OrderAfterDef) { SUnit *UseSU = Insts.at(MoveUse); SUnit *DefSU = Insts.at(MoveDef); if (MoveUse > MoveDef) { Insts.erase(Insts.begin() + MoveUse); Insts.erase(Insts.begin() + MoveDef); } else { Insts.erase(Insts.begin() + MoveDef); Insts.erase(Insts.begin() + MoveUse); } orderDependence(SSD, UseSU, Insts); orderDependence(SSD, SU, Insts); orderDependence(SSD, DefSU, Insts); return; } // Put the new instruction first if there is a use in the list. Otherwise, // put it at the end of the list. if (OrderBeforeUse) Insts.push_front(SU); else Insts.push_back(SU); } /// Return true if the scheduled Phi has a loop carried operand. bool SMSchedule::isLoopCarried(const SwingSchedulerDAG *SSD, MachineInstr &Phi) const { if (!Phi.isPHI()) return false; assert(Phi.isPHI() && "Expecting a Phi."); SUnit *DefSU = SSD->getSUnit(&Phi); unsigned DefCycle = cycleScheduled(DefSU); int DefStage = stageScheduled(DefSU); unsigned InitVal = 0; unsigned LoopVal = 0; getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); if (!UseSU) return true; if (UseSU->getInstr()->isPHI()) return true; unsigned LoopCycle = cycleScheduled(UseSU); int LoopStage = stageScheduled(UseSU); return (LoopCycle > DefCycle) || (LoopStage <= DefStage); } /// Return true if the instruction is a definition that is loop carried /// and defines the use on the next iteration. /// v1 = phi(v2, v3) /// (Def) v3 = op v1 /// (MO) = v1 /// If MO appears before Def, then v1 and v3 may get assigned to the same /// register. bool SMSchedule::isLoopCarriedDefOfUse(const SwingSchedulerDAG *SSD, MachineInstr *Def, MachineOperand &MO) const { if (!MO.isReg()) return false; if (Def->isPHI()) return false; MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) return false; if (!isLoopCarried(SSD, *Phi)) return false; unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); for (MachineOperand &DMO : Def->all_defs()) { if (DMO.getReg() == LoopReg) return true; } return false; } /// Return true if all scheduled predecessors are loop-carried output/order /// dependencies. bool SMSchedule::onlyHasLoopCarriedOutputOrOrderPreds( SUnit *SU, SwingSchedulerDAG *DAG) const { for (const SDep &Pred : SU->Preds) if (InstrToCycle.count(Pred.getSUnit()) && !DAG->isBackedge(SU, Pred)) return false; for (const SDep &Succ : SU->Succs) if (InstrToCycle.count(Succ.getSUnit()) && DAG->isBackedge(SU, Succ)) return false; return true; } /// Determine transitive dependences of unpipelineable instructions SmallSet SMSchedule::computeUnpipelineableNodes( SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { SmallSet DoNotPipeline; SmallVector Worklist; for (auto &SU : SSD->SUnits) if (SU.isInstr() && PLI->shouldIgnoreForPipelining(SU.getInstr())) Worklist.push_back(&SU); while (!Worklist.empty()) { auto SU = Worklist.pop_back_val(); if (DoNotPipeline.count(SU)) continue; LLVM_DEBUG(dbgs() << "Do not pipeline SU(" << SU->NodeNum << ")\n"); DoNotPipeline.insert(SU); for (auto &Dep : SU->Preds) Worklist.push_back(Dep.getSUnit()); if (SU->getInstr()->isPHI()) for (auto &Dep : SU->Succs) if (Dep.getKind() == SDep::Anti) Worklist.push_back(Dep.getSUnit()); } return DoNotPipeline; } // Determine all instructions upon which any unpipelineable instruction depends // and ensure that they are in stage 0. If unable to do so, return false. bool SMSchedule::normalizeNonPipelinedInstructions( SwingSchedulerDAG *SSD, TargetInstrInfo::PipelinerLoopInfo *PLI) { SmallSet DNP = computeUnpipelineableNodes(SSD, PLI); int NewLastCycle = INT_MIN; for (SUnit &SU : SSD->SUnits) { if (!SU.isInstr()) continue; if (!DNP.contains(&SU) || stageScheduled(&SU) == 0) { NewLastCycle = std::max(NewLastCycle, InstrToCycle[&SU]); continue; } // Put the non-pipelined instruction as early as possible in the schedule int NewCycle = getFirstCycle(); for (auto &Dep : SU.Preds) NewCycle = std::max(InstrToCycle[Dep.getSUnit()], NewCycle); int OldCycle = InstrToCycle[&SU]; if (OldCycle != NewCycle) { InstrToCycle[&SU] = NewCycle; auto &OldS = getInstructions(OldCycle); llvm::erase(OldS, &SU); getInstructions(NewCycle).emplace_back(&SU); LLVM_DEBUG(dbgs() << "SU(" << SU.NodeNum << ") is not pipelined; moving from cycle " << OldCycle << " to " << NewCycle << " Instr:" << *SU.getInstr()); } NewLastCycle = std::max(NewLastCycle, NewCycle); } LastCycle = NewLastCycle; return true; } // Check if the generated schedule is valid. This function checks if // an instruction that uses a physical register is scheduled in a // different stage than the definition. The pipeliner does not handle // physical register values that may cross a basic block boundary. // Furthermore, if a physical def/use pair is assigned to the same // cycle, orderDependence does not guarantee def/use ordering, so that // case should be considered invalid. (The test checks for both // earlier and same-cycle use to be more robust.) bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { for (SUnit &SU : SSD->SUnits) { if (!SU.hasPhysRegDefs) continue; int StageDef = stageScheduled(&SU); int CycleDef = InstrToCycle[&SU]; assert(StageDef != -1 && "Instruction should have been scheduled."); for (auto &SI : SU.Succs) if (SI.isAssignedRegDep() && !SI.getSUnit()->isBoundaryNode()) if (Register::isPhysicalRegister(SI.getReg())) { if (stageScheduled(SI.getSUnit()) != StageDef) return false; if (InstrToCycle[SI.getSUnit()] <= CycleDef) return false; } } return true; } /// A property of the node order in swing-modulo-scheduling is /// that for nodes outside circuits the following holds: /// none of them is scheduled after both a successor and a /// predecessor. /// The method below checks whether the property is met. /// If not, debug information is printed and statistics information updated. /// Note that we do not use an assert statement. /// The reason is that although an invalid node oder may prevent /// the pipeliner from finding a pipelined schedule for arbitrary II, /// it does not lead to the generation of incorrect code. void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { // a sorted vector that maps each SUnit to its index in the NodeOrder typedef std::pair UnitIndex; std::vector Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) Indices.push_back(std::make_pair(NodeOrder[i], i)); auto CompareKey = [](UnitIndex i1, UnitIndex i2) { return std::get<0>(i1) < std::get<0>(i2); }; // sort, so that we can perform a binary search llvm::sort(Indices, CompareKey); bool Valid = true; (void)Valid; // for each SUnit in the NodeOrder, check whether // it appears after both a successor and a predecessor // of the SUnit. If this is the case, and the SUnit // is not part of circuit, then the NodeOrder is not // valid. for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { SUnit *SU = NodeOrder[i]; unsigned Index = i; bool PredBefore = false; bool SuccBefore = false; SUnit *Succ; SUnit *Pred; (void)Succ; (void)Pred; for (SDep &PredEdge : SU->Preds) { SUnit *PredSU = PredEdge.getSUnit(); unsigned PredIndex = std::get<1>( *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { PredBefore = true; Pred = PredSU; break; } } for (SDep &SuccEdge : SU->Succs) { SUnit *SuccSU = SuccEdge.getSUnit(); // Do not process a boundary node, it was not included in NodeOrder, // hence not in Indices either, call to std::lower_bound() below will // return Indices.end(). if (SuccSU->isBoundaryNode()) continue; unsigned SuccIndex = std::get<1>( *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { SuccBefore = true; Succ = SuccSU; break; } } if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { // instructions in circuits are allowed to be scheduled // after both a successor and predecessor. bool InCircuit = llvm::any_of( Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); if (InCircuit) LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); else { Valid = false; NumNodeOrderIssues++; LLVM_DEBUG(dbgs() << "Predecessor ";); } LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum << " are scheduled before node " << SU->NodeNum << "\n";); } } LLVM_DEBUG({ if (!Valid) dbgs() << "Invalid node order found!\n"; }); } /// Attempt to fix the degenerate cases when the instruction serialization /// causes the register lifetimes to overlap. For example, /// p' = store_pi(p, b) /// = load p, offset /// In this case p and p' overlap, which means that two registers are needed. /// Instead, this function changes the load to use p' and updates the offset. void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque &Instrs) { unsigned OverlapReg = 0; unsigned NewBaseReg = 0; for (SUnit *SU : Instrs) { MachineInstr *MI = SU->getInstr(); for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { const MachineOperand &MO = MI->getOperand(i); // Look for an instruction that uses p. The instruction occurs in the // same cycle but occurs later in the serialized order. if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { // Check that the instruction appears in the InstrChanges structure, // which contains instructions that can have the offset updated. DenseMap>::iterator It = InstrChanges.find(SU); if (It != InstrChanges.end()) { unsigned BasePos, OffsetPos; // Update the base register and adjust the offset. if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { MachineInstr *NewMI = MF.CloneMachineInstr(MI); NewMI->getOperand(BasePos).setReg(NewBaseReg); int64_t NewOffset = MI->getOperand(OffsetPos).getImm() - It->second.second; NewMI->getOperand(OffsetPos).setImm(NewOffset); SU->setInstr(NewMI); MISUnitMap[NewMI] = SU; NewMIs[MI] = NewMI; } } OverlapReg = 0; NewBaseReg = 0; break; } // Look for an instruction of the form p' = op(p), which uses and defines // two virtual registers that get allocated to the same physical register. unsigned TiedUseIdx = 0; if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { // OverlapReg is p in the example above. OverlapReg = MI->getOperand(TiedUseIdx).getReg(); // NewBaseReg is p' in the example above. NewBaseReg = MI->getOperand(i).getReg(); break; } } } } std::deque SMSchedule::reorderInstructions(const SwingSchedulerDAG *SSD, const std::deque &Instrs) const { std::deque NewOrderPhi; for (SUnit *SU : Instrs) { if (SU->getInstr()->isPHI()) NewOrderPhi.push_back(SU); } std::deque NewOrderI; for (SUnit *SU : Instrs) { if (!SU->getInstr()->isPHI()) orderDependence(SSD, SU, NewOrderI); } llvm::append_range(NewOrderPhi, NewOrderI); return NewOrderPhi; } /// After the schedule has been formed, call this function to combine /// the instructions from the different stages/cycles. That is, this /// function creates a schedule that represents a single iteration. void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { // Move all instructions to the first stage from later stages. for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; ++stage) { std::deque &cycleInstrs = ScheduledInstrs[cycle + (stage * InitiationInterval)]; for (SUnit *SU : llvm::reverse(cycleInstrs)) ScheduledInstrs[cycle].push_front(SU); } } // Erase all the elements in the later stages. Only one iteration should // remain in the scheduled list, and it contains all the instructions. for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) ScheduledInstrs.erase(cycle); // Change the registers in instruction as specified in the InstrChanges // map. We need to use the new registers to create the correct order. for (const SUnit &SU : SSD->SUnits) SSD->applyInstrChange(SU.getInstr(), *this); // Reorder the instructions in each cycle to fix and improve the // generated code. for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { std::deque &cycleInstrs = ScheduledInstrs[Cycle]; cycleInstrs = reorderInstructions(SSD, cycleInstrs); SSD->fixupRegisterOverlaps(cycleInstrs); } LLVM_DEBUG(dump();); } void NodeSet::print(raw_ostream &os) const { os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV << " depth " << MaxDepth << " col " << Colocate << "\n"; for (const auto &I : Nodes) os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); os << "\n"; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// Print the schedule information to the given output. void SMSchedule::print(raw_ostream &os) const { // Iterate over each cycle. for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { // Iterate over each instruction in the cycle. const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); for (SUnit *CI : cycleInstrs->second) { os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; os << "(" << CI->NodeNum << ") "; CI->getInstr()->print(os); os << "\n"; } } } /// Utility function used for debugging to print the schedule. LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } void ResourceManager::dumpMRT() const { LLVM_DEBUG({ if (UseDFA) return; std::stringstream SS; SS << "MRT:\n"; SS << std::setw(4) << "Slot"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << I; SS << std::setw(7) << "#Mops" << "\n"; for (int Slot = 0; Slot < InitiationInterval; ++Slot) { SS << std::setw(4) << Slot; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) SS << std::setw(3) << MRT[Slot][I]; SS << std::setw(7) << NumScheduledMops[Slot] << "\n"; } dbgs() << SS.str(); }); } #endif void ResourceManager::initProcResourceVectors( const MCSchedModel &SM, SmallVectorImpl &Masks) { unsigned ProcResourceID = 0; // We currently limit the resource kinds to 64 and below so that we can use // uint64_t for Masks assert(SM.getNumProcResourceKinds() < 64 && "Too many kinds of resources, unsupported"); // Create a unique bitmask for every processor resource unit. // Skip resource at index 0, since it always references 'InvalidUnit'. Masks.resize(SM.getNumProcResourceKinds()); for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc &Desc = *SM.getProcResource(I); if (Desc.SubUnitsIdxBegin) continue; Masks[I] = 1ULL << ProcResourceID; ProcResourceID++; } // Create a unique bitmask for every processor resource group. for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc &Desc = *SM.getProcResource(I); if (!Desc.SubUnitsIdxBegin) continue; Masks[I] = 1ULL << ProcResourceID; for (unsigned U = 0; U < Desc.NumUnits; ++U) Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; ProcResourceID++; } LLVM_DEBUG({ if (SwpShowResMask) { dbgs() << "ProcResourceDesc:\n"; for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *ProcResource = SM.getProcResource(I); dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", ProcResource->Name, I, Masks[I], ProcResource->NumUnits); } dbgs() << " -----------------\n"; } }); } bool ResourceManager::canReserveResources(SUnit &SU, int Cycle) { LLVM_DEBUG({ if (SwpDebugResource) dbgs() << "canReserveResources:\n"; }); if (UseDFA) return DFAResources[positiveModulo(Cycle, InitiationInterval)] ->canReserveResources(&SU.getInstr()->getDesc()); const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); if (!SCDesc->isValid()) { LLVM_DEBUG({ dbgs() << "No valid Schedule Class Desc for schedClass!\n"; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; }); return true; } reserveResources(SCDesc, Cycle); bool Result = !isOverbooked(); unreserveResources(SCDesc, Cycle); LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return " << Result << "\n\n";); return Result; } void ResourceManager::reserveResources(SUnit &SU, int Cycle) { LLVM_DEBUG({ if (SwpDebugResource) dbgs() << "reserveResources:\n"; }); if (UseDFA) return DFAResources[positiveModulo(Cycle, InitiationInterval)] ->reserveResources(&SU.getInstr()->getDesc()); const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); if (!SCDesc->isValid()) { LLVM_DEBUG({ dbgs() << "No valid Schedule Class Desc for schedClass!\n"; dbgs() << "isPseudo:" << SU.getInstr()->isPseudo() << "\n"; }); return; } reserveResources(SCDesc, Cycle); LLVM_DEBUG({ if (SwpDebugResource) { dumpMRT(); dbgs() << "reserveResources: done!\n\n"; } }); } void ResourceManager::reserveResources(const MCSchedClassDesc *SCDesc, int Cycle) { assert(!UseDFA); for (const MCWriteProcResEntry &PRE : make_range( STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) ++MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) ++NumScheduledMops[positiveModulo(C, InitiationInterval)]; } void ResourceManager::unreserveResources(const MCSchedClassDesc *SCDesc, int Cycle) { assert(!UseDFA); for (const MCWriteProcResEntry &PRE : make_range( STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) for (int C = Cycle; C < Cycle + PRE.ReleaseAtCycle; ++C) --MRT[positiveModulo(C, InitiationInterval)][PRE.ProcResourceIdx]; for (int C = Cycle; C < Cycle + SCDesc->NumMicroOps; ++C) --NumScheduledMops[positiveModulo(C, InitiationInterval)]; } bool ResourceManager::isOverbooked() const { assert(!UseDFA); for (int Slot = 0; Slot < InitiationInterval; ++Slot) { for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *Desc = SM.getProcResource(I); if (MRT[Slot][I] > Desc->NumUnits) return true; } if (NumScheduledMops[Slot] > IssueWidth) return true; } return false; } int ResourceManager::calculateResMIIDFA() const { assert(UseDFA); // Sort the instructions by the number of available choices for scheduling, // least to most. Use the number of critical resources as the tie breaker. FuncUnitSorter FUS = FuncUnitSorter(*ST); for (SUnit &SU : DAG->SUnits) FUS.calcCriticalResources(*SU.getInstr()); PriorityQueue, FuncUnitSorter> FuncUnitOrder(FUS); for (SUnit &SU : DAG->SUnits) FuncUnitOrder.push(SU.getInstr()); SmallVector, 8> Resources; Resources.push_back( std::unique_ptr(TII->CreateTargetScheduleState(*ST))); while (!FuncUnitOrder.empty()) { MachineInstr *MI = FuncUnitOrder.top(); FuncUnitOrder.pop(); if (TII->isZeroCost(MI->getOpcode())) continue; // Attempt to reserve the instruction in an existing DFA. At least one // DFA is needed for each cycle. unsigned NumCycles = DAG->getSUnit(MI)->Latency; unsigned ReservedCycles = 0; auto *RI = Resources.begin(); auto *RE = Resources.end(); LLVM_DEBUG({ dbgs() << "Trying to reserve resource for " << NumCycles << " cycles for \n"; MI->dump(); }); for (unsigned C = 0; C < NumCycles; ++C) while (RI != RE) { if ((*RI)->canReserveResources(*MI)) { (*RI)->reserveResources(*MI); ++ReservedCycles; break; } RI++; } LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles << ", NumCycles:" << NumCycles << "\n"); // Add new DFAs, if needed, to reserve resources. for (unsigned C = ReservedCycles; C < NumCycles; ++C) { LLVM_DEBUG(if (SwpDebugResource) dbgs() << "NewResource created to reserve resources" << "\n"); auto *NewResource = TII->CreateTargetScheduleState(*ST); assert(NewResource->canReserveResources(*MI) && "Reserve error."); NewResource->reserveResources(*MI); Resources.push_back(std::unique_ptr(NewResource)); } } int Resmii = Resources.size(); LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); return Resmii; } int ResourceManager::calculateResMII() const { if (UseDFA) return calculateResMIIDFA(); // Count each resource consumption and divide it by the number of units. // ResMII is the max value among them. int NumMops = 0; SmallVector ResourceCount(SM.getNumProcResourceKinds()); for (SUnit &SU : DAG->SUnits) { if (TII->isZeroCost(SU.getInstr()->getOpcode())) continue; const MCSchedClassDesc *SCDesc = DAG->getSchedClass(&SU); if (!SCDesc->isValid()) continue; LLVM_DEBUG({ if (SwpDebugResource) { DAG->dumpNode(SU); dbgs() << " #Mops: " << SCDesc->NumMicroOps << "\n" << " WriteProcRes: "; } }); NumMops += SCDesc->NumMicroOps; for (const MCWriteProcResEntry &PRE : make_range(STI->getWriteProcResBegin(SCDesc), STI->getWriteProcResEnd(SCDesc))) { LLVM_DEBUG({ if (SwpDebugResource) { const MCProcResourceDesc *Desc = SM.getProcResource(PRE.ProcResourceIdx); dbgs() << Desc->Name << ": " << PRE.ReleaseAtCycle << ", "; } }); ResourceCount[PRE.ProcResourceIdx] += PRE.ReleaseAtCycle; } LLVM_DEBUG(if (SwpDebugResource) dbgs() << "\n"); } int Result = (NumMops + IssueWidth - 1) / IssueWidth; LLVM_DEBUG({ if (SwpDebugResource) dbgs() << "#Mops: " << NumMops << ", " << "IssueWidth: " << IssueWidth << ", " << "Cycles: " << Result << "\n"; }); LLVM_DEBUG({ if (SwpDebugResource) { std::stringstream SS; SS << std::setw(2) << "ID" << std::setw(16) << "Name" << std::setw(10) << "Units" << std::setw(10) << "Consumed" << std::setw(10) << "Cycles" << "\n"; dbgs() << SS.str(); } }); for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { const MCProcResourceDesc *Desc = SM.getProcResource(I); int Cycles = (ResourceCount[I] + Desc->NumUnits - 1) / Desc->NumUnits; LLVM_DEBUG({ if (SwpDebugResource) { std::stringstream SS; SS << std::setw(2) << I << std::setw(16) << Desc->Name << std::setw(10) << Desc->NumUnits << std::setw(10) << ResourceCount[I] << std::setw(10) << Cycles << "\n"; dbgs() << SS.str(); } }); if (Cycles > Result) Result = Cycles; } return Result; } void ResourceManager::init(int II) { InitiationInterval = II; DFAResources.clear(); DFAResources.resize(II); for (auto &I : DFAResources) I.reset(ST->getInstrInfo()->CreateTargetScheduleState(*ST)); MRT.clear(); MRT.resize(II, SmallVector(SM.getNumProcResourceKinds())); NumScheduledMops.clear(); NumScheduledMops.resize(II); }