//===- MachineLoopInfo.cpp - Natural Loop Calculator ----------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the MachineLoopInfo class that is used to identify natural // loops and determine the loop depth of various nodes of the CFG. Note that // the loops identified may actually be several natural loops that share the // same header node... not just a single natural loop. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/PassRegistry.h" #include "llvm/Support/GenericLoopInfoImpl.h" using namespace llvm; // Explicitly instantiate methods in LoopInfoImpl.h for MI-level Loops. template class llvm::LoopBase; template class llvm::LoopInfoBase; AnalysisKey MachineLoopAnalysis::Key; MachineLoopAnalysis::Result MachineLoopAnalysis::run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { return MachineLoopInfo(MFAM.getResult(MF)); } PreservedAnalyses MachineLoopPrinterPass::run(MachineFunction &MF, MachineFunctionAnalysisManager &MFAM) { OS << "Machine loop info for machine function '" << MF.getName() << "':\n"; MFAM.getResult(MF).print(OS); return PreservedAnalyses::all(); } char MachineLoopInfoWrapperPass::ID = 0; MachineLoopInfoWrapperPass::MachineLoopInfoWrapperPass() : MachineFunctionPass(ID) { initializeMachineLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry()); } INITIALIZE_PASS_BEGIN(MachineLoopInfoWrapperPass, "machine-loops", "Machine Natural Loop Construction", true, true) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) INITIALIZE_PASS_END(MachineLoopInfoWrapperPass, "machine-loops", "Machine Natural Loop Construction", true, true) char &llvm::MachineLoopInfoID = MachineLoopInfoWrapperPass::ID; bool MachineLoopInfoWrapperPass::runOnMachineFunction(MachineFunction &) { LI.calculate(getAnalysis().getDomTree()); return false; } bool MachineLoopInfo::invalidate( MachineFunction &, const PreservedAnalyses &PA, MachineFunctionAnalysisManager::Invalidator &) { // Check whether the analysis, all analyses on functions, or the function's // CFG have been preserved. auto PAC = PA.getChecker(); return !PAC.preserved() && !PAC.preservedSet>() && !PAC.preservedSet(); } void MachineLoopInfo::calculate(MachineDominatorTree &MDT) { releaseMemory(); analyze(MDT.getBase()); } void MachineLoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired(); MachineFunctionPass::getAnalysisUsage(AU); } MachineBasicBlock *MachineLoop::getTopBlock() { MachineBasicBlock *TopMBB = getHeader(); MachineFunction::iterator Begin = TopMBB->getParent()->begin(); if (TopMBB->getIterator() != Begin) { MachineBasicBlock *PriorMBB = &*std::prev(TopMBB->getIterator()); while (contains(PriorMBB)) { TopMBB = PriorMBB; if (TopMBB->getIterator() == Begin) break; PriorMBB = &*std::prev(TopMBB->getIterator()); } } return TopMBB; } MachineBasicBlock *MachineLoop::getBottomBlock() { MachineBasicBlock *BotMBB = getHeader(); MachineFunction::iterator End = BotMBB->getParent()->end(); if (BotMBB->getIterator() != std::prev(End)) { MachineBasicBlock *NextMBB = &*std::next(BotMBB->getIterator()); while (contains(NextMBB)) { BotMBB = NextMBB; if (BotMBB == &*std::next(BotMBB->getIterator())) break; NextMBB = &*std::next(BotMBB->getIterator()); } } return BotMBB; } MachineBasicBlock *MachineLoop::findLoopControlBlock() const { if (MachineBasicBlock *Latch = getLoopLatch()) { if (isLoopExiting(Latch)) return Latch; else return getExitingBlock(); } return nullptr; } DebugLoc MachineLoop::getStartLoc() const { // Try the pre-header first. if (MachineBasicBlock *PHeadMBB = getLoopPreheader()) if (const BasicBlock *PHeadBB = PHeadMBB->getBasicBlock()) if (DebugLoc DL = PHeadBB->getTerminator()->getDebugLoc()) return DL; // If we have no pre-header or there are no instructions with debug // info in it, try the header. if (MachineBasicBlock *HeadMBB = getHeader()) if (const BasicBlock *HeadBB = HeadMBB->getBasicBlock()) return HeadBB->getTerminator()->getDebugLoc(); return DebugLoc(); } MachineBasicBlock * MachineLoopInfo::findLoopPreheader(MachineLoop *L, bool SpeculativePreheader, bool FindMultiLoopPreheader) const { if (MachineBasicBlock *PB = L->getLoopPreheader()) return PB; if (!SpeculativePreheader) return nullptr; MachineBasicBlock *HB = L->getHeader(), *LB = L->getLoopLatch(); if (HB->pred_size() != 2 || HB->hasAddressTaken()) return nullptr; // Find the predecessor of the header that is not the latch block. MachineBasicBlock *Preheader = nullptr; for (MachineBasicBlock *P : HB->predecessors()) { if (P == LB) continue; // Sanity. if (Preheader) return nullptr; Preheader = P; } // Check if the preheader candidate is a successor of any other loop // headers. We want to avoid having two loop setups in the same block. if (!FindMultiLoopPreheader) { for (MachineBasicBlock *S : Preheader->successors()) { if (S == HB) continue; MachineLoop *T = getLoopFor(S); if (T && T->getHeader() == S) return nullptr; } } return Preheader; } MDNode *MachineLoop::getLoopID() const { MDNode *LoopID = nullptr; if (const auto *MBB = findLoopControlBlock()) { // If there is a single latch block, then the metadata // node is attached to its terminating instruction. const auto *BB = MBB->getBasicBlock(); if (!BB) return nullptr; if (const auto *TI = BB->getTerminator()) LoopID = TI->getMetadata(LLVMContext::MD_loop); } else if (const auto *MBB = getHeader()) { // There seem to be multiple latch blocks, so we have to // visit all predecessors of the loop header and check // their terminating instructions for the metadata. if (const auto *Header = MBB->getBasicBlock()) { // Walk over all blocks in the loop. for (const auto *MBB : this->blocks()) { const auto *BB = MBB->getBasicBlock(); if (!BB) return nullptr; const auto *TI = BB->getTerminator(); if (!TI) return nullptr; MDNode *MD = nullptr; // Check if this terminating instruction jumps to the loop header. for (const auto *Succ : successors(TI)) { if (Succ == Header) { // This is a jump to the header - gather the metadata from it. MD = TI->getMetadata(LLVMContext::MD_loop); break; } } if (!MD) return nullptr; if (!LoopID) LoopID = MD; else if (MD != LoopID) return nullptr; } } } if (LoopID && (LoopID->getNumOperands() == 0 || LoopID->getOperand(0) != LoopID)) LoopID = nullptr; return LoopID; } bool MachineLoop::isLoopInvariantImplicitPhysReg(Register Reg) const { MachineFunction *MF = getHeader()->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); if (MRI->isConstantPhysReg(Reg)) return true; if (!MF->getSubtarget() .getRegisterInfo() ->shouldAnalyzePhysregInMachineLoopInfo(Reg)) return false; return !llvm::any_of( MRI->def_instructions(Reg), [this](const MachineInstr &MI) { return this->contains(&MI); }); } bool MachineLoop::isLoopInvariant(MachineInstr &I, const Register ExcludeReg) const { MachineFunction *MF = I.getParent()->getParent(); MachineRegisterInfo *MRI = &MF->getRegInfo(); const TargetSubtargetInfo &ST = MF->getSubtarget(); const TargetRegisterInfo *TRI = ST.getRegisterInfo(); const TargetInstrInfo *TII = ST.getInstrInfo(); // The instruction is loop invariant if all of its operands are. for (const MachineOperand &MO : I.operands()) { if (!MO.isReg()) continue; Register Reg = MO.getReg(); if (Reg == 0) continue; if (ExcludeReg == Reg) continue; // An instruction that uses or defines a physical register can't e.g. be // hoisted, so mark this as not invariant. if (Reg.isPhysical()) { if (MO.isUse()) { // If the physreg has no defs anywhere, it's just an ambient register // and we can freely move its uses. Alternatively, if it's allocatable, // it could get allocated to something with a def during allocation. // However, if the physreg is known to always be caller saved/restored // then this use is safe to hoist. if (!isLoopInvariantImplicitPhysReg(Reg) && !(TRI->isCallerPreservedPhysReg(Reg.asMCReg(), *I.getMF())) && !TII->isIgnorableUse(MO)) return false; // Otherwise it's safe to move. continue; } else if (!MO.isDead()) { // A def that isn't dead can't be moved. return false; } else if (getHeader()->isLiveIn(Reg)) { // If the reg is live into the loop, we can't hoist an instruction // which would clobber it. return false; } } if (!MO.isUse()) continue; assert(MRI->getVRegDef(Reg) && "Machine instr not mapped for this vreg?!"); // If the loop contains the definition of an operand, then the instruction // isn't loop invariant. if (contains(MRI->getVRegDef(Reg))) return false; } // If we got this far, the instruction is loop invariant! return true; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineLoop::dump() const { print(dbgs()); } #endif