//===- FunctionPropertiesAnalysis.cpp - Function Properties Analysis ------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the FunctionPropertiesInfo and FunctionPropertiesAnalysis // classes used to extract function properties. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/FunctionPropertiesAnalysis.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SetVector.h" #include "llvm/Analysis/LoopInfo.h" #include "llvm/IR/CFG.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Dominators.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/CommandLine.h" #include using namespace llvm; namespace llvm { cl::opt EnableDetailedFunctionProperties( "enable-detailed-function-properties", cl::Hidden, cl::init(false), cl::desc("Whether or not to compute detailed function properties.")); cl::opt BigBasicBlockInstructionThreshold( "big-basic-block-instruction-threshold", cl::Hidden, cl::init(500), cl::desc("The minimum number of instructions a basic block should contain " "before being considered big.")); cl::opt MediumBasicBlockInstructionThreshold( "medium-basic-block-instruction-threshold", cl::Hidden, cl::init(15), cl::desc("The minimum number of instructions a basic block should contain " "before being considered medium-sized.")); } // namespace llvm static cl::opt CallWithManyArgumentsThreshold( "call-with-many-arguments-threshold", cl::Hidden, cl::init(4), cl::desc("The minimum number of arguments a function call must have before " "it is considered having many arguments.")); namespace { int64_t getNrBlocksFromCond(const BasicBlock &BB) { int64_t Ret = 0; if (const auto *BI = dyn_cast(BB.getTerminator())) { if (BI->isConditional()) Ret += BI->getNumSuccessors(); } else if (const auto *SI = dyn_cast(BB.getTerminator())) { Ret += (SI->getNumCases() + (nullptr != SI->getDefaultDest())); } return Ret; } int64_t getUses(const Function &F) { return ((!F.hasLocalLinkage()) ? 1 : 0) + F.getNumUses(); } } // namespace void FunctionPropertiesInfo::reIncludeBB(const BasicBlock &BB) { updateForBB(BB, +1); } void FunctionPropertiesInfo::updateForBB(const BasicBlock &BB, int64_t Direction) { assert(Direction == 1 || Direction == -1); BasicBlockCount += Direction; BlocksReachedFromConditionalInstruction += (Direction * getNrBlocksFromCond(BB)); for (const auto &I : BB) { if (auto *CS = dyn_cast(&I)) { const auto *Callee = CS->getCalledFunction(); if (Callee && !Callee->isIntrinsic() && !Callee->isDeclaration()) DirectCallsToDefinedFunctions += Direction; } if (I.getOpcode() == Instruction::Load) { LoadInstCount += Direction; } else if (I.getOpcode() == Instruction::Store) { StoreInstCount += Direction; } } TotalInstructionCount += Direction * BB.sizeWithoutDebug(); if (EnableDetailedFunctionProperties) { unsigned SuccessorCount = succ_size(&BB); if (SuccessorCount == 1) BasicBlocksWithSingleSuccessor += Direction; else if (SuccessorCount == 2) BasicBlocksWithTwoSuccessors += Direction; else if (SuccessorCount > 2) BasicBlocksWithMoreThanTwoSuccessors += Direction; unsigned PredecessorCount = pred_size(&BB); if (PredecessorCount == 1) BasicBlocksWithSinglePredecessor += Direction; else if (PredecessorCount == 2) BasicBlocksWithTwoPredecessors += Direction; else if (PredecessorCount > 2) BasicBlocksWithMoreThanTwoPredecessors += Direction; if (TotalInstructionCount > BigBasicBlockInstructionThreshold) BigBasicBlocks += Direction; else if (TotalInstructionCount > MediumBasicBlockInstructionThreshold) MediumBasicBlocks += Direction; else SmallBasicBlocks += Direction; // Calculate critical edges by looking through all successors of a basic // block that has multiple successors and finding ones that have multiple // predecessors, which represent critical edges. if (SuccessorCount > 1) { for (const auto *Successor : successors(&BB)) { if (pred_size(Successor) > 1) CriticalEdgeCount += Direction; } } ControlFlowEdgeCount += Direction * SuccessorCount; if (const auto *BI = dyn_cast(BB.getTerminator())) { if (!BI->isConditional()) UnconditionalBranchCount += Direction; } for (const Instruction &I : BB.instructionsWithoutDebug()) { if (I.isCast()) CastInstructionCount += Direction; if (I.getType()->isFloatTy()) FloatingPointInstructionCount += Direction; else if (I.getType()->isIntegerTy()) IntegerInstructionCount += Direction; if (isa(I)) ++IntrinsicCount; if (const auto *Call = dyn_cast(&I)) { if (Call->isIndirectCall()) IndirectCallCount += Direction; else DirectCallCount += Direction; if (Call->getType()->isIntegerTy()) CallReturnsIntegerCount += Direction; else if (Call->getType()->isFloatingPointTy()) CallReturnsFloatCount += Direction; else if (Call->getType()->isPointerTy()) CallReturnsPointerCount += Direction; else if (Call->getType()->isVectorTy()) { if (Call->getType()->getScalarType()->isIntegerTy()) CallReturnsVectorIntCount += Direction; else if (Call->getType()->getScalarType()->isFloatingPointTy()) CallReturnsVectorFloatCount += Direction; else if (Call->getType()->getScalarType()->isPointerTy()) CallReturnsVectorPointerCount += Direction; } if (Call->arg_size() > CallWithManyArgumentsThreshold) CallWithManyArgumentsCount += Direction; for (const auto &Arg : Call->args()) { if (Arg->getType()->isPointerTy()) { CallWithPointerArgumentCount += Direction; break; } } } #define COUNT_OPERAND(OPTYPE) \ if (isa(Operand)) { \ OPTYPE##OperandCount += Direction; \ continue; \ } for (unsigned int OperandIndex = 0; OperandIndex < I.getNumOperands(); ++OperandIndex) { Value *Operand = I.getOperand(OperandIndex); COUNT_OPERAND(GlobalValue) COUNT_OPERAND(ConstantInt) COUNT_OPERAND(ConstantFP) COUNT_OPERAND(Constant) COUNT_OPERAND(Instruction) COUNT_OPERAND(BasicBlock) COUNT_OPERAND(InlineAsm) COUNT_OPERAND(Argument) // We only get to this point if we haven't matched any of the other // operand types. UnknownOperandCount += Direction; } #undef CHECK_OPERAND } } } void FunctionPropertiesInfo::updateAggregateStats(const Function &F, const LoopInfo &LI) { Uses = getUses(F); TopLevelLoopCount = llvm::size(LI); MaxLoopDepth = 0; std::deque Worklist; llvm::append_range(Worklist, LI); while (!Worklist.empty()) { const auto *L = Worklist.front(); MaxLoopDepth = std::max(MaxLoopDepth, static_cast(L->getLoopDepth())); Worklist.pop_front(); llvm::append_range(Worklist, L->getSubLoops()); } } FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo( Function &F, FunctionAnalysisManager &FAM) { return getFunctionPropertiesInfo(F, FAM.getResult(F), FAM.getResult(F)); } FunctionPropertiesInfo FunctionPropertiesInfo::getFunctionPropertiesInfo( const Function &F, const DominatorTree &DT, const LoopInfo &LI) { FunctionPropertiesInfo FPI; for (const auto &BB : F) if (DT.isReachableFromEntry(&BB)) FPI.reIncludeBB(BB); FPI.updateAggregateStats(F, LI); return FPI; } void FunctionPropertiesInfo::print(raw_ostream &OS) const { #define PRINT_PROPERTY(PROP_NAME) OS << #PROP_NAME ": " << PROP_NAME << "\n"; PRINT_PROPERTY(BasicBlockCount) PRINT_PROPERTY(BlocksReachedFromConditionalInstruction) PRINT_PROPERTY(Uses) PRINT_PROPERTY(DirectCallsToDefinedFunctions) PRINT_PROPERTY(LoadInstCount) PRINT_PROPERTY(StoreInstCount) PRINT_PROPERTY(MaxLoopDepth) PRINT_PROPERTY(TopLevelLoopCount) PRINT_PROPERTY(TotalInstructionCount) if (EnableDetailedFunctionProperties) { PRINT_PROPERTY(BasicBlocksWithSingleSuccessor) PRINT_PROPERTY(BasicBlocksWithTwoSuccessors) PRINT_PROPERTY(BasicBlocksWithMoreThanTwoSuccessors) PRINT_PROPERTY(BasicBlocksWithSinglePredecessor) PRINT_PROPERTY(BasicBlocksWithTwoPredecessors) PRINT_PROPERTY(BasicBlocksWithMoreThanTwoPredecessors) PRINT_PROPERTY(BigBasicBlocks) PRINT_PROPERTY(MediumBasicBlocks) PRINT_PROPERTY(SmallBasicBlocks) PRINT_PROPERTY(CastInstructionCount) PRINT_PROPERTY(FloatingPointInstructionCount) PRINT_PROPERTY(IntegerInstructionCount) PRINT_PROPERTY(ConstantIntOperandCount) PRINT_PROPERTY(ConstantFPOperandCount) PRINT_PROPERTY(ConstantOperandCount) PRINT_PROPERTY(InstructionOperandCount) PRINT_PROPERTY(BasicBlockOperandCount) PRINT_PROPERTY(GlobalValueOperandCount) PRINT_PROPERTY(InlineAsmOperandCount) PRINT_PROPERTY(ArgumentOperandCount) PRINT_PROPERTY(UnknownOperandCount) PRINT_PROPERTY(CriticalEdgeCount) PRINT_PROPERTY(ControlFlowEdgeCount) PRINT_PROPERTY(UnconditionalBranchCount) PRINT_PROPERTY(IntrinsicCount) PRINT_PROPERTY(DirectCallCount) PRINT_PROPERTY(IndirectCallCount) PRINT_PROPERTY(CallReturnsIntegerCount) PRINT_PROPERTY(CallReturnsFloatCount) PRINT_PROPERTY(CallReturnsPointerCount) PRINT_PROPERTY(CallReturnsVectorIntCount) PRINT_PROPERTY(CallReturnsVectorFloatCount) PRINT_PROPERTY(CallReturnsVectorPointerCount) PRINT_PROPERTY(CallWithManyArgumentsCount) PRINT_PROPERTY(CallWithPointerArgumentCount) } #undef PRINT_PROPERTY OS << "\n"; } AnalysisKey FunctionPropertiesAnalysis::Key; FunctionPropertiesInfo FunctionPropertiesAnalysis::run(Function &F, FunctionAnalysisManager &FAM) { return FunctionPropertiesInfo::getFunctionPropertiesInfo(F, FAM); } PreservedAnalyses FunctionPropertiesPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { OS << "Printing analysis results of CFA for function " << "'" << F.getName() << "':" << "\n"; AM.getResult(F).print(OS); return PreservedAnalyses::all(); } FunctionPropertiesUpdater::FunctionPropertiesUpdater( FunctionPropertiesInfo &FPI, CallBase &CB) : FPI(FPI), CallSiteBB(*CB.getParent()), Caller(*CallSiteBB.getParent()) { assert(isa(CB) || isa(CB)); // For BBs that are likely to change, we subtract from feature totals their // contribution. Some features, like max loop counts or depths, are left // invalid, as they will be updated post-inlining. SmallPtrSet LikelyToChangeBBs; // The CB BB will change - it'll either be split or the callee's body (single // BB) will be pasted in. LikelyToChangeBBs.insert(&CallSiteBB); // The caller's entry BB may change due to new alloca instructions. LikelyToChangeBBs.insert(&*Caller.begin()); // The successors may become unreachable in the case of `invoke` inlining. // We track successors separately, too, because they form a boundary, together // with the CB BB ('Entry') between which the inlined callee will be pasted. Successors.insert(succ_begin(&CallSiteBB), succ_end(&CallSiteBB)); // Inlining only handles invoke and calls. If this is an invoke, and inlining // it pulls another invoke, the original landing pad may get split, so as to // share its content with other potential users. So the edge up to which we // need to invalidate and then re-account BB data is the successors of the // current landing pad. We can leave the current lp, too - if it doesn't get // split, then it will be the place traversal stops. Either way, the // discounted BBs will be checked if reachable and re-added. if (const auto *II = dyn_cast(&CB)) { const auto *UnwindDest = II->getUnwindDest(); Successors.insert(succ_begin(UnwindDest), succ_end(UnwindDest)); } // Exclude the CallSiteBB, if it happens to be its own successor (1-BB loop). // We are only interested in BBs the graph moves past the callsite BB to // define the frontier past which we don't want to re-process BBs. Including // the callsite BB in this case would prematurely stop the traversal in // finish(). Successors.erase(&CallSiteBB); for (const auto *BB : Successors) LikelyToChangeBBs.insert(BB); // Commit the change. While some of the BBs accounted for above may play dual // role - e.g. caller's entry BB may be the same as the callsite BB - set // insertion semantics make sure we account them once. This needs to be // followed in `finish`, too. for (const auto *BB : LikelyToChangeBBs) FPI.updateForBB(*BB, -1); } void FunctionPropertiesUpdater::finish(FunctionAnalysisManager &FAM) const { // Update feature values from the BBs that were copied from the callee, or // might have been modified because of inlining. The latter have been // subtracted in the FunctionPropertiesUpdater ctor. // There could be successors that were reached before but now are only // reachable from elsewhere in the CFG. // One example is the following diamond CFG (lines are arrows pointing down): // A // / \ // B C // | | // | D // | | // | E // \ / // F // There's a call site in C that is inlined. Upon doing that, it turns out // it expands to // call void @llvm.trap() // unreachable // F isn't reachable from C anymore, but we did discount it when we set up // FunctionPropertiesUpdater, so we need to re-include it here. // At the same time, D and E were reachable before, but now are not anymore, // so we need to leave D out (we discounted it at setup), and explicitly // remove E. SetVector Reinclude; SetVector Unreachable; const auto &DT = FAM.getResult(const_cast(Caller)); if (&CallSiteBB != &*Caller.begin()) Reinclude.insert(&*Caller.begin()); // Distribute the successors to the 2 buckets. for (const auto *Succ : Successors) if (DT.isReachableFromEntry(Succ)) Reinclude.insert(Succ); else Unreachable.insert(Succ); // For reinclusion, we want to stop at the reachable successors, who are at // the beginning of the worklist; but, starting from the callsite bb and // ending at those successors, we also want to perform a traversal. // IncludeSuccessorsMark is the index after which we include successors. const auto IncludeSuccessorsMark = Reinclude.size(); bool CSInsertion = Reinclude.insert(&CallSiteBB); (void)CSInsertion; assert(CSInsertion); for (size_t I = 0; I < Reinclude.size(); ++I) { const auto *BB = Reinclude[I]; FPI.reIncludeBB(*BB); if (I >= IncludeSuccessorsMark) Reinclude.insert(succ_begin(BB), succ_end(BB)); } // For exclusion, we don't need to exclude the set of BBs that were successors // before and are now unreachable, because we already did that at setup. For // the rest, as long as a successor is unreachable, we want to explicitly // exclude it. const auto AlreadyExcludedMark = Unreachable.size(); for (size_t I = 0; I < Unreachable.size(); ++I) { const auto *U = Unreachable[I]; if (I >= AlreadyExcludedMark) FPI.updateForBB(*U, -1); for (const auto *Succ : successors(U)) if (!DT.isReachableFromEntry(Succ)) Unreachable.insert(Succ); } const auto &LI = FAM.getResult(const_cast(Caller)); FPI.updateAggregateStats(Caller, LI); } bool FunctionPropertiesUpdater::isUpdateValid(Function &F, const FunctionPropertiesInfo &FPI, FunctionAnalysisManager &FAM) { DominatorTree DT(F); LoopInfo LI(DT); auto Fresh = FunctionPropertiesInfo::getFunctionPropertiesInfo(F, DT, LI); return FPI == Fresh; }