//= lib/fp_trunc_impl.inc - high precision -> low precision conversion *-*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements a fairly generic conversion from a wider to a narrower // IEEE-754 floating-point type in the default (round to nearest, ties to even) // rounding mode. The constants and types defined following the includes below // parameterize the conversion. // // This routine can be trivially adapted to support conversions to // half-precision or from quad-precision. It does not support types that don't // use the usual IEEE-754 interchange formats; specifically, some work would be // needed to adapt it to (for example) the Intel 80-bit format or PowerPC // double-double format. // // Note please, however, that this implementation is only intended to support // *narrowing* operations; if you need to convert to a *wider* floating-point // type (e.g. float -> double), then this routine will not do what you want it // to. // // It also requires that integer types at least as large as both formats // are available on the target platform; this may pose a problem when trying // to add support for quad on some 32-bit systems, for example. // // Finally, the following assumptions are made: // // 1. Floating-point types and integer types have the same endianness on the // target platform. // // 2. Quiet NaNs, if supported, are indicated by the leading bit of the // significand field being set. // //===----------------------------------------------------------------------===// #include "fp_trunc.h" // The destination type may use a usual IEEE-754 interchange format or Intel // 80-bit format. In particular, for the destination type dstSigFracBits may be // not equal to dstSigBits. The source type is assumed to be one of IEEE-754 // standard types. static __inline dst_t __truncXfYf2__(src_t a) { // Various constants whose values follow from the type parameters. // Any reasonable optimizer will fold and propagate all of these. const int srcInfExp = (1 << srcExpBits) - 1; const int srcExpBias = srcInfExp >> 1; const src_rep_t srcMinNormal = SRC_REP_C(1) << srcSigFracBits; const src_rep_t roundMask = (SRC_REP_C(1) << (srcSigFracBits - dstSigFracBits)) - 1; const src_rep_t halfway = SRC_REP_C(1) << (srcSigFracBits - dstSigFracBits - 1); const src_rep_t srcQNaN = SRC_REP_C(1) << (srcSigFracBits - 1); const src_rep_t srcNaNCode = srcQNaN - 1; const int dstInfExp = (1 << dstExpBits) - 1; const int dstExpBias = dstInfExp >> 1; const int overflowExponent = srcExpBias + dstInfExp - dstExpBias; const dst_rep_t dstQNaN = DST_REP_C(1) << (dstSigFracBits - 1); const dst_rep_t dstNaNCode = dstQNaN - 1; const src_rep_t aRep = srcToRep(a); const src_rep_t srcSign = extract_sign_from_src(aRep); const src_rep_t srcExp = extract_exp_from_src(aRep); const src_rep_t srcSigFrac = extract_sig_frac_from_src(aRep); dst_rep_t dstSign = srcSign; dst_rep_t dstExp; dst_rep_t dstSigFrac; // Same size exponents and a's significand tail is 0. // The significand can be truncated and the exponent can be copied over. const int sigFracTailBits = srcSigFracBits - dstSigFracBits; if (srcExpBits == dstExpBits && ((aRep >> sigFracTailBits) << sigFracTailBits) == aRep) { dstExp = srcExp; dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits); return dstFromRep(construct_dst_rep(dstSign, dstExp, dstSigFrac)); } const int dstExpCandidate = ((int)srcExp - srcExpBias) + dstExpBias; if (dstExpCandidate >= 1 && dstExpCandidate < dstInfExp) { // The exponent of a is within the range of normal numbers in the // destination format. We can convert by simply right-shifting with // rounding and adjusting the exponent. dstExp = dstExpCandidate; dstSigFrac = (dst_rep_t)(srcSigFrac >> sigFracTailBits); const src_rep_t roundBits = srcSigFrac & roundMask; // Round to nearest. if (roundBits > halfway) dstSigFrac++; // Tie to even. else if (roundBits == halfway) dstSigFrac += dstSigFrac & 1; // Rounding has changed the exponent. if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) { dstExp += 1; dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits); } } else if (srcExp == srcInfExp && srcSigFrac) { // a is NaN. // Conjure the result by beginning with infinity, setting the qNaN // bit and inserting the (truncated) trailing NaN field. dstExp = dstInfExp; dstSigFrac = dstQNaN; dstSigFrac |= ((srcSigFrac & srcNaNCode) >> sigFracTailBits) & dstNaNCode; } else if ((int)srcExp >= overflowExponent) { dstExp = dstInfExp; dstSigFrac = 0; } else { // a underflows on conversion to the destination type or is an exact // zero. The result may be a denormal or zero. Extract the exponent // to get the shift amount for the denormalization. src_rep_t significand = srcSigFrac; int shift = srcExpBias - dstExpBias - srcExp; if (srcExp) { // Set the implicit integer bit if the source is a normal number. significand |= srcMinNormal; shift += 1; } // Right shift by the denormalization amount with sticky. if (shift > srcSigFracBits) { dstExp = 0; dstSigFrac = 0; } else { dstExp = 0; const bool sticky = shift && ((significand << (srcBits - shift)) != 0); src_rep_t denormalizedSignificand = significand >> shift | sticky; dstSigFrac = denormalizedSignificand >> sigFracTailBits; const src_rep_t roundBits = denormalizedSignificand & roundMask; // Round to nearest if (roundBits > halfway) dstSigFrac++; // Ties to even else if (roundBits == halfway) dstSigFrac += dstSigFrac & 1; // Rounding has changed the exponent. if (dstSigFrac >= (DST_REP_C(1) << dstSigFracBits)) { dstExp += 1; dstSigFrac ^= (DST_REP_C(1) << dstSigFracBits); } } } return dstFromRep(construct_dst_rep(dstSign, dstExp, dstSigFrac)); }