//===- CtxInstrProfiling.cpp - contextual instrumented PGO ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "CtxInstrProfiling.h" #include "sanitizer_common/sanitizer_allocator_internal.h" #include "sanitizer_common/sanitizer_common.h" #include "sanitizer_common/sanitizer_dense_map.h" #include "sanitizer_common/sanitizer_libc.h" #include "sanitizer_common/sanitizer_mutex.h" #include "sanitizer_common/sanitizer_placement_new.h" #include "sanitizer_common/sanitizer_thread_safety.h" #include "sanitizer_common/sanitizer_vector.h" #include using namespace __ctx_profile; namespace { // Keep track of all the context roots we actually saw, so we can then traverse // them when the user asks for the profile in __llvm_ctx_profile_fetch __sanitizer::SpinMutex AllContextsMutex; SANITIZER_GUARDED_BY(AllContextsMutex) __sanitizer::Vector AllContextRoots; // utility to taint a pointer by setting the LSB. There is an assumption // throughout that the addresses of contexts are even (really, they should be // align(8), but "even"-ness is the minimum assumption) // "scratch contexts" are buffers that we return in certain cases - they are // large enough to allow for memory safe counter access, but they don't link // subcontexts below them (the runtime recognizes them and enforces that) ContextNode *markAsScratch(const ContextNode *Ctx) { return reinterpret_cast(reinterpret_cast(Ctx) | 1); } // Used when getting the data from TLS. We don't *really* need to reset, but // it's a simpler system if we do. template inline T consume(T &V) { auto R = V; V = {0}; return R; } // We allocate at least kBuffSize Arena pages. The scratch buffer is also that // large. constexpr size_t kPower = 20; constexpr size_t kBuffSize = 1 << kPower; // Highly unlikely we need more than kBuffSize for a context. size_t getArenaAllocSize(size_t Needed) { if (Needed >= kBuffSize) return 2 * Needed; return kBuffSize; } // verify the structural integrity of the context bool validate(const ContextRoot *Root) { // all contexts should be laid out in some arena page. Go over each arena // allocated for this Root, and jump over contained contexts based on // self-reported sizes. __sanitizer::DenseMap ContextStartAddrs; for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) { const auto *Pos = Mem->start(); while (Pos < Mem->pos()) { const auto *Ctx = reinterpret_cast(Pos); if (!ContextStartAddrs.insert({reinterpret_cast(Ctx), true}) .second) return false; Pos += Ctx->size(); } } // Now traverse the contexts again the same way, but validate all nonull // subcontext addresses appear in the set computed above. for (const auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) { const auto *Pos = Mem->start(); while (Pos < Mem->pos()) { const auto *Ctx = reinterpret_cast(Pos); for (uint32_t I = 0; I < Ctx->callsites_size(); ++I) for (auto *Sub = Ctx->subContexts()[I]; Sub; Sub = Sub->next()) if (!ContextStartAddrs.find(reinterpret_cast(Sub))) return false; Pos += Ctx->size(); } } return true; } inline ContextNode *allocContextNode(char *Place, GUID Guid, uint32_t NrCounters, uint32_t NrCallsites, ContextNode *Next = nullptr) { assert(reinterpret_cast(Place) % ExpectedAlignment == 0); return new (Place) ContextNode(Guid, NrCounters, NrCallsites, Next); } void resetContextNode(ContextNode &Node) { // FIXME(mtrofin): this is std::memset, which we can probably use if we // drop/reduce the dependency on sanitizer_common. for (uint32_t I = 0; I < Node.counters_size(); ++I) Node.counters()[I] = 0; for (uint32_t I = 0; I < Node.callsites_size(); ++I) for (auto *Next = Node.subContexts()[I]; Next; Next = Next->next()) resetContextNode(*Next); } void onContextEnter(ContextNode &Node) { ++Node.counters()[0]; } } // namespace // the scratch buffer - what we give when we can't produce a real context (the // scratch isn't "real" in that it's expected to be clobbered carelessly - we // don't read it). The other important thing is that the callees from a scratch // context also get a scratch context. // Eventually this can be replaced with per-function buffers, a'la the typical // (flat) instrumented FDO buffers. The clobbering aspect won't apply there, but // the part about determining the nature of the subcontexts does. __thread char __Buffer[kBuffSize] = {0}; #define TheScratchContext \ markAsScratch(reinterpret_cast(__Buffer)) // init the TLSes __thread void *volatile __llvm_ctx_profile_expected_callee[2] = {nullptr, nullptr}; __thread ContextNode **volatile __llvm_ctx_profile_callsite[2] = {0, 0}; __thread ContextRoot *volatile __llvm_ctx_profile_current_context_root = nullptr; Arena::Arena(uint32_t Size) : Size(Size) { __sanitizer::internal_memset(start(), 0, Size); } // FIXME(mtrofin): use malloc / mmap instead of sanitizer common APIs to reduce // the dependency on the latter. Arena *Arena::allocateNewArena(size_t Size, Arena *Prev) { assert(!Prev || Prev->Next == nullptr); Arena *NewArena = new (__sanitizer::InternalAlloc( Size + sizeof(Arena), /*cache=*/nullptr, /*alignment=*/ExpectedAlignment)) Arena(Size); if (Prev) Prev->Next = NewArena; return NewArena; } void Arena::freeArenaList(Arena *&A) { assert(A); for (auto *I = A; I != nullptr;) { auto *Current = I; I = I->Next; __sanitizer::InternalFree(Current); } A = nullptr; } // If this is the first time we hit a callsite with this (Guid) particular // callee, we need to allocate. ContextNode *getCallsiteSlow(GUID Guid, ContextNode **InsertionPoint, uint32_t NrCounters, uint32_t NrCallsites) { auto AllocSize = ContextNode::getAllocSize(NrCounters, NrCallsites); auto *Mem = __llvm_ctx_profile_current_context_root->CurrentMem; char *AllocPlace = Mem->tryBumpAllocate(AllocSize); if (!AllocPlace) { // if we failed to allocate on the current arena, allocate a new arena, // and place it on __llvm_ctx_profile_current_context_root->CurrentMem so we // find it from now on for other cases when we need to getCallsiteSlow. // Note that allocateNewArena will link the allocated memory in the list of // Arenas. __llvm_ctx_profile_current_context_root->CurrentMem = Mem = Mem->allocateNewArena(getArenaAllocSize(AllocSize), Mem); AllocPlace = Mem->tryBumpAllocate(AllocSize); } auto *Ret = allocContextNode(AllocPlace, Guid, NrCounters, NrCallsites, *InsertionPoint); *InsertionPoint = Ret; return Ret; } ContextNode *__llvm_ctx_profile_get_context(void *Callee, GUID Guid, uint32_t NrCounters, uint32_t NrCallsites) { // fast "out" if we're not even doing contextual collection. if (!__llvm_ctx_profile_current_context_root) return TheScratchContext; // also fast "out" if the caller is scratch. We can see if it's scratch by // looking at the interior pointer into the subcontexts vector that the caller // provided, which, if the context is scratch, so is that interior pointer // (because all the address calculations are using even values. Or more // precisely, aligned - 8 values) auto **CallsiteContext = consume(__llvm_ctx_profile_callsite[0]); if (!CallsiteContext || isScratch(CallsiteContext)) return TheScratchContext; // if the callee isn't the expected one, return scratch. // Signal handler(s) could have been invoked at any point in the execution. // Should that have happened, and had it (the handler) be built with // instrumentation, its __llvm_ctx_profile_get_context would have failed here. // Its sub call graph would have then populated // __llvm_ctx_profile_{expected_callee | callsite} at index 1. // The normal call graph may be impacted in that, if the signal handler // happened somewhere before we read the TLS here, we'd see the TLS reset and // we'd also fail here. That would just mean we would loose counter values for // the normal subgraph, this time around. That should be very unlikely, but if // it happens too frequently, we should be able to detect discrepancies in // entry counts (caller-callee). At the moment, the design goes on the // assumption that is so unfrequent, though, that it's not worth doing more // for that case. auto *ExpectedCallee = consume(__llvm_ctx_profile_expected_callee[0]); if (ExpectedCallee != Callee) return TheScratchContext; auto *Callsite = *CallsiteContext; // in the case of indirect calls, we will have all seen targets forming a // linked list here. Find the one corresponding to this callee. while (Callsite && Callsite->guid() != Guid) { Callsite = Callsite->next(); } auto *Ret = Callsite ? Callsite : getCallsiteSlow(Guid, CallsiteContext, NrCounters, NrCallsites); if (Ret->callsites_size() != NrCallsites || Ret->counters_size() != NrCounters) __sanitizer::Printf("[ctxprof] Returned ctx differs from what's asked: " "Context: %p, Asked: %lu %u %u, Got: %lu %u %u \n", reinterpret_cast(Ret), Guid, NrCallsites, NrCounters, Ret->guid(), Ret->callsites_size(), Ret->counters_size()); onContextEnter(*Ret); return Ret; } // This should be called once for a Root. Allocate the first arena, set up the // first context. void setupContext(ContextRoot *Root, GUID Guid, uint32_t NrCounters, uint32_t NrCallsites) { __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock( &AllContextsMutex); // Re-check - we got here without having had taken a lock. if (Root->FirstMemBlock) return; const auto Needed = ContextNode::getAllocSize(NrCounters, NrCallsites); auto *M = Arena::allocateNewArena(getArenaAllocSize(Needed)); Root->FirstMemBlock = M; Root->CurrentMem = M; Root->FirstNode = allocContextNode(M->tryBumpAllocate(Needed), Guid, NrCounters, NrCallsites); AllContextRoots.PushBack(Root); } ContextNode *__llvm_ctx_profile_start_context( ContextRoot *Root, GUID Guid, uint32_t Counters, uint32_t Callsites) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { if (!Root->FirstMemBlock) { setupContext(Root, Guid, Counters, Callsites); } if (Root->Taken.TryLock()) { __llvm_ctx_profile_current_context_root = Root; onContextEnter(*Root->FirstNode); return Root->FirstNode; } // If this thread couldn't take the lock, return scratch context. __llvm_ctx_profile_current_context_root = nullptr; return TheScratchContext; } void __llvm_ctx_profile_release_context(ContextRoot *Root) SANITIZER_NO_THREAD_SAFETY_ANALYSIS { if (__llvm_ctx_profile_current_context_root) { __llvm_ctx_profile_current_context_root = nullptr; Root->Taken.Unlock(); } } void __llvm_ctx_profile_start_collection() { size_t NrMemUnits = 0; __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock( &AllContextsMutex); for (uint32_t I = 0; I < AllContextRoots.Size(); ++I) { auto *Root = AllContextRoots[I]; __sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> Lock( &Root->Taken); for (auto *Mem = Root->FirstMemBlock; Mem; Mem = Mem->next()) ++NrMemUnits; resetContextNode(*Root->FirstNode); } __sanitizer::Printf("[ctxprof] Initial NrMemUnits: %zu \n", NrMemUnits); } bool __llvm_ctx_profile_fetch(void *Data, bool (*Writer)(void *W, const ContextNode &)) { assert(Writer); __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock( &AllContextsMutex); for (int I = 0, E = AllContextRoots.Size(); I < E; ++I) { auto *Root = AllContextRoots[I]; __sanitizer::GenericScopedLock<__sanitizer::StaticSpinMutex> TakenLock( &Root->Taken); if (!validate(Root)) { __sanitizer::Printf("[ctxprof] Contextual Profile is %s\n", "invalid"); return false; } if (!Writer(Data, *Root->FirstNode)) return false; } return true; } void __llvm_ctx_profile_free() { __sanitizer::GenericScopedLock<__sanitizer::SpinMutex> Lock( &AllContextsMutex); for (int I = 0, E = AllContextRoots.Size(); I < E; ++I) for (auto *A = AllContextRoots[I]->FirstMemBlock; A;) { auto *C = A; A = A->next(); __sanitizer::InternalFree(C); } AllContextRoots.Reset(); }