//===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // Implement an interface to specify and query how an illegal operation on a // given type should be expanded. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" #include "llvm/ADT/SmallBitVector.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetOpcodes.h" #include "llvm/CodeGenTypes/LowLevelType.h" #include "llvm/MC/MCInstrDesc.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include using namespace llvm; using namespace LegalizeActions; #define DEBUG_TYPE "legalizer-info" cl::opt llvm::DisableGISelLegalityCheck( "disable-gisel-legality-check", cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"), cl::Hidden); raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) { switch (Action) { case Legal: OS << "Legal"; break; case NarrowScalar: OS << "NarrowScalar"; break; case WidenScalar: OS << "WidenScalar"; break; case FewerElements: OS << "FewerElements"; break; case MoreElements: OS << "MoreElements"; break; case Bitcast: OS << "Bitcast"; break; case Lower: OS << "Lower"; break; case Libcall: OS << "Libcall"; break; case Custom: OS << "Custom"; break; case Unsupported: OS << "Unsupported"; break; case NotFound: OS << "NotFound"; break; case UseLegacyRules: OS << "UseLegacyRules"; break; } return OS; } raw_ostream &LegalityQuery::print(raw_ostream &OS) const { OS << "Opcode=" << Opcode << ", Tys={"; for (const auto &Type : Types) { OS << Type << ", "; } OS << "}, MMOs={"; for (const auto &MMODescr : MMODescrs) { OS << MMODescr.MemoryTy << ", "; } OS << "}"; return OS; } #ifndef NDEBUG // Make sure the rule won't (trivially) loop forever. static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q, const std::pair &Mutation) { switch (Rule.getAction()) { case Legal: case Custom: case Lower: case MoreElements: case FewerElements: case Libcall: break; default: return Q.Types[Mutation.first] != Mutation.second; } return true; } // Make sure the returned mutation makes sense for the match type. static bool mutationIsSane(const LegalizeRule &Rule, const LegalityQuery &Q, std::pair Mutation) { // If the user wants a custom mutation, then we can't really say much about // it. Return true, and trust that they're doing the right thing. if (Rule.getAction() == Custom || Rule.getAction() == Legal) return true; // Skip null mutation. if (!Mutation.second.isValid()) return true; const unsigned TypeIdx = Mutation.first; const LLT OldTy = Q.Types[TypeIdx]; const LLT NewTy = Mutation.second; switch (Rule.getAction()) { case FewerElements: if (!OldTy.isVector()) return false; [[fallthrough]]; case MoreElements: { // MoreElements can go from scalar to vector. const ElementCount OldElts = OldTy.isVector() ? OldTy.getElementCount() : ElementCount::getFixed(1); if (NewTy.isVector()) { if (Rule.getAction() == FewerElements) { // Make sure the element count really decreased. if (ElementCount::isKnownGE(NewTy.getElementCount(), OldElts)) return false; } else { // Make sure the element count really increased. if (ElementCount::isKnownLE(NewTy.getElementCount(), OldElts)) return false; } } else if (Rule.getAction() == MoreElements) return false; // Make sure the element type didn't change. return NewTy.getScalarType() == OldTy.getScalarType(); } case NarrowScalar: case WidenScalar: { if (OldTy.isVector()) { // Number of elements should not change. if (!NewTy.isVector() || OldTy.getElementCount() != NewTy.getElementCount()) return false; } else { // Both types must be vectors if (NewTy.isVector()) return false; } if (Rule.getAction() == NarrowScalar) { // Make sure the size really decreased. if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits()) return false; } else { // Make sure the size really increased. if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits()) return false; } return true; } case Bitcast: { return OldTy != NewTy && OldTy.getSizeInBits() == NewTy.getSizeInBits(); } default: return true; } } #endif LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const { LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs()); dbgs() << "\n"); if (Rules.empty()) { LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n"); return {LegalizeAction::UseLegacyRules, 0, LLT{}}; } for (const LegalizeRule &Rule : Rules) { if (Rule.match(Query)) { LLVM_DEBUG(dbgs() << ".. match\n"); std::pair Mutation = Rule.determineMutation(Query); LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", " << Mutation.first << ", " << Mutation.second << "\n"); assert(mutationIsSane(Rule, Query, Mutation) && "legality mutation invalid for match"); assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected"); return {Rule.getAction(), Mutation.first, Mutation.second}; } else LLVM_DEBUG(dbgs() << ".. no match\n"); } LLVM_DEBUG(dbgs() << ".. unsupported\n"); return {LegalizeAction::Unsupported, 0, LLT{}}; } bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const { #ifndef NDEBUG if (Rules.empty()) { LLVM_DEBUG( dbgs() << ".. type index coverage check SKIPPED: no rules defined\n"); return true; } const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset(); if (FirstUncovered < 0) { LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:" " user-defined predicate detected\n"); return true; } const bool AllCovered = (FirstUncovered >= NumTypeIdxs); if (NumTypeIdxs > 0) LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); return AllCovered; #else return true; #endif } bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const { #ifndef NDEBUG if (Rules.empty()) { LLVM_DEBUG( dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n"); return true; } const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset(); if (FirstUncovered < 0) { LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:" " user-defined predicate detected\n"); return true; } const bool AllCovered = (FirstUncovered >= NumImmIdxs); LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered << ", " << (AllCovered ? "OK" : "FAIL") << "\n"); return AllCovered; #else return true; #endif } /// Helper function to get LLT for the given type index. static LLT getTypeFromTypeIdx(const MachineInstr &MI, const MachineRegisterInfo &MRI, unsigned OpIdx, unsigned TypeIdx) { assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx"); // G_UNMERGE_VALUES has variable number of operands, but there is only // one source type and one destination type as all destinations must be the // same type. So, get the last operand if TypeIdx == 1. if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1) return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg()); return MRI.getType(MI.getOperand(OpIdx).getReg()); } unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const { assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode"); return Opcode - FirstOp; } unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const { unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode); if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) { LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias << "\n"); OpcodeIdx = getOpcodeIdxForOpcode(Alias); assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases"); } return OpcodeIdx; } const LegalizeRuleSet & LegalizerInfo::getActionDefinitions(unsigned Opcode) const { unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); return RulesForOpcode[OpcodeIdx]; } LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) { unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode); auto &Result = RulesForOpcode[OpcodeIdx]; assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases"); return Result; } LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder( std::initializer_list Opcodes) { unsigned Representative = *Opcodes.begin(); assert(Opcodes.size() >= 2 && "Initializer list must have at least two opcodes"); for (unsigned Op : llvm::drop_begin(Opcodes)) aliasActionDefinitions(Representative, Op); auto &Return = getActionDefinitionsBuilder(Representative); Return.setIsAliasedByAnother(); return Return; } void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom) { assert(OpcodeTo != OpcodeFrom && "Cannot alias to self"); assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode"); const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom); RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo); } LegalizeActionStep LegalizerInfo::getAction(const LegalityQuery &Query) const { LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query); if (Step.Action != LegalizeAction::UseLegacyRules) { return Step; } return getLegacyLegalizerInfo().getAction(Query); } LegalizeActionStep LegalizerInfo::getAction(const MachineInstr &MI, const MachineRegisterInfo &MRI) const { SmallVector Types; SmallBitVector SeenTypes(8); ArrayRef OpInfo = MI.getDesc().operands(); // FIXME: probably we'll need to cache the results here somehow? for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) { if (!OpInfo[i].isGenericType()) continue; // We must only record actions once for each TypeIdx; otherwise we'd // try to legalize operands multiple times down the line. unsigned TypeIdx = OpInfo[i].getGenericTypeIndex(); if (SeenTypes[TypeIdx]) continue; SeenTypes.set(TypeIdx); LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx); Types.push_back(Ty); } SmallVector MemDescrs; for (const auto &MMO : MI.memoperands()) MemDescrs.push_back({*MMO}); return getAction({MI.getOpcode(), Types, MemDescrs}); } bool LegalizerInfo::isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const { return getAction(MI, MRI).Action == Legal; } bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI, const MachineRegisterInfo &MRI) const { auto Action = getAction(MI, MRI).Action; // If the action is custom, it may not necessarily modify the instruction, // so we have to assume it's legal. return Action == Legal || Action == Custom; } unsigned LegalizerInfo::getExtOpcodeForWideningConstant(LLT SmallTy) const { return SmallTy.isByteSized() ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT; } /// \pre Type indices of every opcode form a dense set starting from 0. void LegalizerInfo::verify(const MCInstrInfo &MII) const { #ifndef NDEBUG std::vector FailedOpcodes; for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) { const MCInstrDesc &MCID = MII.get(Opcode); const unsigned NumTypeIdxs = std::accumulate( MCID.operands().begin(), MCID.operands().end(), 0U, [](unsigned Acc, const MCOperandInfo &OpInfo) { return OpInfo.isGenericType() ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc) : Acc; }); const unsigned NumImmIdxs = std::accumulate( MCID.operands().begin(), MCID.operands().end(), 0U, [](unsigned Acc, const MCOperandInfo &OpInfo) { return OpInfo.isGenericImm() ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc) : Acc; }); LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode << "): " << NumTypeIdxs << " type ind" << (NumTypeIdxs == 1 ? "ex" : "ices") << ", " << NumImmIdxs << " imm ind" << (NumImmIdxs == 1 ? "ex" : "ices") << "\n"); const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode); if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs)) FailedOpcodes.push_back(Opcode); else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs)) FailedOpcodes.push_back(Opcode); } if (!FailedOpcodes.empty()) { errs() << "The following opcodes have ill-defined legalization rules:"; for (unsigned Opcode : FailedOpcodes) errs() << " " << MII.getName(Opcode); errs() << "\n"; report_fatal_error("ill-defined LegalizerInfo" ", try -debug-only=legalizer-info for details"); } #endif } #ifndef NDEBUG // FIXME: This should be in the MachineVerifier, but it can't use the // LegalizerInfo as it's currently in the separate GlobalISel library. // Note that RegBankSelected property already checked in the verifier // has the same layering problem, but we only use inline methods so // end up not needing to link against the GlobalISel library. const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) { if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) { const MachineRegisterInfo &MRI = MF.getRegInfo(); for (const MachineBasicBlock &MBB : MF) for (const MachineInstr &MI : MBB) if (isPreISelGenericOpcode(MI.getOpcode()) && !MLI->isLegalOrCustom(MI, MRI)) return &MI; } return nullptr; } #endif