//===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Collect the sequence of machine instructions for a basic block. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/StringExtras.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/LivePhysRegs.h" #include "llvm/CodeGen/LiveVariables.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/BasicBlock.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/ModuleSlotTracker.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetMachine.h" #include #include using namespace llvm; #define DEBUG_TYPE "codegen" static cl::opt PrintSlotIndexes( "print-slotindexes", cl::desc("When printing machine IR, annotate instructions and blocks with " "SlotIndexes when available"), cl::init(true), cl::Hidden); MachineBasicBlock::MachineBasicBlock(MachineFunction &MF, const BasicBlock *B) : BB(B), Number(-1), xParent(&MF) { Insts.Parent = this; if (B) IrrLoopHeaderWeight = B->getIrrLoopHeaderWeight(); } MachineBasicBlock::~MachineBasicBlock() = default; /// Return the MCSymbol for this basic block. MCSymbol *MachineBasicBlock::getSymbol() const { if (!CachedMCSymbol) { const MachineFunction *MF = getParent(); MCContext &Ctx = MF->getContext(); // We emit a non-temporary symbol -- with a descriptive name -- if it begins // a section (with basic block sections). Otherwise we fall back to use temp // label. if (MF->hasBBSections() && isBeginSection()) { SmallString<5> Suffix; if (SectionID == MBBSectionID::ColdSectionID) { Suffix += ".cold"; } else if (SectionID == MBBSectionID::ExceptionSectionID) { Suffix += ".eh"; } else { // For symbols that represent basic block sections, we add ".__part." to // allow tools like symbolizers to know that this represents a part of // the original function. Suffix = (Suffix + Twine(".__part.") + Twine(SectionID.Number)).str(); } CachedMCSymbol = Ctx.getOrCreateSymbol(MF->getName() + Suffix); } else { // If the block occurs as label in inline assembly, parsing the assembly // needs an actual label name => set AlwaysEmit in these cases. CachedMCSymbol = Ctx.createBlockSymbol( "BB" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), /*AlwaysEmit=*/hasLabelMustBeEmitted()); } } return CachedMCSymbol; } MCSymbol *MachineBasicBlock::getEHCatchretSymbol() const { if (!CachedEHCatchretMCSymbol) { const MachineFunction *MF = getParent(); SmallString<128> SymbolName; raw_svector_ostream(SymbolName) << "$ehgcr_" << MF->getFunctionNumber() << '_' << getNumber(); CachedEHCatchretMCSymbol = MF->getContext().getOrCreateSymbol(SymbolName); } return CachedEHCatchretMCSymbol; } MCSymbol *MachineBasicBlock::getEndSymbol() const { if (!CachedEndMCSymbol) { const MachineFunction *MF = getParent(); MCContext &Ctx = MF->getContext(); CachedEndMCSymbol = Ctx.createBlockSymbol( "BB_END" + Twine(MF->getFunctionNumber()) + "_" + Twine(getNumber()), /*AlwaysEmit=*/false); } return CachedEndMCSymbol; } raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) { MBB.print(OS); return OS; } Printable llvm::printMBBReference(const MachineBasicBlock &MBB) { return Printable([&MBB](raw_ostream &OS) { return MBB.printAsOperand(OS); }); } /// When an MBB is added to an MF, we need to update the parent pointer of the /// MBB, the MBB numbering, and any instructions in the MBB to be on the right /// operand list for registers. /// /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it /// gets the next available unique MBB number. If it is removed from a /// MachineFunction, it goes back to being #-1. void ilist_callback_traits::addNodeToList( MachineBasicBlock *N) { MachineFunction &MF = *N->getParent(); N->Number = MF.addToMBBNumbering(N); // Make sure the instructions have their operands in the reginfo lists. MachineRegisterInfo &RegInfo = MF.getRegInfo(); for (MachineInstr &MI : N->instrs()) MI.addRegOperandsToUseLists(RegInfo); } void ilist_callback_traits::removeNodeFromList( MachineBasicBlock *N) { N->getParent()->removeFromMBBNumbering(N->Number); N->Number = -1; } /// When we add an instruction to a basic block list, we update its parent /// pointer and add its operands from reg use/def lists if appropriate. void ilist_traits::addNodeToList(MachineInstr *N) { assert(!N->getParent() && "machine instruction already in a basic block"); N->setParent(Parent); // Add the instruction's register operands to their corresponding // use/def lists. MachineFunction *MF = Parent->getParent(); N->addRegOperandsToUseLists(MF->getRegInfo()); MF->handleInsertion(*N); } /// When we remove an instruction from a basic block list, we update its parent /// pointer and remove its operands from reg use/def lists if appropriate. void ilist_traits::removeNodeFromList(MachineInstr *N) { assert(N->getParent() && "machine instruction not in a basic block"); // Remove from the use/def lists. if (MachineFunction *MF = N->getMF()) { MF->handleRemoval(*N); N->removeRegOperandsFromUseLists(MF->getRegInfo()); } N->setParent(nullptr); } /// When moving a range of instructions from one MBB list to another, we need to /// update the parent pointers and the use/def lists. void ilist_traits::transferNodesFromList(ilist_traits &FromList, instr_iterator First, instr_iterator Last) { assert(Parent->getParent() == FromList.Parent->getParent() && "cannot transfer MachineInstrs between MachineFunctions"); // If it's within the same BB, there's nothing to do. if (this == &FromList) return; assert(Parent != FromList.Parent && "Two lists have the same parent?"); // If splicing between two blocks within the same function, just update the // parent pointers. for (; First != Last; ++First) First->setParent(Parent); } void ilist_traits::deleteNode(MachineInstr *MI) { assert(!MI->getParent() && "MI is still in a block!"); Parent->getParent()->deleteMachineInstr(MI); } MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() { instr_iterator I = instr_begin(), E = instr_end(); while (I != E && I->isPHI()) ++I; assert((I == E || !I->isInsideBundle()) && "First non-phi MI cannot be inside a bundle!"); return I; } MachineBasicBlock::iterator MachineBasicBlock::SkipPHIsAndLabels(MachineBasicBlock::iterator I) { const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); iterator E = end(); while (I != E && (I->isPHI() || I->isPosition() || TII->isBasicBlockPrologue(*I))) ++I; // FIXME: This needs to change if we wish to bundle labels // inside the bundle. assert((I == E || !I->isInsideBundle()) && "First non-phi / non-label instruction is inside a bundle!"); return I; } MachineBasicBlock::iterator MachineBasicBlock::SkipPHIsLabelsAndDebug(MachineBasicBlock::iterator I, Register Reg, bool SkipPseudoOp) { const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); iterator E = end(); while (I != E && (I->isPHI() || I->isPosition() || I->isDebugInstr() || (SkipPseudoOp && I->isPseudoProbe()) || TII->isBasicBlockPrologue(*I, Reg))) ++I; // FIXME: This needs to change if we wish to bundle labels / dbg_values // inside the bundle. assert((I == E || !I->isInsideBundle()) && "First non-phi / non-label / non-debug " "instruction is inside a bundle!"); return I; } MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() { iterator B = begin(), E = end(), I = E; while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) ; /*noop */ while (I != E && !I->isTerminator()) ++I; return I; } MachineBasicBlock::instr_iterator MachineBasicBlock::getFirstInstrTerminator() { instr_iterator B = instr_begin(), E = instr_end(), I = E; while (I != B && ((--I)->isTerminator() || I->isDebugInstr())) ; /*noop */ while (I != E && !I->isTerminator()) ++I; return I; } MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminatorForward() { return find_if(instrs(), [](auto &II) { return II.isTerminator(); }); } MachineBasicBlock::iterator MachineBasicBlock::getFirstNonDebugInstr(bool SkipPseudoOp) { // Skip over begin-of-block dbg_value instructions. return skipDebugInstructionsForward(begin(), end(), SkipPseudoOp); } MachineBasicBlock::iterator MachineBasicBlock::getLastNonDebugInstr(bool SkipPseudoOp) { // Skip over end-of-block dbg_value instructions. instr_iterator B = instr_begin(), I = instr_end(); while (I != B) { --I; // Return instruction that starts a bundle. if (I->isDebugInstr() || I->isInsideBundle()) continue; if (SkipPseudoOp && I->isPseudoProbe()) continue; return I; } // The block is all debug values. return end(); } bool MachineBasicBlock::hasEHPadSuccessor() const { for (const MachineBasicBlock *Succ : successors()) if (Succ->isEHPad()) return true; return false; } bool MachineBasicBlock::isEntryBlock() const { return getParent()->begin() == getIterator(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void MachineBasicBlock::dump() const { print(dbgs()); } #endif bool MachineBasicBlock::mayHaveInlineAsmBr() const { for (const MachineBasicBlock *Succ : successors()) { if (Succ->isInlineAsmBrIndirectTarget()) return true; } return false; } bool MachineBasicBlock::isLegalToHoistInto() const { if (isReturnBlock() || hasEHPadSuccessor() || mayHaveInlineAsmBr()) return false; return true; } bool MachineBasicBlock::hasName() const { if (const BasicBlock *LBB = getBasicBlock()) return LBB->hasName(); return false; } StringRef MachineBasicBlock::getName() const { if (const BasicBlock *LBB = getBasicBlock()) return LBB->getName(); else return StringRef("", 0); } /// Return a hopefully unique identifier for this block. std::string MachineBasicBlock::getFullName() const { std::string Name; if (getParent()) Name = (getParent()->getName() + ":").str(); if (getBasicBlock()) Name += getBasicBlock()->getName(); else Name += ("BB" + Twine(getNumber())).str(); return Name; } void MachineBasicBlock::print(raw_ostream &OS, const SlotIndexes *Indexes, bool IsStandalone) const { const MachineFunction *MF = getParent(); if (!MF) { OS << "Can't print out MachineBasicBlock because parent MachineFunction" << " is null\n"; return; } const Function &F = MF->getFunction(); const Module *M = F.getParent(); ModuleSlotTracker MST(M); MST.incorporateFunction(F); print(OS, MST, Indexes, IsStandalone); } void MachineBasicBlock::print(raw_ostream &OS, ModuleSlotTracker &MST, const SlotIndexes *Indexes, bool IsStandalone) const { const MachineFunction *MF = getParent(); if (!MF) { OS << "Can't print out MachineBasicBlock because parent MachineFunction" << " is null\n"; return; } if (Indexes && PrintSlotIndexes) OS << Indexes->getMBBStartIdx(this) << '\t'; printName(OS, PrintNameIr | PrintNameAttributes, &MST); OS << ":\n"; const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); const MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); bool HasLineAttributes = false; // Print the preds of this block according to the CFG. if (!pred_empty() && IsStandalone) { if (Indexes) OS << '\t'; // Don't indent(2), align with previous line attributes. OS << "; predecessors: "; ListSeparator LS; for (auto *Pred : predecessors()) OS << LS << printMBBReference(*Pred); OS << '\n'; HasLineAttributes = true; } if (!succ_empty()) { if (Indexes) OS << '\t'; // Print the successors OS.indent(2) << "successors: "; ListSeparator LS; for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { OS << LS << printMBBReference(**I); if (!Probs.empty()) OS << '(' << format("0x%08" PRIx32, getSuccProbability(I).getNumerator()) << ')'; } if (!Probs.empty() && IsStandalone) { // Print human readable probabilities as comments. OS << "; "; ListSeparator LS; for (auto I = succ_begin(), E = succ_end(); I != E; ++I) { const BranchProbability &BP = getSuccProbability(I); OS << LS << printMBBReference(**I) << '(' << format("%.2f%%", rint(((double)BP.getNumerator() / BP.getDenominator()) * 100.0 * 100.0) / 100.0) << ')'; } } OS << '\n'; HasLineAttributes = true; } if (!livein_empty() && MRI.tracksLiveness()) { if (Indexes) OS << '\t'; OS.indent(2) << "liveins: "; ListSeparator LS; for (const auto &LI : liveins()) { OS << LS << printReg(LI.PhysReg, TRI); if (!LI.LaneMask.all()) OS << ":0x" << PrintLaneMask(LI.LaneMask); } HasLineAttributes = true; } if (HasLineAttributes) OS << '\n'; bool IsInBundle = false; for (const MachineInstr &MI : instrs()) { if (Indexes && PrintSlotIndexes) { if (Indexes->hasIndex(MI)) OS << Indexes->getInstructionIndex(MI); OS << '\t'; } if (IsInBundle && !MI.isInsideBundle()) { OS.indent(2) << "}\n"; IsInBundle = false; } OS.indent(IsInBundle ? 4 : 2); MI.print(OS, MST, IsStandalone, /*SkipOpers=*/false, /*SkipDebugLoc=*/false, /*AddNewLine=*/false, &TII); if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) { OS << " {"; IsInBundle = true; } OS << '\n'; } if (IsInBundle) OS.indent(2) << "}\n"; if (IrrLoopHeaderWeight && IsStandalone) { if (Indexes) OS << '\t'; OS.indent(2) << "; Irreducible loop header weight: " << *IrrLoopHeaderWeight << '\n'; } } /// Print the basic block's name as: /// /// bb.{number}[.{ir-name}] [(attributes...)] /// /// The {ir-name} is only printed when the \ref PrintNameIr flag is passed /// (which is the default). If the IR block has no name, it is identified /// numerically using the attribute syntax as "(%ir-block.{ir-slot})". /// /// When the \ref PrintNameAttributes flag is passed, additional attributes /// of the block are printed when set. /// /// \param printNameFlags Combination of \ref PrintNameFlag flags indicating /// the parts to print. /// \param moduleSlotTracker Optional ModuleSlotTracker. This method will /// incorporate its own tracker when necessary to /// determine the block's IR name. void MachineBasicBlock::printName(raw_ostream &os, unsigned printNameFlags, ModuleSlotTracker *moduleSlotTracker) const { os << "bb." << getNumber(); bool hasAttributes = false; auto PrintBBRef = [&](const BasicBlock *bb) { os << "%ir-block."; if (bb->hasName()) { os << bb->getName(); } else { int slot = -1; if (moduleSlotTracker) { slot = moduleSlotTracker->getLocalSlot(bb); } else if (bb->getParent()) { ModuleSlotTracker tmpTracker(bb->getModule(), false); tmpTracker.incorporateFunction(*bb->getParent()); slot = tmpTracker.getLocalSlot(bb); } if (slot == -1) os << ""; else os << slot; } }; if (printNameFlags & PrintNameIr) { if (const auto *bb = getBasicBlock()) { if (bb->hasName()) { os << '.' << bb->getName(); } else { hasAttributes = true; os << " ("; PrintBBRef(bb); } } } if (printNameFlags & PrintNameAttributes) { if (isMachineBlockAddressTaken()) { os << (hasAttributes ? ", " : " ("); os << "machine-block-address-taken"; hasAttributes = true; } if (isIRBlockAddressTaken()) { os << (hasAttributes ? ", " : " ("); os << "ir-block-address-taken "; PrintBBRef(getAddressTakenIRBlock()); hasAttributes = true; } if (isEHPad()) { os << (hasAttributes ? ", " : " ("); os << "landing-pad"; hasAttributes = true; } if (isInlineAsmBrIndirectTarget()) { os << (hasAttributes ? ", " : " ("); os << "inlineasm-br-indirect-target"; hasAttributes = true; } if (isEHFuncletEntry()) { os << (hasAttributes ? ", " : " ("); os << "ehfunclet-entry"; hasAttributes = true; } if (getAlignment() != Align(1)) { os << (hasAttributes ? ", " : " ("); os << "align " << getAlignment().value(); hasAttributes = true; } if (getSectionID() != MBBSectionID(0)) { os << (hasAttributes ? ", " : " ("); os << "bbsections "; switch (getSectionID().Type) { case MBBSectionID::SectionType::Exception: os << "Exception"; break; case MBBSectionID::SectionType::Cold: os << "Cold"; break; default: os << getSectionID().Number; } hasAttributes = true; } if (getBBID().has_value()) { os << (hasAttributes ? ", " : " ("); os << "bb_id " << getBBID()->BaseID; if (getBBID()->CloneID != 0) os << " " << getBBID()->CloneID; hasAttributes = true; } if (CallFrameSize != 0) { os << (hasAttributes ? ", " : " ("); os << "call-frame-size " << CallFrameSize; hasAttributes = true; } } if (hasAttributes) os << ')'; } void MachineBasicBlock::printAsOperand(raw_ostream &OS, bool /*PrintType*/) const { OS << '%'; printName(OS, 0); } void MachineBasicBlock::removeLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) { LiveInVector::iterator I = find_if( LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); if (I == LiveIns.end()) return; I->LaneMask &= ~LaneMask; if (I->LaneMask.none()) LiveIns.erase(I); } MachineBasicBlock::livein_iterator MachineBasicBlock::removeLiveIn(MachineBasicBlock::livein_iterator I) { // Get non-const version of iterator. LiveInVector::iterator LI = LiveIns.begin() + (I - LiveIns.begin()); return LiveIns.erase(LI); } bool MachineBasicBlock::isLiveIn(MCPhysReg Reg, LaneBitmask LaneMask) const { livein_iterator I = find_if( LiveIns, [Reg](const RegisterMaskPair &LI) { return LI.PhysReg == Reg; }); return I != livein_end() && (I->LaneMask & LaneMask).any(); } void MachineBasicBlock::sortUniqueLiveIns() { llvm::sort(LiveIns, [](const RegisterMaskPair &LI0, const RegisterMaskPair &LI1) { return LI0.PhysReg < LI1.PhysReg; }); // Liveins are sorted by physreg now we can merge their lanemasks. LiveInVector::const_iterator I = LiveIns.begin(); LiveInVector::const_iterator J; LiveInVector::iterator Out = LiveIns.begin(); for (; I != LiveIns.end(); ++Out, I = J) { MCRegister PhysReg = I->PhysReg; LaneBitmask LaneMask = I->LaneMask; for (J = std::next(I); J != LiveIns.end() && J->PhysReg == PhysReg; ++J) LaneMask |= J->LaneMask; Out->PhysReg = PhysReg; Out->LaneMask = LaneMask; } LiveIns.erase(Out, LiveIns.end()); } Register MachineBasicBlock::addLiveIn(MCRegister PhysReg, const TargetRegisterClass *RC) { assert(getParent() && "MBB must be inserted in function"); assert(Register::isPhysicalRegister(PhysReg) && "Expected physreg"); assert(RC && "Register class is required"); assert((isEHPad() || this == &getParent()->front()) && "Only the entry block and landing pads can have physreg live ins"); bool LiveIn = isLiveIn(PhysReg); iterator I = SkipPHIsAndLabels(begin()), E = end(); MachineRegisterInfo &MRI = getParent()->getRegInfo(); const TargetInstrInfo &TII = *getParent()->getSubtarget().getInstrInfo(); // Look for an existing copy. if (LiveIn) for (;I != E && I->isCopy(); ++I) if (I->getOperand(1).getReg() == PhysReg) { Register VirtReg = I->getOperand(0).getReg(); if (!MRI.constrainRegClass(VirtReg, RC)) llvm_unreachable("Incompatible live-in register class."); return VirtReg; } // No luck, create a virtual register. Register VirtReg = MRI.createVirtualRegister(RC); BuildMI(*this, I, DebugLoc(), TII.get(TargetOpcode::COPY), VirtReg) .addReg(PhysReg, RegState::Kill); if (!LiveIn) addLiveIn(PhysReg); return VirtReg; } void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) { getParent()->splice(NewAfter->getIterator(), getIterator()); } void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) { getParent()->splice(++NewBefore->getIterator(), getIterator()); } static int findJumpTableIndex(const MachineBasicBlock &MBB) { MachineBasicBlock::const_iterator TerminatorI = MBB.getFirstTerminator(); if (TerminatorI == MBB.end()) return -1; const MachineInstr &Terminator = *TerminatorI; const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo(); return TII->getJumpTableIndex(Terminator); } void MachineBasicBlock::updateTerminator( MachineBasicBlock *PreviousLayoutSuccessor) { LLVM_DEBUG(dbgs() << "Updating terminators on " << printMBBReference(*this) << "\n"); const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); // A block with no successors has no concerns with fall-through edges. if (this->succ_empty()) return; MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; DebugLoc DL = findBranchDebugLoc(); bool B = TII->analyzeBranch(*this, TBB, FBB, Cond); (void) B; assert(!B && "UpdateTerminators requires analyzable predecessors!"); if (Cond.empty()) { if (TBB) { // The block has an unconditional branch. If its successor is now its // layout successor, delete the branch. if (isLayoutSuccessor(TBB)) TII->removeBranch(*this); } else { // The block has an unconditional fallthrough, or the end of the block is // unreachable. // Unfortunately, whether the end of the block is unreachable is not // immediately obvious; we must fall back to checking the successor list, // and assuming that if the passed in block is in the succesor list and // not an EHPad, it must be the intended target. if (!PreviousLayoutSuccessor || !isSuccessor(PreviousLayoutSuccessor) || PreviousLayoutSuccessor->isEHPad()) return; // If the unconditional successor block is not the current layout // successor, insert a branch to jump to it. if (!isLayoutSuccessor(PreviousLayoutSuccessor)) TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); } return; } if (FBB) { // The block has a non-fallthrough conditional branch. If one of its // successors is its layout successor, rewrite it to a fallthrough // conditional branch. if (isLayoutSuccessor(TBB)) { if (TII->reverseBranchCondition(Cond)) return; TII->removeBranch(*this); TII->insertBranch(*this, FBB, nullptr, Cond, DL); } else if (isLayoutSuccessor(FBB)) { TII->removeBranch(*this); TII->insertBranch(*this, TBB, nullptr, Cond, DL); } return; } // We now know we're going to fallthrough to PreviousLayoutSuccessor. assert(PreviousLayoutSuccessor); assert(!PreviousLayoutSuccessor->isEHPad()); assert(isSuccessor(PreviousLayoutSuccessor)); if (PreviousLayoutSuccessor == TBB) { // We had a fallthrough to the same basic block as the conditional jump // targets. Remove the conditional jump, leaving an unconditional // fallthrough or an unconditional jump. TII->removeBranch(*this); if (!isLayoutSuccessor(TBB)) { Cond.clear(); TII->insertBranch(*this, TBB, nullptr, Cond, DL); } return; } // The block has a fallthrough conditional branch. if (isLayoutSuccessor(TBB)) { if (TII->reverseBranchCondition(Cond)) { // We can't reverse the condition, add an unconditional branch. Cond.clear(); TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); return; } TII->removeBranch(*this); TII->insertBranch(*this, PreviousLayoutSuccessor, nullptr, Cond, DL); } else if (!isLayoutSuccessor(PreviousLayoutSuccessor)) { TII->removeBranch(*this); TII->insertBranch(*this, TBB, PreviousLayoutSuccessor, Cond, DL); } } void MachineBasicBlock::validateSuccProbs() const { #ifndef NDEBUG int64_t Sum = 0; for (auto Prob : Probs) Sum += Prob.getNumerator(); // Due to precision issue, we assume that the sum of probabilities is one if // the difference between the sum of their numerators and the denominator is // no greater than the number of successors. assert((uint64_t)std::abs(Sum - BranchProbability::getDenominator()) <= Probs.size() && "The sum of successors's probabilities exceeds one."); #endif // NDEBUG } void MachineBasicBlock::addSuccessor(MachineBasicBlock *Succ, BranchProbability Prob) { // Probability list is either empty (if successor list isn't empty, this means // disabled optimization) or has the same size as successor list. if (!(Probs.empty() && !Successors.empty())) Probs.push_back(Prob); Successors.push_back(Succ); Succ->addPredecessor(this); } void MachineBasicBlock::addSuccessorWithoutProb(MachineBasicBlock *Succ) { // We need to make sure probability list is either empty or has the same size // of successor list. When this function is called, we can safely delete all // probability in the list. Probs.clear(); Successors.push_back(Succ); Succ->addPredecessor(this); } void MachineBasicBlock::splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, bool NormalizeSuccProbs) { succ_iterator OldI = llvm::find(successors(), Old); assert(OldI != succ_end() && "Old is not a successor of this block!"); assert(!llvm::is_contained(successors(), New) && "New is already a successor of this block!"); // Add a new successor with equal probability as the original one. Note // that we directly copy the probability using the iterator rather than // getting a potentially synthetic probability computed when unknown. This // preserves the probabilities as-is and then we can renormalize them and // query them effectively afterward. addSuccessor(New, Probs.empty() ? BranchProbability::getUnknown() : *getProbabilityIterator(OldI)); if (NormalizeSuccProbs) normalizeSuccProbs(); } void MachineBasicBlock::removeSuccessor(MachineBasicBlock *Succ, bool NormalizeSuccProbs) { succ_iterator I = find(Successors, Succ); removeSuccessor(I, NormalizeSuccProbs); } MachineBasicBlock::succ_iterator MachineBasicBlock::removeSuccessor(succ_iterator I, bool NormalizeSuccProbs) { assert(I != Successors.end() && "Not a current successor!"); // If probability list is empty it means we don't use it (disabled // optimization). if (!Probs.empty()) { probability_iterator WI = getProbabilityIterator(I); Probs.erase(WI); if (NormalizeSuccProbs) normalizeSuccProbs(); } (*I)->removePredecessor(this); return Successors.erase(I); } void MachineBasicBlock::replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New) { if (Old == New) return; succ_iterator E = succ_end(); succ_iterator NewI = E; succ_iterator OldI = E; for (succ_iterator I = succ_begin(); I != E; ++I) { if (*I == Old) { OldI = I; if (NewI != E) break; } if (*I == New) { NewI = I; if (OldI != E) break; } } assert(OldI != E && "Old is not a successor of this block"); // If New isn't already a successor, let it take Old's place. if (NewI == E) { Old->removePredecessor(this); New->addPredecessor(this); *OldI = New; return; } // New is already a successor. // Update its probability instead of adding a duplicate edge. if (!Probs.empty()) { auto ProbIter = getProbabilityIterator(NewI); if (!ProbIter->isUnknown()) *ProbIter += *getProbabilityIterator(OldI); } removeSuccessor(OldI); } void MachineBasicBlock::copySuccessor(const MachineBasicBlock *Orig, succ_iterator I) { if (!Orig->Probs.empty()) addSuccessor(*I, Orig->getSuccProbability(I)); else addSuccessorWithoutProb(*I); } void MachineBasicBlock::addPredecessor(MachineBasicBlock *Pred) { Predecessors.push_back(Pred); } void MachineBasicBlock::removePredecessor(MachineBasicBlock *Pred) { pred_iterator I = find(Predecessors, Pred); assert(I != Predecessors.end() && "Pred is not a predecessor of this block!"); Predecessors.erase(I); } void MachineBasicBlock::transferSuccessors(MachineBasicBlock *FromMBB) { if (this == FromMBB) return; while (!FromMBB->succ_empty()) { MachineBasicBlock *Succ = *FromMBB->succ_begin(); // If probability list is empty it means we don't use it (disabled // optimization). if (!FromMBB->Probs.empty()) { auto Prob = *FromMBB->Probs.begin(); addSuccessor(Succ, Prob); } else addSuccessorWithoutProb(Succ); FromMBB->removeSuccessor(Succ); } } void MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) { if (this == FromMBB) return; while (!FromMBB->succ_empty()) { MachineBasicBlock *Succ = *FromMBB->succ_begin(); if (!FromMBB->Probs.empty()) { auto Prob = *FromMBB->Probs.begin(); addSuccessor(Succ, Prob); } else addSuccessorWithoutProb(Succ); FromMBB->removeSuccessor(Succ); // Fix up any PHI nodes in the successor. Succ->replacePhiUsesWith(FromMBB, this); } normalizeSuccProbs(); } bool MachineBasicBlock::isPredecessor(const MachineBasicBlock *MBB) const { return is_contained(predecessors(), MBB); } bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const { return is_contained(successors(), MBB); } bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const { MachineFunction::const_iterator I(this); return std::next(I) == MachineFunction::const_iterator(MBB); } const MachineBasicBlock *MachineBasicBlock::getSingleSuccessor() const { return Successors.size() == 1 ? Successors[0] : nullptr; } const MachineBasicBlock *MachineBasicBlock::getSinglePredecessor() const { return Predecessors.size() == 1 ? Predecessors[0] : nullptr; } MachineBasicBlock *MachineBasicBlock::getFallThrough(bool JumpToFallThrough) { MachineFunction::iterator Fallthrough = getIterator(); ++Fallthrough; // If FallthroughBlock is off the end of the function, it can't fall through. if (Fallthrough == getParent()->end()) return nullptr; // If FallthroughBlock isn't a successor, no fallthrough is possible. if (!isSuccessor(&*Fallthrough)) return nullptr; // Analyze the branches, if any, at the end of the block. MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); if (TII->analyzeBranch(*this, TBB, FBB, Cond)) { // If we couldn't analyze the branch, examine the last instruction. // If the block doesn't end in a known control barrier, assume fallthrough // is possible. The isPredicated check is needed because this code can be // called during IfConversion, where an instruction which is normally a // Barrier is predicated and thus no longer an actual control barrier. return (empty() || !back().isBarrier() || TII->isPredicated(back())) ? &*Fallthrough : nullptr; } // If there is no branch, control always falls through. if (!TBB) return &*Fallthrough; // If there is some explicit branch to the fallthrough block, it can obviously // reach, even though the branch should get folded to fall through implicitly. if (JumpToFallThrough && (MachineFunction::iterator(TBB) == Fallthrough || MachineFunction::iterator(FBB) == Fallthrough)) return &*Fallthrough; // If it's an unconditional branch to some block not the fall through, it // doesn't fall through. if (Cond.empty()) return nullptr; // Otherwise, if it is conditional and has no explicit false block, it falls // through. return (FBB == nullptr) ? &*Fallthrough : nullptr; } bool MachineBasicBlock::canFallThrough() { return getFallThrough() != nullptr; } MachineBasicBlock *MachineBasicBlock::splitAt(MachineInstr &MI, bool UpdateLiveIns, LiveIntervals *LIS) { MachineBasicBlock::iterator SplitPoint(&MI); ++SplitPoint; if (SplitPoint == end()) { // Don't bother with a new block. return this; } MachineFunction *MF = getParent(); LivePhysRegs LiveRegs; if (UpdateLiveIns) { // Make sure we add any physregs we define in the block as liveins to the // new block. MachineBasicBlock::iterator Prev(&MI); LiveRegs.init(*MF->getSubtarget().getRegisterInfo()); LiveRegs.addLiveOuts(*this); for (auto I = rbegin(), E = Prev.getReverse(); I != E; ++I) LiveRegs.stepBackward(*I); } MachineBasicBlock *SplitBB = MF->CreateMachineBasicBlock(getBasicBlock()); MF->insert(++MachineFunction::iterator(this), SplitBB); SplitBB->splice(SplitBB->begin(), this, SplitPoint, end()); SplitBB->transferSuccessorsAndUpdatePHIs(this); addSuccessor(SplitBB); if (UpdateLiveIns) addLiveIns(*SplitBB, LiveRegs); if (LIS) LIS->insertMBBInMaps(SplitBB); return SplitBB; } // Returns `true` if there are possibly other users of the jump table at // `JumpTableIndex` except for the ones in `IgnoreMBB`. static bool jumpTableHasOtherUses(const MachineFunction &MF, const MachineBasicBlock &IgnoreMBB, int JumpTableIndex) { assert(JumpTableIndex >= 0 && "need valid index"); const MachineJumpTableInfo &MJTI = *MF.getJumpTableInfo(); const MachineJumpTableEntry &MJTE = MJTI.getJumpTables()[JumpTableIndex]; // Take any basic block from the table; every user of the jump table must // show up in the predecessor list. const MachineBasicBlock *MBB = nullptr; for (MachineBasicBlock *B : MJTE.MBBs) { if (B != nullptr) { MBB = B; break; } } if (MBB == nullptr) return true; // can't rule out other users if there isn't any block. const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo(); SmallVector Cond; for (MachineBasicBlock *Pred : MBB->predecessors()) { if (Pred == &IgnoreMBB) continue; MachineBasicBlock *DummyT = nullptr; MachineBasicBlock *DummyF = nullptr; Cond.clear(); if (!TII.analyzeBranch(*Pred, DummyT, DummyF, Cond, /*AllowModify=*/false)) { // analyzable direct jump continue; } int PredJTI = findJumpTableIndex(*Pred); if (PredJTI >= 0) { if (PredJTI == JumpTableIndex) return true; continue; } // Be conservative for unanalyzable jumps. return true; } return false; } class SlotIndexUpdateDelegate : public MachineFunction::Delegate { private: MachineFunction &MF; SlotIndexes *Indexes; SmallSetVector Insertions; public: SlotIndexUpdateDelegate(MachineFunction &MF, SlotIndexes *Indexes) : MF(MF), Indexes(Indexes) { MF.setDelegate(this); } ~SlotIndexUpdateDelegate() { MF.resetDelegate(this); for (auto MI : Insertions) Indexes->insertMachineInstrInMaps(*MI); } void MF_HandleInsertion(MachineInstr &MI) override { // This is called before MI is inserted into block so defer index update. if (Indexes) Insertions.insert(&MI); } void MF_HandleRemoval(MachineInstr &MI) override { if (Indexes && !Insertions.remove(&MI)) Indexes->removeMachineInstrFromMaps(MI); } }; #define GET_RESULT(RESULT, GETTER, INFIX) \ [MF, P, MFAM]() { \ if (P) { \ auto *Wrapper = P->getAnalysisIfAvailable(); \ return Wrapper ? &Wrapper->GETTER() : nullptr; \ } \ return MFAM->getCachedResult(*MF); \ }() MachineBasicBlock *MachineBasicBlock::SplitCriticalEdge( MachineBasicBlock *Succ, Pass *P, MachineFunctionAnalysisManager *MFAM, std::vector> *LiveInSets) { assert((P || MFAM) && "Need a way to get analysis results!"); if (!canSplitCriticalEdge(Succ)) return nullptr; MachineFunction *MF = getParent(); MachineBasicBlock *PrevFallthrough = getNextNode(); MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock(); NMBB->setCallFrameSize(Succ->getCallFrameSize()); // Is there an indirect jump with jump table? bool ChangedIndirectJump = false; int JTI = findJumpTableIndex(*this); if (JTI >= 0) { MachineJumpTableInfo &MJTI = *MF->getJumpTableInfo(); MJTI.ReplaceMBBInJumpTable(JTI, Succ, NMBB); ChangedIndirectJump = true; } MF->insert(std::next(MachineFunction::iterator(this)), NMBB); LLVM_DEBUG(dbgs() << "Splitting critical edge: " << printMBBReference(*this) << " -- " << printMBBReference(*NMBB) << " -- " << printMBBReference(*Succ) << '\n'); LiveIntervals *LIS = GET_RESULT(LiveIntervals, getLIS, ); SlotIndexes *Indexes = GET_RESULT(SlotIndexes, getSI, ); if (LIS) LIS->insertMBBInMaps(NMBB); else if (Indexes) Indexes->insertMBBInMaps(NMBB); // On some targets like Mips, branches may kill virtual registers. Make sure // that LiveVariables is properly updated after updateTerminator replaces the // terminators. LiveVariables *LV = GET_RESULT(LiveVariables, getLV, ); // Collect a list of virtual registers killed by the terminators. SmallVector KilledRegs; if (LV) for (MachineInstr &MI : llvm::make_range(getFirstInstrTerminator(), instr_end())) { for (MachineOperand &MO : MI.all_uses()) { if (MO.getReg() == 0 || !MO.isKill() || MO.isUndef()) continue; Register Reg = MO.getReg(); if (Reg.isPhysical() || LV->getVarInfo(Reg).removeKill(MI)) { KilledRegs.push_back(Reg); LLVM_DEBUG(dbgs() << "Removing terminator kill: " << MI); MO.setIsKill(false); } } } SmallVector UsedRegs; if (LIS) { for (MachineInstr &MI : llvm::make_range(getFirstInstrTerminator(), instr_end())) { for (const MachineOperand &MO : MI.operands()) { if (!MO.isReg() || MO.getReg() == 0) continue; Register Reg = MO.getReg(); if (!is_contained(UsedRegs, Reg)) UsedRegs.push_back(Reg); } } } ReplaceUsesOfBlockWith(Succ, NMBB); // Since we replaced all uses of Succ with NMBB, that should also be treated // as the fallthrough successor if (Succ == PrevFallthrough) PrevFallthrough = NMBB; if (!ChangedIndirectJump) { SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); updateTerminator(PrevFallthrough); } // Insert unconditional "jump Succ" instruction in NMBB if necessary. NMBB->addSuccessor(Succ); if (!NMBB->isLayoutSuccessor(Succ)) { SlotIndexUpdateDelegate SlotUpdater(*MF, Indexes); SmallVector Cond; const TargetInstrInfo *TII = getParent()->getSubtarget().getInstrInfo(); // In original 'this' BB, there must be a branch instruction targeting at // Succ. We can not find it out since currently getBranchDestBlock was not // implemented for all targets. However, if the merged DL has column or line // number, the scope and non-zero column and line number is same with that // branch instruction so we can safely use it. DebugLoc DL, MergedDL = findBranchDebugLoc(); if (MergedDL && (MergedDL.getLine() || MergedDL.getCol())) DL = MergedDL; TII->insertBranch(*NMBB, Succ, nullptr, Cond, DL); } // Fix PHI nodes in Succ so they refer to NMBB instead of this. Succ->replacePhiUsesWith(this, NMBB); // Inherit live-ins from the successor for (const auto &LI : Succ->liveins()) NMBB->addLiveIn(LI); // Update LiveVariables. const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); if (LV) { // Restore kills of virtual registers that were killed by the terminators. while (!KilledRegs.empty()) { Register Reg = KilledRegs.pop_back_val(); for (instr_iterator I = instr_end(), E = instr_begin(); I != E;) { if (!(--I)->addRegisterKilled(Reg, TRI, /* AddIfNotFound= */ false)) continue; if (Reg.isVirtual()) LV->getVarInfo(Reg).Kills.push_back(&*I); LLVM_DEBUG(dbgs() << "Restored terminator kill: " << *I); break; } } // Update relevant live-through information. if (LiveInSets != nullptr) LV->addNewBlock(NMBB, this, Succ, *LiveInSets); else LV->addNewBlock(NMBB, this, Succ); } if (LIS) { // After splitting the edge and updating SlotIndexes, live intervals may be // in one of two situations, depending on whether this block was the last in // the function. If the original block was the last in the function, all // live intervals will end prior to the beginning of the new split block. If // the original block was not at the end of the function, all live intervals // will extend to the end of the new split block. bool isLastMBB = std::next(MachineFunction::iterator(NMBB)) == getParent()->end(); SlotIndex StartIndex = Indexes->getMBBEndIdx(this); SlotIndex PrevIndex = StartIndex.getPrevSlot(); SlotIndex EndIndex = Indexes->getMBBEndIdx(NMBB); // Find the registers used from NMBB in PHIs in Succ. SmallSet PHISrcRegs; for (MachineBasicBlock::instr_iterator I = Succ->instr_begin(), E = Succ->instr_end(); I != E && I->isPHI(); ++I) { for (unsigned ni = 1, ne = I->getNumOperands(); ni != ne; ni += 2) { if (I->getOperand(ni+1).getMBB() == NMBB) { MachineOperand &MO = I->getOperand(ni); Register Reg = MO.getReg(); PHISrcRegs.insert(Reg); if (MO.isUndef()) continue; LiveInterval &LI = LIS->getInterval(Reg); VNInfo *VNI = LI.getVNInfoAt(PrevIndex); assert(VNI && "PHI sources should be live out of their predecessors."); LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); for (auto &SR : LI.subranges()) SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); } } } MachineRegisterInfo *MRI = &getParent()->getRegInfo(); for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { Register Reg = Register::index2VirtReg(i); if (PHISrcRegs.count(Reg) || !LIS->hasInterval(Reg)) continue; LiveInterval &LI = LIS->getInterval(Reg); if (!LI.liveAt(PrevIndex)) continue; bool isLiveOut = LI.liveAt(LIS->getMBBStartIdx(Succ)); if (isLiveOut && isLastMBB) { VNInfo *VNI = LI.getVNInfoAt(PrevIndex); assert(VNI && "LiveInterval should have VNInfo where it is live."); LI.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); // Update subranges with live values for (auto &SR : LI.subranges()) { VNInfo *VNI = SR.getVNInfoAt(PrevIndex); if (VNI) SR.addSegment(LiveInterval::Segment(StartIndex, EndIndex, VNI)); } } else if (!isLiveOut && !isLastMBB) { LI.removeSegment(StartIndex, EndIndex); for (auto &SR : LI.subranges()) SR.removeSegment(StartIndex, EndIndex); } } // Update all intervals for registers whose uses may have been modified by // updateTerminator(). LIS->repairIntervalsInRange(this, getFirstTerminator(), end(), UsedRegs); } if (auto *MDT = GET_RESULT(MachineDominatorTree, getDomTree, )) MDT->recordSplitCriticalEdge(this, Succ, NMBB); if (MachineLoopInfo *MLI = GET_RESULT(MachineLoop, getLI, Info)) if (MachineLoop *TIL = MLI->getLoopFor(this)) { // If one or the other blocks were not in a loop, the new block is not // either, and thus LI doesn't need to be updated. if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) { if (TIL == DestLoop) { // Both in the same loop, the NMBB joins loop. DestLoop->addBasicBlockToLoop(NMBB, *MLI); } else if (TIL->contains(DestLoop)) { // Edge from an outer loop to an inner loop. Add to the outer loop. TIL->addBasicBlockToLoop(NMBB, *MLI); } else if (DestLoop->contains(TIL)) { // Edge from an inner loop to an outer loop. Add to the outer loop. DestLoop->addBasicBlockToLoop(NMBB, *MLI); } else { // Edge from two loops with no containment relation. Because these // are natural loops, we know that the destination block must be the // header of its loop (adding a branch into a loop elsewhere would // create an irreducible loop). assert(DestLoop->getHeader() == Succ && "Should not create irreducible loops!"); if (MachineLoop *P = DestLoop->getParentLoop()) P->addBasicBlockToLoop(NMBB, *MLI); } } } return NMBB; } bool MachineBasicBlock::canSplitCriticalEdge( const MachineBasicBlock *Succ) const { // Splitting the critical edge to a landing pad block is non-trivial. Don't do // it in this generic function. if (Succ->isEHPad()) return false; // Splitting the critical edge to a callbr's indirect block isn't advised. // Don't do it in this generic function. if (Succ->isInlineAsmBrIndirectTarget()) return false; const MachineFunction *MF = getParent(); // Performance might be harmed on HW that implements branching using exec mask // where both sides of the branches are always executed. if (MF->getTarget().requiresStructuredCFG()) return false; // Do we have an Indirect jump with a jumptable that we can rewrite? int JTI = findJumpTableIndex(*this); if (JTI >= 0 && !jumpTableHasOtherUses(*MF, *this, JTI)) return true; // We may need to update this's terminator, but we can't do that if // analyzeBranch fails. const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); MachineBasicBlock *TBB = nullptr, *FBB = nullptr; SmallVector Cond; // AnalyzeBanch should modify this, since we did not allow modification. if (TII->analyzeBranch(*const_cast(this), TBB, FBB, Cond, /*AllowModify*/ false)) return false; // Avoid bugpoint weirdness: A block may end with a conditional branch but // jumps to the same MBB is either case. We have duplicate CFG edges in that // case that we can't handle. Since this never happens in properly optimized // code, just skip those edges. if (TBB && TBB == FBB) { LLVM_DEBUG(dbgs() << "Won't split critical edge after degenerate " << printMBBReference(*this) << '\n'); return false; } return true; } /// Prepare MI to be removed from its bundle. This fixes bundle flags on MI's /// neighboring instructions so the bundle won't be broken by removing MI. static void unbundleSingleMI(MachineInstr *MI) { // Removing the first instruction in a bundle. if (MI->isBundledWithSucc() && !MI->isBundledWithPred()) MI->unbundleFromSucc(); // Removing the last instruction in a bundle. if (MI->isBundledWithPred() && !MI->isBundledWithSucc()) MI->unbundleFromPred(); // If MI is not bundled, or if it is internal to a bundle, the neighbor flags // are already fine. } MachineBasicBlock::instr_iterator MachineBasicBlock::erase(MachineBasicBlock::instr_iterator I) { unbundleSingleMI(&*I); return Insts.erase(I); } MachineInstr *MachineBasicBlock::remove_instr(MachineInstr *MI) { unbundleSingleMI(MI); MI->clearFlag(MachineInstr::BundledPred); MI->clearFlag(MachineInstr::BundledSucc); return Insts.remove(MI); } MachineBasicBlock::instr_iterator MachineBasicBlock::insert(instr_iterator I, MachineInstr *MI) { assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && "Cannot insert instruction with bundle flags"); // Set the bundle flags when inserting inside a bundle. if (I != instr_end() && I->isBundledWithPred()) { MI->setFlag(MachineInstr::BundledPred); MI->setFlag(MachineInstr::BundledSucc); } return Insts.insert(I, MI); } /// This method unlinks 'this' from the containing function, and returns it, but /// does not delete it. MachineBasicBlock *MachineBasicBlock::removeFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->remove(this); return this; } /// This method unlinks 'this' from the containing function, and deletes it. void MachineBasicBlock::eraseFromParent() { assert(getParent() && "Not embedded in a function!"); getParent()->erase(this); } /// Given a machine basic block that branched to 'Old', change the code and CFG /// so that it branches to 'New' instead. void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New) { assert(Old != New && "Cannot replace self with self!"); MachineBasicBlock::instr_iterator I = instr_end(); while (I != instr_begin()) { --I; if (!I->isTerminator()) break; // Scan the operands of this machine instruction, replacing any uses of Old // with New. for (MachineOperand &MO : I->operands()) if (MO.isMBB() && MO.getMBB() == Old) MO.setMBB(New); } // Update the successor information. replaceSuccessor(Old, New); } void MachineBasicBlock::replacePhiUsesWith(MachineBasicBlock *Old, MachineBasicBlock *New) { for (MachineInstr &MI : phis()) for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) { MachineOperand &MO = MI.getOperand(i); if (MO.getMBB() == Old) MO.setMBB(New); } } /// Find the next valid DebugLoc starting at MBBI, skipping any debug /// instructions. Return UnknownLoc if there is none. DebugLoc MachineBasicBlock::findDebugLoc(instr_iterator MBBI) { // Skip debug declarations, we don't want a DebugLoc from them. MBBI = skipDebugInstructionsForward(MBBI, instr_end()); if (MBBI != instr_end()) return MBBI->getDebugLoc(); return {}; } DebugLoc MachineBasicBlock::rfindDebugLoc(reverse_instr_iterator MBBI) { if (MBBI == instr_rend()) return findDebugLoc(instr_begin()); // Skip debug declarations, we don't want a DebugLoc from them. MBBI = skipDebugInstructionsBackward(MBBI, instr_rbegin()); if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); return {}; } /// Find the previous valid DebugLoc preceding MBBI, skipping any debug /// instructions. Return UnknownLoc if there is none. DebugLoc MachineBasicBlock::findPrevDebugLoc(instr_iterator MBBI) { if (MBBI == instr_begin()) return {}; // Skip debug instructions, we don't want a DebugLoc from them. MBBI = prev_nodbg(MBBI, instr_begin()); if (!MBBI->isDebugInstr()) return MBBI->getDebugLoc(); return {}; } DebugLoc MachineBasicBlock::rfindPrevDebugLoc(reverse_instr_iterator MBBI) { if (MBBI == instr_rend()) return {}; // Skip debug declarations, we don't want a DebugLoc from them. MBBI = next_nodbg(MBBI, instr_rend()); if (MBBI != instr_rend()) return MBBI->getDebugLoc(); return {}; } /// Find and return the merged DebugLoc of the branch instructions of the block. /// Return UnknownLoc if there is none. DebugLoc MachineBasicBlock::findBranchDebugLoc() { DebugLoc DL; auto TI = getFirstTerminator(); while (TI != end() && !TI->isBranch()) ++TI; if (TI != end()) { DL = TI->getDebugLoc(); for (++TI ; TI != end() ; ++TI) if (TI->isBranch()) DL = DILocation::getMergedLocation(DL, TI->getDebugLoc()); } return DL; } /// Return probability of the edge from this block to MBB. BranchProbability MachineBasicBlock::getSuccProbability(const_succ_iterator Succ) const { if (Probs.empty()) return BranchProbability(1, succ_size()); const auto &Prob = *getProbabilityIterator(Succ); if (Prob.isUnknown()) { // For unknown probabilities, collect the sum of all known ones, and evenly // ditribute the complemental of the sum to each unknown probability. unsigned KnownProbNum = 0; auto Sum = BranchProbability::getZero(); for (const auto &P : Probs) { if (!P.isUnknown()) { Sum += P; KnownProbNum++; } } return Sum.getCompl() / (Probs.size() - KnownProbNum); } else return Prob; } /// Set successor probability of a given iterator. void MachineBasicBlock::setSuccProbability(succ_iterator I, BranchProbability Prob) { assert(!Prob.isUnknown()); if (Probs.empty()) return; *getProbabilityIterator(I) = Prob; } /// Return probability iterator corresonding to the I successor iterator MachineBasicBlock::const_probability_iterator MachineBasicBlock::getProbabilityIterator( MachineBasicBlock::const_succ_iterator I) const { assert(Probs.size() == Successors.size() && "Async probability list!"); const size_t index = std::distance(Successors.begin(), I); assert(index < Probs.size() && "Not a current successor!"); return Probs.begin() + index; } /// Return probability iterator corresonding to the I successor iterator. MachineBasicBlock::probability_iterator MachineBasicBlock::getProbabilityIterator(MachineBasicBlock::succ_iterator I) { assert(Probs.size() == Successors.size() && "Async probability list!"); const size_t index = std::distance(Successors.begin(), I); assert(index < Probs.size() && "Not a current successor!"); return Probs.begin() + index; } /// Return whether (physical) register "Reg" has been ined and not ed /// as of just before "MI". /// /// Search is localised to a neighborhood of /// Neighborhood instructions before (searching for defs or kills) and N /// instructions after (searching just for defs) MI. MachineBasicBlock::LivenessQueryResult MachineBasicBlock::computeRegisterLiveness(const TargetRegisterInfo *TRI, MCRegister Reg, const_iterator Before, unsigned Neighborhood) const { unsigned N = Neighborhood; // Try searching forwards from Before, looking for reads or defs. const_iterator I(Before); for (; I != end() && N > 0; ++I) { if (I->isDebugOrPseudoInstr()) continue; --N; PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); // Register is live when we read it here. if (Info.Read) return LQR_Live; // Register is dead if we can fully overwrite or clobber it here. if (Info.FullyDefined || Info.Clobbered) return LQR_Dead; } // If we reached the end, it is safe to clobber Reg at the end of a block of // no successor has it live in. if (I == end()) { for (MachineBasicBlock *S : successors()) { for (const MachineBasicBlock::RegisterMaskPair &LI : S->liveins()) { if (TRI->regsOverlap(LI.PhysReg, Reg)) return LQR_Live; } } return LQR_Dead; } N = Neighborhood; // Start by searching backwards from Before, looking for kills, reads or defs. I = const_iterator(Before); // If this is the first insn in the block, don't search backwards. if (I != begin()) { do { --I; if (I->isDebugOrPseudoInstr()) continue; --N; PhysRegInfo Info = AnalyzePhysRegInBundle(*I, Reg, TRI); // Defs happen after uses so they take precedence if both are present. // Register is dead after a dead def of the full register. if (Info.DeadDef) return LQR_Dead; // Register is (at least partially) live after a def. if (Info.Defined) { if (!Info.PartialDeadDef) return LQR_Live; // As soon as we saw a partial definition (dead or not), // we cannot tell if the value is partial live without // tracking the lanemasks. We are not going to do this, // so fall back on the remaining of the analysis. break; } // Register is dead after a full kill or clobber and no def. if (Info.Killed || Info.Clobbered) return LQR_Dead; // Register must be live if we read it. if (Info.Read) return LQR_Live; } while (I != begin() && N > 0); } // If all the instructions before this in the block are debug instructions, // skip over them. while (I != begin() && std::prev(I)->isDebugOrPseudoInstr()) --I; // Did we get to the start of the block? if (I == begin()) { // If so, the register's state is definitely defined by the live-in state. for (const MachineBasicBlock::RegisterMaskPair &LI : liveins()) if (TRI->regsOverlap(LI.PhysReg, Reg)) return LQR_Live; return LQR_Dead; } // At this point we have no idea of the liveness of the register. return LQR_Unknown; } const uint32_t * MachineBasicBlock::getBeginClobberMask(const TargetRegisterInfo *TRI) const { // EH funclet entry does not preserve any registers. return isEHFuncletEntry() ? TRI->getNoPreservedMask() : nullptr; } const uint32_t * MachineBasicBlock::getEndClobberMask(const TargetRegisterInfo *TRI) const { // If we see a return block with successors, this must be a funclet return, // which does not preserve any registers. If there are no successors, we don't // care what kind of return it is, putting a mask after it is a no-op. return isReturnBlock() && !succ_empty() ? TRI->getNoPreservedMask() : nullptr; } void MachineBasicBlock::clearLiveIns() { LiveIns.clear(); } void MachineBasicBlock::clearLiveIns( std::vector &OldLiveIns) { assert(OldLiveIns.empty() && "Vector must be empty"); std::swap(LiveIns, OldLiveIns); } MachineBasicBlock::livein_iterator MachineBasicBlock::livein_begin() const { assert(getParent()->getProperties().hasProperty( MachineFunctionProperties::Property::TracksLiveness) && "Liveness information is accurate"); return LiveIns.begin(); } MachineBasicBlock::liveout_iterator MachineBasicBlock::liveout_begin() const { const MachineFunction &MF = *getParent(); assert(MF.getProperties().hasProperty( MachineFunctionProperties::Property::TracksLiveness) && "Liveness information is accurate"); const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); MCPhysReg ExceptionPointer = 0, ExceptionSelector = 0; if (MF.getFunction().hasPersonalityFn()) { auto PersonalityFn = MF.getFunction().getPersonalityFn(); ExceptionPointer = TLI.getExceptionPointerRegister(PersonalityFn); ExceptionSelector = TLI.getExceptionSelectorRegister(PersonalityFn); } return liveout_iterator(*this, ExceptionPointer, ExceptionSelector, false); } bool MachineBasicBlock::sizeWithoutDebugLargerThan(unsigned Limit) const { unsigned Cntr = 0; auto R = instructionsWithoutDebug(begin(), end()); for (auto I = R.begin(), E = R.end(); I != E; ++I) { if (++Cntr > Limit) return true; } return false; } const MBBSectionID MBBSectionID::ColdSectionID(MBBSectionID::SectionType::Cold); const MBBSectionID MBBSectionID::ExceptionSectionID(MBBSectionID::SectionType::Exception);