//===- LiveDebugVariables.cpp - Tracking debug info variables -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the LiveDebugVariables analysis. // // Remove all DBG_VALUE instructions referencing virtual registers and replace // them with a data structure tracking where live user variables are kept - in a // virtual register or in a stack slot. // // Allow the data structure to be updated during register allocation when values // are moved between registers and stack slots. Finally emit new DBG_VALUE // instructions after register allocation is complete. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/LiveDebugVariables.h" #include "llvm/ADT/ArrayRef.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/IntervalMap.h" #include "llvm/ADT/MapVector.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/StringRef.h" #include "llvm/BinaryFormat/Dwarf.h" #include "llvm/CodeGen/LexicalScopes.h" #include "llvm/CodeGen/LiveInterval.h" #include "llvm/CodeGen/LiveIntervals.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SlotIndexes.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGen/TargetRegisterInfo.h" #include "llvm/CodeGen/TargetSubtargetInfo.h" #include "llvm/CodeGen/VirtRegMap.h" #include "llvm/Config/llvm-config.h" #include "llvm/IR/DebugInfoMetadata.h" #include "llvm/IR/DebugLoc.h" #include "llvm/IR/Function.h" #include "llvm/InitializePasses.h" #include "llvm/Pass.h" #include "llvm/Support/Casting.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include using namespace llvm; #define DEBUG_TYPE "livedebugvars" static cl::opt EnableLDV("live-debug-variables", cl::init(true), cl::desc("Enable the live debug variables pass"), cl::Hidden); STATISTIC(NumInsertedDebugValues, "Number of DBG_VALUEs inserted"); STATISTIC(NumInsertedDebugLabels, "Number of DBG_LABELs inserted"); char LiveDebugVariables::ID = 0; INITIALIZE_PASS_BEGIN(LiveDebugVariables, DEBUG_TYPE, "Debug Variable Analysis", false, false) INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) INITIALIZE_PASS_END(LiveDebugVariables, DEBUG_TYPE, "Debug Variable Analysis", false, false) void LiveDebugVariables::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired(); AU.addRequiredTransitive(); AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); } LiveDebugVariables::LiveDebugVariables() : MachineFunctionPass(ID) { initializeLiveDebugVariablesPass(*PassRegistry::getPassRegistry()); } enum : unsigned { UndefLocNo = ~0U }; namespace { /// Describes a debug variable value by location number and expression along /// with some flags about the original usage of the location. class DbgVariableValue { public: DbgVariableValue(ArrayRef NewLocs, bool WasIndirect, bool WasList, const DIExpression &Expr) : WasIndirect(WasIndirect), WasList(WasList), Expression(&Expr) { assert(!(WasIndirect && WasList) && "DBG_VALUE_LISTs should not be indirect."); SmallVector LocNoVec; for (unsigned LocNo : NewLocs) { auto It = find(LocNoVec, LocNo); if (It == LocNoVec.end()) LocNoVec.push_back(LocNo); else { // Loc duplicates an element in LocNos; replace references to Op // with references to the duplicating element. unsigned OpIdx = LocNoVec.size(); unsigned DuplicatingIdx = std::distance(LocNoVec.begin(), It); Expression = DIExpression::replaceArg(Expression, OpIdx, DuplicatingIdx); } } // FIXME: Debug values referencing 64+ unique machine locations are rare and // currently unsupported for performance reasons. If we can verify that // performance is acceptable for such debug values, we can increase the // bit-width of LocNoCount to 14 to enable up to 16384 unique machine // locations. We will also need to verify that this does not cause issues // with LiveDebugVariables' use of IntervalMap. if (LocNoVec.size() < 64) { LocNoCount = LocNoVec.size(); if (LocNoCount > 0) { LocNos = std::make_unique(LocNoCount); std::copy(LocNoVec.begin(), LocNoVec.end(), loc_nos_begin()); } } else { LLVM_DEBUG(dbgs() << "Found debug value with 64+ unique machine " "locations, dropping...\n"); LocNoCount = 1; // Turn this into an undef debug value list; right now, the simplest form // of this is an expression with one arg, and an undef debug operand. Expression = DIExpression::get(Expr.getContext(), {dwarf::DW_OP_LLVM_arg, 0}); if (auto FragmentInfoOpt = Expr.getFragmentInfo()) Expression = *DIExpression::createFragmentExpression( Expression, FragmentInfoOpt->OffsetInBits, FragmentInfoOpt->SizeInBits); LocNos = std::make_unique(LocNoCount); LocNos[0] = UndefLocNo; } } DbgVariableValue() : LocNoCount(0), WasIndirect(false), WasList(false) {} DbgVariableValue(const DbgVariableValue &Other) : LocNoCount(Other.LocNoCount), WasIndirect(Other.getWasIndirect()), WasList(Other.getWasList()), Expression(Other.getExpression()) { if (Other.getLocNoCount()) { LocNos.reset(new unsigned[Other.getLocNoCount()]); std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); } } DbgVariableValue &operator=(const DbgVariableValue &Other) { if (this == &Other) return *this; if (Other.getLocNoCount()) { LocNos.reset(new unsigned[Other.getLocNoCount()]); std::copy(Other.loc_nos_begin(), Other.loc_nos_end(), loc_nos_begin()); } else { LocNos.release(); } LocNoCount = Other.getLocNoCount(); WasIndirect = Other.getWasIndirect(); WasList = Other.getWasList(); Expression = Other.getExpression(); return *this; } const DIExpression *getExpression() const { return Expression; } uint8_t getLocNoCount() const { return LocNoCount; } bool containsLocNo(unsigned LocNo) const { return is_contained(loc_nos(), LocNo); } bool getWasIndirect() const { return WasIndirect; } bool getWasList() const { return WasList; } bool isUndef() const { return LocNoCount == 0 || containsLocNo(UndefLocNo); } DbgVariableValue decrementLocNosAfterPivot(unsigned Pivot) const { SmallVector NewLocNos; for (unsigned LocNo : loc_nos()) NewLocNos.push_back(LocNo != UndefLocNo && LocNo > Pivot ? LocNo - 1 : LocNo); return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); } DbgVariableValue remapLocNos(ArrayRef LocNoMap) const { SmallVector NewLocNos; for (unsigned LocNo : loc_nos()) // Undef values don't exist in locations (and thus not in LocNoMap // either) so skip over them. See getLocationNo(). NewLocNos.push_back(LocNo == UndefLocNo ? UndefLocNo : LocNoMap[LocNo]); return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); } DbgVariableValue changeLocNo(unsigned OldLocNo, unsigned NewLocNo) const { SmallVector NewLocNos; NewLocNos.assign(loc_nos_begin(), loc_nos_end()); auto OldLocIt = find(NewLocNos, OldLocNo); assert(OldLocIt != NewLocNos.end() && "Old location must be present."); *OldLocIt = NewLocNo; return DbgVariableValue(NewLocNos, WasIndirect, WasList, *Expression); } bool hasLocNoGreaterThan(unsigned LocNo) const { return any_of(loc_nos(), [LocNo](unsigned ThisLocNo) { return ThisLocNo > LocNo; }); } void printLocNos(llvm::raw_ostream &OS) const { for (const unsigned &Loc : loc_nos()) OS << (&Loc == loc_nos_begin() ? " " : ", ") << Loc; } friend inline bool operator==(const DbgVariableValue &LHS, const DbgVariableValue &RHS) { if (std::tie(LHS.LocNoCount, LHS.WasIndirect, LHS.WasList, LHS.Expression) != std::tie(RHS.LocNoCount, RHS.WasIndirect, RHS.WasList, RHS.Expression)) return false; return std::equal(LHS.loc_nos_begin(), LHS.loc_nos_end(), RHS.loc_nos_begin()); } friend inline bool operator!=(const DbgVariableValue &LHS, const DbgVariableValue &RHS) { return !(LHS == RHS); } unsigned *loc_nos_begin() { return LocNos.get(); } const unsigned *loc_nos_begin() const { return LocNos.get(); } unsigned *loc_nos_end() { return LocNos.get() + LocNoCount; } const unsigned *loc_nos_end() const { return LocNos.get() + LocNoCount; } ArrayRef loc_nos() const { return ArrayRef(LocNos.get(), LocNoCount); } private: // IntervalMap requires the value object to be very small, to the extent // that we do not have enough room for an std::vector. Using a C-style array // (with a unique_ptr wrapper for convenience) allows us to optimize for this // specific case by packing the array size into only 6 bits (it is highly // unlikely that any debug value will need 64+ locations). std::unique_ptr LocNos; uint8_t LocNoCount : 6; bool WasIndirect : 1; bool WasList : 1; const DIExpression *Expression = nullptr; }; } // namespace /// Map of where a user value is live to that value. using LocMap = IntervalMap; /// Map of stack slot offsets for spilled locations. /// Non-spilled locations are not added to the map. using SpillOffsetMap = DenseMap; /// Cache to save the location where it can be used as the starting /// position as input for calling MachineBasicBlock::SkipPHIsLabelsAndDebug. /// This is to prevent MachineBasicBlock::SkipPHIsLabelsAndDebug from /// repeatedly searching the same set of PHIs/Labels/Debug instructions /// if it is called many times for the same block. using BlockSkipInstsMap = DenseMap; namespace { class LDVImpl; /// A user value is a part of a debug info user variable. /// /// A DBG_VALUE instruction notes that (a sub-register of) a virtual register /// holds part of a user variable. The part is identified by a byte offset. /// /// UserValues are grouped into equivalence classes for easier searching. Two /// user values are related if they are held by the same virtual register. The /// equivalence class is the transitive closure of that relation. class UserValue { const DILocalVariable *Variable; ///< The debug info variable we are part of. /// The part of the variable we describe. const std::optional Fragment; DebugLoc dl; ///< The debug location for the variable. This is ///< used by dwarf writer to find lexical scope. UserValue *leader; ///< Equivalence class leader. UserValue *next = nullptr; ///< Next value in equivalence class, or null. /// Numbered locations referenced by locmap. SmallVector locations; /// Map of slot indices where this value is live. LocMap locInts; /// Set of interval start indexes that have been trimmed to the /// lexical scope. SmallSet trimmedDefs; /// Insert a DBG_VALUE into MBB at Idx for DbgValue. void insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, SlotIndex StopIdx, DbgVariableValue DbgValue, ArrayRef LocSpills, ArrayRef SpillOffsets, LiveIntervals &LIS, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, BlockSkipInstsMap &BBSkipInstsMap); /// Replace OldLocNo ranges with NewRegs ranges where NewRegs /// is live. Returns true if any changes were made. bool splitLocation(unsigned OldLocNo, ArrayRef NewRegs, LiveIntervals &LIS); public: /// Create a new UserValue. UserValue(const DILocalVariable *var, std::optional Fragment, DebugLoc L, LocMap::Allocator &alloc) : Variable(var), Fragment(Fragment), dl(std::move(L)), leader(this), locInts(alloc) {} /// Get the leader of this value's equivalence class. UserValue *getLeader() { UserValue *l = leader; while (l != l->leader) l = l->leader; return leader = l; } /// Return the next UserValue in the equivalence class. UserValue *getNext() const { return next; } /// Merge equivalence classes. static UserValue *merge(UserValue *L1, UserValue *L2) { L2 = L2->getLeader(); if (!L1) return L2; L1 = L1->getLeader(); if (L1 == L2) return L1; // Splice L2 before L1's members. UserValue *End = L2; while (End->next) { End->leader = L1; End = End->next; } End->leader = L1; End->next = L1->next; L1->next = L2; return L1; } /// Return the location number that matches Loc. /// /// For undef values we always return location number UndefLocNo without /// inserting anything in locations. Since locations is a vector and the /// location number is the position in the vector and UndefLocNo is ~0, /// we would need a very big vector to put the value at the right position. unsigned getLocationNo(const MachineOperand &LocMO) { if (LocMO.isReg()) { if (LocMO.getReg() == 0) return UndefLocNo; // For register locations we dont care about use/def and other flags. for (unsigned i = 0, e = locations.size(); i != e; ++i) if (locations[i].isReg() && locations[i].getReg() == LocMO.getReg() && locations[i].getSubReg() == LocMO.getSubReg()) return i; } else for (unsigned i = 0, e = locations.size(); i != e; ++i) if (LocMO.isIdenticalTo(locations[i])) return i; locations.push_back(LocMO); // We are storing a MachineOperand outside a MachineInstr. locations.back().clearParent(); // Don't store def operands. if (locations.back().isReg()) { if (locations.back().isDef()) locations.back().setIsDead(false); locations.back().setIsUse(); } return locations.size() - 1; } /// Remove (recycle) a location number. If \p LocNo still is used by the /// locInts nothing is done. void removeLocationIfUnused(unsigned LocNo) { // Bail out if LocNo still is used. for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { const DbgVariableValue &DbgValue = I.value(); if (DbgValue.containsLocNo(LocNo)) return; } // Remove the entry in the locations vector, and adjust all references to // location numbers above the removed entry. locations.erase(locations.begin() + LocNo); for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { const DbgVariableValue &DbgValue = I.value(); if (DbgValue.hasLocNoGreaterThan(LocNo)) I.setValueUnchecked(DbgValue.decrementLocNosAfterPivot(LocNo)); } } /// Ensure that all virtual register locations are mapped. void mapVirtRegs(LDVImpl *LDV); /// Add a definition point to this user value. void addDef(SlotIndex Idx, ArrayRef LocMOs, bool IsIndirect, bool IsList, const DIExpression &Expr) { SmallVector Locs; for (const MachineOperand &Op : LocMOs) Locs.push_back(getLocationNo(Op)); DbgVariableValue DbgValue(Locs, IsIndirect, IsList, Expr); // Add a singular (Idx,Idx) -> value mapping. LocMap::iterator I = locInts.find(Idx); if (!I.valid() || I.start() != Idx) I.insert(Idx, Idx.getNextSlot(), std::move(DbgValue)); else // A later DBG_VALUE at the same SlotIndex overrides the old location. I.setValue(std::move(DbgValue)); } /// Extend the current definition as far as possible down. /// /// Stop when meeting an existing def or when leaving the live /// range of VNI. End points where VNI is no longer live are added to Kills. /// /// We only propagate DBG_VALUES locally here. LiveDebugValues performs a /// data-flow analysis to propagate them beyond basic block boundaries. /// /// \param Idx Starting point for the definition. /// \param DbgValue value to propagate. /// \param LiveIntervalInfo For each location number key in this map, /// restricts liveness to where the LiveRange has the value equal to the\ /// VNInfo. /// \param [out] Kills Append end points of VNI's live range to Kills. /// \param LIS Live intervals analysis. void extendDef(SlotIndex Idx, DbgVariableValue DbgValue, SmallDenseMap> &LiveIntervalInfo, std::optional>> &Kills, LiveIntervals &LIS); /// The value in LI may be copies to other registers. Determine if /// any of the copies are available at the kill points, and add defs if /// possible. /// /// \param DbgValue Location number of LI->reg, and DIExpression. /// \param LocIntervals Scan for copies of the value for each location in the /// corresponding LiveInterval->reg. /// \param KilledAt The point where the range of DbgValue could be extended. /// \param [in,out] NewDefs Append (Idx, DbgValue) of inserted defs here. void addDefsFromCopies( DbgVariableValue DbgValue, SmallVectorImpl> &LocIntervals, SlotIndex KilledAt, SmallVectorImpl> &NewDefs, MachineRegisterInfo &MRI, LiveIntervals &LIS); /// Compute the live intervals of all locations after collecting all their /// def points. void computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, LexicalScopes &LS); /// Replace OldReg ranges with NewRegs ranges where NewRegs is /// live. Returns true if any changes were made. bool splitRegister(Register OldReg, ArrayRef NewRegs, LiveIntervals &LIS); /// Rewrite virtual register locations according to the provided virtual /// register map. Record the stack slot offsets for the locations that /// were spilled. void rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, SpillOffsetMap &SpillOffsets); /// Recreate DBG_VALUE instruction from data structures. void emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const SpillOffsetMap &SpillOffsets, BlockSkipInstsMap &BBSkipInstsMap); /// Return DebugLoc of this UserValue. const DebugLoc &getDebugLoc() { return dl; } void print(raw_ostream &, const TargetRegisterInfo *); }; /// A user label is a part of a debug info user label. class UserLabel { const DILabel *Label; ///< The debug info label we are part of. DebugLoc dl; ///< The debug location for the label. This is ///< used by dwarf writer to find lexical scope. SlotIndex loc; ///< Slot used by the debug label. /// Insert a DBG_LABEL into MBB at Idx. void insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, const TargetInstrInfo &TII, BlockSkipInstsMap &BBSkipInstsMap); public: /// Create a new UserLabel. UserLabel(const DILabel *label, DebugLoc L, SlotIndex Idx) : Label(label), dl(std::move(L)), loc(Idx) {} /// Does this UserLabel match the parameters? bool matches(const DILabel *L, const DILocation *IA, const SlotIndex Index) const { return Label == L && dl->getInlinedAt() == IA && loc == Index; } /// Recreate DBG_LABEL instruction from data structures. void emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, BlockSkipInstsMap &BBSkipInstsMap); /// Return DebugLoc of this UserLabel. const DebugLoc &getDebugLoc() { return dl; } void print(raw_ostream &, const TargetRegisterInfo *); }; /// Implementation of the LiveDebugVariables pass. class LDVImpl { LiveDebugVariables &pass; LocMap::Allocator allocator; MachineFunction *MF = nullptr; LiveIntervals *LIS; const TargetRegisterInfo *TRI; /// Position and VReg of a PHI instruction during register allocation. struct PHIValPos { SlotIndex SI; /// Slot where this PHI occurs. Register Reg; /// VReg this PHI occurs in. unsigned SubReg; /// Qualifiying subregister for Reg. }; /// Map from debug instruction number to PHI position during allocation. std::map PHIValToPos; /// Index of, for each VReg, which debug instruction numbers and corresponding /// PHIs are sensitive to splitting. Each VReg may have multiple PHI defs, /// at different positions. DenseMap> RegToPHIIdx; /// Record for any debug instructions unlinked from their blocks during /// regalloc. Stores the instr and it's location, so that they can be /// re-inserted after regalloc is over. struct InstrPos { MachineInstr *MI; ///< Debug instruction, unlinked from it's block. SlotIndex Idx; ///< Slot position where MI should be re-inserted. MachineBasicBlock *MBB; ///< Block that MI was in. }; /// Collection of stored debug instructions, preserved until after regalloc. SmallVector StashedDebugInstrs; /// Whether emitDebugValues is called. bool EmitDone = false; /// Whether the machine function is modified during the pass. bool ModifiedMF = false; /// All allocated UserValue instances. SmallVector, 8> userValues; /// All allocated UserLabel instances. SmallVector, 2> userLabels; /// Map virtual register to eq class leader. using VRMap = DenseMap; VRMap virtRegToEqClass; /// Map to find existing UserValue instances. using UVMap = DenseMap; UVMap userVarMap; /// Find or create a UserValue. UserValue *getUserValue(const DILocalVariable *Var, std::optional Fragment, const DebugLoc &DL); /// Find the EC leader for VirtReg or null. UserValue *lookupVirtReg(Register VirtReg); /// Add DBG_VALUE instruction to our maps. /// /// \param MI DBG_VALUE instruction /// \param Idx Last valid SLotIndex before instruction. /// /// \returns True if the DBG_VALUE instruction should be deleted. bool handleDebugValue(MachineInstr &MI, SlotIndex Idx); /// Track variable location debug instructions while using the instruction /// referencing implementation. Such debug instructions do not need to be /// updated during regalloc because they identify instructions rather than /// register locations. However, they needs to be removed from the /// MachineFunction during regalloc, then re-inserted later, to avoid /// disrupting the allocator. /// /// \param MI Any DBG_VALUE / DBG_INSTR_REF / DBG_PHI instruction /// \param Idx Last valid SlotIndex before instruction /// /// \returns Iterator to continue processing from after unlinking. MachineBasicBlock::iterator handleDebugInstr(MachineInstr &MI, SlotIndex Idx); /// Add DBG_LABEL instruction to UserLabel. /// /// \param MI DBG_LABEL instruction /// \param Idx Last valid SlotIndex before instruction. /// /// \returns True if the DBG_LABEL instruction should be deleted. bool handleDebugLabel(MachineInstr &MI, SlotIndex Idx); /// Collect and erase all DBG_VALUE instructions, adding a UserValue def /// for each instruction. /// /// \param mf MachineFunction to be scanned. /// \param InstrRef Whether to operate in instruction referencing mode. If /// true, most of LiveDebugVariables doesn't run. /// /// \returns True if any debug values were found. bool collectDebugValues(MachineFunction &mf, bool InstrRef); /// Compute the live intervals of all user values after collecting all /// their def points. void computeIntervals(); public: LDVImpl(LiveDebugVariables *ps) : pass(*ps) {} bool runOnMachineFunction(MachineFunction &mf, bool InstrRef); /// Release all memory. void clear() { MF = nullptr; PHIValToPos.clear(); RegToPHIIdx.clear(); StashedDebugInstrs.clear(); userValues.clear(); userLabels.clear(); virtRegToEqClass.clear(); userVarMap.clear(); // Make sure we call emitDebugValues if the machine function was modified. assert((!ModifiedMF || EmitDone) && "Dbg values are not emitted in LDV"); EmitDone = false; ModifiedMF = false; } /// Map virtual register to an equivalence class. void mapVirtReg(Register VirtReg, UserValue *EC); /// Replace any PHI referring to OldReg with its corresponding NewReg, if /// present. void splitPHIRegister(Register OldReg, ArrayRef NewRegs); /// Replace all references to OldReg with NewRegs. void splitRegister(Register OldReg, ArrayRef NewRegs); /// Recreate DBG_VALUE instruction from data structures. void emitDebugValues(VirtRegMap *VRM); void print(raw_ostream&); }; } // end anonymous namespace #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) static void printDebugLoc(const DebugLoc &DL, raw_ostream &CommentOS, const LLVMContext &Ctx) { if (!DL) return; auto *Scope = cast(DL.getScope()); // Omit the directory, because it's likely to be long and uninteresting. CommentOS << Scope->getFilename(); CommentOS << ':' << DL.getLine(); if (DL.getCol() != 0) CommentOS << ':' << DL.getCol(); DebugLoc InlinedAtDL = DL.getInlinedAt(); if (!InlinedAtDL) return; CommentOS << " @[ "; printDebugLoc(InlinedAtDL, CommentOS, Ctx); CommentOS << " ]"; } static void printExtendedName(raw_ostream &OS, const DINode *Node, const DILocation *DL) { const LLVMContext &Ctx = Node->getContext(); StringRef Res; unsigned Line = 0; if (const auto *V = dyn_cast(Node)) { Res = V->getName(); Line = V->getLine(); } else if (const auto *L = dyn_cast(Node)) { Res = L->getName(); Line = L->getLine(); } if (!Res.empty()) OS << Res << "," << Line; auto *InlinedAt = DL ? DL->getInlinedAt() : nullptr; if (InlinedAt) { if (DebugLoc InlinedAtDL = InlinedAt) { OS << " @["; printDebugLoc(InlinedAtDL, OS, Ctx); OS << "]"; } } } void UserValue::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { OS << "!\""; printExtendedName(OS, Variable, dl); OS << "\"\t"; for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) { OS << " [" << I.start() << ';' << I.stop() << "):"; if (I.value().isUndef()) OS << " undef"; else { I.value().printLocNos(OS); if (I.value().getWasIndirect()) OS << " ind"; else if (I.value().getWasList()) OS << " list"; } } for (unsigned i = 0, e = locations.size(); i != e; ++i) { OS << " Loc" << i << '='; locations[i].print(OS, TRI); } OS << '\n'; } void UserLabel::print(raw_ostream &OS, const TargetRegisterInfo *TRI) { OS << "!\""; printExtendedName(OS, Label, dl); OS << "\"\t"; OS << loc; OS << '\n'; } void LDVImpl::print(raw_ostream &OS) { OS << "********** DEBUG VARIABLES **********\n"; for (auto &userValue : userValues) userValue->print(OS, TRI); OS << "********** DEBUG LABELS **********\n"; for (auto &userLabel : userLabels) userLabel->print(OS, TRI); } #endif void UserValue::mapVirtRegs(LDVImpl *LDV) { for (const MachineOperand &MO : locations) if (MO.isReg() && MO.getReg().isVirtual()) LDV->mapVirtReg(MO.getReg(), this); } UserValue * LDVImpl::getUserValue(const DILocalVariable *Var, std::optional Fragment, const DebugLoc &DL) { // FIXME: Handle partially overlapping fragments. See // https://reviews.llvm.org/D70121#1849741. DebugVariable ID(Var, Fragment, DL->getInlinedAt()); UserValue *&UV = userVarMap[ID]; if (!UV) { userValues.push_back( std::make_unique(Var, Fragment, DL, allocator)); UV = userValues.back().get(); } return UV; } void LDVImpl::mapVirtReg(Register VirtReg, UserValue *EC) { assert(VirtReg.isVirtual() && "Only map VirtRegs"); UserValue *&Leader = virtRegToEqClass[VirtReg]; Leader = UserValue::merge(Leader, EC); } UserValue *LDVImpl::lookupVirtReg(Register VirtReg) { if (UserValue *UV = virtRegToEqClass.lookup(VirtReg)) return UV->getLeader(); return nullptr; } bool LDVImpl::handleDebugValue(MachineInstr &MI, SlotIndex Idx) { // DBG_VALUE loc, offset, variable, expr // DBG_VALUE_LIST variable, expr, locs... if (!MI.isDebugValue()) { LLVM_DEBUG(dbgs() << "Can't handle non-DBG_VALUE*: " << MI); return false; } if (!MI.getDebugVariableOp().isMetadata()) { LLVM_DEBUG(dbgs() << "Can't handle DBG_VALUE* with invalid variable: " << MI); return false; } if (MI.isNonListDebugValue() && (MI.getNumOperands() != 4 || !(MI.getDebugOffset().isImm() || MI.getDebugOffset().isReg()))) { LLVM_DEBUG(dbgs() << "Can't handle malformed DBG_VALUE: " << MI); return false; } // Detect invalid DBG_VALUE instructions, with a debug-use of a virtual // register that hasn't been defined yet. If we do not remove those here, then // the re-insertion of the DBG_VALUE instruction after register allocation // will be incorrect. bool Discard = false; for (const MachineOperand &Op : MI.debug_operands()) { if (Op.isReg() && Op.getReg().isVirtual()) { const Register Reg = Op.getReg(); if (!LIS->hasInterval(Reg)) { // The DBG_VALUE is described by a virtual register that does not have a // live interval. Discard the DBG_VALUE. Discard = true; LLVM_DEBUG(dbgs() << "Discarding debug info (no LIS interval): " << Idx << " " << MI); } else { // The DBG_VALUE is only valid if either Reg is live out from Idx, or // Reg is defined dead at Idx (where Idx is the slot index for the // instruction preceding the DBG_VALUE). const LiveInterval &LI = LIS->getInterval(Reg); LiveQueryResult LRQ = LI.Query(Idx); if (!LRQ.valueOutOrDead()) { // We have found a DBG_VALUE with the value in a virtual register that // is not live. Discard the DBG_VALUE. Discard = true; LLVM_DEBUG(dbgs() << "Discarding debug info (reg not live): " << Idx << " " << MI); } } } } // Get or create the UserValue for (variable,offset) here. bool IsIndirect = MI.isDebugOffsetImm(); if (IsIndirect) assert(MI.getDebugOffset().getImm() == 0 && "DBG_VALUE with nonzero offset"); bool IsList = MI.isDebugValueList(); const DILocalVariable *Var = MI.getDebugVariable(); const DIExpression *Expr = MI.getDebugExpression(); UserValue *UV = getUserValue(Var, Expr->getFragmentInfo(), MI.getDebugLoc()); if (!Discard) UV->addDef(Idx, ArrayRef(MI.debug_operands().begin(), MI.debug_operands().end()), IsIndirect, IsList, *Expr); else { MachineOperand MO = MachineOperand::CreateReg(0U, false); MO.setIsDebug(); // We should still pass a list the same size as MI.debug_operands() even if // all MOs are undef, so that DbgVariableValue can correctly adjust the // expression while removing the duplicated undefs. SmallVector UndefMOs(MI.getNumDebugOperands(), MO); UV->addDef(Idx, UndefMOs, false, IsList, *Expr); } return true; } MachineBasicBlock::iterator LDVImpl::handleDebugInstr(MachineInstr &MI, SlotIndex Idx) { assert(MI.isDebugValueLike() || MI.isDebugPHI()); // In instruction referencing mode, there should be no DBG_VALUE instructions // that refer to virtual registers. They might still refer to constants. if (MI.isDebugValueLike()) assert(none_of(MI.debug_operands(), [](const MachineOperand &MO) { return MO.isReg() && MO.getReg().isVirtual(); }) && "MIs should not refer to Virtual Registers in InstrRef mode."); // Unlink the instruction, store it in the debug instructions collection. auto NextInst = std::next(MI.getIterator()); auto *MBB = MI.getParent(); MI.removeFromParent(); StashedDebugInstrs.push_back({&MI, Idx, MBB}); return NextInst; } bool LDVImpl::handleDebugLabel(MachineInstr &MI, SlotIndex Idx) { // DBG_LABEL label if (MI.getNumOperands() != 1 || !MI.getOperand(0).isMetadata()) { LLVM_DEBUG(dbgs() << "Can't handle " << MI); return false; } // Get or create the UserLabel for label here. const DILabel *Label = MI.getDebugLabel(); const DebugLoc &DL = MI.getDebugLoc(); bool Found = false; for (auto const &L : userLabels) { if (L->matches(Label, DL->getInlinedAt(), Idx)) { Found = true; break; } } if (!Found) userLabels.push_back(std::make_unique(Label, DL, Idx)); return true; } bool LDVImpl::collectDebugValues(MachineFunction &mf, bool InstrRef) { bool Changed = false; for (MachineBasicBlock &MBB : mf) { for (MachineBasicBlock::iterator MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE;) { // Use the first debug instruction in the sequence to get a SlotIndex // for following consecutive debug instructions. if (!MBBI->isDebugOrPseudoInstr()) { ++MBBI; continue; } // Debug instructions has no slot index. Use the previous // non-debug instruction's SlotIndex as its SlotIndex. SlotIndex Idx = MBBI == MBB.begin() ? LIS->getMBBStartIdx(&MBB) : LIS->getInstructionIndex(*std::prev(MBBI)).getRegSlot(); // Handle consecutive debug instructions with the same slot index. do { // In instruction referencing mode, pass each instr to handleDebugInstr // to be unlinked. Ignore DBG_VALUE_LISTs -- they refer to vregs, and // need to go through the normal live interval splitting process. if (InstrRef && (MBBI->isNonListDebugValue() || MBBI->isDebugPHI() || MBBI->isDebugRef())) { MBBI = handleDebugInstr(*MBBI, Idx); Changed = true; // In normal debug mode, use the dedicated DBG_VALUE / DBG_LABEL handler // to track things through register allocation, and erase the instr. } else if ((MBBI->isDebugValue() && handleDebugValue(*MBBI, Idx)) || (MBBI->isDebugLabel() && handleDebugLabel(*MBBI, Idx))) { MBBI = MBB.erase(MBBI); Changed = true; } else ++MBBI; } while (MBBI != MBBE && MBBI->isDebugOrPseudoInstr()); } } return Changed; } void UserValue::extendDef( SlotIndex Idx, DbgVariableValue DbgValue, SmallDenseMap> &LiveIntervalInfo, std::optional>> &Kills, LiveIntervals &LIS) { SlotIndex Start = Idx; MachineBasicBlock *MBB = LIS.getMBBFromIndex(Start); SlotIndex Stop = LIS.getMBBEndIdx(MBB); LocMap::iterator I = locInts.find(Start); // Limit to the intersection of the VNIs' live ranges. for (auto &LII : LiveIntervalInfo) { LiveRange *LR = LII.second.first; assert(LR && LII.second.second && "Missing range info for Idx."); LiveInterval::Segment *Segment = LR->getSegmentContaining(Start); assert(Segment && Segment->valno == LII.second.second && "Invalid VNInfo for Idx given?"); if (Segment->end < Stop) { Stop = Segment->end; Kills = {Stop, {LII.first}}; } else if (Segment->end == Stop && Kills) { // If multiple locations end at the same place, track all of them in // Kills. Kills->second.push_back(LII.first); } } // There could already be a short def at Start. if (I.valid() && I.start() <= Start) { // Stop when meeting a different location or an already extended interval. Start = Start.getNextSlot(); if (I.value() != DbgValue || I.stop() != Start) { // Clear `Kills`, as we have a new def available. Kills = std::nullopt; return; } // This is a one-slot placeholder. Just skip it. ++I; } // Limited by the next def. if (I.valid() && I.start() < Stop) { Stop = I.start(); // Clear `Kills`, as we have a new def available. Kills = std::nullopt; } if (Start < Stop) { DbgVariableValue ExtDbgValue(DbgValue); I.insert(Start, Stop, std::move(ExtDbgValue)); } } void UserValue::addDefsFromCopies( DbgVariableValue DbgValue, SmallVectorImpl> &LocIntervals, SlotIndex KilledAt, SmallVectorImpl> &NewDefs, MachineRegisterInfo &MRI, LiveIntervals &LIS) { // Don't track copies from physregs, there are too many uses. if (any_of(LocIntervals, [](auto LocI) { return !LocI.second->reg().isVirtual(); })) return; // Collect all the (vreg, valno) pairs that are copies of LI. SmallDenseMap, 4>> CopyValues; for (auto &LocInterval : LocIntervals) { unsigned LocNo = LocInterval.first; LiveInterval *LI = LocInterval.second; for (MachineOperand &MO : MRI.use_nodbg_operands(LI->reg())) { MachineInstr *MI = MO.getParent(); // Copies of the full value. if (MO.getSubReg() || !MI->isCopy()) continue; Register DstReg = MI->getOperand(0).getReg(); // Don't follow copies to physregs. These are usually setting up call // arguments, and the argument registers are always call clobbered. We are // better off in the source register which could be a callee-saved // register, or it could be spilled. if (!DstReg.isVirtual()) continue; // Is the value extended to reach this copy? If not, another def may be // blocking it, or we are looking at a wrong value of LI. SlotIndex Idx = LIS.getInstructionIndex(*MI); LocMap::iterator I = locInts.find(Idx.getRegSlot(true)); if (!I.valid() || I.value() != DbgValue) continue; if (!LIS.hasInterval(DstReg)) continue; LiveInterval *DstLI = &LIS.getInterval(DstReg); const VNInfo *DstVNI = DstLI->getVNInfoAt(Idx.getRegSlot()); assert(DstVNI && DstVNI->def == Idx.getRegSlot() && "Bad copy value"); CopyValues[LocNo].push_back(std::make_pair(DstLI, DstVNI)); } } if (CopyValues.empty()) return; #if !defined(NDEBUG) for (auto &LocInterval : LocIntervals) LLVM_DEBUG(dbgs() << "Got " << CopyValues[LocInterval.first].size() << " copies of " << *LocInterval.second << '\n'); #endif // Try to add defs of the copied values for the kill point. Check that there // isn't already a def at Idx. LocMap::iterator I = locInts.find(KilledAt); if (I.valid() && I.start() <= KilledAt) return; DbgVariableValue NewValue(DbgValue); for (auto &LocInterval : LocIntervals) { unsigned LocNo = LocInterval.first; bool FoundCopy = false; for (auto &LIAndVNI : CopyValues[LocNo]) { LiveInterval *DstLI = LIAndVNI.first; const VNInfo *DstVNI = LIAndVNI.second; if (DstLI->getVNInfoAt(KilledAt) != DstVNI) continue; LLVM_DEBUG(dbgs() << "Kill at " << KilledAt << " covered by valno #" << DstVNI->id << " in " << *DstLI << '\n'); MachineInstr *CopyMI = LIS.getInstructionFromIndex(DstVNI->def); assert(CopyMI && CopyMI->isCopy() && "Bad copy value"); unsigned NewLocNo = getLocationNo(CopyMI->getOperand(0)); NewValue = NewValue.changeLocNo(LocNo, NewLocNo); FoundCopy = true; break; } // If there are any killed locations we can't find a copy for, we can't // extend the variable value. if (!FoundCopy) return; } I.insert(KilledAt, KilledAt.getNextSlot(), NewValue); NewDefs.push_back(std::make_pair(KilledAt, NewValue)); } void UserValue::computeIntervals(MachineRegisterInfo &MRI, const TargetRegisterInfo &TRI, LiveIntervals &LIS, LexicalScopes &LS) { SmallVector, 16> Defs; // Collect all defs to be extended (Skipping undefs). for (LocMap::const_iterator I = locInts.begin(); I.valid(); ++I) if (!I.value().isUndef()) Defs.push_back(std::make_pair(I.start(), I.value())); // Extend all defs, and possibly add new ones along the way. for (unsigned i = 0; i != Defs.size(); ++i) { SlotIndex Idx = Defs[i].first; DbgVariableValue DbgValue = Defs[i].second; SmallDenseMap> LIs; SmallVector VNIs; bool ShouldExtendDef = false; for (unsigned LocNo : DbgValue.loc_nos()) { const MachineOperand &LocMO = locations[LocNo]; if (!LocMO.isReg() || !LocMO.getReg().isVirtual()) { ShouldExtendDef |= !LocMO.isReg(); continue; } ShouldExtendDef = true; LiveInterval *LI = nullptr; const VNInfo *VNI = nullptr; if (LIS.hasInterval(LocMO.getReg())) { LI = &LIS.getInterval(LocMO.getReg()); VNI = LI->getVNInfoAt(Idx); } if (LI && VNI) LIs[LocNo] = {LI, VNI}; } if (ShouldExtendDef) { std::optional>> Kills; extendDef(Idx, DbgValue, LIs, Kills, LIS); if (Kills) { SmallVector, 2> KilledLocIntervals; bool AnySubreg = false; for (unsigned LocNo : Kills->second) { const MachineOperand &LocMO = this->locations[LocNo]; if (LocMO.getSubReg()) { AnySubreg = true; break; } LiveInterval *LI = &LIS.getInterval(LocMO.getReg()); KilledLocIntervals.push_back({LocNo, LI}); } // FIXME: Handle sub-registers in addDefsFromCopies. The problem is that // if the original location for example is %vreg0:sub_hi, and we find a // full register copy in addDefsFromCopies (at the moment it only // handles full register copies), then we must add the sub1 sub-register // index to the new location. However, that is only possible if the new // virtual register is of the same regclass (or if there is an // equivalent sub-register in that regclass). For now, simply skip // handling copies if a sub-register is involved. if (!AnySubreg) addDefsFromCopies(DbgValue, KilledLocIntervals, Kills->first, Defs, MRI, LIS); } } // For physregs, we only mark the start slot idx. DwarfDebug will see it // as if the DBG_VALUE is valid up until the end of the basic block, or // the next def of the physical register. So we do not need to extend the // range. It might actually happen that the DBG_VALUE is the last use of // the physical register (e.g. if this is an unused input argument to a // function). } // The computed intervals may extend beyond the range of the debug // location's lexical scope. In this case, splitting of an interval // can result in an interval outside of the scope being created, // causing extra unnecessary DBG_VALUEs to be emitted. To prevent // this, trim the intervals to the lexical scope in the case of inlined // variables, since heavy inlining may cause production of dramatically big // number of DBG_VALUEs to be generated. if (!dl.getInlinedAt()) return; LexicalScope *Scope = LS.findLexicalScope(dl); if (!Scope) return; SlotIndex PrevEnd; LocMap::iterator I = locInts.begin(); // Iterate over the lexical scope ranges. Each time round the loop // we check the intervals for overlap with the end of the previous // range and the start of the next. The first range is handled as // a special case where there is no PrevEnd. for (const InsnRange &Range : Scope->getRanges()) { SlotIndex RStart = LIS.getInstructionIndex(*Range.first); SlotIndex REnd = LIS.getInstructionIndex(*Range.second); // Variable locations at the first instruction of a block should be // based on the block's SlotIndex, not the first instruction's index. if (Range.first == Range.first->getParent()->begin()) RStart = LIS.getSlotIndexes()->getIndexBefore(*Range.first); // At the start of each iteration I has been advanced so that // I.stop() >= PrevEnd. Check for overlap. if (PrevEnd && I.start() < PrevEnd) { SlotIndex IStop = I.stop(); DbgVariableValue DbgValue = I.value(); // Stop overlaps previous end - trim the end of the interval to // the scope range. I.setStopUnchecked(PrevEnd); ++I; // If the interval also overlaps the start of the "next" (i.e. // current) range create a new interval for the remainder (which // may be further trimmed). if (RStart < IStop) I.insert(RStart, IStop, DbgValue); } // Advance I so that I.stop() >= RStart, and check for overlap. I.advanceTo(RStart); if (!I.valid()) return; if (I.start() < RStart) { // Interval start overlaps range - trim to the scope range. I.setStartUnchecked(RStart); // Remember that this interval was trimmed. trimmedDefs.insert(RStart); } // The end of a lexical scope range is the last instruction in the // range. To convert to an interval we need the index of the // instruction after it. REnd = REnd.getNextIndex(); // Advance I to first interval outside current range. I.advanceTo(REnd); if (!I.valid()) return; PrevEnd = REnd; } // Check for overlap with end of final range. if (PrevEnd && I.start() < PrevEnd) I.setStopUnchecked(PrevEnd); } void LDVImpl::computeIntervals() { LexicalScopes LS; LS.initialize(*MF); for (const auto &UV : userValues) { UV->computeIntervals(MF->getRegInfo(), *TRI, *LIS, LS); UV->mapVirtRegs(this); } } bool LDVImpl::runOnMachineFunction(MachineFunction &mf, bool InstrRef) { clear(); MF = &mf; LIS = &pass.getAnalysis().getLIS(); TRI = mf.getSubtarget().getRegisterInfo(); LLVM_DEBUG(dbgs() << "********** COMPUTING LIVE DEBUG VARIABLES: " << mf.getName() << " **********\n"); bool Changed = collectDebugValues(mf, InstrRef); computeIntervals(); LLVM_DEBUG(print(dbgs())); // Collect the set of VReg / SlotIndexs where PHIs occur; index the sensitive // VRegs too, for when we're notified of a range split. SlotIndexes *Slots = LIS->getSlotIndexes(); for (const auto &PHIIt : MF->DebugPHIPositions) { const MachineFunction::DebugPHIRegallocPos &Position = PHIIt.second; MachineBasicBlock *MBB = Position.MBB; Register Reg = Position.Reg; unsigned SubReg = Position.SubReg; SlotIndex SI = Slots->getMBBStartIdx(MBB); PHIValPos VP = {SI, Reg, SubReg}; PHIValToPos.insert(std::make_pair(PHIIt.first, VP)); RegToPHIIdx[Reg].push_back(PHIIt.first); } ModifiedMF = Changed; return Changed; } static void removeDebugInstrs(MachineFunction &mf) { for (MachineBasicBlock &MBB : mf) { for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) if (MI.isDebugInstr()) MBB.erase(&MI); } } bool LiveDebugVariables::runOnMachineFunction(MachineFunction &mf) { if (!EnableLDV) return false; if (!mf.getFunction().getSubprogram()) { removeDebugInstrs(mf); return false; } // Have we been asked to track variable locations using instruction // referencing? bool InstrRef = mf.useDebugInstrRef(); if (!pImpl) pImpl = new LDVImpl(this); return static_cast(pImpl)->runOnMachineFunction(mf, InstrRef); } void LiveDebugVariables::releaseMemory() { if (pImpl) static_cast(pImpl)->clear(); } LiveDebugVariables::~LiveDebugVariables() { if (pImpl) delete static_cast(pImpl); } //===----------------------------------------------------------------------===// // Live Range Splitting //===----------------------------------------------------------------------===// bool UserValue::splitLocation(unsigned OldLocNo, ArrayRef NewRegs, LiveIntervals& LIS) { LLVM_DEBUG({ dbgs() << "Splitting Loc" << OldLocNo << '\t'; print(dbgs(), nullptr); }); bool DidChange = false; LocMap::iterator LocMapI; LocMapI.setMap(locInts); for (Register NewReg : NewRegs) { LiveInterval *LI = &LIS.getInterval(NewReg); if (LI->empty()) continue; // Don't allocate the new LocNo until it is needed. unsigned NewLocNo = UndefLocNo; // Iterate over the overlaps between locInts and LI. LocMapI.find(LI->beginIndex()); if (!LocMapI.valid()) continue; LiveInterval::iterator LII = LI->advanceTo(LI->begin(), LocMapI.start()); LiveInterval::iterator LIE = LI->end(); while (LocMapI.valid() && LII != LIE) { // At this point, we know that LocMapI.stop() > LII->start. LII = LI->advanceTo(LII, LocMapI.start()); if (LII == LIE) break; // Now LII->end > LocMapI.start(). Do we have an overlap? if (LocMapI.value().containsLocNo(OldLocNo) && LII->start < LocMapI.stop()) { // Overlapping correct location. Allocate NewLocNo now. if (NewLocNo == UndefLocNo) { MachineOperand MO = MachineOperand::CreateReg(LI->reg(), false); MO.setSubReg(locations[OldLocNo].getSubReg()); NewLocNo = getLocationNo(MO); DidChange = true; } SlotIndex LStart = LocMapI.start(); SlotIndex LStop = LocMapI.stop(); DbgVariableValue OldDbgValue = LocMapI.value(); // Trim LocMapI down to the LII overlap. if (LStart < LII->start) LocMapI.setStartUnchecked(LII->start); if (LStop > LII->end) LocMapI.setStopUnchecked(LII->end); // Change the value in the overlap. This may trigger coalescing. LocMapI.setValue(OldDbgValue.changeLocNo(OldLocNo, NewLocNo)); // Re-insert any removed OldDbgValue ranges. if (LStart < LocMapI.start()) { LocMapI.insert(LStart, LocMapI.start(), OldDbgValue); ++LocMapI; assert(LocMapI.valid() && "Unexpected coalescing"); } if (LStop > LocMapI.stop()) { ++LocMapI; LocMapI.insert(LII->end, LStop, OldDbgValue); --LocMapI; } } // Advance to the next overlap. if (LII->end < LocMapI.stop()) { if (++LII == LIE) break; LocMapI.advanceTo(LII->start); } else { ++LocMapI; if (!LocMapI.valid()) break; LII = LI->advanceTo(LII, LocMapI.start()); } } } // Finally, remove OldLocNo unless it is still used by some interval in the // locInts map. One case when OldLocNo still is in use is when the register // has been spilled. In such situations the spilled register is kept as a // location until rewriteLocations is called (VirtRegMap is mapping the old // register to the spill slot). So for a while we can have locations that map // to virtual registers that have been removed from both the MachineFunction // and from LiveIntervals. // // We may also just be using the location for a value with a different // expression. removeLocationIfUnused(OldLocNo); LLVM_DEBUG({ dbgs() << "Split result: \t"; print(dbgs(), nullptr); }); return DidChange; } bool UserValue::splitRegister(Register OldReg, ArrayRef NewRegs, LiveIntervals &LIS) { bool DidChange = false; // Split locations referring to OldReg. Iterate backwards so splitLocation can // safely erase unused locations. for (unsigned i = locations.size(); i ; --i) { unsigned LocNo = i-1; const MachineOperand *Loc = &locations[LocNo]; if (!Loc->isReg() || Loc->getReg() != OldReg) continue; DidChange |= splitLocation(LocNo, NewRegs, LIS); } return DidChange; } void LDVImpl::splitPHIRegister(Register OldReg, ArrayRef NewRegs) { auto RegIt = RegToPHIIdx.find(OldReg); if (RegIt == RegToPHIIdx.end()) return; std::vector> NewRegIdxes; // Iterate over all the debug instruction numbers affected by this split. for (unsigned InstrID : RegIt->second) { auto PHIIt = PHIValToPos.find(InstrID); assert(PHIIt != PHIValToPos.end()); const SlotIndex &Slot = PHIIt->second.SI; assert(OldReg == PHIIt->second.Reg); // Find the new register that covers this position. for (auto NewReg : NewRegs) { const LiveInterval &LI = LIS->getInterval(NewReg); auto LII = LI.find(Slot); if (LII != LI.end() && LII->start <= Slot) { // This new register covers this PHI position, record this for indexing. NewRegIdxes.push_back(std::make_pair(NewReg, InstrID)); // Record that this value lives in a different VReg now. PHIIt->second.Reg = NewReg; break; } } // If we do not find a new register covering this PHI, then register // allocation has dropped its location, for example because it's not live. // The old VReg will not be mapped to a physreg, and the instruction // number will have been optimized out. } // Re-create register index using the new register numbers. RegToPHIIdx.erase(RegIt); for (auto &RegAndInstr : NewRegIdxes) RegToPHIIdx[RegAndInstr.first].push_back(RegAndInstr.second); } void LDVImpl::splitRegister(Register OldReg, ArrayRef NewRegs) { // Consider whether this split range affects any PHI locations. splitPHIRegister(OldReg, NewRegs); // Check whether any intervals mapped by a DBG_VALUE were split and need // updating. bool DidChange = false; for (UserValue *UV = lookupVirtReg(OldReg); UV; UV = UV->getNext()) DidChange |= UV->splitRegister(OldReg, NewRegs, *LIS); if (!DidChange) return; // Map all of the new virtual registers. UserValue *UV = lookupVirtReg(OldReg); for (Register NewReg : NewRegs) mapVirtReg(NewReg, UV); } void LiveDebugVariables:: splitRegister(Register OldReg, ArrayRef NewRegs, LiveIntervals &LIS) { if (pImpl) static_cast(pImpl)->splitRegister(OldReg, NewRegs); } void UserValue::rewriteLocations(VirtRegMap &VRM, const MachineFunction &MF, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, SpillOffsetMap &SpillOffsets) { // Build a set of new locations with new numbers so we can coalesce our // IntervalMap if two vreg intervals collapse to the same physical location. // Use MapVector instead of SetVector because MapVector::insert returns the // position of the previously or newly inserted element. The boolean value // tracks if the location was produced by a spill. // FIXME: This will be problematic if we ever support direct and indirect // frame index locations, i.e. expressing both variables in memory and // 'int x, *px = &x'. The "spilled" bit must become part of the location. MapVector> NewLocations; SmallVector LocNoMap(locations.size()); for (unsigned I = 0, E = locations.size(); I != E; ++I) { bool Spilled = false; unsigned SpillOffset = 0; MachineOperand Loc = locations[I]; // Only virtual registers are rewritten. if (Loc.isReg() && Loc.getReg() && Loc.getReg().isVirtual()) { Register VirtReg = Loc.getReg(); if (VRM.isAssignedReg(VirtReg) && Register::isPhysicalRegister(VRM.getPhys(VirtReg))) { // This can create a %noreg operand in rare cases when the sub-register // index is no longer available. That means the user value is in a // non-existent sub-register, and %noreg is exactly what we want. Loc.substPhysReg(VRM.getPhys(VirtReg), TRI); } else if (VRM.getStackSlot(VirtReg) != VirtRegMap::NO_STACK_SLOT) { // Retrieve the stack slot offset. unsigned SpillSize; const MachineRegisterInfo &MRI = MF.getRegInfo(); const TargetRegisterClass *TRC = MRI.getRegClass(VirtReg); bool Success = TII.getStackSlotRange(TRC, Loc.getSubReg(), SpillSize, SpillOffset, MF); // FIXME: Invalidate the location if the offset couldn't be calculated. (void)Success; Loc = MachineOperand::CreateFI(VRM.getStackSlot(VirtReg)); Spilled = true; } else { Loc.setReg(0); Loc.setSubReg(0); } } // Insert this location if it doesn't already exist and record a mapping // from the old number to the new number. auto InsertResult = NewLocations.insert({Loc, {Spilled, SpillOffset}}); unsigned NewLocNo = std::distance(NewLocations.begin(), InsertResult.first); LocNoMap[I] = NewLocNo; } // Rewrite the locations and record the stack slot offsets for spills. locations.clear(); SpillOffsets.clear(); for (auto &Pair : NewLocations) { bool Spilled; unsigned SpillOffset; std::tie(Spilled, SpillOffset) = Pair.second; locations.push_back(Pair.first); if (Spilled) { unsigned NewLocNo = std::distance(&*NewLocations.begin(), &Pair); SpillOffsets[NewLocNo] = SpillOffset; } } // Update the interval map, but only coalesce left, since intervals to the // right use the old location numbers. This should merge two contiguous // DBG_VALUE intervals with different vregs that were allocated to the same // physical register. for (LocMap::iterator I = locInts.begin(); I.valid(); ++I) { I.setValueUnchecked(I.value().remapLocNos(LocNoMap)); I.setStart(I.start()); } } /// Find an iterator for inserting a DBG_VALUE instruction. static MachineBasicBlock::iterator findInsertLocation(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, BlockSkipInstsMap &BBSkipInstsMap) { SlotIndex Start = LIS.getMBBStartIdx(MBB); Idx = Idx.getBaseIndex(); // Try to find an insert location by going backwards from Idx. MachineInstr *MI; while (!(MI = LIS.getInstructionFromIndex(Idx))) { // We've reached the beginning of MBB. if (Idx == Start) { // Retrieve the last PHI/Label/Debug location found when calling // SkipPHIsLabelsAndDebug last time. Start searching from there. // // Note the iterator kept in BBSkipInstsMap is one step back based // on the iterator returned by SkipPHIsLabelsAndDebug last time. // One exception is when SkipPHIsLabelsAndDebug returns MBB->begin(), // BBSkipInstsMap won't save it. This is to consider the case that // new instructions may be inserted at the beginning of MBB after // last call of SkipPHIsLabelsAndDebug. If we save MBB->begin() in // BBSkipInstsMap, after new non-phi/non-label/non-debug instructions // are inserted at the beginning of the MBB, the iterator in // BBSkipInstsMap won't point to the beginning of the MBB anymore. // Therefore The next search in SkipPHIsLabelsAndDebug will skip those // newly added instructions and that is unwanted. MachineBasicBlock::iterator BeginIt; auto MapIt = BBSkipInstsMap.find(MBB); if (MapIt == BBSkipInstsMap.end()) BeginIt = MBB->begin(); else BeginIt = std::next(MapIt->second); auto I = MBB->SkipPHIsLabelsAndDebug(BeginIt); if (I != BeginIt) BBSkipInstsMap[MBB] = std::prev(I); return I; } Idx = Idx.getPrevIndex(); } // Don't insert anything after the first terminator, though. return MI->isTerminator() ? MBB->getFirstTerminator() : std::next(MachineBasicBlock::iterator(MI)); } /// Find an iterator for inserting the next DBG_VALUE instruction /// (or end if no more insert locations found). static MachineBasicBlock::iterator findNextInsertLocation(MachineBasicBlock *MBB, MachineBasicBlock::iterator I, SlotIndex StopIdx, ArrayRef LocMOs, LiveIntervals &LIS, const TargetRegisterInfo &TRI) { SmallVector Regs; for (const MachineOperand &LocMO : LocMOs) if (LocMO.isReg()) Regs.push_back(LocMO.getReg()); if (Regs.empty()) return MBB->instr_end(); // Find the next instruction in the MBB that define the register Reg. while (I != MBB->end() && !I->isTerminator()) { if (!LIS.isNotInMIMap(*I) && SlotIndex::isEarlierEqualInstr(StopIdx, LIS.getInstructionIndex(*I))) break; if (any_of(Regs, [&I, &TRI](Register &Reg) { return I->definesRegister(Reg, &TRI); })) // The insert location is directly after the instruction/bundle. return std::next(I); ++I; } return MBB->end(); } void UserValue::insertDebugValue(MachineBasicBlock *MBB, SlotIndex StartIdx, SlotIndex StopIdx, DbgVariableValue DbgValue, ArrayRef LocSpills, ArrayRef SpillOffsets, LiveIntervals &LIS, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, BlockSkipInstsMap &BBSkipInstsMap) { SlotIndex MBBEndIdx = LIS.getMBBEndIdx(&*MBB); // Only search within the current MBB. StopIdx = (MBBEndIdx < StopIdx) ? MBBEndIdx : StopIdx; MachineBasicBlock::iterator I = findInsertLocation(MBB, StartIdx, LIS, BBSkipInstsMap); // Undef values don't exist in locations so create new "noreg" register MOs // for them. See getLocationNo(). SmallVector MOs; if (DbgValue.isUndef()) { MOs.assign(DbgValue.loc_nos().size(), MachineOperand::CreateReg( /* Reg */ 0, /* isDef */ false, /* isImp */ false, /* isKill */ false, /* isDead */ false, /* isUndef */ false, /* isEarlyClobber */ false, /* SubReg */ 0, /* isDebug */ true)); } else { for (unsigned LocNo : DbgValue.loc_nos()) MOs.push_back(locations[LocNo]); } ++NumInsertedDebugValues; assert(cast(Variable) ->isValidLocationForIntrinsic(getDebugLoc()) && "Expected inlined-at fields to agree"); // If the location was spilled, the new DBG_VALUE will be indirect. If the // original DBG_VALUE was indirect, we need to add DW_OP_deref to indicate // that the original virtual register was a pointer. Also, add the stack slot // offset for the spilled register to the expression. const DIExpression *Expr = DbgValue.getExpression(); bool IsIndirect = DbgValue.getWasIndirect(); bool IsList = DbgValue.getWasList(); for (unsigned I = 0, E = LocSpills.size(); I != E; ++I) { if (LocSpills[I]) { if (!IsList) { uint8_t DIExprFlags = DIExpression::ApplyOffset; if (IsIndirect) DIExprFlags |= DIExpression::DerefAfter; Expr = DIExpression::prepend(Expr, DIExprFlags, SpillOffsets[I]); IsIndirect = true; } else { SmallVector Ops; DIExpression::appendOffset(Ops, SpillOffsets[I]); Ops.push_back(dwarf::DW_OP_deref); Expr = DIExpression::appendOpsToArg(Expr, Ops, I); } } assert((!LocSpills[I] || MOs[I].isFI()) && "a spilled location must be a frame index"); } unsigned DbgValueOpcode = IsList ? TargetOpcode::DBG_VALUE_LIST : TargetOpcode::DBG_VALUE; do { BuildMI(*MBB, I, getDebugLoc(), TII.get(DbgValueOpcode), IsIndirect, MOs, Variable, Expr); // Continue and insert DBG_VALUES after every redefinition of a register // associated with the debug value within the range I = findNextInsertLocation(MBB, I, StopIdx, MOs, LIS, TRI); } while (I != MBB->end()); } void UserLabel::insertDebugLabel(MachineBasicBlock *MBB, SlotIndex Idx, LiveIntervals &LIS, const TargetInstrInfo &TII, BlockSkipInstsMap &BBSkipInstsMap) { MachineBasicBlock::iterator I = findInsertLocation(MBB, Idx, LIS, BBSkipInstsMap); ++NumInsertedDebugLabels; BuildMI(*MBB, I, getDebugLoc(), TII.get(TargetOpcode::DBG_LABEL)) .addMetadata(Label); } void UserValue::emitDebugValues(VirtRegMap *VRM, LiveIntervals &LIS, const TargetInstrInfo &TII, const TargetRegisterInfo &TRI, const SpillOffsetMap &SpillOffsets, BlockSkipInstsMap &BBSkipInstsMap) { MachineFunction::iterator MFEnd = VRM->getMachineFunction().end(); for (LocMap::const_iterator I = locInts.begin(); I.valid();) { SlotIndex Start = I.start(); SlotIndex Stop = I.stop(); DbgVariableValue DbgValue = I.value(); SmallVector SpilledLocs; SmallVector LocSpillOffsets; for (unsigned LocNo : DbgValue.loc_nos()) { auto SpillIt = !DbgValue.isUndef() ? SpillOffsets.find(LocNo) : SpillOffsets.end(); bool Spilled = SpillIt != SpillOffsets.end(); SpilledLocs.push_back(Spilled); LocSpillOffsets.push_back(Spilled ? SpillIt->second : 0); } // If the interval start was trimmed to the lexical scope insert the // DBG_VALUE at the previous index (otherwise it appears after the // first instruction in the range). if (trimmedDefs.count(Start)) Start = Start.getPrevIndex(); LLVM_DEBUG(auto &dbg = dbgs(); dbg << "\t[" << Start << ';' << Stop << "):"; DbgValue.printLocNos(dbg)); MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); SlotIndex MBBEnd = LIS.getMBBEndIdx(&*MBB); LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); // This interval may span multiple basic blocks. // Insert a DBG_VALUE into each one. while (Stop > MBBEnd) { // Move to the next block. Start = MBBEnd; if (++MBB == MFEnd) break; MBBEnd = LIS.getMBBEndIdx(&*MBB); LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB) << '-' << MBBEnd); insertDebugValue(&*MBB, Start, Stop, DbgValue, SpilledLocs, LocSpillOffsets, LIS, TII, TRI, BBSkipInstsMap); } LLVM_DEBUG(dbgs() << '\n'); if (MBB == MFEnd) break; ++I; } } void UserLabel::emitDebugLabel(LiveIntervals &LIS, const TargetInstrInfo &TII, BlockSkipInstsMap &BBSkipInstsMap) { LLVM_DEBUG(dbgs() << "\t" << loc); MachineFunction::iterator MBB = LIS.getMBBFromIndex(loc)->getIterator(); LLVM_DEBUG(dbgs() << ' ' << printMBBReference(*MBB)); insertDebugLabel(&*MBB, loc, LIS, TII, BBSkipInstsMap); LLVM_DEBUG(dbgs() << '\n'); } void LDVImpl::emitDebugValues(VirtRegMap *VRM) { LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG VARIABLES **********\n"); if (!MF) return; BlockSkipInstsMap BBSkipInstsMap; const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); SpillOffsetMap SpillOffsets; for (auto &userValue : userValues) { LLVM_DEBUG(userValue->print(dbgs(), TRI)); userValue->rewriteLocations(*VRM, *MF, *TII, *TRI, SpillOffsets); userValue->emitDebugValues(VRM, *LIS, *TII, *TRI, SpillOffsets, BBSkipInstsMap); } LLVM_DEBUG(dbgs() << "********** EMITTING LIVE DEBUG LABELS **********\n"); for (auto &userLabel : userLabels) { LLVM_DEBUG(userLabel->print(dbgs(), TRI)); userLabel->emitDebugLabel(*LIS, *TII, BBSkipInstsMap); } LLVM_DEBUG(dbgs() << "********** EMITTING DEBUG PHIS **********\n"); auto Slots = LIS->getSlotIndexes(); for (auto &It : PHIValToPos) { // For each ex-PHI, identify its physreg location or stack slot, and emit // a DBG_PHI for it. unsigned InstNum = It.first; auto Slot = It.second.SI; Register Reg = It.second.Reg; unsigned SubReg = It.second.SubReg; MachineBasicBlock *OrigMBB = Slots->getMBBFromIndex(Slot); if (VRM->isAssignedReg(Reg) && Register::isPhysicalRegister(VRM->getPhys(Reg))) { unsigned PhysReg = VRM->getPhys(Reg); if (SubReg != 0) PhysReg = TRI->getSubReg(PhysReg, SubReg); auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), TII->get(TargetOpcode::DBG_PHI)); Builder.addReg(PhysReg); Builder.addImm(InstNum); } else if (VRM->getStackSlot(Reg) != VirtRegMap::NO_STACK_SLOT) { const MachineRegisterInfo &MRI = MF->getRegInfo(); const TargetRegisterClass *TRC = MRI.getRegClass(Reg); unsigned SpillSize, SpillOffset; unsigned regSizeInBits = TRI->getRegSizeInBits(*TRC); if (SubReg) regSizeInBits = TRI->getSubRegIdxSize(SubReg); // Test whether this location is legal with the given subreg. If the // subregister has a nonzero offset, drop this location, it's too complex // to describe. (TODO: future work). bool Success = TII->getStackSlotRange(TRC, SubReg, SpillSize, SpillOffset, *MF); if (Success && SpillOffset == 0) { auto Builder = BuildMI(*OrigMBB, OrigMBB->begin(), DebugLoc(), TII->get(TargetOpcode::DBG_PHI)); Builder.addFrameIndex(VRM->getStackSlot(Reg)); Builder.addImm(InstNum); // Record how large the original value is. The stack slot might be // merged and altered during optimisation, but we will want to know how // large the value is, at this DBG_PHI. Builder.addImm(regSizeInBits); } LLVM_DEBUG( if (SpillOffset != 0) { dbgs() << "DBG_PHI for Vreg " << Reg << " subreg " << SubReg << " has nonzero offset\n"; } ); } // If there was no mapping for a value ID, it's optimized out. Create no // DBG_PHI, and any variables using this value will become optimized out. } MF->DebugPHIPositions.clear(); LLVM_DEBUG(dbgs() << "********** EMITTING INSTR REFERENCES **********\n"); // Re-insert any debug instrs back in the position they were. We must // re-insert in the same order to ensure that debug instructions don't swap, // which could re-order assignments. Do so in a batch -- once we find the // insert position, insert all instructions at the same SlotIdx. They are // guaranteed to appear in-sequence in StashedDebugInstrs because we insert // them in order. for (auto *StashIt = StashedDebugInstrs.begin(); StashIt != StashedDebugInstrs.end(); ++StashIt) { SlotIndex Idx = StashIt->Idx; MachineBasicBlock *MBB = StashIt->MBB; MachineInstr *MI = StashIt->MI; auto EmitInstsHere = [this, &StashIt, MBB, Idx, MI](MachineBasicBlock::iterator InsertPos) { // Insert this debug instruction. MBB->insert(InsertPos, MI); // Look at subsequent stashed debug instructions: if they're at the same // index, insert those too. auto NextItem = std::next(StashIt); while (NextItem != StashedDebugInstrs.end() && NextItem->Idx == Idx) { assert(NextItem->MBB == MBB && "Instrs with same slot index should be" "in the same block"); MBB->insert(InsertPos, NextItem->MI); StashIt = NextItem; NextItem = std::next(StashIt); }; }; // Start block index: find the first non-debug instr in the block, and // insert before it. if (Idx == Slots->getMBBStartIdx(MBB)) { MachineBasicBlock::iterator InsertPos = findInsertLocation(MBB, Idx, *LIS, BBSkipInstsMap); EmitInstsHere(InsertPos); continue; } if (MachineInstr *Pos = Slots->getInstructionFromIndex(Idx)) { // Insert at the end of any debug instructions. auto PostDebug = std::next(Pos->getIterator()); PostDebug = skipDebugInstructionsForward(PostDebug, MBB->instr_end()); EmitInstsHere(PostDebug); } else { // Insert position disappeared; walk forwards through slots until we // find a new one. SlotIndex End = Slots->getMBBEndIdx(MBB); for (; Idx < End; Idx = Slots->getNextNonNullIndex(Idx)) { Pos = Slots->getInstructionFromIndex(Idx); if (Pos) { EmitInstsHere(Pos->getIterator()); break; } } // We have reached the end of the block and didn't find anywhere to // insert! It's not safe to discard any debug instructions; place them // in front of the first terminator, or in front of end(). if (Idx >= End) { auto TermIt = MBB->getFirstTerminator(); EmitInstsHere(TermIt); } } } EmitDone = true; BBSkipInstsMap.clear(); } void LiveDebugVariables::emitDebugValues(VirtRegMap *VRM) { if (pImpl) static_cast(pImpl)->emitDebugValues(VRM); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) LLVM_DUMP_METHOD void LiveDebugVariables::dump() const { if (pImpl) static_cast(pImpl)->print(dbgs()); } #endif