//===-- combined.h ----------------------------------------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #ifndef SCUDO_COMBINED_H_ #define SCUDO_COMBINED_H_ #include "chunk.h" #include "common.h" #include "flags.h" #include "flags_parser.h" #include "local_cache.h" #include "mem_map.h" #include "memtag.h" #include "options.h" #include "quarantine.h" #include "report.h" #include "secondary.h" #include "stack_depot.h" #include "string_utils.h" #include "tsd.h" #include "scudo/interface.h" #ifdef GWP_ASAN_HOOKS #include "gwp_asan/guarded_pool_allocator.h" #include "gwp_asan/optional/backtrace.h" #include "gwp_asan/optional/segv_handler.h" #endif // GWP_ASAN_HOOKS extern "C" inline void EmptyCallback() {} #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE // This function is not part of the NDK so it does not appear in any public // header files. We only declare/use it when targeting the platform. extern "C" size_t android_unsafe_frame_pointer_chase(scudo::uptr *buf, size_t num_entries); #endif namespace scudo { template class Allocator { public: using PrimaryT = typename Config::template PrimaryT; using SecondaryT = typename Config::template SecondaryT; using CacheT = typename PrimaryT::CacheT; typedef Allocator ThisT; typedef typename Config::template TSDRegistryT TSDRegistryT; void callPostInitCallback() { pthread_once(&PostInitNonce, PostInitCallback); } struct QuarantineCallback { explicit QuarantineCallback(ThisT &Instance, CacheT &LocalCache) : Allocator(Instance), Cache(LocalCache) {} // Chunk recycling function, returns a quarantined chunk to the backend, // first making sure it hasn't been tampered with. void recycle(void *Ptr) { Chunk::UnpackedHeader Header; Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Quarantined)) reportInvalidChunkState(AllocatorAction::Recycling, Ptr); Header.State = Chunk::State::Available; Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); if (allocatorSupportsMemoryTagging()) Ptr = untagPointer(Ptr); void *BlockBegin = Allocator::getBlockBegin(Ptr, &Header); Cache.deallocate(Header.ClassId, BlockBegin); } // We take a shortcut when allocating a quarantine batch by working with the // appropriate class ID instead of using Size. The compiler should optimize // the class ID computation and work with the associated cache directly. void *allocate(UNUSED uptr Size) { const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( sizeof(QuarantineBatch) + Chunk::getHeaderSize()); void *Ptr = Cache.allocate(QuarantineClassId); // Quarantine batch allocation failure is fatal. if (UNLIKELY(!Ptr)) reportOutOfMemory(SizeClassMap::getSizeByClassId(QuarantineClassId)); Ptr = reinterpret_cast(reinterpret_cast(Ptr) + Chunk::getHeaderSize()); Chunk::UnpackedHeader Header = {}; Header.ClassId = QuarantineClassId & Chunk::ClassIdMask; Header.SizeOrUnusedBytes = sizeof(QuarantineBatch); Header.State = Chunk::State::Allocated; Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); // Reset tag to 0 as this chunk may have been previously used for a tagged // user allocation. if (UNLIKELY(useMemoryTagging(Allocator.Primary.Options.load()))) storeTags(reinterpret_cast(Ptr), reinterpret_cast(Ptr) + sizeof(QuarantineBatch)); return Ptr; } void deallocate(void *Ptr) { const uptr QuarantineClassId = SizeClassMap::getClassIdBySize( sizeof(QuarantineBatch) + Chunk::getHeaderSize()); Chunk::UnpackedHeader Header; Chunk::loadHeader(Allocator.Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); DCHECK_EQ(Header.ClassId, QuarantineClassId); DCHECK_EQ(Header.Offset, 0); DCHECK_EQ(Header.SizeOrUnusedBytes, sizeof(QuarantineBatch)); Header.State = Chunk::State::Available; Chunk::storeHeader(Allocator.Cookie, Ptr, &Header); Cache.deallocate(QuarantineClassId, reinterpret_cast(reinterpret_cast(Ptr) - Chunk::getHeaderSize())); } private: ThisT &Allocator; CacheT &Cache; }; typedef GlobalQuarantine QuarantineT; typedef typename QuarantineT::CacheT QuarantineCacheT; void init() { performSanityChecks(); // Check if hardware CRC32 is supported in the binary and by the platform, // if so, opt for the CRC32 hardware version of the checksum. if (&computeHardwareCRC32 && hasHardwareCRC32()) HashAlgorithm = Checksum::HardwareCRC32; if (UNLIKELY(!getRandom(&Cookie, sizeof(Cookie)))) Cookie = static_cast(getMonotonicTime() ^ (reinterpret_cast(this) >> 4)); initFlags(); reportUnrecognizedFlags(); // Store some flags locally. if (getFlags()->may_return_null) Primary.Options.set(OptionBit::MayReturnNull); if (getFlags()->zero_contents) Primary.Options.setFillContentsMode(ZeroFill); else if (getFlags()->pattern_fill_contents) Primary.Options.setFillContentsMode(PatternOrZeroFill); if (getFlags()->dealloc_type_mismatch) Primary.Options.set(OptionBit::DeallocTypeMismatch); if (getFlags()->delete_size_mismatch) Primary.Options.set(OptionBit::DeleteSizeMismatch); if (allocatorSupportsMemoryTagging() && systemSupportsMemoryTagging()) Primary.Options.set(OptionBit::UseMemoryTagging); QuarantineMaxChunkSize = static_cast(getFlags()->quarantine_max_chunk_size); Stats.init(); const s32 ReleaseToOsIntervalMs = getFlags()->release_to_os_interval_ms; Primary.init(ReleaseToOsIntervalMs); Secondary.init(&Stats, ReleaseToOsIntervalMs); Quarantine.init( static_cast(getFlags()->quarantine_size_kb << 10), static_cast(getFlags()->thread_local_quarantine_size_kb << 10)); mapAndInitializeRingBuffer(); } // Initialize the embedded GWP-ASan instance. Requires the main allocator to // be functional, best called from PostInitCallback. void initGwpAsan() { #ifdef GWP_ASAN_HOOKS gwp_asan::options::Options Opt; Opt.Enabled = getFlags()->GWP_ASAN_Enabled; Opt.MaxSimultaneousAllocations = getFlags()->GWP_ASAN_MaxSimultaneousAllocations; Opt.SampleRate = getFlags()->GWP_ASAN_SampleRate; Opt.InstallSignalHandlers = getFlags()->GWP_ASAN_InstallSignalHandlers; Opt.Recoverable = getFlags()->GWP_ASAN_Recoverable; // Embedded GWP-ASan is locked through the Scudo atfork handler (via // Allocator::disable calling GWPASan.disable). Disable GWP-ASan's atfork // handler. Opt.InstallForkHandlers = false; Opt.Backtrace = gwp_asan::backtrace::getBacktraceFunction(); GuardedAlloc.init(Opt); if (Opt.InstallSignalHandlers) gwp_asan::segv_handler::installSignalHandlers( &GuardedAlloc, Printf, gwp_asan::backtrace::getPrintBacktraceFunction(), gwp_asan::backtrace::getSegvBacktraceFunction(), Opt.Recoverable); GuardedAllocSlotSize = GuardedAlloc.getAllocatorState()->maximumAllocationSize(); Stats.add(StatFree, static_cast(Opt.MaxSimultaneousAllocations) * GuardedAllocSlotSize); #endif // GWP_ASAN_HOOKS } #ifdef GWP_ASAN_HOOKS const gwp_asan::AllocationMetadata *getGwpAsanAllocationMetadata() { return GuardedAlloc.getMetadataRegion(); } const gwp_asan::AllocatorState *getGwpAsanAllocatorState() { return GuardedAlloc.getAllocatorState(); } #endif // GWP_ASAN_HOOKS ALWAYS_INLINE void initThreadMaybe(bool MinimalInit = false) { TSDRegistry.initThreadMaybe(this, MinimalInit); } void unmapTestOnly() { unmapRingBuffer(); TSDRegistry.unmapTestOnly(this); Primary.unmapTestOnly(); Secondary.unmapTestOnly(); #ifdef GWP_ASAN_HOOKS if (getFlags()->GWP_ASAN_InstallSignalHandlers) gwp_asan::segv_handler::uninstallSignalHandlers(); GuardedAlloc.uninitTestOnly(); #endif // GWP_ASAN_HOOKS } TSDRegistryT *getTSDRegistry() { return &TSDRegistry; } QuarantineT *getQuarantine() { return &Quarantine; } // The Cache must be provided zero-initialized. void initCache(CacheT *Cache) { Cache->init(&Stats, &Primary); } // Release the resources used by a TSD, which involves: // - draining the local quarantine cache to the global quarantine; // - releasing the cached pointers back to the Primary; // - unlinking the local stats from the global ones (destroying the cache does // the last two items). void commitBack(TSD *TSD) { TSD->assertLocked(/*BypassCheck=*/true); Quarantine.drain(&TSD->getQuarantineCache(), QuarantineCallback(*this, TSD->getCache())); TSD->getCache().destroy(&Stats); } void drainCache(TSD *TSD) { TSD->assertLocked(/*BypassCheck=*/true); Quarantine.drainAndRecycle(&TSD->getQuarantineCache(), QuarantineCallback(*this, TSD->getCache())); TSD->getCache().drain(); } void drainCaches() { TSDRegistry.drainCaches(this); } ALWAYS_INLINE void *getHeaderTaggedPointer(void *Ptr) { if (!allocatorSupportsMemoryTagging()) return Ptr; auto UntaggedPtr = untagPointer(Ptr); if (UntaggedPtr != Ptr) return UntaggedPtr; // Secondary, or pointer allocated while memory tagging is unsupported or // disabled. The tag mismatch is okay in the latter case because tags will // not be checked. return addHeaderTag(Ptr); } ALWAYS_INLINE uptr addHeaderTag(uptr Ptr) { if (!allocatorSupportsMemoryTagging()) return Ptr; return addFixedTag(Ptr, 2); } ALWAYS_INLINE void *addHeaderTag(void *Ptr) { return reinterpret_cast(addHeaderTag(reinterpret_cast(Ptr))); } NOINLINE u32 collectStackTrace() { #ifdef HAVE_ANDROID_UNSAFE_FRAME_POINTER_CHASE // Discard collectStackTrace() frame and allocator function frame. constexpr uptr DiscardFrames = 2; uptr Stack[MaxTraceSize + DiscardFrames]; uptr Size = android_unsafe_frame_pointer_chase(Stack, MaxTraceSize + DiscardFrames); Size = Min(Size, MaxTraceSize + DiscardFrames); return Depot.insert(Stack + Min(DiscardFrames, Size), Stack + Size); #else return 0; #endif } uptr computeOddEvenMaskForPointerMaybe(const Options &Options, uptr Ptr, uptr ClassId) { if (!Options.get(OptionBit::UseOddEvenTags)) return 0; // If a chunk's tag is odd, we want the tags of the surrounding blocks to be // even, and vice versa. Blocks are laid out Size bytes apart, and adding // Size to Ptr will flip the least significant set bit of Size in Ptr, so // that bit will have the pattern 010101... for consecutive blocks, which we // can use to determine which tag mask to use. return 0x5555U << ((Ptr >> SizeClassMap::getSizeLSBByClassId(ClassId)) & 1); } NOINLINE void *allocate(uptr Size, Chunk::Origin Origin, uptr Alignment = MinAlignment, bool ZeroContents = false) NO_THREAD_SAFETY_ANALYSIS { initThreadMaybe(); const Options Options = Primary.Options.load(); if (UNLIKELY(Alignment > MaxAlignment)) { if (Options.get(OptionBit::MayReturnNull)) return nullptr; reportAlignmentTooBig(Alignment, MaxAlignment); } if (Alignment < MinAlignment) Alignment = MinAlignment; #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.shouldSample())) { if (void *Ptr = GuardedAlloc.allocate(Size, Alignment)) { Stats.lock(); Stats.add(StatAllocated, GuardedAllocSlotSize); Stats.sub(StatFree, GuardedAllocSlotSize); Stats.unlock(); return Ptr; } } #endif // GWP_ASAN_HOOKS const FillContentsMode FillContents = ZeroContents ? ZeroFill : TSDRegistry.getDisableMemInit() ? NoFill : Options.getFillContentsMode(); // If the requested size happens to be 0 (more common than you might think), // allocate MinAlignment bytes on top of the header. Then add the extra // bytes required to fulfill the alignment requirements: we allocate enough // to be sure that there will be an address in the block that will satisfy // the alignment. const uptr NeededSize = roundUp(Size, MinAlignment) + ((Alignment > MinAlignment) ? Alignment : Chunk::getHeaderSize()); // Takes care of extravagantly large sizes as well as integer overflows. static_assert(MaxAllowedMallocSize < UINTPTR_MAX - MaxAlignment, ""); if (UNLIKELY(Size >= MaxAllowedMallocSize)) { if (Options.get(OptionBit::MayReturnNull)) return nullptr; reportAllocationSizeTooBig(Size, NeededSize, MaxAllowedMallocSize); } DCHECK_LE(Size, NeededSize); void *Block = nullptr; uptr ClassId = 0; uptr SecondaryBlockEnd = 0; if (LIKELY(PrimaryT::canAllocate(NeededSize))) { ClassId = SizeClassMap::getClassIdBySize(NeededSize); DCHECK_NE(ClassId, 0U); bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); TSD->assertLocked(/*BypassCheck=*/!UnlockRequired); Block = TSD->getCache().allocate(ClassId); // If the allocation failed, retry in each successively larger class until // it fits. If it fails to fit in the largest class, fallback to the // Secondary. if (UNLIKELY(!Block)) { while (ClassId < SizeClassMap::LargestClassId && !Block) Block = TSD->getCache().allocate(++ClassId); if (!Block) ClassId = 0; } if (UnlockRequired) TSD->unlock(); } if (UNLIKELY(ClassId == 0)) { Block = Secondary.allocate(Options, Size, Alignment, &SecondaryBlockEnd, FillContents); } if (UNLIKELY(!Block)) { if (Options.get(OptionBit::MayReturnNull)) return nullptr; printStats(); reportOutOfMemory(NeededSize); } const uptr BlockUptr = reinterpret_cast(Block); const uptr UnalignedUserPtr = BlockUptr + Chunk::getHeaderSize(); const uptr UserPtr = roundUp(UnalignedUserPtr, Alignment); void *Ptr = reinterpret_cast(UserPtr); void *TaggedPtr = Ptr; if (LIKELY(ClassId)) { // We only need to zero or tag the contents for Primary backed // allocations. We only set tags for primary allocations in order to avoid // faulting potentially large numbers of pages for large secondary // allocations. We assume that guard pages are enough to protect these // allocations. // // FIXME: When the kernel provides a way to set the background tag of a // mapping, we should be able to tag secondary allocations as well. // // When memory tagging is enabled, zeroing the contents is done as part of // setting the tag. if (UNLIKELY(useMemoryTagging(Options))) { uptr PrevUserPtr; Chunk::UnpackedHeader Header; const uptr BlockSize = PrimaryT::getSizeByClassId(ClassId); const uptr BlockEnd = BlockUptr + BlockSize; // If possible, try to reuse the UAF tag that was set by deallocate(). // For simplicity, only reuse tags if we have the same start address as // the previous allocation. This handles the majority of cases since // most allocations will not be more aligned than the minimum alignment. // // We need to handle situations involving reclaimed chunks, and retag // the reclaimed portions if necessary. In the case where the chunk is // fully reclaimed, the chunk's header will be zero, which will trigger // the code path for new mappings and invalid chunks that prepares the // chunk from scratch. There are three possibilities for partial // reclaiming: // // (1) Header was reclaimed, data was partially reclaimed. // (2) Header was not reclaimed, all data was reclaimed (e.g. because // data started on a page boundary). // (3) Header was not reclaimed, data was partially reclaimed. // // Case (1) will be handled in the same way as for full reclaiming, // since the header will be zero. // // We can detect case (2) by loading the tag from the start // of the chunk. If it is zero, it means that either all data was // reclaimed (since we never use zero as the chunk tag), or that the // previous allocation was of size zero. Either way, we need to prepare // a new chunk from scratch. // // We can detect case (3) by moving to the next page (if covered by the // chunk) and loading the tag of its first granule. If it is zero, it // means that all following pages may need to be retagged. On the other // hand, if it is nonzero, we can assume that all following pages are // still tagged, according to the logic that if any of the pages // following the next page were reclaimed, the next page would have been // reclaimed as well. uptr TaggedUserPtr; if (getChunkFromBlock(BlockUptr, &PrevUserPtr, &Header) && PrevUserPtr == UserPtr && (TaggedUserPtr = loadTag(UserPtr)) != UserPtr) { uptr PrevEnd = TaggedUserPtr + Header.SizeOrUnusedBytes; const uptr NextPage = roundUp(TaggedUserPtr, getPageSizeCached()); if (NextPage < PrevEnd && loadTag(NextPage) != NextPage) PrevEnd = NextPage; TaggedPtr = reinterpret_cast(TaggedUserPtr); resizeTaggedChunk(PrevEnd, TaggedUserPtr + Size, Size, BlockEnd); if (UNLIKELY(FillContents != NoFill && !Header.OriginOrWasZeroed)) { // If an allocation needs to be zeroed (i.e. calloc) we can normally // avoid zeroing the memory now since we can rely on memory having // been zeroed on free, as this is normally done while setting the // UAF tag. But if tagging was disabled per-thread when the memory // was freed, it would not have been retagged and thus zeroed, and // therefore it needs to be zeroed now. memset(TaggedPtr, 0, Min(Size, roundUp(PrevEnd - TaggedUserPtr, archMemoryTagGranuleSize()))); } else if (Size) { // Clear any stack metadata that may have previously been stored in // the chunk data. memset(TaggedPtr, 0, archMemoryTagGranuleSize()); } } else { const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe(Options, BlockUptr, ClassId); TaggedPtr = prepareTaggedChunk(Ptr, Size, OddEvenMask, BlockEnd); } storePrimaryAllocationStackMaybe(Options, Ptr); } else { Block = addHeaderTag(Block); Ptr = addHeaderTag(Ptr); if (UNLIKELY(FillContents != NoFill)) { // This condition is not necessarily unlikely, but since memset is // costly, we might as well mark it as such. memset(Block, FillContents == ZeroFill ? 0 : PatternFillByte, PrimaryT::getSizeByClassId(ClassId)); } } } else { Block = addHeaderTag(Block); Ptr = addHeaderTag(Ptr); if (UNLIKELY(useMemoryTagging(Options))) { storeTags(reinterpret_cast(Block), reinterpret_cast(Ptr)); storeSecondaryAllocationStackMaybe(Options, Ptr, Size); } } Chunk::UnpackedHeader Header = {}; if (UNLIKELY(UnalignedUserPtr != UserPtr)) { const uptr Offset = UserPtr - UnalignedUserPtr; DCHECK_GE(Offset, 2 * sizeof(u32)); // The BlockMarker has no security purpose, but is specifically meant for // the chunk iteration function that can be used in debugging situations. // It is the only situation where we have to locate the start of a chunk // based on its block address. reinterpret_cast(Block)[0] = BlockMarker; reinterpret_cast(Block)[1] = static_cast(Offset); Header.Offset = (Offset >> MinAlignmentLog) & Chunk::OffsetMask; } Header.ClassId = ClassId & Chunk::ClassIdMask; Header.State = Chunk::State::Allocated; Header.OriginOrWasZeroed = Origin & Chunk::OriginMask; Header.SizeOrUnusedBytes = (ClassId ? Size : SecondaryBlockEnd - (UserPtr + Size)) & Chunk::SizeOrUnusedBytesMask; Chunk::storeHeader(Cookie, Ptr, &Header); return TaggedPtr; } NOINLINE void deallocate(void *Ptr, Chunk::Origin Origin, uptr DeleteSize = 0, UNUSED uptr Alignment = MinAlignment) { if (UNLIKELY(!Ptr)) return; // For a deallocation, we only ensure minimal initialization, meaning thread // local data will be left uninitialized for now (when using ELF TLS). The // fallback cache will be used instead. This is a workaround for a situation // where the only heap operation performed in a thread would be a free past // the TLS destructors, ending up in initialized thread specific data never // being destroyed properly. Any other heap operation will do a full init. initThreadMaybe(/*MinimalInit=*/true); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) { GuardedAlloc.deallocate(Ptr); Stats.lock(); Stats.add(StatFree, GuardedAllocSlotSize); Stats.sub(StatAllocated, GuardedAllocSlotSize); Stats.unlock(); return; } #endif // GWP_ASAN_HOOKS if (UNLIKELY(!isAligned(reinterpret_cast(Ptr), MinAlignment))) reportMisalignedPointer(AllocatorAction::Deallocating, Ptr); void *TaggedPtr = Ptr; Ptr = getHeaderTaggedPointer(Ptr); Chunk::UnpackedHeader Header; Chunk::loadHeader(Cookie, Ptr, &Header); if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Deallocating, Ptr); const Options Options = Primary.Options.load(); if (Options.get(OptionBit::DeallocTypeMismatch)) { if (UNLIKELY(Header.OriginOrWasZeroed != Origin)) { // With the exception of memalign'd chunks, that can be still be free'd. if (Header.OriginOrWasZeroed != Chunk::Origin::Memalign || Origin != Chunk::Origin::Malloc) reportDeallocTypeMismatch(AllocatorAction::Deallocating, Ptr, Header.OriginOrWasZeroed, Origin); } } const uptr Size = getSize(Ptr, &Header); if (DeleteSize && Options.get(OptionBit::DeleteSizeMismatch)) { if (UNLIKELY(DeleteSize != Size)) reportDeleteSizeMismatch(Ptr, DeleteSize, Size); } quarantineOrDeallocateChunk(Options, TaggedPtr, &Header, Size); } void *reallocate(void *OldPtr, uptr NewSize, uptr Alignment = MinAlignment) { initThreadMaybe(); const Options Options = Primary.Options.load(); if (UNLIKELY(NewSize >= MaxAllowedMallocSize)) { if (Options.get(OptionBit::MayReturnNull)) return nullptr; reportAllocationSizeTooBig(NewSize, 0, MaxAllowedMallocSize); } // The following cases are handled by the C wrappers. DCHECK_NE(OldPtr, nullptr); DCHECK_NE(NewSize, 0); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(OldPtr))) { uptr OldSize = GuardedAlloc.getSize(OldPtr); void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); if (NewPtr) memcpy(NewPtr, OldPtr, (NewSize < OldSize) ? NewSize : OldSize); GuardedAlloc.deallocate(OldPtr); Stats.lock(); Stats.add(StatFree, GuardedAllocSlotSize); Stats.sub(StatAllocated, GuardedAllocSlotSize); Stats.unlock(); return NewPtr; } #endif // GWP_ASAN_HOOKS void *OldTaggedPtr = OldPtr; OldPtr = getHeaderTaggedPointer(OldPtr); if (UNLIKELY(!isAligned(reinterpret_cast(OldPtr), MinAlignment))) reportMisalignedPointer(AllocatorAction::Reallocating, OldPtr); Chunk::UnpackedHeader Header; Chunk::loadHeader(Cookie, OldPtr, &Header); if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Reallocating, OldPtr); // Pointer has to be allocated with a malloc-type function. Some // applications think that it is OK to realloc a memalign'ed pointer, which // will trigger this check. It really isn't. if (Options.get(OptionBit::DeallocTypeMismatch)) { if (UNLIKELY(Header.OriginOrWasZeroed != Chunk::Origin::Malloc)) reportDeallocTypeMismatch(AllocatorAction::Reallocating, OldPtr, Header.OriginOrWasZeroed, Chunk::Origin::Malloc); } void *BlockBegin = getBlockBegin(OldTaggedPtr, &Header); uptr BlockEnd; uptr OldSize; const uptr ClassId = Header.ClassId; if (LIKELY(ClassId)) { BlockEnd = reinterpret_cast(BlockBegin) + SizeClassMap::getSizeByClassId(ClassId); OldSize = Header.SizeOrUnusedBytes; } else { BlockEnd = SecondaryT::getBlockEnd(BlockBegin); OldSize = BlockEnd - (reinterpret_cast(OldTaggedPtr) + Header.SizeOrUnusedBytes); } // If the new chunk still fits in the previously allocated block (with a // reasonable delta), we just keep the old block, and update the chunk // header to reflect the size change. if (reinterpret_cast(OldTaggedPtr) + NewSize <= BlockEnd) { if (NewSize > OldSize || (OldSize - NewSize) < getPageSizeCached()) { Header.SizeOrUnusedBytes = (ClassId ? NewSize : BlockEnd - (reinterpret_cast(OldTaggedPtr) + NewSize)) & Chunk::SizeOrUnusedBytesMask; Chunk::storeHeader(Cookie, OldPtr, &Header); if (UNLIKELY(useMemoryTagging(Options))) { if (ClassId) { resizeTaggedChunk(reinterpret_cast(OldTaggedPtr) + OldSize, reinterpret_cast(OldTaggedPtr) + NewSize, NewSize, untagPointer(BlockEnd)); storePrimaryAllocationStackMaybe(Options, OldPtr); } else { storeSecondaryAllocationStackMaybe(Options, OldPtr, NewSize); } } return OldTaggedPtr; } } // Otherwise we allocate a new one, and deallocate the old one. Some // allocators will allocate an even larger chunk (by a fixed factor) to // allow for potential further in-place realloc. The gains of such a trick // are currently unclear. void *NewPtr = allocate(NewSize, Chunk::Origin::Malloc, Alignment); if (LIKELY(NewPtr)) { memcpy(NewPtr, OldTaggedPtr, Min(NewSize, OldSize)); quarantineOrDeallocateChunk(Options, OldTaggedPtr, &Header, OldSize); } return NewPtr; } // TODO(kostyak): disable() is currently best-effort. There are some small // windows of time when an allocation could still succeed after // this function finishes. We will revisit that later. void disable() NO_THREAD_SAFETY_ANALYSIS { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS GuardedAlloc.disable(); #endif TSDRegistry.disable(); Stats.disable(); Quarantine.disable(); Primary.disable(); Secondary.disable(); } void enable() NO_THREAD_SAFETY_ANALYSIS { initThreadMaybe(); Secondary.enable(); Primary.enable(); Quarantine.enable(); Stats.enable(); TSDRegistry.enable(); #ifdef GWP_ASAN_HOOKS GuardedAlloc.enable(); #endif } // The function returns the amount of bytes required to store the statistics, // which might be larger than the amount of bytes provided. Note that the // statistics buffer is not necessarily constant between calls to this // function. This can be called with a null buffer or zero size for buffer // sizing purposes. uptr getStats(char *Buffer, uptr Size) { ScopedString Str; const uptr Length = getStats(&Str) + 1; if (Length < Size) Size = Length; if (Buffer && Size) { memcpy(Buffer, Str.data(), Size); Buffer[Size - 1] = '\0'; } return Length; } void printStats() { ScopedString Str; getStats(&Str); Str.output(); } void printFragmentationInfo() { ScopedString Str; Primary.getFragmentationInfo(&Str); // Secondary allocator dumps the fragmentation data in getStats(). Str.output(); } void releaseToOS(ReleaseToOS ReleaseType) { initThreadMaybe(); if (ReleaseType == ReleaseToOS::ForceAll) drainCaches(); Primary.releaseToOS(ReleaseType); Secondary.releaseToOS(); } // Iterate over all chunks and call a callback for all busy chunks located // within the provided memory range. Said callback must not use this allocator // or a deadlock can ensue. This fits Android's malloc_iterate() needs. void iterateOverChunks(uptr Base, uptr Size, iterate_callback Callback, void *Arg) { initThreadMaybe(); if (archSupportsMemoryTagging()) Base = untagPointer(Base); const uptr From = Base; const uptr To = Base + Size; bool MayHaveTaggedPrimary = allocatorSupportsMemoryTagging() && systemSupportsMemoryTagging(); auto Lambda = [this, From, To, MayHaveTaggedPrimary, Callback, Arg](uptr Block) { if (Block < From || Block >= To) return; uptr Chunk; Chunk::UnpackedHeader Header; if (MayHaveTaggedPrimary) { // A chunk header can either have a zero tag (tagged primary) or the // header tag (secondary, or untagged primary). We don't know which so // try both. ScopedDisableMemoryTagChecks x; if (!getChunkFromBlock(Block, &Chunk, &Header) && !getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) return; } else { if (!getChunkFromBlock(addHeaderTag(Block), &Chunk, &Header)) return; } if (Header.State == Chunk::State::Allocated) { uptr TaggedChunk = Chunk; if (allocatorSupportsMemoryTagging()) TaggedChunk = untagPointer(TaggedChunk); if (useMemoryTagging(Primary.Options.load())) TaggedChunk = loadTag(Chunk); Callback(TaggedChunk, getSize(reinterpret_cast(Chunk), &Header), Arg); } }; Primary.iterateOverBlocks(Lambda); Secondary.iterateOverBlocks(Lambda); #ifdef GWP_ASAN_HOOKS GuardedAlloc.iterate(reinterpret_cast(Base), Size, Callback, Arg); #endif } bool canReturnNull() { initThreadMaybe(); return Primary.Options.load().get(OptionBit::MayReturnNull); } bool setOption(Option O, sptr Value) { initThreadMaybe(); if (O == Option::MemtagTuning) { // Enabling odd/even tags involves a tradeoff between use-after-free // detection and buffer overflow detection. Odd/even tags make it more // likely for buffer overflows to be detected by increasing the size of // the guaranteed "red zone" around the allocation, but on the other hand // use-after-free is less likely to be detected because the tag space for // any particular chunk is cut in half. Therefore we use this tuning // setting to control whether odd/even tags are enabled. if (Value == M_MEMTAG_TUNING_BUFFER_OVERFLOW) Primary.Options.set(OptionBit::UseOddEvenTags); else if (Value == M_MEMTAG_TUNING_UAF) Primary.Options.clear(OptionBit::UseOddEvenTags); return true; } else { // We leave it to the various sub-components to decide whether or not they // want to handle the option, but we do not want to short-circuit // execution if one of the setOption was to return false. const bool PrimaryResult = Primary.setOption(O, Value); const bool SecondaryResult = Secondary.setOption(O, Value); const bool RegistryResult = TSDRegistry.setOption(O, Value); return PrimaryResult && SecondaryResult && RegistryResult; } return false; } // Return the usable size for a given chunk. Technically we lie, as we just // report the actual size of a chunk. This is done to counteract code actively // writing past the end of a chunk (like sqlite3) when the usable size allows // for it, which then forces realloc to copy the usable size of a chunk as // opposed to its actual size. uptr getUsableSize(const void *Ptr) { if (UNLIKELY(!Ptr)) return 0; return getAllocSize(Ptr); } uptr getAllocSize(const void *Ptr) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (UNLIKELY(GuardedAlloc.pointerIsMine(Ptr))) return GuardedAlloc.getSize(Ptr); #endif // GWP_ASAN_HOOKS Ptr = getHeaderTaggedPointer(const_cast(Ptr)); Chunk::UnpackedHeader Header; Chunk::loadHeader(Cookie, Ptr, &Header); // Getting the alloc size of a chunk only makes sense if it's allocated. if (UNLIKELY(Header.State != Chunk::State::Allocated)) reportInvalidChunkState(AllocatorAction::Sizing, const_cast(Ptr)); return getSize(Ptr, &Header); } void getStats(StatCounters S) { initThreadMaybe(); Stats.get(S); } // Returns true if the pointer provided was allocated by the current // allocator instance, which is compliant with tcmalloc's ownership concept. // A corrupted chunk will not be reported as owned, which is WAI. bool isOwned(const void *Ptr) { initThreadMaybe(); #ifdef GWP_ASAN_HOOKS if (GuardedAlloc.pointerIsMine(Ptr)) return true; #endif // GWP_ASAN_HOOKS if (!Ptr || !isAligned(reinterpret_cast(Ptr), MinAlignment)) return false; Ptr = getHeaderTaggedPointer(const_cast(Ptr)); Chunk::UnpackedHeader Header; return Chunk::isValid(Cookie, Ptr, &Header) && Header.State == Chunk::State::Allocated; } bool useMemoryTaggingTestOnly() const { return useMemoryTagging(Primary.Options.load()); } void disableMemoryTagging() { // If we haven't been initialized yet, we need to initialize now in order to // prevent a future call to initThreadMaybe() from enabling memory tagging // based on feature detection. But don't call initThreadMaybe() because it // may end up calling the allocator (via pthread_atfork, via the post-init // callback), which may cause mappings to be created with memory tagging // enabled. TSDRegistry.initOnceMaybe(this); if (allocatorSupportsMemoryTagging()) { Secondary.disableMemoryTagging(); Primary.Options.clear(OptionBit::UseMemoryTagging); } } void setTrackAllocationStacks(bool Track) { initThreadMaybe(); if (getFlags()->allocation_ring_buffer_size <= 0) { DCHECK(!Primary.Options.load().get(OptionBit::TrackAllocationStacks)); return; } if (Track) Primary.Options.set(OptionBit::TrackAllocationStacks); else Primary.Options.clear(OptionBit::TrackAllocationStacks); } void setFillContents(FillContentsMode FillContents) { initThreadMaybe(); Primary.Options.setFillContentsMode(FillContents); } void setAddLargeAllocationSlack(bool AddSlack) { initThreadMaybe(); if (AddSlack) Primary.Options.set(OptionBit::AddLargeAllocationSlack); else Primary.Options.clear(OptionBit::AddLargeAllocationSlack); } const char *getStackDepotAddress() const { return reinterpret_cast(&Depot); } const char *getRegionInfoArrayAddress() const { return Primary.getRegionInfoArrayAddress(); } static uptr getRegionInfoArraySize() { return PrimaryT::getRegionInfoArraySize(); } const char *getRingBufferAddress() { initThreadMaybe(); return RawRingBuffer; } uptr getRingBufferSize() { initThreadMaybe(); return RingBufferElements ? ringBufferSizeInBytes(RingBufferElements) : 0; } static const uptr MaxTraceSize = 64; static void collectTraceMaybe(const StackDepot *Depot, uintptr_t (&Trace)[MaxTraceSize], u32 Hash) { uptr RingPos, Size; if (!Depot->find(Hash, &RingPos, &Size)) return; for (unsigned I = 0; I != Size && I != MaxTraceSize; ++I) Trace[I] = static_cast((*Depot)[RingPos + I]); } static void getErrorInfo(struct scudo_error_info *ErrorInfo, uintptr_t FaultAddr, const char *DepotPtr, const char *RegionInfoPtr, const char *RingBufferPtr, size_t RingBufferSize, const char *Memory, const char *MemoryTags, uintptr_t MemoryAddr, size_t MemorySize) { *ErrorInfo = {}; if (!allocatorSupportsMemoryTagging() || MemoryAddr + MemorySize < MemoryAddr) return; auto *Depot = reinterpret_cast(DepotPtr); size_t NextErrorReport = 0; // Check for OOB in the current block and the two surrounding blocks. Beyond // that, UAF is more likely. if (extractTag(FaultAddr) != 0) getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, RegionInfoPtr, Memory, MemoryTags, MemoryAddr, MemorySize, 0, 2); // Check the ring buffer. For primary allocations this will only find UAF; // for secondary allocations we can find either UAF or OOB. getRingBufferErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, RingBufferPtr, RingBufferSize); // Check for OOB in the 28 blocks surrounding the 3 we checked earlier. // Beyond that we are likely to hit false positives. if (extractTag(FaultAddr) != 0) getInlineErrorInfo(ErrorInfo, NextErrorReport, FaultAddr, Depot, RegionInfoPtr, Memory, MemoryTags, MemoryAddr, MemorySize, 2, 16); } private: typedef typename PrimaryT::SizeClassMap SizeClassMap; static const uptr MinAlignmentLog = SCUDO_MIN_ALIGNMENT_LOG; static const uptr MaxAlignmentLog = 24U; // 16 MB seems reasonable. static const uptr MinAlignment = 1UL << MinAlignmentLog; static const uptr MaxAlignment = 1UL << MaxAlignmentLog; static const uptr MaxAllowedMallocSize = FIRST_32_SECOND_64(1UL << 31, 1ULL << 40); static_assert(MinAlignment >= sizeof(Chunk::PackedHeader), "Minimal alignment must at least cover a chunk header."); static_assert(!allocatorSupportsMemoryTagging() || MinAlignment >= archMemoryTagGranuleSize(), ""); static const u32 BlockMarker = 0x44554353U; // These are indexes into an "array" of 32-bit values that store information // inline with a chunk that is relevant to diagnosing memory tag faults, where // 0 corresponds to the address of the user memory. This means that only // negative indexes may be used. The smallest index that may be used is -2, // which corresponds to 8 bytes before the user memory, because the chunk // header size is 8 bytes and in allocators that support memory tagging the // minimum alignment is at least the tag granule size (16 on aarch64). static const sptr MemTagAllocationTraceIndex = -2; static const sptr MemTagAllocationTidIndex = -1; u32 Cookie = 0; u32 QuarantineMaxChunkSize = 0; GlobalStats Stats; PrimaryT Primary; SecondaryT Secondary; QuarantineT Quarantine; TSDRegistryT TSDRegistry; pthread_once_t PostInitNonce = PTHREAD_ONCE_INIT; #ifdef GWP_ASAN_HOOKS gwp_asan::GuardedPoolAllocator GuardedAlloc; uptr GuardedAllocSlotSize = 0; #endif // GWP_ASAN_HOOKS StackDepot Depot; struct AllocationRingBuffer { struct Entry { atomic_uptr Ptr; atomic_uptr AllocationSize; atomic_u32 AllocationTrace; atomic_u32 AllocationTid; atomic_u32 DeallocationTrace; atomic_u32 DeallocationTid; }; atomic_uptr Pos; // An array of Size (at least one) elements of type Entry is immediately // following to this struct. }; // Pointer to memory mapped area starting with AllocationRingBuffer struct, // and immediately followed by Size elements of type Entry. char *RawRingBuffer = {}; u32 RingBufferElements = 0; MemMapT RawRingBufferMap; // The following might get optimized out by the compiler. NOINLINE void performSanityChecks() { // Verify that the header offset field can hold the maximum offset. In the // case of the Secondary allocator, it takes care of alignment and the // offset will always be small. In the case of the Primary, the worst case // scenario happens in the last size class, when the backend allocation // would already be aligned on the requested alignment, which would happen // to be the maximum alignment that would fit in that size class. As a // result, the maximum offset will be at most the maximum alignment for the // last size class minus the header size, in multiples of MinAlignment. Chunk::UnpackedHeader Header = {}; const uptr MaxPrimaryAlignment = 1UL << getMostSignificantSetBitIndex( SizeClassMap::MaxSize - MinAlignment); const uptr MaxOffset = (MaxPrimaryAlignment - Chunk::getHeaderSize()) >> MinAlignmentLog; Header.Offset = MaxOffset & Chunk::OffsetMask; if (UNLIKELY(Header.Offset != MaxOffset)) reportSanityCheckError("offset"); // Verify that we can fit the maximum size or amount of unused bytes in the // header. Given that the Secondary fits the allocation to a page, the worst // case scenario happens in the Primary. It will depend on the second to // last and last class sizes, as well as the dynamic base for the Primary. // The following is an over-approximation that works for our needs. const uptr MaxSizeOrUnusedBytes = SizeClassMap::MaxSize - 1; Header.SizeOrUnusedBytes = MaxSizeOrUnusedBytes; if (UNLIKELY(Header.SizeOrUnusedBytes != MaxSizeOrUnusedBytes)) reportSanityCheckError("size (or unused bytes)"); const uptr LargestClassId = SizeClassMap::LargestClassId; Header.ClassId = LargestClassId; if (UNLIKELY(Header.ClassId != LargestClassId)) reportSanityCheckError("class ID"); } static inline void *getBlockBegin(const void *Ptr, Chunk::UnpackedHeader *Header) { return reinterpret_cast( reinterpret_cast(Ptr) - Chunk::getHeaderSize() - (static_cast(Header->Offset) << MinAlignmentLog)); } // Return the size of a chunk as requested during its allocation. inline uptr getSize(const void *Ptr, Chunk::UnpackedHeader *Header) { const uptr SizeOrUnusedBytes = Header->SizeOrUnusedBytes; if (LIKELY(Header->ClassId)) return SizeOrUnusedBytes; if (allocatorSupportsMemoryTagging()) Ptr = untagPointer(const_cast(Ptr)); return SecondaryT::getBlockEnd(getBlockBegin(Ptr, Header)) - reinterpret_cast(Ptr) - SizeOrUnusedBytes; } void quarantineOrDeallocateChunk(const Options &Options, void *TaggedPtr, Chunk::UnpackedHeader *Header, uptr Size) NO_THREAD_SAFETY_ANALYSIS { void *Ptr = getHeaderTaggedPointer(TaggedPtr); // If the quarantine is disabled, the actual size of a chunk is 0 or larger // than the maximum allowed, we return a chunk directly to the backend. // This purposefully underflows for Size == 0. const bool BypassQuarantine = !Quarantine.getCacheSize() || ((Size - 1) >= QuarantineMaxChunkSize) || !Header->ClassId; if (BypassQuarantine) Header->State = Chunk::State::Available; else Header->State = Chunk::State::Quarantined; Header->OriginOrWasZeroed = useMemoryTagging(Options) && Header->ClassId && !TSDRegistry.getDisableMemInit(); Chunk::storeHeader(Cookie, Ptr, Header); if (UNLIKELY(useMemoryTagging(Options))) { u8 PrevTag = extractTag(reinterpret_cast(TaggedPtr)); storeDeallocationStackMaybe(Options, Ptr, PrevTag, Size); if (Header->ClassId) { if (!TSDRegistry.getDisableMemInit()) { uptr TaggedBegin, TaggedEnd; const uptr OddEvenMask = computeOddEvenMaskForPointerMaybe( Options, reinterpret_cast(getBlockBegin(Ptr, Header)), Header->ClassId); // Exclude the previous tag so that immediate use after free is // detected 100% of the time. setRandomTag(Ptr, Size, OddEvenMask | (1UL << PrevTag), &TaggedBegin, &TaggedEnd); } } } if (BypassQuarantine) { if (allocatorSupportsMemoryTagging()) Ptr = untagPointer(Ptr); void *BlockBegin = getBlockBegin(Ptr, Header); const uptr ClassId = Header->ClassId; if (LIKELY(ClassId)) { bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); TSD->assertLocked(/*BypassCheck=*/!UnlockRequired); const bool CacheDrained = TSD->getCache().deallocate(ClassId, BlockBegin); if (UnlockRequired) TSD->unlock(); // When we have drained some blocks back to the Primary from TSD, that // implies that we may have the chance to release some pages as well. // Note that in order not to block other thread's accessing the TSD, // release the TSD first then try the page release. if (CacheDrained) Primary.tryReleaseToOS(ClassId, ReleaseToOS::Normal); } else { if (UNLIKELY(useMemoryTagging(Options))) storeTags(reinterpret_cast(BlockBegin), reinterpret_cast(Ptr)); Secondary.deallocate(Options, BlockBegin); } } else { bool UnlockRequired; auto *TSD = TSDRegistry.getTSDAndLock(&UnlockRequired); TSD->assertLocked(/*BypassCheck=*/!UnlockRequired); Quarantine.put(&TSD->getQuarantineCache(), QuarantineCallback(*this, TSD->getCache()), Ptr, Size); if (UnlockRequired) TSD->unlock(); } } bool getChunkFromBlock(uptr Block, uptr *Chunk, Chunk::UnpackedHeader *Header) { *Chunk = Block + getChunkOffsetFromBlock(reinterpret_cast(Block)); return Chunk::isValid(Cookie, reinterpret_cast(*Chunk), Header); } static uptr getChunkOffsetFromBlock(const char *Block) { u32 Offset = 0; if (reinterpret_cast(Block)[0] == BlockMarker) Offset = reinterpret_cast(Block)[1]; return Offset + Chunk::getHeaderSize(); } // Set the tag of the granule past the end of the allocation to 0, to catch // linear overflows even if a previous larger allocation used the same block // and tag. Only do this if the granule past the end is in our block, because // this would otherwise lead to a SEGV if the allocation covers the entire // block and our block is at the end of a mapping. The tag of the next block's // header granule will be set to 0, so it will serve the purpose of catching // linear overflows in this case. // // For allocations of size 0 we do not end up storing the address tag to the // memory tag space, which getInlineErrorInfo() normally relies on to match // address tags against chunks. To allow matching in this case we store the // address tag in the first byte of the chunk. void storeEndMarker(uptr End, uptr Size, uptr BlockEnd) { DCHECK_EQ(BlockEnd, untagPointer(BlockEnd)); uptr UntaggedEnd = untagPointer(End); if (UntaggedEnd != BlockEnd) { storeTag(UntaggedEnd); if (Size == 0) *reinterpret_cast(UntaggedEnd) = extractTag(End); } } void *prepareTaggedChunk(void *Ptr, uptr Size, uptr ExcludeMask, uptr BlockEnd) { // Prepare the granule before the chunk to store the chunk header by setting // its tag to 0. Normally its tag will already be 0, but in the case where a // chunk holding a low alignment allocation is reused for a higher alignment // allocation, the chunk may already have a non-zero tag from the previous // allocation. storeTag(reinterpret_cast(Ptr) - archMemoryTagGranuleSize()); uptr TaggedBegin, TaggedEnd; setRandomTag(Ptr, Size, ExcludeMask, &TaggedBegin, &TaggedEnd); storeEndMarker(TaggedEnd, Size, BlockEnd); return reinterpret_cast(TaggedBegin); } void resizeTaggedChunk(uptr OldPtr, uptr NewPtr, uptr NewSize, uptr BlockEnd) { uptr RoundOldPtr = roundUp(OldPtr, archMemoryTagGranuleSize()); uptr RoundNewPtr; if (RoundOldPtr >= NewPtr) { // If the allocation is shrinking we just need to set the tag past the end // of the allocation to 0. See explanation in storeEndMarker() above. RoundNewPtr = roundUp(NewPtr, archMemoryTagGranuleSize()); } else { // Set the memory tag of the region // [RoundOldPtr, roundUp(NewPtr, archMemoryTagGranuleSize())) // to the pointer tag stored in OldPtr. RoundNewPtr = storeTags(RoundOldPtr, NewPtr); } storeEndMarker(RoundNewPtr, NewSize, BlockEnd); } void storePrimaryAllocationStackMaybe(const Options &Options, void *Ptr) { if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) return; auto *Ptr32 = reinterpret_cast(Ptr); Ptr32[MemTagAllocationTraceIndex] = collectStackTrace(); Ptr32[MemTagAllocationTidIndex] = getThreadID(); } void storeRingBufferEntry(void *Ptr, u32 AllocationTrace, u32 AllocationTid, uptr AllocationSize, u32 DeallocationTrace, u32 DeallocationTid) { uptr Pos = atomic_fetch_add(&getRingBuffer()->Pos, 1, memory_order_relaxed); typename AllocationRingBuffer::Entry *Entry = getRingBufferEntry(RawRingBuffer, Pos % RingBufferElements); // First invalidate our entry so that we don't attempt to interpret a // partially written state in getSecondaryErrorInfo(). The fences below // ensure that the compiler does not move the stores to Ptr in between the // stores to the other fields. atomic_store_relaxed(&Entry->Ptr, 0); __atomic_signal_fence(__ATOMIC_SEQ_CST); atomic_store_relaxed(&Entry->AllocationTrace, AllocationTrace); atomic_store_relaxed(&Entry->AllocationTid, AllocationTid); atomic_store_relaxed(&Entry->AllocationSize, AllocationSize); atomic_store_relaxed(&Entry->DeallocationTrace, DeallocationTrace); atomic_store_relaxed(&Entry->DeallocationTid, DeallocationTid); __atomic_signal_fence(__ATOMIC_SEQ_CST); atomic_store_relaxed(&Entry->Ptr, reinterpret_cast(Ptr)); } void storeSecondaryAllocationStackMaybe(const Options &Options, void *Ptr, uptr Size) { if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) return; u32 Trace = collectStackTrace(); u32 Tid = getThreadID(); auto *Ptr32 = reinterpret_cast(Ptr); Ptr32[MemTagAllocationTraceIndex] = Trace; Ptr32[MemTagAllocationTidIndex] = Tid; storeRingBufferEntry(untagPointer(Ptr), Trace, Tid, Size, 0, 0); } void storeDeallocationStackMaybe(const Options &Options, void *Ptr, u8 PrevTag, uptr Size) { if (!UNLIKELY(Options.get(OptionBit::TrackAllocationStacks))) return; auto *Ptr32 = reinterpret_cast(Ptr); u32 AllocationTrace = Ptr32[MemTagAllocationTraceIndex]; u32 AllocationTid = Ptr32[MemTagAllocationTidIndex]; u32 DeallocationTrace = collectStackTrace(); u32 DeallocationTid = getThreadID(); storeRingBufferEntry(addFixedTag(untagPointer(Ptr), PrevTag), AllocationTrace, AllocationTid, Size, DeallocationTrace, DeallocationTid); } static const size_t NumErrorReports = sizeof(((scudo_error_info *)nullptr)->reports) / sizeof(((scudo_error_info *)nullptr)->reports[0]); static void getInlineErrorInfo(struct scudo_error_info *ErrorInfo, size_t &NextErrorReport, uintptr_t FaultAddr, const StackDepot *Depot, const char *RegionInfoPtr, const char *Memory, const char *MemoryTags, uintptr_t MemoryAddr, size_t MemorySize, size_t MinDistance, size_t MaxDistance) { uptr UntaggedFaultAddr = untagPointer(FaultAddr); u8 FaultAddrTag = extractTag(FaultAddr); BlockInfo Info = PrimaryT::findNearestBlock(RegionInfoPtr, UntaggedFaultAddr); auto GetGranule = [&](uptr Addr, const char **Data, uint8_t *Tag) -> bool { if (Addr < MemoryAddr || Addr + archMemoryTagGranuleSize() < Addr || Addr + archMemoryTagGranuleSize() > MemoryAddr + MemorySize) return false; *Data = &Memory[Addr - MemoryAddr]; *Tag = static_cast( MemoryTags[(Addr - MemoryAddr) / archMemoryTagGranuleSize()]); return true; }; auto ReadBlock = [&](uptr Addr, uptr *ChunkAddr, Chunk::UnpackedHeader *Header, const u32 **Data, u8 *Tag) { const char *BlockBegin; u8 BlockBeginTag; if (!GetGranule(Addr, &BlockBegin, &BlockBeginTag)) return false; uptr ChunkOffset = getChunkOffsetFromBlock(BlockBegin); *ChunkAddr = Addr + ChunkOffset; const char *ChunkBegin; if (!GetGranule(*ChunkAddr, &ChunkBegin, Tag)) return false; *Header = *reinterpret_cast( ChunkBegin - Chunk::getHeaderSize()); *Data = reinterpret_cast(ChunkBegin); // Allocations of size 0 will have stashed the tag in the first byte of // the chunk, see storeEndMarker(). if (Header->SizeOrUnusedBytes == 0) *Tag = static_cast(*ChunkBegin); return true; }; if (NextErrorReport == NumErrorReports) return; auto CheckOOB = [&](uptr BlockAddr) { if (BlockAddr < Info.RegionBegin || BlockAddr >= Info.RegionEnd) return false; uptr ChunkAddr; Chunk::UnpackedHeader Header; const u32 *Data; uint8_t Tag; if (!ReadBlock(BlockAddr, &ChunkAddr, &Header, &Data, &Tag) || Header.State != Chunk::State::Allocated || Tag != FaultAddrTag) return false; auto *R = &ErrorInfo->reports[NextErrorReport++]; R->error_type = UntaggedFaultAddr < ChunkAddr ? BUFFER_UNDERFLOW : BUFFER_OVERFLOW; R->allocation_address = ChunkAddr; R->allocation_size = Header.SizeOrUnusedBytes; collectTraceMaybe(Depot, R->allocation_trace, Data[MemTagAllocationTraceIndex]); R->allocation_tid = Data[MemTagAllocationTidIndex]; return NextErrorReport == NumErrorReports; }; if (MinDistance == 0 && CheckOOB(Info.BlockBegin)) return; for (size_t I = Max(MinDistance, 1); I != MaxDistance; ++I) if (CheckOOB(Info.BlockBegin + I * Info.BlockSize) || CheckOOB(Info.BlockBegin - I * Info.BlockSize)) return; } static void getRingBufferErrorInfo(struct scudo_error_info *ErrorInfo, size_t &NextErrorReport, uintptr_t FaultAddr, const StackDepot *Depot, const char *RingBufferPtr, size_t RingBufferSize) { auto *RingBuffer = reinterpret_cast(RingBufferPtr); size_t RingBufferElements = ringBufferElementsFromBytes(RingBufferSize); if (!RingBuffer || RingBufferElements == 0) return; uptr Pos = atomic_load_relaxed(&RingBuffer->Pos); for (uptr I = Pos - 1; I != Pos - 1 - RingBufferElements && NextErrorReport != NumErrorReports; --I) { auto *Entry = getRingBufferEntry(RingBufferPtr, I % RingBufferElements); uptr EntryPtr = atomic_load_relaxed(&Entry->Ptr); if (!EntryPtr) continue; uptr UntaggedEntryPtr = untagPointer(EntryPtr); uptr EntrySize = atomic_load_relaxed(&Entry->AllocationSize); u32 AllocationTrace = atomic_load_relaxed(&Entry->AllocationTrace); u32 AllocationTid = atomic_load_relaxed(&Entry->AllocationTid); u32 DeallocationTrace = atomic_load_relaxed(&Entry->DeallocationTrace); u32 DeallocationTid = atomic_load_relaxed(&Entry->DeallocationTid); if (DeallocationTid) { // For UAF we only consider in-bounds fault addresses because // out-of-bounds UAF is rare and attempting to detect it is very likely // to result in false positives. if (FaultAddr < EntryPtr || FaultAddr >= EntryPtr + EntrySize) continue; } else { // Ring buffer OOB is only possible with secondary allocations. In this // case we are guaranteed a guard region of at least a page on either // side of the allocation (guard page on the right, guard page + tagged // region on the left), so ignore any faults outside of that range. if (FaultAddr < EntryPtr - getPageSizeCached() || FaultAddr >= EntryPtr + EntrySize + getPageSizeCached()) continue; // For UAF the ring buffer will contain two entries, one for the // allocation and another for the deallocation. Don't report buffer // overflow/underflow using the allocation entry if we have already // collected a report from the deallocation entry. bool Found = false; for (uptr J = 0; J != NextErrorReport; ++J) { if (ErrorInfo->reports[J].allocation_address == UntaggedEntryPtr) { Found = true; break; } } if (Found) continue; } auto *R = &ErrorInfo->reports[NextErrorReport++]; if (DeallocationTid) R->error_type = USE_AFTER_FREE; else if (FaultAddr < EntryPtr) R->error_type = BUFFER_UNDERFLOW; else R->error_type = BUFFER_OVERFLOW; R->allocation_address = UntaggedEntryPtr; R->allocation_size = EntrySize; collectTraceMaybe(Depot, R->allocation_trace, AllocationTrace); R->allocation_tid = AllocationTid; collectTraceMaybe(Depot, R->deallocation_trace, DeallocationTrace); R->deallocation_tid = DeallocationTid; } } uptr getStats(ScopedString *Str) { Primary.getStats(Str); Secondary.getStats(Str); Quarantine.getStats(Str); TSDRegistry.getStats(Str); return Str->length(); } static typename AllocationRingBuffer::Entry * getRingBufferEntry(char *RawRingBuffer, uptr N) { return &reinterpret_cast( &RawRingBuffer[sizeof(AllocationRingBuffer)])[N]; } static const typename AllocationRingBuffer::Entry * getRingBufferEntry(const char *RawRingBuffer, uptr N) { return &reinterpret_cast( &RawRingBuffer[sizeof(AllocationRingBuffer)])[N]; } void mapAndInitializeRingBuffer() { if (getFlags()->allocation_ring_buffer_size <= 0) return; u32 AllocationRingBufferSize = static_cast(getFlags()->allocation_ring_buffer_size); MemMapT MemMap; MemMap.map( /*Addr=*/0U, roundUp(ringBufferSizeInBytes(AllocationRingBufferSize), getPageSizeCached()), "scudo:ring_buffer"); RawRingBuffer = reinterpret_cast(MemMap.getBase()); RawRingBufferMap = MemMap; RingBufferElements = AllocationRingBufferSize; static_assert(sizeof(AllocationRingBuffer) % alignof(typename AllocationRingBuffer::Entry) == 0, "invalid alignment"); } void unmapRingBuffer() { auto *RingBuffer = getRingBuffer(); if (RingBuffer != nullptr) { RawRingBufferMap.unmap(RawRingBufferMap.getBase(), RawRingBufferMap.getCapacity()); } RawRingBuffer = nullptr; } static constexpr size_t ringBufferSizeInBytes(u32 RingBufferElements) { return sizeof(AllocationRingBuffer) + RingBufferElements * sizeof(typename AllocationRingBuffer::Entry); } static constexpr size_t ringBufferElementsFromBytes(size_t Bytes) { if (Bytes < sizeof(AllocationRingBuffer)) { return 0; } return (Bytes - sizeof(AllocationRingBuffer)) / sizeof(typename AllocationRingBuffer::Entry); } inline AllocationRingBuffer *getRingBuffer() { return reinterpret_cast(RawRingBuffer); } }; } // namespace scudo #endif // SCUDO_COMBINED_H_