// -*- C++ -*- //===----------------------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // // Kokkos v. 4.0 // Copyright (2022) National Technology & Engineering // Solutions of Sandia, LLC (NTESS). // // Under the terms of Contract DE-NA0003525 with NTESS, // the U.S. Government retains certain rights in this software. // //===---------------------------------------------------------------------===// #ifndef _LIBCPP___ATOMIC_ATOMIC_REF_H #define _LIBCPP___ATOMIC_ATOMIC_REF_H #include <__assert> #include <__atomic/atomic_sync.h> #include <__atomic/check_memory_order.h> #include <__atomic/to_gcc_order.h> #include <__concepts/arithmetic.h> #include <__concepts/same_as.h> #include <__config> #include <__memory/addressof.h> #include <__type_traits/has_unique_object_representation.h> #include <__type_traits/is_trivially_copyable.h> #include #include #include #if !defined(_LIBCPP_HAS_NO_PRAGMA_SYSTEM_HEADER) # pragma GCC system_header #endif _LIBCPP_PUSH_MACROS #include <__undef_macros> _LIBCPP_BEGIN_NAMESPACE_STD #if _LIBCPP_STD_VER >= 20 // These types are required to make __atomic_is_always_lock_free work across GCC and Clang. // The purpose of this trick is to make sure that we provide an object with the correct alignment // to __atomic_is_always_lock_free, since that answer depends on the alignment. template struct __alignment_checker_type { alignas(_Alignment) char __data; }; template struct __get_aligner_instance { static constexpr __alignment_checker_type<_Alignment> __instance{}; }; template struct __atomic_ref_base { private: _LIBCPP_HIDE_FROM_ABI static _Tp* __clear_padding(_Tp& __val) noexcept { _Tp* __ptr = std::addressof(__val); # if __has_builtin(__builtin_clear_padding) __builtin_clear_padding(__ptr); # endif return __ptr; } _LIBCPP_HIDE_FROM_ABI static bool __compare_exchange( _Tp* __ptr, _Tp* __expected, _Tp* __desired, bool __is_weak, int __success, int __failure) noexcept { if constexpr ( # if __has_builtin(__builtin_clear_padding) has_unique_object_representations_v<_Tp> || floating_point<_Tp> # else true // NOLINT(readability-simplify-boolean-expr) # endif ) { return __atomic_compare_exchange(__ptr, __expected, __desired, __is_weak, __success, __failure); } else { // _Tp has padding bits and __builtin_clear_padding is available __clear_padding(*__desired); _Tp __copy = *__expected; __clear_padding(__copy); // The algorithm we use here is basically to perform `__atomic_compare_exchange` on the // values until it has either succeeded, or failed because the value representation of the // objects involved was different. This is why we loop around __atomic_compare_exchange: // we basically loop until its failure is caused by the value representation of the objects // being different, not only their object representation. while (true) { _Tp __prev = __copy; if (__atomic_compare_exchange(__ptr, std::addressof(__copy), __desired, __is_weak, __success, __failure)) { return true; } _Tp __curr = __copy; if (std::memcmp(__clear_padding(__prev), __clear_padding(__curr), sizeof(_Tp)) != 0) { // Value representation without padding bits do not compare equal -> // write the current content of *ptr into *expected std::memcpy(__expected, std::addressof(__copy), sizeof(_Tp)); return false; } } } } friend struct __atomic_waitable_traits<__atomic_ref_base<_Tp>>; // require types that are 1, 2, 4, 8, or 16 bytes in length to be aligned to at least their size to be potentially // used lock-free static constexpr size_t __min_alignment = (sizeof(_Tp) & (sizeof(_Tp) - 1)) || (sizeof(_Tp) > 16) ? 0 : sizeof(_Tp); public: using value_type = _Tp; static constexpr size_t required_alignment = alignof(_Tp) > __min_alignment ? alignof(_Tp) : __min_alignment; // The __atomic_always_lock_free builtin takes into account the alignment of the pointer if provided, // so we create a fake pointer with a suitable alignment when querying it. Note that we are guaranteed // that the pointer is going to be aligned properly at runtime because that is a (checked) precondition // of atomic_ref's constructor. static constexpr bool is_always_lock_free = __atomic_always_lock_free(sizeof(_Tp), &__get_aligner_instance::__instance); _LIBCPP_HIDE_FROM_ABI bool is_lock_free() const noexcept { return __atomic_is_lock_free(sizeof(_Tp), __ptr_); } _LIBCPP_HIDE_FROM_ABI void store(_Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept _LIBCPP_CHECK_STORE_MEMORY_ORDER(__order) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( __order == memory_order::relaxed || __order == memory_order::release || __order == memory_order::seq_cst, "atomic_ref: memory order argument to atomic store operation is invalid"); __atomic_store(__ptr_, __clear_padding(__desired), std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { store(__desired); return __desired; } _LIBCPP_HIDE_FROM_ABI _Tp load(memory_order __order = memory_order::seq_cst) const noexcept _LIBCPP_CHECK_LOAD_MEMORY_ORDER(__order) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( __order == memory_order::relaxed || __order == memory_order::consume || __order == memory_order::acquire || __order == memory_order::seq_cst, "atomic_ref: memory order argument to atomic load operation is invalid"); alignas(_Tp) byte __mem[sizeof(_Tp)]; auto* __ret = reinterpret_cast<_Tp*>(__mem); __atomic_load(__ptr_, __ret, std::__to_gcc_order(__order)); return *__ret; } _LIBCPP_HIDE_FROM_ABI operator _Tp() const noexcept { return load(); } _LIBCPP_HIDE_FROM_ABI _Tp exchange(_Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept { alignas(_Tp) byte __mem[sizeof(_Tp)]; auto* __ret = reinterpret_cast<_Tp*>(__mem); __atomic_exchange(__ptr_, __clear_padding(__desired), __ret, std::__to_gcc_order(__order)); return *__ret; } _LIBCPP_HIDE_FROM_ABI bool compare_exchange_weak(_Tp& __expected, _Tp __desired, memory_order __success, memory_order __failure) const noexcept _LIBCPP_CHECK_EXCHANGE_MEMORY_ORDER(__success, __failure) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( __failure == memory_order::relaxed || __failure == memory_order::consume || __failure == memory_order::acquire || __failure == memory_order::seq_cst, "atomic_ref: failure memory order argument to weak atomic compare-and-exchange operation is invalid"); return __compare_exchange( __ptr_, std::addressof(__expected), std::addressof(__desired), true, std::__to_gcc_order(__success), std::__to_gcc_order(__failure)); } _LIBCPP_HIDE_FROM_ABI bool compare_exchange_strong(_Tp& __expected, _Tp __desired, memory_order __success, memory_order __failure) const noexcept _LIBCPP_CHECK_EXCHANGE_MEMORY_ORDER(__success, __failure) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( __failure == memory_order::relaxed || __failure == memory_order::consume || __failure == memory_order::acquire || __failure == memory_order::seq_cst, "atomic_ref: failure memory order argument to strong atomic compare-and-exchange operation is invalid"); return __compare_exchange( __ptr_, std::addressof(__expected), std::addressof(__desired), false, std::__to_gcc_order(__success), std::__to_gcc_order(__failure)); } _LIBCPP_HIDE_FROM_ABI bool compare_exchange_weak(_Tp& __expected, _Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept { return __compare_exchange( __ptr_, std::addressof(__expected), std::addressof(__desired), true, std::__to_gcc_order(__order), std::__to_gcc_failure_order(__order)); } _LIBCPP_HIDE_FROM_ABI bool compare_exchange_strong(_Tp& __expected, _Tp __desired, memory_order __order = memory_order::seq_cst) const noexcept { return __compare_exchange( __ptr_, std::addressof(__expected), std::addressof(__desired), false, std::__to_gcc_order(__order), std::__to_gcc_failure_order(__order)); } _LIBCPP_HIDE_FROM_ABI void wait(_Tp __old, memory_order __order = memory_order::seq_cst) const noexcept _LIBCPP_CHECK_WAIT_MEMORY_ORDER(__order) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( __order == memory_order::relaxed || __order == memory_order::consume || __order == memory_order::acquire || __order == memory_order::seq_cst, "atomic_ref: memory order argument to atomic wait operation is invalid"); std::__atomic_wait(*this, __old, __order); } _LIBCPP_HIDE_FROM_ABI void notify_one() const noexcept { std::__atomic_notify_one(*this); } _LIBCPP_HIDE_FROM_ABI void notify_all() const noexcept { std::__atomic_notify_all(*this); } protected: typedef _Tp _Aligned_Tp __attribute__((aligned(required_alignment))); _Aligned_Tp* __ptr_; _LIBCPP_HIDE_FROM_ABI __atomic_ref_base(_Tp& __obj) : __ptr_(std::addressof(__obj)) {} }; template struct __atomic_waitable_traits<__atomic_ref_base<_Tp>> { static _LIBCPP_HIDE_FROM_ABI _Tp __atomic_load(const __atomic_ref_base<_Tp>& __a, memory_order __order) { return __a.load(__order); } static _LIBCPP_HIDE_FROM_ABI const _Tp* __atomic_contention_address(const __atomic_ref_base<_Tp>& __a) { return __a.__ptr_; } }; template struct atomic_ref : public __atomic_ref_base<_Tp> { static_assert(is_trivially_copyable_v<_Tp>, "std::atomic_ref requires that 'T' be a trivially copyable type"); using __base = __atomic_ref_base<_Tp>; _LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( reinterpret_cast(std::addressof(__obj)) % __base::required_alignment == 0, "atomic_ref ctor: referenced object must be aligned to required_alignment"); } _LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default; _LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); } atomic_ref& operator=(const atomic_ref&) = delete; }; template requires(std::integral<_Tp> && !std::same_as) struct atomic_ref<_Tp> : public __atomic_ref_base<_Tp> { using __base = __atomic_ref_base<_Tp>; using difference_type = typename __base::value_type; _LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( reinterpret_cast(std::addressof(__obj)) % __base::required_alignment == 0, "atomic_ref ctor: referenced object must be aligned to required_alignment"); } _LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default; _LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); } atomic_ref& operator=(const atomic_ref&) = delete; _LIBCPP_HIDE_FROM_ABI _Tp fetch_add(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_add(this->__ptr_, __arg, std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp fetch_sub(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_sub(this->__ptr_, __arg, std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp fetch_and(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_and(this->__ptr_, __arg, std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp fetch_or(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_or(this->__ptr_, __arg, std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp fetch_xor(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_xor(this->__ptr_, __arg, std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp operator++(int) const noexcept { return fetch_add(_Tp(1)); } _LIBCPP_HIDE_FROM_ABI _Tp operator--(int) const noexcept { return fetch_sub(_Tp(1)); } _LIBCPP_HIDE_FROM_ABI _Tp operator++() const noexcept { return fetch_add(_Tp(1)) + _Tp(1); } _LIBCPP_HIDE_FROM_ABI _Tp operator--() const noexcept { return fetch_sub(_Tp(1)) - _Tp(1); } _LIBCPP_HIDE_FROM_ABI _Tp operator+=(_Tp __arg) const noexcept { return fetch_add(__arg) + __arg; } _LIBCPP_HIDE_FROM_ABI _Tp operator-=(_Tp __arg) const noexcept { return fetch_sub(__arg) - __arg; } _LIBCPP_HIDE_FROM_ABI _Tp operator&=(_Tp __arg) const noexcept { return fetch_and(__arg) & __arg; } _LIBCPP_HIDE_FROM_ABI _Tp operator|=(_Tp __arg) const noexcept { return fetch_or(__arg) | __arg; } _LIBCPP_HIDE_FROM_ABI _Tp operator^=(_Tp __arg) const noexcept { return fetch_xor(__arg) ^ __arg; } }; template requires std::floating_point<_Tp> struct atomic_ref<_Tp> : public __atomic_ref_base<_Tp> { using __base = __atomic_ref_base<_Tp>; using difference_type = typename __base::value_type; _LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp& __obj) : __base(__obj) { _LIBCPP_ASSERT_ARGUMENT_WITHIN_DOMAIN( reinterpret_cast(std::addressof(__obj)) % __base::required_alignment == 0, "atomic_ref ctor: referenced object must be aligned to required_alignment"); } _LIBCPP_HIDE_FROM_ABI atomic_ref(const atomic_ref&) noexcept = default; _LIBCPP_HIDE_FROM_ABI _Tp operator=(_Tp __desired) const noexcept { return __base::operator=(__desired); } atomic_ref& operator=(const atomic_ref&) = delete; _LIBCPP_HIDE_FROM_ABI _Tp fetch_add(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { _Tp __old = this->load(memory_order_relaxed); _Tp __new = __old + __arg; while (!this->compare_exchange_weak(__old, __new, __order, memory_order_relaxed)) { __new = __old + __arg; } return __old; } _LIBCPP_HIDE_FROM_ABI _Tp fetch_sub(_Tp __arg, memory_order __order = memory_order_seq_cst) const noexcept { _Tp __old = this->load(memory_order_relaxed); _Tp __new = __old - __arg; while (!this->compare_exchange_weak(__old, __new, __order, memory_order_relaxed)) { __new = __old - __arg; } return __old; } _LIBCPP_HIDE_FROM_ABI _Tp operator+=(_Tp __arg) const noexcept { return fetch_add(__arg) + __arg; } _LIBCPP_HIDE_FROM_ABI _Tp operator-=(_Tp __arg) const noexcept { return fetch_sub(__arg) - __arg; } }; template struct atomic_ref<_Tp*> : public __atomic_ref_base<_Tp*> { using __base = __atomic_ref_base<_Tp*>; using difference_type = ptrdiff_t; _LIBCPP_HIDE_FROM_ABI explicit atomic_ref(_Tp*& __ptr) : __base(__ptr) {} _LIBCPP_HIDE_FROM_ABI _Tp* operator=(_Tp* __desired) const noexcept { return __base::operator=(__desired); } atomic_ref& operator=(const atomic_ref&) = delete; _LIBCPP_HIDE_FROM_ABI _Tp* fetch_add(ptrdiff_t __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_add(this->__ptr_, __arg * sizeof(_Tp), std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp* fetch_sub(ptrdiff_t __arg, memory_order __order = memory_order_seq_cst) const noexcept { return __atomic_fetch_sub(this->__ptr_, __arg * sizeof(_Tp), std::__to_gcc_order(__order)); } _LIBCPP_HIDE_FROM_ABI _Tp* operator++(int) const noexcept { return fetch_add(1); } _LIBCPP_HIDE_FROM_ABI _Tp* operator--(int) const noexcept { return fetch_sub(1); } _LIBCPP_HIDE_FROM_ABI _Tp* operator++() const noexcept { return fetch_add(1) + 1; } _LIBCPP_HIDE_FROM_ABI _Tp* operator--() const noexcept { return fetch_sub(1) - 1; } _LIBCPP_HIDE_FROM_ABI _Tp* operator+=(ptrdiff_t __arg) const noexcept { return fetch_add(__arg) + __arg; } _LIBCPP_HIDE_FROM_ABI _Tp* operator-=(ptrdiff_t __arg) const noexcept { return fetch_sub(__arg) - __arg; } }; _LIBCPP_CTAD_SUPPORTED_FOR_TYPE(atomic_ref); #endif // _LIBCPP_STD_VER >= 20 _LIBCPP_END_NAMESPACE_STD _LIBCPP_POP_MACROS #endif // _LIBCPP__ATOMIC_ATOMIC_REF_H