//===- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ----------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines a meta-engine for path-sensitive dataflow analysis that // is built on CoreEngine, but provides the boilerplate to execute transfer // functions and build the ExplodedGraph at the expression level. // //===----------------------------------------------------------------------===// #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" #include "PrettyStackTraceLocationContext.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Decl.h" #include "clang/AST/DeclBase.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/ExprObjC.h" #include "clang/AST/ParentMap.h" #include "clang/AST/PrettyPrinter.h" #include "clang/AST/Stmt.h" #include "clang/AST/StmtCXX.h" #include "clang/AST/StmtObjC.h" #include "clang/AST/Type.h" #include "clang/Analysis/AnalysisDeclContext.h" #include "clang/Analysis/CFG.h" #include "clang/Analysis/ConstructionContext.h" #include "clang/Analysis/ProgramPoint.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/JsonSupport.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/PrettyStackTrace.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Specifiers.h" #include "clang/StaticAnalyzer/Core/AnalyzerOptions.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugReporter.h" #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" #include "clang/StaticAnalyzer/Core/CheckerManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ConstraintManager.h" #include "clang/StaticAnalyzer/Core/PathSensitive/CoreEngine.h" #include "clang/StaticAnalyzer/Core/PathSensitive/DynamicExtent.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h" #include "clang/StaticAnalyzer/Core/PathSensitive/LoopUnrolling.h" #include "clang/StaticAnalyzer/Core/PathSensitive/LoopWidening.h" #include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramStateTrait.h" #include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h" #include "clang/StaticAnalyzer/Core/PathSensitive/Store.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymExpr.h" #include "clang/StaticAnalyzer/Core/PathSensitive/SymbolManager.h" #include "llvm/ADT/APSInt.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/ImmutableMap.h" #include "llvm/ADT/ImmutableSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Support/Casting.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/DOTGraphTraits.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GraphWriter.h" #include "llvm/Support/SaveAndRestore.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include #include #include using namespace clang; using namespace ento; #define DEBUG_TYPE "ExprEngine" STATISTIC(NumRemoveDeadBindings, "The # of times RemoveDeadBindings is called"); STATISTIC(NumMaxBlockCountReached, "The # of aborted paths due to reaching the maximum block count in " "a top level function"); STATISTIC(NumMaxBlockCountReachedInInlined, "The # of aborted paths due to reaching the maximum block count in " "an inlined function"); STATISTIC(NumTimesRetriedWithoutInlining, "The # of times we re-evaluated a call without inlining"); //===----------------------------------------------------------------------===// // Internal program state traits. //===----------------------------------------------------------------------===// namespace { // When modeling a C++ constructor, for a variety of reasons we need to track // the location of the object for the duration of its ConstructionContext. // ObjectsUnderConstruction maps statements within the construction context // to the object's location, so that on every such statement the location // could have been retrieved. /// ConstructedObjectKey is used for being able to find the path-sensitive /// memory region of a freshly constructed object while modeling the AST node /// that syntactically represents the object that is being constructed. /// Semantics of such nodes may sometimes require access to the region that's /// not otherwise present in the program state, or to the very fact that /// the construction context was present and contained references to these /// AST nodes. class ConstructedObjectKey { using ConstructedObjectKeyImpl = std::pair; const ConstructedObjectKeyImpl Impl; public: explicit ConstructedObjectKey(const ConstructionContextItem &Item, const LocationContext *LC) : Impl(Item, LC) {} const ConstructionContextItem &getItem() const { return Impl.first; } const LocationContext *getLocationContext() const { return Impl.second; } ASTContext &getASTContext() const { return getLocationContext()->getDecl()->getASTContext(); } void printJson(llvm::raw_ostream &Out, PrinterHelper *Helper, PrintingPolicy &PP) const { const Stmt *S = getItem().getStmtOrNull(); const CXXCtorInitializer *I = nullptr; if (!S) I = getItem().getCXXCtorInitializer(); if (S) Out << "\"stmt_id\": " << S->getID(getASTContext()); else Out << "\"init_id\": " << I->getID(getASTContext()); // Kind Out << ", \"kind\": \"" << getItem().getKindAsString() << "\", \"argument_index\": "; if (getItem().getKind() == ConstructionContextItem::ArgumentKind) Out << getItem().getIndex(); else Out << "null"; // Pretty-print Out << ", \"pretty\": "; if (S) { S->printJson(Out, Helper, PP, /*AddQuotes=*/true); } else { Out << '\"' << I->getAnyMember()->getDeclName() << '\"'; } } void Profile(llvm::FoldingSetNodeID &ID) const { ID.Add(Impl.first); ID.AddPointer(Impl.second); } bool operator==(const ConstructedObjectKey &RHS) const { return Impl == RHS.Impl; } bool operator<(const ConstructedObjectKey &RHS) const { return Impl < RHS.Impl; } }; } // namespace typedef llvm::ImmutableMap ObjectsUnderConstructionMap; REGISTER_TRAIT_WITH_PROGRAMSTATE(ObjectsUnderConstruction, ObjectsUnderConstructionMap) // This trait is responsible for storing the index of the element that is to be // constructed in the next iteration. As a result a CXXConstructExpr is only // stored if it is array type. Also the index is the index of the continuous // memory region, which is important for multi-dimensional arrays. E.g:: int // arr[2][2]; assume arr[1][1] will be the next element under construction, so // the index is 3. typedef llvm::ImmutableMap< std::pair, unsigned> IndexOfElementToConstructMap; REGISTER_TRAIT_WITH_PROGRAMSTATE(IndexOfElementToConstruct, IndexOfElementToConstructMap) // This trait is responsible for holding our pending ArrayInitLoopExprs. // It pairs the LocationContext and the initializer CXXConstructExpr with // the size of the array that's being copy initialized. typedef llvm::ImmutableMap< std::pair, unsigned> PendingInitLoopMap; REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingInitLoop, PendingInitLoopMap) typedef llvm::ImmutableMap PendingArrayDestructionMap; REGISTER_TRAIT_WITH_PROGRAMSTATE(PendingArrayDestruction, PendingArrayDestructionMap) //===----------------------------------------------------------------------===// // Engine construction and deletion. //===----------------------------------------------------------------------===// static const char* TagProviderName = "ExprEngine"; ExprEngine::ExprEngine(cross_tu::CrossTranslationUnitContext &CTU, AnalysisManager &mgr, SetOfConstDecls *VisitedCalleesIn, FunctionSummariesTy *FS, InliningModes HowToInlineIn) : CTU(CTU), IsCTUEnabled(mgr.getAnalyzerOptions().IsNaiveCTUEnabled), AMgr(mgr), AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()), Engine(*this, FS, mgr.getAnalyzerOptions()), G(Engine.getGraph()), StateMgr(getContext(), mgr.getStoreManagerCreator(), mgr.getConstraintManagerCreator(), G.getAllocator(), this), SymMgr(StateMgr.getSymbolManager()), MRMgr(StateMgr.getRegionManager()), svalBuilder(StateMgr.getSValBuilder()), ObjCNoRet(mgr.getASTContext()), BR(mgr, *this), VisitedCallees(VisitedCalleesIn), HowToInline(HowToInlineIn) { unsigned TrimInterval = mgr.options.GraphTrimInterval; if (TrimInterval != 0) { // Enable eager node reclamation when constructing the ExplodedGraph. G.enableNodeReclamation(TrimInterval); } } //===----------------------------------------------------------------------===// // Utility methods. //===----------------------------------------------------------------------===// ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) { ProgramStateRef state = StateMgr.getInitialState(InitLoc); const Decl *D = InitLoc->getDecl(); // Preconditions. // FIXME: It would be nice if we had a more general mechanism to add // such preconditions. Some day. do { if (const auto *FD = dyn_cast(D)) { // Precondition: the first argument of 'main' is an integer guaranteed // to be > 0. const IdentifierInfo *II = FD->getIdentifier(); if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) break; const ParmVarDecl *PD = FD->getParamDecl(0); QualType T = PD->getType(); const auto *BT = dyn_cast(T); if (!BT || !BT->isInteger()) break; const MemRegion *R = state->getRegion(PD, InitLoc); if (!R) break; SVal V = state->getSVal(loc::MemRegionVal(R)); SVal Constraint_untested = evalBinOp(state, BO_GT, V, svalBuilder.makeZeroVal(T), svalBuilder.getConditionType()); std::optional Constraint = Constraint_untested.getAs(); if (!Constraint) break; if (ProgramStateRef newState = state->assume(*Constraint, true)) state = newState; } break; } while (false); if (const auto *MD = dyn_cast(D)) { // Precondition: 'self' is always non-null upon entry to an Objective-C // method. const ImplicitParamDecl *SelfD = MD->getSelfDecl(); const MemRegion *R = state->getRegion(SelfD, InitLoc); SVal V = state->getSVal(loc::MemRegionVal(R)); if (std::optional LV = V.getAs()) { // Assume that the pointer value in 'self' is non-null. state = state->assume(*LV, true); assert(state && "'self' cannot be null"); } } if (const auto *MD = dyn_cast(D)) { if (MD->isImplicitObjectMemberFunction()) { // Precondition: 'this' is always non-null upon entry to the // top-level function. This is our starting assumption for // analyzing an "open" program. const StackFrameContext *SFC = InitLoc->getStackFrame(); if (SFC->getParent() == nullptr) { loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC); SVal V = state->getSVal(L); if (std::optional LV = V.getAs()) { state = state->assume(*LV, true); assert(state && "'this' cannot be null"); } } } } return state; } ProgramStateRef ExprEngine::createTemporaryRegionIfNeeded( ProgramStateRef State, const LocationContext *LC, const Expr *InitWithAdjustments, const Expr *Result, const SubRegion **OutRegionWithAdjustments) { // FIXME: This function is a hack that works around the quirky AST // we're often having with respect to C++ temporaries. If only we modelled // the actual execution order of statements properly in the CFG, // all the hassle with adjustments would not be necessary, // and perhaps the whole function would be removed. SVal InitValWithAdjustments = State->getSVal(InitWithAdjustments, LC); if (!Result) { // If we don't have an explicit result expression, we're in "if needed" // mode. Only create a region if the current value is a NonLoc. if (!isa(InitValWithAdjustments)) { if (OutRegionWithAdjustments) *OutRegionWithAdjustments = nullptr; return State; } Result = InitWithAdjustments; } else { // We need to create a region no matter what. Make sure we don't try to // stuff a Loc into a non-pointer temporary region. assert(!isa(InitValWithAdjustments) || Loc::isLocType(Result->getType()) || Result->getType()->isMemberPointerType()); } ProgramStateManager &StateMgr = State->getStateManager(); MemRegionManager &MRMgr = StateMgr.getRegionManager(); StoreManager &StoreMgr = StateMgr.getStoreManager(); // MaterializeTemporaryExpr may appear out of place, after a few field and // base-class accesses have been made to the object, even though semantically // it is the whole object that gets materialized and lifetime-extended. // // For example: // // `-MaterializeTemporaryExpr // `-MemberExpr // `-CXXTemporaryObjectExpr // // instead of the more natural // // `-MemberExpr // `-MaterializeTemporaryExpr // `-CXXTemporaryObjectExpr // // Use the usual methods for obtaining the expression of the base object, // and record the adjustments that we need to make to obtain the sub-object // that the whole expression 'Ex' refers to. This trick is usual, // in the sense that CodeGen takes a similar route. SmallVector CommaLHSs; SmallVector Adjustments; const Expr *Init = InitWithAdjustments->skipRValueSubobjectAdjustments( CommaLHSs, Adjustments); // Take the region for Init, i.e. for the whole object. If we do not remember // the region in which the object originally was constructed, come up with // a new temporary region out of thin air and copy the contents of the object // (which are currently present in the Environment, because Init is an rvalue) // into that region. This is not correct, but it is better than nothing. const TypedValueRegion *TR = nullptr; if (const auto *MT = dyn_cast(Result)) { if (std::optional V = getObjectUnderConstruction(State, MT, LC)) { State = finishObjectConstruction(State, MT, LC); State = State->BindExpr(Result, LC, *V); return State; } else if (const ValueDecl *VD = MT->getExtendingDecl()) { StorageDuration SD = MT->getStorageDuration(); assert(SD != SD_FullExpression); // If this object is bound to a reference with static storage duration, we // put it in a different region to prevent "address leakage" warnings. if (SD == SD_Static || SD == SD_Thread) { TR = MRMgr.getCXXStaticLifetimeExtendedObjectRegion(Init, VD); } else { TR = MRMgr.getCXXLifetimeExtendedObjectRegion(Init, VD, LC); } } else { assert(MT->getStorageDuration() == SD_FullExpression); TR = MRMgr.getCXXTempObjectRegion(Init, LC); } } else { TR = MRMgr.getCXXTempObjectRegion(Init, LC); } SVal Reg = loc::MemRegionVal(TR); SVal BaseReg = Reg; // Make the necessary adjustments to obtain the sub-object. for (const SubobjectAdjustment &Adj : llvm::reverse(Adjustments)) { switch (Adj.Kind) { case SubobjectAdjustment::DerivedToBaseAdjustment: Reg = StoreMgr.evalDerivedToBase(Reg, Adj.DerivedToBase.BasePath); break; case SubobjectAdjustment::FieldAdjustment: Reg = StoreMgr.getLValueField(Adj.Field, Reg); break; case SubobjectAdjustment::MemberPointerAdjustment: // FIXME: Unimplemented. State = State->invalidateRegions(Reg, InitWithAdjustments, currBldrCtx->blockCount(), LC, true, nullptr, nullptr, nullptr); return State; } } // What remains is to copy the value of the object to the new region. // FIXME: In other words, what we should always do is copy value of the // Init expression (which corresponds to the bigger object) to the whole // temporary region TR. However, this value is often no longer present // in the Environment. If it has disappeared, we instead invalidate TR. // Still, what we can do is assign the value of expression Ex (which // corresponds to the sub-object) to the TR's sub-region Reg. At least, // values inside Reg would be correct. SVal InitVal = State->getSVal(Init, LC); if (InitVal.isUnknown()) { InitVal = getSValBuilder().conjureSymbolVal(Result, LC, Init->getType(), currBldrCtx->blockCount()); State = State->bindLoc(BaseReg.castAs(), InitVal, LC, false); // Then we'd need to take the value that certainly exists and bind it // over. if (InitValWithAdjustments.isUnknown()) { // Try to recover some path sensitivity in case we couldn't // compute the value. InitValWithAdjustments = getSValBuilder().conjureSymbolVal( Result, LC, InitWithAdjustments->getType(), currBldrCtx->blockCount()); } State = State->bindLoc(Reg.castAs(), InitValWithAdjustments, LC, false); } else { State = State->bindLoc(BaseReg.castAs(), InitVal, LC, false); } // The result expression would now point to the correct sub-region of the // newly created temporary region. Do this last in order to getSVal of Init // correctly in case (Result == Init). if (Result->isGLValue()) { State = State->BindExpr(Result, LC, Reg); } else { State = State->BindExpr(Result, LC, InitValWithAdjustments); } // Notify checkers once for two bindLoc()s. State = processRegionChange(State, TR, LC); if (OutRegionWithAdjustments) *OutRegionWithAdjustments = cast(Reg.getAsRegion()); return State; } ProgramStateRef ExprEngine::setIndexOfElementToConstruct( ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx, unsigned Idx) { auto Key = std::make_pair(E, LCtx->getStackFrame()); assert(!State->contains(Key) || Idx > 0); return State->set(Key, Idx); } std::optional ExprEngine::getPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx) { const unsigned *V = State->get({E, LCtx->getStackFrame()}); return V ? std::make_optional(*V) : std::nullopt; } ProgramStateRef ExprEngine::removePendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx) { auto Key = std::make_pair(E, LCtx->getStackFrame()); assert(E && State->contains(Key)); return State->remove(Key); } ProgramStateRef ExprEngine::setPendingInitLoop(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx, unsigned Size) { auto Key = std::make_pair(E, LCtx->getStackFrame()); assert(!State->contains(Key) && Size > 0); return State->set(Key, Size); } std::optional ExprEngine::getIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx) { const unsigned *V = State->get({E, LCtx->getStackFrame()}); return V ? std::make_optional(*V) : std::nullopt; } ProgramStateRef ExprEngine::removeIndexOfElementToConstruct(ProgramStateRef State, const CXXConstructExpr *E, const LocationContext *LCtx) { auto Key = std::make_pair(E, LCtx->getStackFrame()); assert(E && State->contains(Key)); return State->remove(Key); } std::optional ExprEngine::getPendingArrayDestruction(ProgramStateRef State, const LocationContext *LCtx) { assert(LCtx && "LocationContext shouldn't be null!"); const unsigned *V = State->get(LCtx->getStackFrame()); return V ? std::make_optional(*V) : std::nullopt; } ProgramStateRef ExprEngine::setPendingArrayDestruction( ProgramStateRef State, const LocationContext *LCtx, unsigned Idx) { assert(LCtx && "LocationContext shouldn't be null!"); auto Key = LCtx->getStackFrame(); return State->set(Key, Idx); } ProgramStateRef ExprEngine::removePendingArrayDestruction(ProgramStateRef State, const LocationContext *LCtx) { assert(LCtx && "LocationContext shouldn't be null!"); auto Key = LCtx->getStackFrame(); assert(LCtx && State->contains(Key)); return State->remove(Key); } ProgramStateRef ExprEngine::addObjectUnderConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC, SVal V) { ConstructedObjectKey Key(Item, LC->getStackFrame()); const Expr *Init = nullptr; if (auto DS = dyn_cast_or_null(Item.getStmtOrNull())) { if (auto VD = dyn_cast_or_null(DS->getSingleDecl())) Init = VD->getInit(); } if (auto LE = dyn_cast_or_null(Item.getStmtOrNull())) Init = *(LE->capture_init_begin() + Item.getIndex()); if (!Init && !Item.getStmtOrNull()) Init = Item.getCXXCtorInitializer()->getInit(); // In an ArrayInitLoopExpr the real initializer is returned by // getSubExpr(). Note that AILEs can be nested in case of // multidimesnional arrays. if (const auto *AILE = dyn_cast_or_null(Init)) Init = extractElementInitializerFromNestedAILE(AILE); // FIXME: Currently the state might already contain the marker due to // incorrect handling of temporaries bound to default parameters. // The state will already contain the marker if we construct elements // in an array, as we visit the same statement multiple times before // the array declaration. The marker is removed when we exit the // constructor call. assert((!State->get(Key) || Key.getItem().getKind() == ConstructionContextItem::TemporaryDestructorKind || State->contains( {dyn_cast_or_null(Init), LC})) && "The object is already marked as `UnderConstruction`, when it's not " "supposed to!"); return State->set(Key, V); } std::optional ExprEngine::getObjectUnderConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC) { ConstructedObjectKey Key(Item, LC->getStackFrame()); const SVal *V = State->get(Key); return V ? std::make_optional(*V) : std::nullopt; } ProgramStateRef ExprEngine::finishObjectConstruction(ProgramStateRef State, const ConstructionContextItem &Item, const LocationContext *LC) { ConstructedObjectKey Key(Item, LC->getStackFrame()); assert(State->contains(Key)); return State->remove(Key); } ProgramStateRef ExprEngine::elideDestructor(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC) { ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); // FIXME: Currently the state might already contain the marker due to // incorrect handling of temporaries bound to default parameters. return State->set(Key, UnknownVal()); } ProgramStateRef ExprEngine::cleanupElidedDestructor(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC) { ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); assert(State->contains(Key)); return State->remove(Key); } bool ExprEngine::isDestructorElided(ProgramStateRef State, const CXXBindTemporaryExpr *BTE, const LocationContext *LC) { ConstructedObjectKey Key({BTE, /*IsElided=*/true}, LC); return State->contains(Key); } bool ExprEngine::areAllObjectsFullyConstructed(ProgramStateRef State, const LocationContext *FromLC, const LocationContext *ToLC) { const LocationContext *LC = FromLC; while (LC != ToLC) { assert(LC && "ToLC must be a parent of FromLC!"); for (auto I : State->get()) if (I.first.getLocationContext() == LC) return false; LC = LC->getParent(); } return true; } //===----------------------------------------------------------------------===// // Top-level transfer function logic (Dispatcher). //===----------------------------------------------------------------------===// /// evalAssume - Called by ConstraintManager. Used to call checker-specific /// logic for handling assumptions on symbolic values. ProgramStateRef ExprEngine::processAssume(ProgramStateRef state, SVal cond, bool assumption) { return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); } ProgramStateRef ExprEngine::processRegionChanges(ProgramStateRef state, const InvalidatedSymbols *invalidated, ArrayRef Explicits, ArrayRef Regions, const LocationContext *LCtx, const CallEvent *Call) { return getCheckerManager().runCheckersForRegionChanges(state, invalidated, Explicits, Regions, LCtx, Call); } static void printObjectsUnderConstructionJson(raw_ostream &Out, ProgramStateRef State, const char *NL, const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) { PrintingPolicy PP = LCtx->getAnalysisDeclContext()->getASTContext().getPrintingPolicy(); ++Space; bool HasItem = false; // Store the last key. const ConstructedObjectKey *LastKey = nullptr; for (const auto &I : State->get()) { const ConstructedObjectKey &Key = I.first; if (Key.getLocationContext() != LCtx) continue; if (!HasItem) { Out << '[' << NL; HasItem = true; } LastKey = &Key; } for (const auto &I : State->get()) { const ConstructedObjectKey &Key = I.first; SVal Value = I.second; if (Key.getLocationContext() != LCtx) continue; Indent(Out, Space, IsDot) << "{ "; Key.printJson(Out, nullptr, PP); Out << ", \"value\": \"" << Value << "\" }"; if (&Key != LastKey) Out << ','; Out << NL; } if (HasItem) Indent(Out, --Space, IsDot) << ']'; // End of "location_context". else { Out << "null "; } } static void printIndicesOfElementsToConstructJson( raw_ostream &Out, ProgramStateRef State, const char *NL, const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) { using KeyT = std::pair; const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext(); PrintingPolicy PP = Context.getPrintingPolicy(); ++Space; bool HasItem = false; // Store the last key. KeyT LastKey; for (const auto &I : State->get()) { const KeyT &Key = I.first; if (Key.second != LCtx) continue; if (!HasItem) { Out << '[' << NL; HasItem = true; } LastKey = Key; } for (const auto &I : State->get()) { const KeyT &Key = I.first; unsigned Value = I.second; if (Key.second != LCtx) continue; Indent(Out, Space, IsDot) << "{ "; // Expr const Expr *E = Key.first; Out << "\"stmt_id\": " << E->getID(Context); // Kind Out << ", \"kind\": null"; // Pretty-print Out << ", \"pretty\": "; Out << "\"" << E->getStmtClassName() << ' ' << E->getSourceRange().printToString(Context.getSourceManager()) << " '" << QualType::getAsString(E->getType().split(), PP); Out << "'\""; Out << ", \"value\": \"Current index: " << Value - 1 << "\" }"; if (Key != LastKey) Out << ','; Out << NL; } if (HasItem) Indent(Out, --Space, IsDot) << ']'; // End of "location_context". else { Out << "null "; } } static void printPendingInitLoopJson(raw_ostream &Out, ProgramStateRef State, const char *NL, const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) { using KeyT = std::pair; const auto &Context = LCtx->getAnalysisDeclContext()->getASTContext(); PrintingPolicy PP = Context.getPrintingPolicy(); ++Space; bool HasItem = false; // Store the last key. KeyT LastKey; for (const auto &I : State->get()) { const KeyT &Key = I.first; if (Key.second != LCtx) continue; if (!HasItem) { Out << '[' << NL; HasItem = true; } LastKey = Key; } for (const auto &I : State->get()) { const KeyT &Key = I.first; unsigned Value = I.second; if (Key.second != LCtx) continue; Indent(Out, Space, IsDot) << "{ "; const CXXConstructExpr *E = Key.first; Out << "\"stmt_id\": " << E->getID(Context); Out << ", \"kind\": null"; Out << ", \"pretty\": "; Out << '\"' << E->getStmtClassName() << ' ' << E->getSourceRange().printToString(Context.getSourceManager()) << " '" << QualType::getAsString(E->getType().split(), PP); Out << "'\""; Out << ", \"value\": \"Flattened size: " << Value << "\"}"; if (Key != LastKey) Out << ','; Out << NL; } if (HasItem) Indent(Out, --Space, IsDot) << ']'; // End of "location_context". else { Out << "null "; } } static void printPendingArrayDestructionsJson(raw_ostream &Out, ProgramStateRef State, const char *NL, const LocationContext *LCtx, unsigned int Space = 0, bool IsDot = false) { using KeyT = const LocationContext *; ++Space; bool HasItem = false; // Store the last key. KeyT LastKey = nullptr; for (const auto &I : State->get()) { const KeyT &Key = I.first; if (Key != LCtx) continue; if (!HasItem) { Out << '[' << NL; HasItem = true; } LastKey = Key; } for (const auto &I : State->get()) { const KeyT &Key = I.first; if (Key != LCtx) continue; Indent(Out, Space, IsDot) << "{ "; Out << "\"stmt_id\": null"; Out << ", \"kind\": null"; Out << ", \"pretty\": \"Current index: \""; Out << ", \"value\": \"" << I.second << "\" }"; if (Key != LastKey) Out << ','; Out << NL; } if (HasItem) Indent(Out, --Space, IsDot) << ']'; // End of "location_context". else { Out << "null "; } } /// A helper function to generalize program state trait printing. /// The function invokes Printer as 'Printer(Out, State, NL, LC, Space, IsDot, /// std::forward(args)...)'. \n One possible type for Printer is /// 'void()(raw_ostream &, ProgramStateRef, const char *, const LocationContext /// *, unsigned int, bool, ...)' \n \param Trait The state trait to be printed. /// \param Printer A void function that prints Trait. /// \param Args An additional parameter pack that is passed to Print upon /// invocation. template static void printStateTraitWithLocationContextJson( raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx, const char *NL, unsigned int Space, bool IsDot, const char *jsonPropertyName, Printer printer, Args &&...args) { using RequiredType = void (*)(raw_ostream &, ProgramStateRef, const char *, const LocationContext *, unsigned int, bool, Args &&...); // Try to do as much compile time checking as possible. // FIXME: check for invocable instead of function? static_assert(std::is_function_v>, "Printer is not a function!"); static_assert(std::is_convertible_v, "Printer doesn't have the required type!"); if (LCtx && !State->get().isEmpty()) { Indent(Out, Space, IsDot) << '\"' << jsonPropertyName << "\": "; ++Space; Out << '[' << NL; LCtx->printJson(Out, NL, Space, IsDot, [&](const LocationContext *LC) { printer(Out, State, NL, LC, Space, IsDot, std::forward(args)...); }); --Space; Indent(Out, Space, IsDot) << "]," << NL; // End of "jsonPropertyName". } } void ExprEngine::printJson(raw_ostream &Out, ProgramStateRef State, const LocationContext *LCtx, const char *NL, unsigned int Space, bool IsDot) const { printStateTraitWithLocationContextJson( Out, State, LCtx, NL, Space, IsDot, "constructing_objects", printObjectsUnderConstructionJson); printStateTraitWithLocationContextJson( Out, State, LCtx, NL, Space, IsDot, "index_of_element", printIndicesOfElementsToConstructJson); printStateTraitWithLocationContextJson( Out, State, LCtx, NL, Space, IsDot, "pending_init_loops", printPendingInitLoopJson); printStateTraitWithLocationContextJson( Out, State, LCtx, NL, Space, IsDot, "pending_destructors", printPendingArrayDestructionsJson); getCheckerManager().runCheckersForPrintStateJson(Out, State, NL, Space, IsDot); } void ExprEngine::processEndWorklist() { // This prints the name of the top-level function if we crash. PrettyStackTraceLocationContext CrashInfo(getRootLocationContext()); getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); } void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred, unsigned StmtIdx, NodeBuilderContext *Ctx) { PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); currStmtIdx = StmtIdx; currBldrCtx = Ctx; switch (E.getKind()) { case CFGElement::Statement: case CFGElement::Constructor: case CFGElement::CXXRecordTypedCall: ProcessStmt(E.castAs().getStmt(), Pred); return; case CFGElement::Initializer: ProcessInitializer(E.castAs(), Pred); return; case CFGElement::NewAllocator: ProcessNewAllocator(E.castAs().getAllocatorExpr(), Pred); return; case CFGElement::AutomaticObjectDtor: case CFGElement::DeleteDtor: case CFGElement::BaseDtor: case CFGElement::MemberDtor: case CFGElement::TemporaryDtor: ProcessImplicitDtor(E.castAs(), Pred); return; case CFGElement::LoopExit: ProcessLoopExit(E.castAs().getLoopStmt(), Pred); return; case CFGElement::LifetimeEnds: case CFGElement::CleanupFunction: case CFGElement::ScopeBegin: case CFGElement::ScopeEnd: return; } } static bool shouldRemoveDeadBindings(AnalysisManager &AMgr, const Stmt *S, const ExplodedNode *Pred, const LocationContext *LC) { // Are we never purging state values? if (AMgr.options.AnalysisPurgeOpt == PurgeNone) return false; // Is this the beginning of a basic block? if (Pred->getLocation().getAs()) return true; // Is this on a non-expression? if (!isa(S)) return true; // Run before processing a call. if (CallEvent::isCallStmt(S)) return true; // Is this an expression that is consumed by another expression? If so, // postpone cleaning out the state. ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap(); return !PM.isConsumedExpr(cast(S)); } void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out, const Stmt *ReferenceStmt, const LocationContext *LC, const Stmt *DiagnosticStmt, ProgramPoint::Kind K) { assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind || ReferenceStmt == nullptr || isa(ReferenceStmt)) && "PostStmt is not generally supported by the SymbolReaper yet"); assert(LC && "Must pass the current (or expiring) LocationContext"); if (!DiagnosticStmt) { DiagnosticStmt = ReferenceStmt; assert(DiagnosticStmt && "Required for clearing a LocationContext"); } NumRemoveDeadBindings++; ProgramStateRef CleanedState = Pred->getState(); // LC is the location context being destroyed, but SymbolReaper wants a // location context that is still live. (If this is the top-level stack // frame, this will be null.) if (!ReferenceStmt) { assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind && "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext"); LC = LC->getParent(); } const StackFrameContext *SFC = LC ? LC->getStackFrame() : nullptr; SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager()); for (auto I : CleanedState->get()) { if (SymbolRef Sym = I.second.getAsSymbol()) SymReaper.markLive(Sym); if (const MemRegion *MR = I.second.getAsRegion()) SymReaper.markLive(MR); } getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper); // Create a state in which dead bindings are removed from the environment // and the store. TODO: The function should just return new env and store, // not a new state. CleanedState = StateMgr.removeDeadBindingsFromEnvironmentAndStore( CleanedState, SFC, SymReaper); // Process any special transfer function for dead symbols. // A tag to track convenience transitions, which can be removed at cleanup. static SimpleProgramPointTag cleanupTag(TagProviderName, "Clean Node"); // Call checkers with the non-cleaned state so that they could query the // values of the soon to be dead symbols. ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper, DiagnosticStmt, *this, K); // For each node in CheckedSet, generate CleanedNodes that have the // environment, the store, and the constraints cleaned up but have the // user-supplied states as the predecessors. StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx); for (const auto I : CheckedSet) { ProgramStateRef CheckerState = I->getState(); // The constraint manager has not been cleaned up yet, so clean up now. CheckerState = getConstraintManager().removeDeadBindings(CheckerState, SymReaper); assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) && "Checkers are not allowed to modify the Environment as a part of " "checkDeadSymbols processing."); assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) && "Checkers are not allowed to modify the Store as a part of " "checkDeadSymbols processing."); // Create a state based on CleanedState with CheckerState GDM and // generate a transition to that state. ProgramStateRef CleanedCheckerSt = StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState); Bldr.generateNode(DiagnosticStmt, I, CleanedCheckerSt, &cleanupTag, K); } } void ExprEngine::ProcessStmt(const Stmt *currStmt, ExplodedNode *Pred) { // Reclaim any unnecessary nodes in the ExplodedGraph. G.reclaimRecentlyAllocatedNodes(); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), currStmt->getBeginLoc(), "Error evaluating statement"); // Remove dead bindings and symbols. ExplodedNodeSet CleanedStates; if (shouldRemoveDeadBindings(AMgr, currStmt, Pred, Pred->getLocationContext())) { removeDead(Pred, CleanedStates, currStmt, Pred->getLocationContext()); } else CleanedStates.Add(Pred); // Visit the statement. ExplodedNodeSet Dst; for (const auto I : CleanedStates) { ExplodedNodeSet DstI; // Visit the statement. Visit(currStmt, I, DstI); Dst.insert(DstI); } // Enqueue the new nodes onto the work list. Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); } void ExprEngine::ProcessLoopExit(const Stmt* S, ExplodedNode *Pred) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getBeginLoc(), "Error evaluating end of the loop"); ExplodedNodeSet Dst; Dst.Add(Pred); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); ProgramStateRef NewState = Pred->getState(); if(AMgr.options.ShouldUnrollLoops) NewState = processLoopEnd(S, NewState); LoopExit PP(S, Pred->getLocationContext()); Bldr.generateNode(PP, NewState, Pred); // Enqueue the new nodes onto the work list. Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); } void ExprEngine::ProcessInitializer(const CFGInitializer CFGInit, ExplodedNode *Pred) { const CXXCtorInitializer *BMI = CFGInit.getInitializer(); const Expr *Init = BMI->getInit()->IgnoreImplicit(); const LocationContext *LC = Pred->getLocationContext(); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), BMI->getSourceLocation(), "Error evaluating initializer"); // We don't clean up dead bindings here. const auto *stackFrame = cast(Pred->getLocationContext()); const auto *decl = cast(stackFrame->getDecl()); ProgramStateRef State = Pred->getState(); SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame)); ExplodedNodeSet Tmp; SVal FieldLoc; // Evaluate the initializer, if necessary if (BMI->isAnyMemberInitializer()) { // Constructors build the object directly in the field, // but non-objects must be copied in from the initializer. if (getObjectUnderConstruction(State, BMI, LC)) { // The field was directly constructed, so there is no need to bind. // But we still need to stop tracking the object under construction. State = finishObjectConstruction(State, BMI, LC); NodeBuilder Bldr(Pred, Tmp, *currBldrCtx); PostStore PS(Init, LC, /*Loc*/ nullptr, /*tag*/ nullptr); Bldr.generateNode(PS, State, Pred); } else { const ValueDecl *Field; if (BMI->isIndirectMemberInitializer()) { Field = BMI->getIndirectMember(); FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal); } else { Field = BMI->getMember(); FieldLoc = State->getLValue(BMI->getMember(), thisVal); } SVal InitVal; if (Init->getType()->isArrayType()) { // Handle arrays of trivial type. We can represent this with a // primitive load/copy from the base array region. const ArraySubscriptExpr *ASE; while ((ASE = dyn_cast(Init))) Init = ASE->getBase()->IgnoreImplicit(); SVal LValue = State->getSVal(Init, stackFrame); if (!Field->getType()->isReferenceType()) if (std::optional LValueLoc = LValue.getAs()) InitVal = State->getSVal(*LValueLoc); // If we fail to get the value for some reason, use a symbolic value. if (InitVal.isUnknownOrUndef()) { SValBuilder &SVB = getSValBuilder(); InitVal = SVB.conjureSymbolVal(BMI->getInit(), stackFrame, Field->getType(), currBldrCtx->blockCount()); } } else { InitVal = State->getSVal(BMI->getInit(), stackFrame); } PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP); } } else if (BMI->isBaseInitializer() && isa(Init)) { // When the base class is initialized with an initialization list and the // base class does not have a ctor, there will not be a CXXConstructExpr to // initialize the base region. Hence, we need to make the bind for it. SVal BaseLoc = getStoreManager().evalDerivedToBase( thisVal, QualType(BMI->getBaseClass(), 0), BMI->isBaseVirtual()); SVal InitVal = State->getSVal(Init, stackFrame); evalBind(Tmp, Init, Pred, BaseLoc, InitVal, /*isInit=*/true); } else { assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer()); Tmp.insert(Pred); // We already did all the work when visiting the CXXConstructExpr. } // Construct PostInitializer nodes whether the state changed or not, // so that the diagnostics don't get confused. PostInitializer PP(BMI, FieldLoc.getAsRegion(), stackFrame); ExplodedNodeSet Dst; NodeBuilder Bldr(Tmp, Dst, *currBldrCtx); for (const auto I : Tmp) { ProgramStateRef State = I->getState(); Bldr.generateNode(PP, State, I); } // Enqueue the new nodes onto the work list. Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); } std::pair ExprEngine::prepareStateForArrayDestruction(const ProgramStateRef State, const MemRegion *Region, const QualType &ElementTy, const LocationContext *LCtx, SVal *ElementCountVal) { assert(Region != nullptr && "Not-null region expected"); QualType Ty = ElementTy.getDesugaredType(getContext()); while (const auto *NTy = dyn_cast(Ty)) Ty = NTy->getElementType().getDesugaredType(getContext()); auto ElementCount = getDynamicElementCount(State, Region, svalBuilder, Ty); if (ElementCountVal) *ElementCountVal = ElementCount; // Note: the destructors are called in reverse order. unsigned Idx = 0; if (auto OptionalIdx = getPendingArrayDestruction(State, LCtx)) { Idx = *OptionalIdx; } else { // The element count is either unknown, or an SVal that's not an integer. if (!ElementCount.isConstant()) return {State, 0}; Idx = ElementCount.getAsInteger()->getLimitedValue(); } if (Idx == 0) return {State, 0}; --Idx; return {setPendingArrayDestruction(State, LCtx, Idx), Idx}; } void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, ExplodedNode *Pred) { ExplodedNodeSet Dst; switch (D.getKind()) { case CFGElement::AutomaticObjectDtor: ProcessAutomaticObjDtor(D.castAs(), Pred, Dst); break; case CFGElement::BaseDtor: ProcessBaseDtor(D.castAs(), Pred, Dst); break; case CFGElement::MemberDtor: ProcessMemberDtor(D.castAs(), Pred, Dst); break; case CFGElement::TemporaryDtor: ProcessTemporaryDtor(D.castAs(), Pred, Dst); break; case CFGElement::DeleteDtor: ProcessDeleteDtor(D.castAs(), Pred, Dst); break; default: llvm_unreachable("Unexpected dtor kind."); } // Enqueue the new nodes onto the work list. Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); } void ExprEngine::ProcessNewAllocator(const CXXNewExpr *NE, ExplodedNode *Pred) { ExplodedNodeSet Dst; AnalysisManager &AMgr = getAnalysisManager(); AnalyzerOptions &Opts = AMgr.options; // TODO: We're not evaluating allocators for all cases just yet as // we're not handling the return value correctly, which causes false // positives when the alpha.cplusplus.NewDeleteLeaks check is on. if (Opts.MayInlineCXXAllocator) VisitCXXNewAllocatorCall(NE, Pred, Dst); else { NodeBuilder Bldr(Pred, Dst, *currBldrCtx); const LocationContext *LCtx = Pred->getLocationContext(); PostImplicitCall PP(NE->getOperatorNew(), NE->getBeginLoc(), LCtx, getCFGElementRef()); Bldr.generateNode(PP, Pred->getState(), Pred); } Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); } void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const auto *DtorDecl = Dtor.getDestructorDecl(getContext()); const VarDecl *varDecl = Dtor.getVarDecl(); QualType varType = varDecl->getType(); ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); SVal dest = state->getLValue(varDecl, LCtx); const MemRegion *Region = dest.castAs().getRegion(); if (varType->isReferenceType()) { const MemRegion *ValueRegion = state->getSVal(Region).getAsRegion(); if (!ValueRegion) { // FIXME: This should not happen. The language guarantees a presence // of a valid initializer here, so the reference shall not be undefined. // It seems that we're calling destructors over variables that // were not initialized yet. return; } Region = ValueRegion->getBaseRegion(); varType = cast(Region)->getValueType(); } unsigned Idx = 0; if (isa(varType)) { SVal ElementCount; std::tie(state, Idx) = prepareStateForArrayDestruction( state, Region, varType, LCtx, &ElementCount); if (ElementCount.isConstant()) { uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue(); assert(ArrayLength && "An automatic dtor for a 0 length array shouldn't be triggered!"); // Still handle this case if we don't have assertions enabled. if (!ArrayLength) { static SimpleProgramPointTag PT( "ExprEngine", "Skipping automatic 0 length array destruction, " "which shouldn't be in the CFG."); PostImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(), &PT); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); Bldr.generateSink(PP, Pred->getState(), Pred); return; } } } EvalCallOptions CallOpts; Region = makeElementRegion(state, loc::MemRegionVal(Region), varType, CallOpts.IsArrayCtorOrDtor, Idx) .getAsRegion(); NodeBuilder Bldr(Pred, Dst, getBuilderContext()); static SimpleProgramPointTag PT("ExprEngine", "Prepare for object destruction"); PreImplicitCall PP(DtorDecl, varDecl->getLocation(), LCtx, getCFGElementRef(), &PT); Pred = Bldr.generateNode(PP, state, Pred); if (!Pred) return; Bldr.takeNodes(Pred); VisitCXXDestructor(varType, Region, Dtor.getTriggerStmt(), /*IsBase=*/false, Pred, Dst, CallOpts); } void ExprEngine::ProcessDeleteDtor(const CFGDeleteDtor Dtor, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ProgramStateRef State = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); const CXXDeleteExpr *DE = Dtor.getDeleteExpr(); const Stmt *Arg = DE->getArgument(); QualType DTy = DE->getDestroyedType(); SVal ArgVal = State->getSVal(Arg, LCtx); // If the argument to delete is known to be a null value, // don't run destructor. if (State->isNull(ArgVal).isConstrainedTrue()) { QualType BTy = getContext().getBaseElementType(DTy); const CXXRecordDecl *RD = BTy->getAsCXXRecordDecl(); const CXXDestructorDecl *Dtor = RD->getDestructor(); PostImplicitCall PP(Dtor, DE->getBeginLoc(), LCtx, getCFGElementRef()); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); Bldr.generateNode(PP, Pred->getState(), Pred); return; } auto getDtorDecl = [](const QualType &DTy) { const CXXRecordDecl *RD = DTy->getAsCXXRecordDecl(); return RD->getDestructor(); }; unsigned Idx = 0; EvalCallOptions CallOpts; const MemRegion *ArgR = ArgVal.getAsRegion(); if (DE->isArrayForm()) { CallOpts.IsArrayCtorOrDtor = true; // Yes, it may even be a multi-dimensional array. while (const auto *AT = getContext().getAsArrayType(DTy)) DTy = AT->getElementType(); if (ArgR) { SVal ElementCount; std::tie(State, Idx) = prepareStateForArrayDestruction( State, ArgR, DTy, LCtx, &ElementCount); // If we're about to destruct a 0 length array, don't run any of the // destructors. if (ElementCount.isConstant() && ElementCount.getAsInteger()->getLimitedValue() == 0) { static SimpleProgramPointTag PT( "ExprEngine", "Skipping 0 length array delete destruction"); PostImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx, getCFGElementRef(), &PT); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); Bldr.generateNode(PP, Pred->getState(), Pred); return; } ArgR = State->getLValue(DTy, svalBuilder.makeArrayIndex(Idx), ArgVal) .getAsRegion(); } } NodeBuilder Bldr(Pred, Dst, getBuilderContext()); static SimpleProgramPointTag PT("ExprEngine", "Prepare for object destruction"); PreImplicitCall PP(getDtorDecl(DTy), DE->getBeginLoc(), LCtx, getCFGElementRef(), &PT); Pred = Bldr.generateNode(PP, State, Pred); if (!Pred) return; Bldr.takeNodes(Pred); VisitCXXDestructor(DTy, ArgR, DE, /*IsBase=*/false, Pred, Dst, CallOpts); } void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const LocationContext *LCtx = Pred->getLocationContext(); const auto *CurDtor = cast(LCtx->getDecl()); Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame()); SVal ThisVal = Pred->getState()->getSVal(ThisPtr); // Create the base object region. const CXXBaseSpecifier *Base = D.getBaseSpecifier(); QualType BaseTy = Base->getType(); SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy, Base->isVirtual()); EvalCallOptions CallOpts; VisitCXXDestructor(BaseTy, BaseVal.getAsRegion(), CurDtor->getBody(), /*IsBase=*/true, Pred, Dst, CallOpts); } void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const auto *DtorDecl = D.getDestructorDecl(getContext()); const FieldDecl *Member = D.getFieldDecl(); QualType T = Member->getType(); ProgramStateRef State = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); const auto *CurDtor = cast(LCtx->getDecl()); Loc ThisStorageLoc = getSValBuilder().getCXXThis(CurDtor, LCtx->getStackFrame()); Loc ThisLoc = State->getSVal(ThisStorageLoc).castAs(); SVal FieldVal = State->getLValue(Member, ThisLoc); unsigned Idx = 0; if (isa(T)) { SVal ElementCount; std::tie(State, Idx) = prepareStateForArrayDestruction( State, FieldVal.getAsRegion(), T, LCtx, &ElementCount); if (ElementCount.isConstant()) { uint64_t ArrayLength = ElementCount.getAsInteger()->getLimitedValue(); assert(ArrayLength && "A member dtor for a 0 length array shouldn't be triggered!"); // Still handle this case if we don't have assertions enabled. if (!ArrayLength) { static SimpleProgramPointTag PT( "ExprEngine", "Skipping member 0 length array destruction, which " "shouldn't be in the CFG."); PostImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(), &PT); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); Bldr.generateSink(PP, Pred->getState(), Pred); return; } } } EvalCallOptions CallOpts; FieldVal = makeElementRegion(State, FieldVal, T, CallOpts.IsArrayCtorOrDtor, Idx); NodeBuilder Bldr(Pred, Dst, getBuilderContext()); static SimpleProgramPointTag PT("ExprEngine", "Prepare for object destruction"); PreImplicitCall PP(DtorDecl, Member->getLocation(), LCtx, getCFGElementRef(), &PT); Pred = Bldr.generateNode(PP, State, Pred); if (!Pred) return; Bldr.takeNodes(Pred); VisitCXXDestructor(T, FieldVal.getAsRegion(), CurDtor->getBody(), /*IsBase=*/false, Pred, Dst, CallOpts); } void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { const CXXBindTemporaryExpr *BTE = D.getBindTemporaryExpr(); ProgramStateRef State = Pred->getState(); const LocationContext *LC = Pred->getLocationContext(); const MemRegion *MR = nullptr; if (std::optional V = getObjectUnderConstruction( State, D.getBindTemporaryExpr(), Pred->getLocationContext())) { // FIXME: Currently we insert temporary destructors for default parameters, // but we don't insert the constructors, so the entry in // ObjectsUnderConstruction may be missing. State = finishObjectConstruction(State, D.getBindTemporaryExpr(), Pred->getLocationContext()); MR = V->getAsRegion(); } // If copy elision has occurred, and the constructor corresponding to the // destructor was elided, we need to skip the destructor as well. if (isDestructorElided(State, BTE, LC)) { State = cleanupElidedDestructor(State, BTE, LC); NodeBuilder Bldr(Pred, Dst, *currBldrCtx); PostImplicitCall PP(D.getDestructorDecl(getContext()), D.getBindTemporaryExpr()->getBeginLoc(), Pred->getLocationContext(), getCFGElementRef()); Bldr.generateNode(PP, State, Pred); return; } ExplodedNodeSet CleanDtorState; StmtNodeBuilder StmtBldr(Pred, CleanDtorState, *currBldrCtx); StmtBldr.generateNode(D.getBindTemporaryExpr(), Pred, State); QualType T = D.getBindTemporaryExpr()->getSubExpr()->getType(); // FIXME: Currently CleanDtorState can be empty here due to temporaries being // bound to default parameters. assert(CleanDtorState.size() <= 1); ExplodedNode *CleanPred = CleanDtorState.empty() ? Pred : *CleanDtorState.begin(); EvalCallOptions CallOpts; CallOpts.IsTemporaryCtorOrDtor = true; if (!MR) { // FIXME: If we have no MR, we still need to unwrap the array to avoid // destroying the whole array at once. // // For this case there is no universal solution as there is no way to // directly create an array of temporary objects. There are some expressions // however which can create temporary objects and have an array type. // // E.g.: std::initializer_list{S(), S()}; // // The expression above has a type of 'const struct S[2]' but it's a single // 'std::initializer_list<>'. The destructors of the 2 temporary 'S()' // objects will be called anyway, because they are 2 separate objects in 2 // separate clusters, i.e.: not an array. // // Now the 'std::initializer_list<>' is not an array either even though it // has the type of an array. The point is, we only want to invoke the // destructor for the initializer list once not twice or so. while (const ArrayType *AT = getContext().getAsArrayType(T)) { T = AT->getElementType(); // FIXME: Enable this flag once we handle this case properly. // CallOpts.IsArrayCtorOrDtor = true; } } else { // FIXME: We'd eventually need to makeElementRegion() trick here, // but for now we don't have the respective construction contexts, // so MR would always be null in this case. Do nothing for now. } VisitCXXDestructor(T, MR, D.getBindTemporaryExpr(), /*IsBase=*/false, CleanPred, Dst, CallOpts); } void ExprEngine::processCleanupTemporaryBranch(const CXXBindTemporaryExpr *BTE, NodeBuilderContext &BldCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF) { BranchNodeBuilder TempDtorBuilder(Pred, Dst, BldCtx, DstT, DstF); ProgramStateRef State = Pred->getState(); const LocationContext *LC = Pred->getLocationContext(); if (getObjectUnderConstruction(State, BTE, LC)) { TempDtorBuilder.markInfeasible(false); TempDtorBuilder.generateNode(State, true, Pred); } else { TempDtorBuilder.markInfeasible(true); TempDtorBuilder.generateNode(State, false, Pred); } } void ExprEngine::VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *BTE, ExplodedNodeSet &PreVisit, ExplodedNodeSet &Dst) { // This is a fallback solution in case we didn't have a construction // context when we were constructing the temporary. Otherwise the map should // have been populated there. if (!getAnalysisManager().options.ShouldIncludeTemporaryDtorsInCFG) { // In case we don't have temporary destructors in the CFG, do not mark // the initialization - we would otherwise never clean it up. Dst = PreVisit; return; } StmtNodeBuilder StmtBldr(PreVisit, Dst, *currBldrCtx); for (ExplodedNode *Node : PreVisit) { ProgramStateRef State = Node->getState(); const LocationContext *LC = Node->getLocationContext(); if (!getObjectUnderConstruction(State, BTE, LC)) { // FIXME: Currently the state might also already contain the marker due to // incorrect handling of temporaries bound to default parameters; for // those, we currently skip the CXXBindTemporaryExpr but rely on adding // temporary destructor nodes. State = addObjectUnderConstruction(State, BTE, LC, UnknownVal()); } StmtBldr.generateNode(BTE, Node, State); } } ProgramStateRef ExprEngine::escapeValues(ProgramStateRef State, ArrayRef Vs, PointerEscapeKind K, const CallEvent *Call) const { class CollectReachableSymbolsCallback final : public SymbolVisitor { InvalidatedSymbols &Symbols; public: explicit CollectReachableSymbolsCallback(InvalidatedSymbols &Symbols) : Symbols(Symbols) {} const InvalidatedSymbols &getSymbols() const { return Symbols; } bool VisitSymbol(SymbolRef Sym) override { Symbols.insert(Sym); return true; } }; InvalidatedSymbols Symbols; CollectReachableSymbolsCallback CallBack(Symbols); for (SVal V : Vs) State->scanReachableSymbols(V, CallBack); return getCheckerManager().runCheckersForPointerEscape( State, CallBack.getSymbols(), Call, K, nullptr); } void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred, ExplodedNodeSet &DstTop) { PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), S->getBeginLoc(), "Error evaluating statement"); ExplodedNodeSet Dst; StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx); assert(!isa(S) || S == cast(S)->IgnoreParens()); switch (S->getStmtClass()) { // C++, OpenMP and ARC stuff we don't support yet. case Stmt::CXXDependentScopeMemberExprClass: case Stmt::CXXTryStmtClass: case Stmt::CXXTypeidExprClass: case Stmt::CXXUuidofExprClass: case Stmt::CXXFoldExprClass: case Stmt::MSPropertyRefExprClass: case Stmt::MSPropertySubscriptExprClass: case Stmt::CXXUnresolvedConstructExprClass: case Stmt::DependentScopeDeclRefExprClass: case Stmt::ArrayTypeTraitExprClass: case Stmt::ExpressionTraitExprClass: case Stmt::UnresolvedLookupExprClass: case Stmt::UnresolvedMemberExprClass: case Stmt::TypoExprClass: case Stmt::RecoveryExprClass: case Stmt::CXXNoexceptExprClass: case Stmt::PackExpansionExprClass: case Stmt::PackIndexingExprClass: case Stmt::SubstNonTypeTemplateParmPackExprClass: case Stmt::FunctionParmPackExprClass: case Stmt::CoroutineBodyStmtClass: case Stmt::CoawaitExprClass: case Stmt::DependentCoawaitExprClass: case Stmt::CoreturnStmtClass: case Stmt::CoyieldExprClass: case Stmt::SEHTryStmtClass: case Stmt::SEHExceptStmtClass: case Stmt::SEHLeaveStmtClass: case Stmt::SEHFinallyStmtClass: case Stmt::OMPCanonicalLoopClass: case Stmt::OMPParallelDirectiveClass: case Stmt::OMPSimdDirectiveClass: case Stmt::OMPForDirectiveClass: case Stmt::OMPForSimdDirectiveClass: case Stmt::OMPSectionsDirectiveClass: case Stmt::OMPSectionDirectiveClass: case Stmt::OMPScopeDirectiveClass: case Stmt::OMPSingleDirectiveClass: case Stmt::OMPMasterDirectiveClass: case Stmt::OMPCriticalDirectiveClass: case Stmt::OMPParallelForDirectiveClass: case Stmt::OMPParallelForSimdDirectiveClass: case Stmt::OMPParallelSectionsDirectiveClass: case Stmt::OMPParallelMasterDirectiveClass: case Stmt::OMPParallelMaskedDirectiveClass: case Stmt::OMPTaskDirectiveClass: case Stmt::OMPTaskyieldDirectiveClass: case Stmt::OMPBarrierDirectiveClass: case Stmt::OMPTaskwaitDirectiveClass: case Stmt::OMPErrorDirectiveClass: case Stmt::OMPTaskgroupDirectiveClass: case Stmt::OMPFlushDirectiveClass: case Stmt::OMPDepobjDirectiveClass: case Stmt::OMPScanDirectiveClass: case Stmt::OMPOrderedDirectiveClass: case Stmt::OMPAtomicDirectiveClass: case Stmt::OMPTargetDirectiveClass: case Stmt::OMPTargetDataDirectiveClass: case Stmt::OMPTargetEnterDataDirectiveClass: case Stmt::OMPTargetExitDataDirectiveClass: case Stmt::OMPTargetParallelDirectiveClass: case Stmt::OMPTargetParallelForDirectiveClass: case Stmt::OMPTargetUpdateDirectiveClass: case Stmt::OMPTeamsDirectiveClass: case Stmt::OMPCancellationPointDirectiveClass: case Stmt::OMPCancelDirectiveClass: case Stmt::OMPTaskLoopDirectiveClass: case Stmt::OMPTaskLoopSimdDirectiveClass: case Stmt::OMPMasterTaskLoopDirectiveClass: case Stmt::OMPMaskedTaskLoopDirectiveClass: case Stmt::OMPMasterTaskLoopSimdDirectiveClass: case Stmt::OMPMaskedTaskLoopSimdDirectiveClass: case Stmt::OMPParallelMasterTaskLoopDirectiveClass: case Stmt::OMPParallelMaskedTaskLoopDirectiveClass: case Stmt::OMPParallelMasterTaskLoopSimdDirectiveClass: case Stmt::OMPParallelMaskedTaskLoopSimdDirectiveClass: case Stmt::OMPDistributeDirectiveClass: case Stmt::OMPDistributeParallelForDirectiveClass: case Stmt::OMPDistributeParallelForSimdDirectiveClass: case Stmt::OMPDistributeSimdDirectiveClass: case Stmt::OMPTargetParallelForSimdDirectiveClass: case Stmt::OMPTargetSimdDirectiveClass: case Stmt::OMPTeamsDistributeDirectiveClass: case Stmt::OMPTeamsDistributeSimdDirectiveClass: case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: case Stmt::OMPTeamsDistributeParallelForDirectiveClass: case Stmt::OMPTargetTeamsDirectiveClass: case Stmt::OMPTargetTeamsDistributeDirectiveClass: case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: case Stmt::OMPReverseDirectiveClass: case Stmt::OMPTileDirectiveClass: case Stmt::OMPInterchangeDirectiveClass: case Stmt::OMPInteropDirectiveClass: case Stmt::OMPDispatchDirectiveClass: case Stmt::OMPMaskedDirectiveClass: case Stmt::OMPGenericLoopDirectiveClass: case Stmt::OMPTeamsGenericLoopDirectiveClass: case Stmt::OMPTargetTeamsGenericLoopDirectiveClass: case Stmt::OMPParallelGenericLoopDirectiveClass: case Stmt::OMPTargetParallelGenericLoopDirectiveClass: case Stmt::CapturedStmtClass: case Stmt::OpenACCComputeConstructClass: case Stmt::OpenACCLoopConstructClass: case Stmt::OMPUnrollDirectiveClass: case Stmt::OMPMetaDirectiveClass: { const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); Engine.addAbortedBlock(node, currBldrCtx->getBlock()); break; } case Stmt::ParenExprClass: llvm_unreachable("ParenExprs already handled."); case Stmt::GenericSelectionExprClass: llvm_unreachable("GenericSelectionExprs already handled."); // Cases that should never be evaluated simply because they shouldn't // appear in the CFG. case Stmt::BreakStmtClass: case Stmt::CaseStmtClass: case Stmt::CompoundStmtClass: case Stmt::ContinueStmtClass: case Stmt::CXXForRangeStmtClass: case Stmt::DefaultStmtClass: case Stmt::DoStmtClass: case Stmt::ForStmtClass: case Stmt::GotoStmtClass: case Stmt::IfStmtClass: case Stmt::IndirectGotoStmtClass: case Stmt::LabelStmtClass: case Stmt::NoStmtClass: case Stmt::NullStmtClass: case Stmt::SwitchStmtClass: case Stmt::WhileStmtClass: case Expr::MSDependentExistsStmtClass: llvm_unreachable("Stmt should not be in analyzer evaluation loop"); case Stmt::ImplicitValueInitExprClass: // These nodes are shared in the CFG and would case caching out. // Moreover, no additional evaluation required for them, the // analyzer can reconstruct these values from the AST. llvm_unreachable("Should be pruned from CFG"); case Stmt::ObjCSubscriptRefExprClass: case Stmt::ObjCPropertyRefExprClass: llvm_unreachable("These are handled by PseudoObjectExpr"); case Stmt::GNUNullExprClass: { // GNU __null is a pointer-width integer, not an actual pointer. ProgramStateRef state = Pred->getState(); state = state->BindExpr( S, Pred->getLocationContext(), svalBuilder.makeIntValWithWidth(getContext().VoidPtrTy, 0)); Bldr.generateNode(S, Pred, state); break; } case Stmt::ObjCAtSynchronizedStmtClass: Bldr.takeNodes(Pred); VisitObjCAtSynchronizedStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Expr::ConstantExprClass: case Stmt::ExprWithCleanupsClass: // Handled due to fully linearised CFG. break; case Stmt::CXXBindTemporaryExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet Next; VisitCXXBindTemporaryExpr(cast(S), PreVisit, Next); getCheckerManager().runCheckersForPostStmt(Dst, Next, S, *this); Bldr.addNodes(Dst); break; } case Stmt::ArrayInitLoopExprClass: Bldr.takeNodes(Pred); VisitArrayInitLoopExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; // Cases not handled yet; but will handle some day. case Stmt::DesignatedInitExprClass: case Stmt::DesignatedInitUpdateExprClass: case Stmt::ArrayInitIndexExprClass: case Stmt::ExtVectorElementExprClass: case Stmt::ImaginaryLiteralClass: case Stmt::ObjCAtCatchStmtClass: case Stmt::ObjCAtFinallyStmtClass: case Stmt::ObjCAtTryStmtClass: case Stmt::ObjCAutoreleasePoolStmtClass: case Stmt::ObjCEncodeExprClass: case Stmt::ObjCIsaExprClass: case Stmt::ObjCProtocolExprClass: case Stmt::ObjCSelectorExprClass: case Stmt::ParenListExprClass: case Stmt::ShuffleVectorExprClass: case Stmt::ConvertVectorExprClass: case Stmt::VAArgExprClass: case Stmt::CUDAKernelCallExprClass: case Stmt::OpaqueValueExprClass: case Stmt::AsTypeExprClass: case Stmt::ConceptSpecializationExprClass: case Stmt::CXXRewrittenBinaryOperatorClass: case Stmt::RequiresExprClass: case Expr::CXXParenListInitExprClass: case Stmt::EmbedExprClass: // Fall through. // Cases we intentionally don't evaluate, since they don't need // to be explicitly evaluated. case Stmt::PredefinedExprClass: case Stmt::AddrLabelExprClass: case Stmt::AttributedStmtClass: case Stmt::IntegerLiteralClass: case Stmt::FixedPointLiteralClass: case Stmt::CharacterLiteralClass: case Stmt::CXXScalarValueInitExprClass: case Stmt::CXXBoolLiteralExprClass: case Stmt::ObjCBoolLiteralExprClass: case Stmt::ObjCAvailabilityCheckExprClass: case Stmt::FloatingLiteralClass: case Stmt::NoInitExprClass: case Stmt::SizeOfPackExprClass: case Stmt::StringLiteralClass: case Stmt::SourceLocExprClass: case Stmt::ObjCStringLiteralClass: case Stmt::CXXPseudoDestructorExprClass: case Stmt::SubstNonTypeTemplateParmExprClass: case Stmt::CXXNullPtrLiteralExprClass: case Stmt::ArraySectionExprClass: case Stmt::OMPArrayShapingExprClass: case Stmt::OMPIteratorExprClass: case Stmt::SYCLUniqueStableNameExprClass: case Stmt::TypeTraitExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet preVisit; getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this); Bldr.addNodes(Dst); break; } case Stmt::CXXDefaultArgExprClass: case Stmt::CXXDefaultInitExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet Tmp; StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx); const Expr *ArgE; if (const auto *DefE = dyn_cast(S)) ArgE = DefE->getExpr(); else if (const auto *DefE = dyn_cast(S)) ArgE = DefE->getExpr(); else llvm_unreachable("unknown constant wrapper kind"); bool IsTemporary = false; if (const auto *MTE = dyn_cast(ArgE)) { ArgE = MTE->getSubExpr(); IsTemporary = true; } std::optional ConstantVal = svalBuilder.getConstantVal(ArgE); if (!ConstantVal) ConstantVal = UnknownVal(); const LocationContext *LCtx = Pred->getLocationContext(); for (const auto I : PreVisit) { ProgramStateRef State = I->getState(); State = State->BindExpr(S, LCtx, *ConstantVal); if (IsTemporary) State = createTemporaryRegionIfNeeded(State, LCtx, cast(S), cast(S)); Bldr2.generateNode(S, I, State); } getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); Bldr.addNodes(Dst); break; } // Cases we evaluate as opaque expressions, conjuring a symbol. case Stmt::CXXStdInitializerListExprClass: case Expr::ObjCArrayLiteralClass: case Expr::ObjCDictionaryLiteralClass: case Expr::ObjCBoxedExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet preVisit; getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); ExplodedNodeSet Tmp; StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx); const auto *Ex = cast(S); QualType resultType = Ex->getType(); for (const auto N : preVisit) { const LocationContext *LCtx = N->getLocationContext(); SVal result = svalBuilder.conjureSymbolVal(nullptr, Ex, LCtx, resultType, currBldrCtx->blockCount()); ProgramStateRef State = N->getState()->BindExpr(Ex, LCtx, result); // Escape pointers passed into the list, unless it's an ObjC boxed // expression which is not a boxable C structure. if (!(isa(Ex) && !cast(Ex)->getSubExpr() ->getType()->isRecordType())) for (auto Child : Ex->children()) { assert(Child); SVal Val = State->getSVal(Child, LCtx); State = escapeValues(State, Val, PSK_EscapeOther); } Bldr2.generateNode(S, N, State); } getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); Bldr.addNodes(Dst); break; } case Stmt::ArraySubscriptExprClass: Bldr.takeNodes(Pred); VisitArraySubscriptExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::MatrixSubscriptExprClass: llvm_unreachable("Support for MatrixSubscriptExpr is not implemented."); break; case Stmt::GCCAsmStmtClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet PostVisit; for (ExplodedNode *const N : PreVisit) VisitGCCAsmStmt(cast(S), N, PostVisit); getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); Bldr.addNodes(Dst); break; } case Stmt::MSAsmStmtClass: Bldr.takeNodes(Pred); VisitMSAsmStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::BlockExprClass: Bldr.takeNodes(Pred); VisitBlockExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::LambdaExprClass: if (AMgr.options.ShouldInlineLambdas) { Bldr.takeNodes(Pred); VisitLambdaExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); } else { const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); Engine.addAbortedBlock(node, currBldrCtx->getBlock()); } break; case Stmt::BinaryOperatorClass: { const auto *B = cast(S); if (B->isLogicalOp()) { Bldr.takeNodes(Pred); VisitLogicalExpr(B, Pred, Dst); Bldr.addNodes(Dst); break; } else if (B->getOpcode() == BO_Comma) { ProgramStateRef state = Pred->getState(); Bldr.generateNode(B, Pred, state->BindExpr(B, Pred->getLocationContext(), state->getSVal(B->getRHS(), Pred->getLocationContext()))); break; } Bldr.takeNodes(Pred); if (AMgr.options.ShouldEagerlyAssume && (B->isRelationalOp() || B->isEqualityOp())) { ExplodedNodeSet Tmp; VisitBinaryOperator(cast(S), Pred, Tmp); evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast(S)); } else VisitBinaryOperator(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; } case Stmt::CXXOperatorCallExprClass: { const auto *OCE = cast(S); // For instance method operators, make sure the 'this' argument has a // valid region. const Decl *Callee = OCE->getCalleeDecl(); if (const auto *MD = dyn_cast_or_null(Callee)) { if (MD->isImplicitObjectMemberFunction()) { ProgramStateRef State = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); ProgramStateRef NewState = createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0)); if (NewState != State) { Pred = Bldr.generateNode(OCE, Pred, NewState, /*tag=*/nullptr, ProgramPoint::PreStmtKind); // Did we cache out? if (!Pred) break; } } } [[fallthrough]]; } case Stmt::CallExprClass: case Stmt::CXXMemberCallExprClass: case Stmt::UserDefinedLiteralClass: Bldr.takeNodes(Pred); VisitCallExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::CXXCatchStmtClass: Bldr.takeNodes(Pred); VisitCXXCatchStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::CXXTemporaryObjectExprClass: case Stmt::CXXConstructExprClass: Bldr.takeNodes(Pred); VisitCXXConstructExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::CXXInheritedCtorInitExprClass: Bldr.takeNodes(Pred); VisitCXXInheritedCtorInitExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::CXXNewExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet PostVisit; for (const auto i : PreVisit) VisitCXXNewExpr(cast(S), i, PostVisit); getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); Bldr.addNodes(Dst); break; } case Stmt::CXXDeleteExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; const auto *CDE = cast(S); getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet PostVisit; getCheckerManager().runCheckersForPostStmt(PostVisit, PreVisit, S, *this); for (const auto i : PostVisit) VisitCXXDeleteExpr(CDE, i, Dst); Bldr.addNodes(Dst); break; } // FIXME: ChooseExpr is really a constant. We need to fix // the CFG do not model them as explicit control-flow. case Stmt::ChooseExprClass: { // __builtin_choose_expr Bldr.takeNodes(Pred); const auto *C = cast(S); VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); Bldr.addNodes(Dst); break; } case Stmt::CompoundAssignOperatorClass: Bldr.takeNodes(Pred); VisitBinaryOperator(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::CompoundLiteralExprClass: Bldr.takeNodes(Pred); VisitCompoundLiteralExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::BinaryConditionalOperatorClass: case Stmt::ConditionalOperatorClass: { // '?' operator Bldr.takeNodes(Pred); const auto *C = cast(S); VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); Bldr.addNodes(Dst); break; } case Stmt::CXXThisExprClass: Bldr.takeNodes(Pred); VisitCXXThisExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::DeclRefExprClass: { Bldr.takeNodes(Pred); const auto *DE = cast(S); VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); Bldr.addNodes(Dst); break; } case Stmt::DeclStmtClass: Bldr.takeNodes(Pred); VisitDeclStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::ImplicitCastExprClass: case Stmt::CStyleCastExprClass: case Stmt::CXXStaticCastExprClass: case Stmt::CXXDynamicCastExprClass: case Stmt::CXXReinterpretCastExprClass: case Stmt::CXXConstCastExprClass: case Stmt::CXXFunctionalCastExprClass: case Stmt::BuiltinBitCastExprClass: case Stmt::ObjCBridgedCastExprClass: case Stmt::CXXAddrspaceCastExprClass: { Bldr.takeNodes(Pred); const auto *C = cast(S); ExplodedNodeSet dstExpr; VisitCast(C, C->getSubExpr(), Pred, dstExpr); // Handle the postvisit checks. getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this); Bldr.addNodes(Dst); break; } case Expr::MaterializeTemporaryExprClass: { Bldr.takeNodes(Pred); const auto *MTE = cast(S); ExplodedNodeSet dstPrevisit; getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, MTE, *this); ExplodedNodeSet dstExpr; for (const auto i : dstPrevisit) CreateCXXTemporaryObject(MTE, i, dstExpr); getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, MTE, *this); Bldr.addNodes(Dst); break; } case Stmt::InitListExprClass: Bldr.takeNodes(Pred); VisitInitListExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::MemberExprClass: Bldr.takeNodes(Pred); VisitMemberExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::AtomicExprClass: Bldr.takeNodes(Pred); VisitAtomicExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::ObjCIvarRefExprClass: Bldr.takeNodes(Pred); VisitLvalObjCIvarRefExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::ObjCForCollectionStmtClass: Bldr.takeNodes(Pred); VisitObjCForCollectionStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::ObjCMessageExprClass: Bldr.takeNodes(Pred); VisitObjCMessage(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::ObjCAtThrowStmtClass: case Stmt::CXXThrowExprClass: // FIXME: This is not complete. We basically treat @throw as // an abort. Bldr.generateSink(S, Pred, Pred->getState()); break; case Stmt::ReturnStmtClass: Bldr.takeNodes(Pred); VisitReturnStmt(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::OffsetOfExprClass: { Bldr.takeNodes(Pred); ExplodedNodeSet PreVisit; getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); ExplodedNodeSet PostVisit; for (const auto Node : PreVisit) VisitOffsetOfExpr(cast(S), Node, PostVisit); getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); Bldr.addNodes(Dst); break; } case Stmt::UnaryExprOrTypeTraitExprClass: Bldr.takeNodes(Pred); VisitUnaryExprOrTypeTraitExpr(cast(S), Pred, Dst); Bldr.addNodes(Dst); break; case Stmt::StmtExprClass: { const auto *SE = cast(S); if (SE->getSubStmt()->body_empty()) { // Empty statement expression. assert(SE->getType() == getContext().VoidTy && "Empty statement expression must have void type."); break; } if (const auto *LastExpr = dyn_cast(*SE->getSubStmt()->body_rbegin())) { ProgramStateRef state = Pred->getState(); Bldr.generateNode(SE, Pred, state->BindExpr(SE, Pred->getLocationContext(), state->getSVal(LastExpr, Pred->getLocationContext()))); } break; } case Stmt::UnaryOperatorClass: { Bldr.takeNodes(Pred); const auto *U = cast(S); if (AMgr.options.ShouldEagerlyAssume && (U->getOpcode() == UO_LNot)) { ExplodedNodeSet Tmp; VisitUnaryOperator(U, Pred, Tmp); evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U); } else VisitUnaryOperator(U, Pred, Dst); Bldr.addNodes(Dst); break; } case Stmt::PseudoObjectExprClass: { Bldr.takeNodes(Pred); ProgramStateRef state = Pred->getState(); const auto *PE = cast(S); if (const Expr *Result = PE->getResultExpr()) { SVal V = state->getSVal(Result, Pred->getLocationContext()); Bldr.generateNode(S, Pred, state->BindExpr(S, Pred->getLocationContext(), V)); } else Bldr.generateNode(S, Pred, state->BindExpr(S, Pred->getLocationContext(), UnknownVal())); Bldr.addNodes(Dst); break; } case Expr::ObjCIndirectCopyRestoreExprClass: { // ObjCIndirectCopyRestoreExpr implies passing a temporary for // correctness of lifetime management. Due to limited analysis // of ARC, this is implemented as direct arg passing. Bldr.takeNodes(Pred); ProgramStateRef state = Pred->getState(); const auto *OIE = cast(S); const Expr *E = OIE->getSubExpr(); SVal V = state->getSVal(E, Pred->getLocationContext()); Bldr.generateNode(S, Pred, state->BindExpr(S, Pred->getLocationContext(), V)); Bldr.addNodes(Dst); break; } } } bool ExprEngine::replayWithoutInlining(ExplodedNode *N, const LocationContext *CalleeLC) { const StackFrameContext *CalleeSF = CalleeLC->getStackFrame(); const StackFrameContext *CallerSF = CalleeSF->getParent()->getStackFrame(); assert(CalleeSF && CallerSF); ExplodedNode *BeforeProcessingCall = nullptr; const Stmt *CE = CalleeSF->getCallSite(); // Find the first node before we started processing the call expression. while (N) { ProgramPoint L = N->getLocation(); BeforeProcessingCall = N; N = N->pred_empty() ? nullptr : *(N->pred_begin()); // Skip the nodes corresponding to the inlined code. if (L.getStackFrame() != CallerSF) continue; // We reached the caller. Find the node right before we started // processing the call. if (L.isPurgeKind()) continue; if (L.getAs()) continue; if (L.getAs()) continue; if (std::optional SP = L.getAs()) if (SP->getStmt() == CE) continue; break; } if (!BeforeProcessingCall) return false; // TODO: Clean up the unneeded nodes. // Build an Epsilon node from which we will restart the analyzes. // Note that CE is permitted to be NULL! static SimpleProgramPointTag PT("ExprEngine", "Replay without inlining"); ProgramPoint NewNodeLoc = EpsilonPoint( BeforeProcessingCall->getLocationContext(), CE, nullptr, &PT); // Add the special flag to GDM to signal retrying with no inlining. // Note, changing the state ensures that we are not going to cache out. ProgramStateRef NewNodeState = BeforeProcessingCall->getState(); NewNodeState = NewNodeState->set(const_cast(CE)); // Make the new node a successor of BeforeProcessingCall. bool IsNew = false; ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew); // We cached out at this point. Caching out is common due to us backtracking // from the inlined function, which might spawn several paths. if (!IsNew) return true; NewNode->addPredecessor(BeforeProcessingCall, G); // Add the new node to the work list. Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(), CalleeSF->getIndex()); NumTimesRetriedWithoutInlining++; return true; } /// Block entrance. (Update counters). void ExprEngine::processCFGBlockEntrance(const BlockEdge &L, NodeBuilderWithSinks &nodeBuilder, ExplodedNode *Pred) { PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); // If we reach a loop which has a known bound (and meets // other constraints) then consider completely unrolling it. if(AMgr.options.ShouldUnrollLoops) { unsigned maxBlockVisitOnPath = AMgr.options.maxBlockVisitOnPath; const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); if (Term) { ProgramStateRef NewState = updateLoopStack(Term, AMgr.getASTContext(), Pred, maxBlockVisitOnPath); if (NewState != Pred->getState()) { ExplodedNode *UpdatedNode = nodeBuilder.generateNode(NewState, Pred); if (!UpdatedNode) return; Pred = UpdatedNode; } } // Is we are inside an unrolled loop then no need the check the counters. if(isUnrolledState(Pred->getState())) return; } // If this block is terminated by a loop and it has already been visited the // maximum number of times, widen the loop. unsigned int BlockCount = nodeBuilder.getContext().blockCount(); if (BlockCount == AMgr.options.maxBlockVisitOnPath - 1 && AMgr.options.ShouldWidenLoops) { const Stmt *Term = nodeBuilder.getContext().getBlock()->getTerminatorStmt(); if (!isa_and_nonnull(Term)) return; // Widen. const LocationContext *LCtx = Pred->getLocationContext(); ProgramStateRef WidenedState = getWidenedLoopState(Pred->getState(), LCtx, BlockCount, Term); nodeBuilder.generateNode(WidenedState, Pred); return; } // FIXME: Refactor this into a checker. if (BlockCount >= AMgr.options.maxBlockVisitOnPath) { static SimpleProgramPointTag tag(TagProviderName, "Block count exceeded"); const ExplodedNode *Sink = nodeBuilder.generateSink(Pred->getState(), Pred, &tag); // Check if we stopped at the top level function or not. // Root node should have the location context of the top most function. const LocationContext *CalleeLC = Pred->getLocation().getLocationContext(); const LocationContext *CalleeSF = CalleeLC->getStackFrame(); const LocationContext *RootLC = (*G.roots_begin())->getLocation().getLocationContext(); if (RootLC->getStackFrame() != CalleeSF) { Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl()); // Re-run the call evaluation without inlining it, by storing the // no-inlining policy in the state and enqueuing the new work item on // the list. Replay should almost never fail. Use the stats to catch it // if it does. if ((!AMgr.options.NoRetryExhausted && replayWithoutInlining(Pred, CalleeLC))) return; NumMaxBlockCountReachedInInlined++; } else NumMaxBlockCountReached++; // Make sink nodes as exhausted(for stats) only if retry failed. Engine.blocksExhausted.push_back(std::make_pair(L, Sink)); } } //===----------------------------------------------------------------------===// // Branch processing. //===----------------------------------------------------------------------===// /// RecoverCastedSymbol - A helper function for ProcessBranch that is used /// to try to recover some path-sensitivity for casts of symbolic /// integers that promote their values (which are currently not tracked well). /// This function returns the SVal bound to Condition->IgnoreCasts if all the // cast(s) did was sign-extend the original value. static SVal RecoverCastedSymbol(ProgramStateRef state, const Stmt *Condition, const LocationContext *LCtx, ASTContext &Ctx) { const auto *Ex = dyn_cast(Condition); if (!Ex) return UnknownVal(); uint64_t bits = 0; bool bitsInit = false; while (const auto *CE = dyn_cast(Ex)) { QualType T = CE->getType(); if (!T->isIntegralOrEnumerationType()) return UnknownVal(); uint64_t newBits = Ctx.getTypeSize(T); if (!bitsInit || newBits < bits) { bitsInit = true; bits = newBits; } Ex = CE->getSubExpr(); } // We reached a non-cast. Is it a symbolic value? QualType T = Ex->getType(); if (!bitsInit || !T->isIntegralOrEnumerationType() || Ctx.getTypeSize(T) > bits) return UnknownVal(); return state->getSVal(Ex, LCtx); } #ifndef NDEBUG static const Stmt *getRightmostLeaf(const Stmt *Condition) { while (Condition) { const auto *BO = dyn_cast(Condition); if (!BO || !BO->isLogicalOp()) { return Condition; } Condition = BO->getRHS()->IgnoreParens(); } return nullptr; } #endif // Returns the condition the branch at the end of 'B' depends on and whose value // has been evaluated within 'B'. // In most cases, the terminator condition of 'B' will be evaluated fully in // the last statement of 'B'; in those cases, the resolved condition is the // given 'Condition'. // If the condition of the branch is a logical binary operator tree, the CFG is // optimized: in that case, we know that the expression formed by all but the // rightmost leaf of the logical binary operator tree must be true, and thus // the branch condition is at this point equivalent to the truth value of that // rightmost leaf; the CFG block thus only evaluates this rightmost leaf // expression in its final statement. As the full condition in that case was // not evaluated, and is thus not in the SVal cache, we need to use that leaf // expression to evaluate the truth value of the condition in the current state // space. static const Stmt *ResolveCondition(const Stmt *Condition, const CFGBlock *B) { if (const auto *Ex = dyn_cast(Condition)) Condition = Ex->IgnoreParens(); const auto *BO = dyn_cast(Condition); if (!BO || !BO->isLogicalOp()) return Condition; assert(B->getTerminator().isStmtBranch() && "Other kinds of branches are handled separately!"); // For logical operations, we still have the case where some branches // use the traditional "merge" approach and others sink the branch // directly into the basic blocks representing the logical operation. // We need to distinguish between those two cases here. // The invariants are still shifting, but it is possible that the // last element in a CFGBlock is not a CFGStmt. Look for the last // CFGStmt as the value of the condition. for (CFGElement Elem : llvm::reverse(*B)) { std::optional CS = Elem.getAs(); if (!CS) continue; const Stmt *LastStmt = CS->getStmt(); assert(LastStmt == Condition || LastStmt == getRightmostLeaf(Condition)); return LastStmt; } llvm_unreachable("could not resolve condition"); } using ObjCForLctxPair = std::pair; REGISTER_MAP_WITH_PROGRAMSTATE(ObjCForHasMoreIterations, ObjCForLctxPair, bool) ProgramStateRef ExprEngine::setWhetherHasMoreIteration( ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC, bool HasMoreIteraton) { assert(!State->contains({O, LC})); return State->set({O, LC}, HasMoreIteraton); } ProgramStateRef ExprEngine::removeIterationState(ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC) { assert(State->contains({O, LC})); return State->remove({O, LC}); } bool ExprEngine::hasMoreIteration(ProgramStateRef State, const ObjCForCollectionStmt *O, const LocationContext *LC) { assert(State->contains({O, LC})); return *State->get({O, LC}); } /// Split the state on whether there are any more iterations left for this loop. /// Returns a (HasMoreIteration, HasNoMoreIteration) pair, or std::nullopt when /// the acquisition of the loop condition value failed. static std::optional> assumeCondition(const Stmt *Condition, ExplodedNode *N) { ProgramStateRef State = N->getState(); if (const auto *ObjCFor = dyn_cast(Condition)) { bool HasMoreIteraton = ExprEngine::hasMoreIteration(State, ObjCFor, N->getLocationContext()); // Checkers have already ran on branch conditions, so the current // information as to whether the loop has more iteration becomes outdated // after this point. State = ExprEngine::removeIterationState(State, ObjCFor, N->getLocationContext()); if (HasMoreIteraton) return std::pair{State, nullptr}; else return std::pair{nullptr, State}; } SVal X = State->getSVal(Condition, N->getLocationContext()); if (X.isUnknownOrUndef()) { // Give it a chance to recover from unknown. if (const auto *Ex = dyn_cast(Condition)) { if (Ex->getType()->isIntegralOrEnumerationType()) { // Try to recover some path-sensitivity. Right now casts of symbolic // integers that promote their values are currently not tracked well. // If 'Condition' is such an expression, try and recover the // underlying value and use that instead. SVal recovered = RecoverCastedSymbol(State, Condition, N->getLocationContext(), N->getState()->getStateManager().getContext()); if (!recovered.isUnknown()) { X = recovered; } } } } // If the condition is still unknown, give up. if (X.isUnknownOrUndef()) return std::nullopt; DefinedSVal V = X.castAs(); ProgramStateRef StTrue, StFalse; return State->assume(V); } void ExprEngine::processBranch(const Stmt *Condition, NodeBuilderContext& BldCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF) { assert((!Condition || !isa(Condition)) && "CXXBindTemporaryExprs are handled by processBindTemporary."); const LocationContext *LCtx = Pred->getLocationContext(); PrettyStackTraceLocationContext StackCrashInfo(LCtx); currBldrCtx = &BldCtx; // Check for NULL conditions; e.g. "for(;;)" if (!Condition) { BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF); NullCondBldr.markInfeasible(false); NullCondBldr.generateNode(Pred->getState(), true, Pred); return; } if (const auto *Ex = dyn_cast(Condition)) Condition = Ex->IgnoreParens(); Condition = ResolveCondition(Condition, BldCtx.getBlock()); PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), Condition->getBeginLoc(), "Error evaluating branch"); ExplodedNodeSet CheckersOutSet; getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet, Pred, *this); // We generated only sinks. if (CheckersOutSet.empty()) return; BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF); for (ExplodedNode *PredN : CheckersOutSet) { if (PredN->isSink()) continue; ProgramStateRef PrevState = PredN->getState(); ProgramStateRef StTrue, StFalse; if (const auto KnownCondValueAssumption = assumeCondition(Condition, PredN)) std::tie(StTrue, StFalse) = *KnownCondValueAssumption; else { assert(!isa(Condition)); builder.generateNode(PrevState, true, PredN); builder.generateNode(PrevState, false, PredN); continue; } if (StTrue && StFalse) assert(!isa(Condition)); // Process the true branch. if (builder.isFeasible(true)) { if (StTrue) builder.generateNode(StTrue, true, PredN); else builder.markInfeasible(true); } // Process the false branch. if (builder.isFeasible(false)) { if (StFalse) builder.generateNode(StFalse, false, PredN); else builder.markInfeasible(false); } } currBldrCtx = nullptr; } /// The GDM component containing the set of global variables which have been /// previously initialized with explicit initializers. REGISTER_TRAIT_WITH_PROGRAMSTATE(InitializedGlobalsSet, llvm::ImmutableSet) void ExprEngine::processStaticInitializer(const DeclStmt *DS, NodeBuilderContext &BuilderCtx, ExplodedNode *Pred, ExplodedNodeSet &Dst, const CFGBlock *DstT, const CFGBlock *DstF) { PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); currBldrCtx = &BuilderCtx; const auto *VD = cast(DS->getSingleDecl()); ProgramStateRef state = Pred->getState(); bool initHasRun = state->contains(VD); BranchNodeBuilder builder(Pred, Dst, BuilderCtx, DstT, DstF); if (!initHasRun) { state = state->add(VD); } builder.generateNode(state, initHasRun, Pred); builder.markInfeasible(!initHasRun); currBldrCtx = nullptr; } /// processIndirectGoto - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a computed goto jump. void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { ProgramStateRef state = builder.getState(); SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext()); // Three possibilities: // // (1) We know the computed label. // (2) The label is NULL (or some other constant), or Undefined. // (3) We have no clue about the label. Dispatch to all targets. // using iterator = IndirectGotoNodeBuilder::iterator; if (std::optional LV = V.getAs()) { const LabelDecl *L = LV->getLabel(); for (iterator Succ : builder) { if (Succ.getLabel() == L) { builder.generateNode(Succ, state); return; } } llvm_unreachable("No block with label."); } if (isa(V)) { // Dispatch to the first target and mark it as a sink. //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); // FIXME: add checker visit. // UndefBranches.insert(N); return; } // This is really a catch-all. We don't support symbolics yet. // FIXME: Implement dispatch for symbolic pointers. for (iterator Succ : builder) builder.generateNode(Succ, state); } void ExprEngine::processBeginOfFunction(NodeBuilderContext &BC, ExplodedNode *Pred, ExplodedNodeSet &Dst, const BlockEdge &L) { SaveAndRestore NodeContextRAII(currBldrCtx, &BC); getCheckerManager().runCheckersForBeginFunction(Dst, L, Pred, *this); } /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path /// nodes when the control reaches the end of a function. void ExprEngine::processEndOfFunction(NodeBuilderContext& BC, ExplodedNode *Pred, const ReturnStmt *RS) { ProgramStateRef State = Pred->getState(); if (!Pred->getStackFrame()->inTopFrame()) State = finishArgumentConstruction( State, *getStateManager().getCallEventManager().getCaller( Pred->getStackFrame(), Pred->getState())); // FIXME: We currently cannot assert that temporaries are clear, because // lifetime extended temporaries are not always modelled correctly. In some // cases when we materialize the temporary, we do // createTemporaryRegionIfNeeded(), and the region changes, and also the // respective destructor becomes automatic from temporary. So for now clean up // the state manually before asserting. Ideally, this braced block of code // should go away. { const LocationContext *FromLC = Pred->getLocationContext(); const LocationContext *ToLC = FromLC->getStackFrame()->getParent(); const LocationContext *LC = FromLC; while (LC != ToLC) { assert(LC && "ToLC must be a parent of FromLC!"); for (auto I : State->get()) if (I.first.getLocationContext() == LC) { // The comment above only pardons us for not cleaning up a // temporary destructor. If any other statements are found here, // it must be a separate problem. assert(I.first.getItem().getKind() == ConstructionContextItem::TemporaryDestructorKind || I.first.getItem().getKind() == ConstructionContextItem::ElidedDestructorKind); State = State->remove(I.first); } LC = LC->getParent(); } } // Perform the transition with cleanups. if (State != Pred->getState()) { ExplodedNodeSet PostCleanup; NodeBuilder Bldr(Pred, PostCleanup, BC); Pred = Bldr.generateNode(Pred->getLocation(), State, Pred); if (!Pred) { // The node with clean temporaries already exists. We might have reached // it on a path on which we initialize different temporaries. return; } } assert(areAllObjectsFullyConstructed(Pred->getState(), Pred->getLocationContext(), Pred->getStackFrame()->getParent())); PrettyStackTraceLocationContext CrashInfo(Pred->getLocationContext()); ExplodedNodeSet Dst; if (Pred->getLocationContext()->inTopFrame()) { // Remove dead symbols. ExplodedNodeSet AfterRemovedDead; removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead); // Notify checkers. for (const auto I : AfterRemovedDead) getCheckerManager().runCheckersForEndFunction(BC, Dst, I, *this, RS); } else { getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this, RS); } Engine.enqueueEndOfFunction(Dst, RS); } /// ProcessSwitch - Called by CoreEngine. Used to generate successor /// nodes by processing the 'effects' of a switch statement. void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { using iterator = SwitchNodeBuilder::iterator; ProgramStateRef state = builder.getState(); const Expr *CondE = builder.getCondition(); SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext()); if (CondV_untested.isUndef()) { //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); // FIXME: add checker //UndefBranches.insert(N); return; } DefinedOrUnknownSVal CondV = CondV_untested.castAs(); ProgramStateRef DefaultSt = state; iterator I = builder.begin(), EI = builder.end(); bool defaultIsFeasible = I == EI; for ( ; I != EI; ++I) { // Successor may be pruned out during CFG construction. if (!I.getBlock()) continue; const CaseStmt *Case = I.getCase(); // Evaluate the LHS of the case value. llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext()); assert(V1.getBitWidth() == getContext().getIntWidth(CondE->getType())); // Get the RHS of the case, if it exists. llvm::APSInt V2; if (const Expr *E = Case->getRHS()) V2 = E->EvaluateKnownConstInt(getContext()); else V2 = V1; ProgramStateRef StateCase; if (std::optional NL = CondV.getAs()) std::tie(StateCase, DefaultSt) = DefaultSt->assumeInclusiveRange(*NL, V1, V2); else // UnknownVal StateCase = DefaultSt; if (StateCase) builder.generateCaseStmtNode(I, StateCase); // Now "assume" that the case doesn't match. Add this state // to the default state (if it is feasible). if (DefaultSt) defaultIsFeasible = true; else { defaultIsFeasible = false; break; } } if (!defaultIsFeasible) return; // If we have switch(enum value), the default branch is not // feasible if all of the enum constants not covered by 'case:' statements // are not feasible values for the switch condition. // // Note that this isn't as accurate as it could be. Even if there isn't // a case for a particular enum value as long as that enum value isn't // feasible then it shouldn't be considered for making 'default:' reachable. const SwitchStmt *SS = builder.getSwitch(); const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); if (CondExpr->getType()->getAs()) { if (SS->isAllEnumCasesCovered()) return; } builder.generateDefaultCaseNode(DefaultSt); } //===----------------------------------------------------------------------===// // Transfer functions: Loads and stores. //===----------------------------------------------------------------------===// void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, ExplodedNode *Pred, ExplodedNodeSet &Dst) { StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); ProgramStateRef state = Pred->getState(); const LocationContext *LCtx = Pred->getLocationContext(); if (const auto *VD = dyn_cast(D)) { // C permits "extern void v", and if you cast the address to a valid type, // you can even do things with it. We simply pretend assert(Ex->isGLValue() || VD->getType()->isVoidType()); const LocationContext *LocCtxt = Pred->getLocationContext(); const Decl *D = LocCtxt->getDecl(); const auto *MD = dyn_cast_or_null(D); const auto *DeclRefEx = dyn_cast(Ex); std::optional> VInfo; if (AMgr.options.ShouldInlineLambdas && DeclRefEx && DeclRefEx->refersToEnclosingVariableOrCapture() && MD && MD->getParent()->isLambda()) { // Lookup the field of the lambda. const CXXRecordDecl *CXXRec = MD->getParent(); llvm::DenseMap LambdaCaptureFields; FieldDecl *LambdaThisCaptureField; CXXRec->getCaptureFields(LambdaCaptureFields, LambdaThisCaptureField); // Sema follows a sequence of complex rules to determine whether the // variable should be captured. if (const FieldDecl *FD = LambdaCaptureFields[VD]) { Loc CXXThis = svalBuilder.getCXXThis(MD, LocCtxt->getStackFrame()); SVal CXXThisVal = state->getSVal(CXXThis); VInfo = std::make_pair(state->getLValue(FD, CXXThisVal), FD->getType()); } } if (!VInfo) VInfo = std::make_pair(state->getLValue(VD, LocCtxt), VD->getType()); SVal V = VInfo->first; bool IsReference = VInfo->second->isReferenceType(); // For references, the 'lvalue' is the pointer address stored in the // reference region. if (IsReference) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, ProgramPoint::PostLValueKind); return; } if (const auto *ED = dyn_cast(D)) { assert(!Ex->isGLValue()); SVal V = svalBuilder.makeIntVal(ED->getInitVal()); Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V)); return; } if (const auto *FD = dyn_cast(D)) { SVal V = svalBuilder.getFunctionPointer(FD); Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, ProgramPoint::PostLValueKind); return; } if (isa(D)) { // Delegate all work related to pointer to members to the surrounding // operator&. return; } if (const auto *BD = dyn_cast(D)) { const auto *DD = cast(BD->getDecomposedDecl()); SVal Base = state->getLValue(DD, LCtx); if (DD->getType()->isReferenceType()) { if (const MemRegion *R = Base.getAsRegion()) Base = state->getSVal(R); else Base = UnknownVal(); } SVal V = UnknownVal(); // Handle binding to data members if (const auto *ME = dyn_cast(BD->getBinding())) { const auto *Field = cast(ME->getMemberDecl()); V = state->getLValue(Field, Base); } // Handle binding to arrays else if (const auto *ASE = dyn_cast(BD->getBinding())) { SVal Idx = state->getSVal(ASE->getIdx(), LCtx); // Note: the index of an element in a structured binding is automatically // created and it is a unique identifier of the specific element. Thus it // cannot be a value that varies at runtime. assert(Idx.isConstant() && "BindingDecl array index is not a constant!"); V = state->getLValue(BD->getType(), Idx, Base); } // Handle binding to tuple-like structures else if (const auto *HV = BD->getHoldingVar()) { V = state->getLValue(HV, LCtx); if (HV->getType()->isReferenceType()) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } } else llvm_unreachable("An unknown case of structured binding encountered!"); // In case of tuple-like types the references are already handled, so we // don't want to handle them again. if (BD->getType()->isReferenceType() && !BD->getHoldingVar()) { if (const MemRegion *R = V.getAsRegion()) V = state->getSVal(R); else V = UnknownVal(); } Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), nullptr, ProgramPoint::PostLValueKind); return; } if (const auto *TPO = dyn_cast(D)) { // FIXME: We should meaningfully implement this. (void)TPO; return; } llvm_unreachable("Support for this Decl not implemented."); } /// VisitArrayInitLoopExpr - Transfer function for array init loop. void ExprEngine::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *Ex, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet CheckerPreStmt; getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, Ex, *this); ExplodedNodeSet EvalSet; StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx); const Expr *Arr = Ex->getCommonExpr()->getSourceExpr(); for (auto *Node : CheckerPreStmt) { // The constructor visitior has already taken care of everything. if (isa(Ex->getSubExpr())) break; const LocationContext *LCtx = Node->getLocationContext(); ProgramStateRef state = Node->getState(); SVal Base = UnknownVal(); // As in case of this expression the sub-expressions are not visited by any // other transfer functions, they are handled by matching their AST. // Case of implicit copy or move ctor of object with array member // // Note: ExprEngine::VisitMemberExpr is not able to bind the array to the // environment. // // struct S { // int arr[2]; // }; // // // S a; // S b = a; // // The AST in case of a *copy constructor* looks like this: // ArrayInitLoopExpr // |-OpaqueValueExpr // | `-MemberExpr <-- match this // | `-DeclRefExpr // ` ... // // // S c; // S d = std::move(d); // // In case of a *move constructor* the resulting AST looks like: // ArrayInitLoopExpr // |-OpaqueValueExpr // | `-MemberExpr <-- match this first // | `-CXXStaticCastExpr <-- match this after // | `-DeclRefExpr // ` ... if (const auto *ME = dyn_cast(Arr)) { Expr *MEBase = ME->getBase(); // Move ctor if (auto CXXSCE = dyn_cast(MEBase)) { MEBase = CXXSCE->getSubExpr(); } auto ObjDeclExpr = cast(MEBase); SVal Obj = state->getLValue(cast(ObjDeclExpr->getDecl()), LCtx); Base = state->getLValue(cast(ME->getMemberDecl()), Obj); } // Case of lambda capture and decomposition declaration // // int arr[2]; // // [arr]{ int a = arr[0]; }(); // auto[a, b] = arr; // // In both of these cases the AST looks like the following: // ArrayInitLoopExpr // |-OpaqueValueExpr // | `-DeclRefExpr <-- match this // ` ... if (const DeclRefExpr *DRE = dyn_cast(Arr)) Base = state->getLValue(cast(DRE->getDecl()), LCtx); // Create a lazy compound value to the original array if (const MemRegion *R = Base.getAsRegion()) Base = state->getSVal(R); else Base = UnknownVal(); Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, Base)); } getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, Ex, *this); } /// VisitArraySubscriptExpr - Transfer function for array accesses void ExprEngine::VisitArraySubscriptExpr(const ArraySubscriptExpr *A, ExplodedNode *Pred, ExplodedNodeSet &Dst){ const Expr *Base = A->getBase()->IgnoreParens(); const Expr *Idx = A->getIdx()->IgnoreParens(); ExplodedNodeSet CheckerPreStmt; getCheckerManager().runCheckersForPreStmt(CheckerPreStmt, Pred, A, *this); ExplodedNodeSet EvalSet; StmtNodeBuilder Bldr(CheckerPreStmt, EvalSet, *currBldrCtx); bool IsVectorType = A->getBase()->getType()->isVectorType(); // The "like" case is for situations where C standard prohibits the type to // be an lvalue, e.g. taking the address of a subscript of an expression of // type "void *". bool IsGLValueLike = A->isGLValue() || (A->getType().isCForbiddenLValueType() && !AMgr.getLangOpts().CPlusPlus); for (auto *Node : CheckerPreStmt) { const LocationContext *LCtx = Node->getLocationContext(); ProgramStateRef state = Node->getState(); if (IsGLValueLike) { QualType T = A->getType(); // One of the forbidden LValue types! We still need to have sensible // symbolic locations to represent this stuff. Note that arithmetic on // void pointers is a GCC extension. if (T->isVoidType()) T = getContext().CharTy; SVal V = state->getLValue(T, state->getSVal(Idx, LCtx), state->getSVal(Base, LCtx)); Bldr.generateNode(A, Node, state->BindExpr(A, LCtx, V), nullptr, ProgramPoint::PostLValueKind); } else if (IsVectorType) { // FIXME: non-glvalue vector reads are not modelled. Bldr.generateNode(A, Node, state, nullptr); } else { llvm_unreachable("Array subscript should be an lValue when not \ a vector and not a forbidden lvalue type"); } } getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, A, *this); } /// VisitMemberExpr - Transfer function for member expressions. void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, ExplodedNodeSet &Dst) { // FIXME: Prechecks eventually go in ::Visit(). ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForPreStmt(CheckedSet, Pred, M, *this); ExplodedNodeSet EvalSet; ValueDecl *Member = M->getMemberDecl(); // Handle static member variables and enum constants accessed via // member syntax. if (isa(Member)) { for (const auto I : CheckedSet) VisitCommonDeclRefExpr(M, Member, I, EvalSet); } else { StmtNodeBuilder Bldr(CheckedSet, EvalSet, *currBldrCtx); ExplodedNodeSet Tmp; for (const auto I : CheckedSet) { ProgramStateRef state = I->getState(); const LocationContext *LCtx = I->getLocationContext(); Expr *BaseExpr = M->getBase(); // Handle C++ method calls. if (const auto *MD = dyn_cast(Member)) { if (MD->isImplicitObjectMemberFunction()) state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr); SVal MDVal = svalBuilder.getFunctionPointer(MD); state = state->BindExpr(M, LCtx, MDVal); Bldr.generateNode(M, I, state); continue; } // Handle regular struct fields / member variables. const SubRegion *MR = nullptr; state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr, /*Result=*/nullptr, /*OutRegionWithAdjustments=*/&MR); SVal baseExprVal = MR ? loc::MemRegionVal(MR) : state->getSVal(BaseExpr, LCtx); // FIXME: Copied from RegionStoreManager::bind() if (const auto *SR = dyn_cast_or_null(baseExprVal.getAsRegion())) { QualType T = SR->getPointeeStaticType(); baseExprVal = loc::MemRegionVal(getStoreManager().GetElementZeroRegion(SR, T)); } const auto *field = cast(Member); SVal L = state->getLValue(field, baseExprVal); if (M->isGLValue() || M->getType()->isArrayType()) { // We special-case rvalues of array type because the analyzer cannot // reason about them, since we expect all regions to be wrapped in Locs. // We instead treat these as lvalues and assume that they will decay to // pointers as soon as they are used. if (!M->isGLValue()) { assert(M->getType()->isArrayType()); const auto *PE = dyn_cast(I->getParentMap().getParentIgnoreParens(M)); if (!PE || PE->getCastKind() != CK_ArrayToPointerDecay) { llvm_unreachable("should always be wrapped in ArrayToPointerDecay"); } } if (field->getType()->isReferenceType()) { if (const MemRegion *R = L.getAsRegion()) L = state->getSVal(R); else L = UnknownVal(); } Bldr.generateNode(M, I, state->BindExpr(M, LCtx, L), nullptr, ProgramPoint::PostLValueKind); } else { Bldr.takeNodes(I); evalLoad(Tmp, M, M, I, state, L); Bldr.addNodes(Tmp); } } } getCheckerManager().runCheckersForPostStmt(Dst, EvalSet, M, *this); } void ExprEngine::VisitAtomicExpr(const AtomicExpr *AE, ExplodedNode *Pred, ExplodedNodeSet &Dst) { ExplodedNodeSet AfterPreSet; getCheckerManager().runCheckersForPreStmt(AfterPreSet, Pred, AE, *this); // For now, treat all the arguments to C11 atomics as escaping. // FIXME: Ideally we should model the behavior of the atomics precisely here. ExplodedNodeSet AfterInvalidateSet; StmtNodeBuilder Bldr(AfterPreSet, AfterInvalidateSet, *currBldrCtx); for (const auto I : AfterPreSet) { ProgramStateRef State = I->getState(); const LocationContext *LCtx = I->getLocationContext(); SmallVector ValuesToInvalidate; for (unsigned SI = 0, Count = AE->getNumSubExprs(); SI != Count; SI++) { const Expr *SubExpr = AE->getSubExprs()[SI]; SVal SubExprVal = State->getSVal(SubExpr, LCtx); ValuesToInvalidate.push_back(SubExprVal); } State = State->invalidateRegions(ValuesToInvalidate, AE, currBldrCtx->blockCount(), LCtx, /*CausedByPointerEscape*/true, /*Symbols=*/nullptr); SVal ResultVal = UnknownVal(); State = State->BindExpr(AE, LCtx, ResultVal); Bldr.generateNode(AE, I, State, nullptr, ProgramPoint::PostStmtKind); } getCheckerManager().runCheckersForPostStmt(Dst, AfterInvalidateSet, AE, *this); } // A value escapes in four possible cases: // (1) We are binding to something that is not a memory region. // (2) We are binding to a MemRegion that does not have stack storage. // (3) We are binding to a top-level parameter region with a non-trivial // destructor. We won't see the destructor during analysis, but it's there. // (4) We are binding to a MemRegion with stack storage that the store // does not understand. ProgramStateRef ExprEngine::processPointerEscapedOnBind( ProgramStateRef State, ArrayRef> LocAndVals, const LocationContext *LCtx, PointerEscapeKind Kind, const CallEvent *Call) { SmallVector Escaped; for (const std::pair &LocAndVal : LocAndVals) { // Cases (1) and (2). const MemRegion *MR = LocAndVal.first.getAsRegion(); if (!MR || !isa(MR->getMemorySpace())) { Escaped.push_back(LocAndVal.second); continue; } // Case (3). if (const auto *VR = dyn_cast(MR->getBaseRegion())) if (VR->hasStackParametersStorage() && VR->getStackFrame()->inTopFrame()) if (const auto *RD = VR->getValueType()->getAsCXXRecordDecl()) if (!RD->hasTrivialDestructor()) { Escaped.push_back(LocAndVal.second); continue; } // Case (4): in order to test that, generate a new state with the binding // added. If it is the same state, then it escapes (since the store cannot // represent the binding). // Do this only if we know that the store is not supposed to generate the // same state. SVal StoredVal = State->getSVal(MR); if (StoredVal != LocAndVal.second) if (State == (State->bindLoc(loc::MemRegionVal(MR), LocAndVal.second, LCtx))) Escaped.push_back(LocAndVal.second); } if (Escaped.empty()) return State; return escapeValues(State, Escaped, Kind, Call); } ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, SVal Loc, SVal Val, const LocationContext *LCtx) { std::pair LocAndVal(Loc, Val); return processPointerEscapedOnBind(State, LocAndVal, LCtx, PSK_EscapeOnBind, nullptr); } ProgramStateRef ExprEngine::notifyCheckersOfPointerEscape(ProgramStateRef State, const InvalidatedSymbols *Invalidated, ArrayRef ExplicitRegions, const CallEvent *Call, RegionAndSymbolInvalidationTraits &ITraits) { if (!Invalidated || Invalidated->empty()) return State; if (!Call) return getCheckerManager().runCheckersForPointerEscape(State, *Invalidated, nullptr, PSK_EscapeOther, &ITraits); // If the symbols were invalidated by a call, we want to find out which ones // were invalidated directly due to being arguments to the call. InvalidatedSymbols SymbolsDirectlyInvalidated; for (const auto I : ExplicitRegions) { if (const SymbolicRegion *R = I->StripCasts()->getAs()) SymbolsDirectlyInvalidated.insert(R->getSymbol()); } InvalidatedSymbols SymbolsIndirectlyInvalidated; for (const auto &sym : *Invalidated) { if (SymbolsDirectlyInvalidated.count(sym)) continue; SymbolsIndirectlyInvalidated.insert(sym); } if (!SymbolsDirectlyInvalidated.empty()) State = getCheckerManager().runCheckersForPointerEscape(State, SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall, &ITraits); // Notify about the symbols that get indirectly invalidated by the call. if (!SymbolsIndirectlyInvalidated.empty()) State = getCheckerManager().runCheckersForPointerEscape(State, SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall, &ITraits); return State; } /// evalBind - Handle the semantics of binding a value to a specific location. /// This method is used by evalStore and (soon) VisitDeclStmt, and others. void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE, ExplodedNode *Pred, SVal location, SVal Val, bool atDeclInit, const ProgramPoint *PP) { const LocationContext *LC = Pred->getLocationContext(); PostStmt PS(StoreE, LC); if (!PP) PP = &PS; // Do a previsit of the bind. ExplodedNodeSet CheckedSet; getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val, StoreE, *this, *PP); StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx); // If the location is not a 'Loc', it will already be handled by // the checkers. There is nothing left to do. if (!isa(location)) { const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/nullptr, /*tag*/nullptr); ProgramStateRef state = Pred->getState(); state = processPointerEscapedOnBind(state, location, Val, LC); Bldr.generateNode(L, state, Pred); return; } for (const auto PredI : CheckedSet) { ProgramStateRef state = PredI->getState(); state = processPointerEscapedOnBind(state, location, Val, LC); // When binding the value, pass on the hint that this is a initialization. // For initializations, we do not need to inform clients of region // changes. state = state->bindLoc(location.castAs(), Val, LC, /* notifyChanges = */ !atDeclInit); const MemRegion *LocReg = nullptr; if (std::optional LocRegVal = location.getAs()) { LocReg = LocRegVal->getRegion(); } const ProgramPoint L = PostStore(StoreE, LC, LocReg, nullptr); Bldr.generateNode(L, state, PredI); } } /// evalStore - Handle the semantics of a store via an assignment. /// @param Dst The node set to store generated state nodes /// @param AssignE The assignment expression if the store happens in an /// assignment. /// @param LocationE The location expression that is stored to. /// @param state The current simulation state /// @param location The location to store the value /// @param Val The value to be stored void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE, const Expr *LocationE, ExplodedNode *Pred, ProgramStateRef state, SVal location, SVal Val, const ProgramPointTag *tag) { // Proceed with the store. We use AssignE as the anchor for the PostStore // ProgramPoint if it is non-NULL, and LocationE otherwise. const Expr *StoreE = AssignE ? AssignE : LocationE; // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, AssignE, LocationE, Pred, state, location, false); if (Tmp.empty()) return; if (location.isUndef()) return; for (const auto I : Tmp) evalBind(Dst, StoreE, I, location, Val, false); } void ExprEngine::evalLoad(ExplodedNodeSet &Dst, const Expr *NodeEx, const Expr *BoundEx, ExplodedNode *Pred, ProgramStateRef state, SVal location, const ProgramPointTag *tag, QualType LoadTy) { assert(!isa(location) && "location cannot be a NonLoc."); assert(NodeEx); assert(BoundEx); // Evaluate the location (checks for bad dereferences). ExplodedNodeSet Tmp; evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, true); if (Tmp.empty()) return; StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx); if (location.isUndef()) return; // Proceed with the load. for (const auto I : Tmp) { state = I->getState(); const LocationContext *LCtx = I->getLocationContext(); SVal V = UnknownVal(); if (location.isValid()) { if (LoadTy.isNull()) LoadTy = BoundEx->getType(); V = state->getSVal(location.castAs(), LoadTy); } Bldr.generateNode(NodeEx, I, state->BindExpr(BoundEx, LCtx, V), tag, ProgramPoint::PostLoadKind); } } void ExprEngine::evalLocation(ExplodedNodeSet &Dst, const Stmt *NodeEx, const Stmt *BoundEx, ExplodedNode *Pred, ProgramStateRef state, SVal location, bool isLoad) { StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx); // Early checks for performance reason. if (location.isUnknown()) { return; } ExplodedNodeSet Src; BldrTop.takeNodes(Pred); StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx); if (Pred->getState() != state) { // Associate this new state with an ExplodedNode. // FIXME: If I pass null tag, the graph is incorrect, e.g for // int *p; // p = 0; // *p = 0xDEADBEEF; // "p = 0" is not noted as "Null pointer value stored to 'p'" but // instead "int *p" is noted as // "Variable 'p' initialized to a null pointer value" static SimpleProgramPointTag tag(TagProviderName, "Location"); Bldr.generateNode(NodeEx, Pred, state, &tag); } ExplodedNodeSet Tmp; getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad, NodeEx, BoundEx, *this); BldrTop.addNodes(Tmp); } std::pair ExprEngine::geteagerlyAssumeBinOpBifurcationTags() { static SimpleProgramPointTag eagerlyAssumeBinOpBifurcationTrue(TagProviderName, "Eagerly Assume True"), eagerlyAssumeBinOpBifurcationFalse(TagProviderName, "Eagerly Assume False"); return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue, &eagerlyAssumeBinOpBifurcationFalse); } void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst, ExplodedNodeSet &Src, const Expr *Ex) { StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx); for (const auto Pred : Src) { // Test if the previous node was as the same expression. This can happen // when the expression fails to evaluate to anything meaningful and // (as an optimization) we don't generate a node. ProgramPoint P = Pred->getLocation(); if (!P.getAs() || P.castAs().getStmt() != Ex) { continue; } ProgramStateRef state = Pred->getState(); SVal V = state->getSVal(Ex, Pred->getLocationContext()); std::optional SEV = V.getAs(); if (SEV && SEV->isExpression()) { const std::pair &tags = geteagerlyAssumeBinOpBifurcationTags(); ProgramStateRef StateTrue, StateFalse; std::tie(StateTrue, StateFalse) = state->assume(*SEV); // First assume that the condition is true. if (StateTrue) { SVal Val = svalBuilder.makeIntVal(1U, Ex->getType()); StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val); Bldr.generateNode(Ex, Pred, StateTrue, tags.first); } // Next, assume that the condition is false. if (StateFalse) { SVal Val = svalBuilder.makeIntVal(0U, Ex->getType()); StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val); Bldr.generateNode(Ex, Pred, StateFalse, tags.second); } } } } void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred, ExplodedNodeSet &Dst) { StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); // We have processed both the inputs and the outputs. All of the outputs // should evaluate to Locs. Nuke all of their values. // FIXME: Some day in the future it would be nice to allow a "plug-in" // which interprets the inline asm and stores proper results in the // outputs. ProgramStateRef state = Pred->getState(); for (const Expr *O : A->outputs()) { SVal X = state->getSVal(O, Pred->getLocationContext()); assert(!isa(X)); // Should be an Lval, or unknown, undef. if (std::optional LV = X.getAs()) state = state->bindLoc(*LV, UnknownVal(), Pred->getLocationContext()); } Bldr.generateNode(A, Pred, state); } void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred, ExplodedNodeSet &Dst) { StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); Bldr.generateNode(A, Pred, Pred->getState()); } //===----------------------------------------------------------------------===// // Visualization. //===----------------------------------------------------------------------===// namespace llvm { template<> struct DOTGraphTraits : public DefaultDOTGraphTraits { DOTGraphTraits (bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} static bool nodeHasBugReport(const ExplodedNode *N) { BugReporter &BR = static_cast( N->getState()->getStateManager().getOwningEngine()).getBugReporter(); for (const auto &Class : BR.equivalenceClasses()) { for (const auto &Report : Class.getReports()) { const auto *PR = dyn_cast(Report.get()); if (!PR) continue; const ExplodedNode *EN = PR->getErrorNode(); if (EN->getState() == N->getState() && EN->getLocation() == N->getLocation()) return true; } } return false; } /// \p PreCallback: callback before break. /// \p PostCallback: callback after break. /// \p Stop: stop iteration if returns @c true /// \return Whether @c Stop ever returned @c true. static bool traverseHiddenNodes( const ExplodedNode *N, llvm::function_ref PreCallback, llvm::function_ref PostCallback, llvm::function_ref Stop) { while (true) { PreCallback(N); if (Stop(N)) return true; if (N->succ_size() != 1 || !isNodeHidden(N->getFirstSucc(), nullptr)) break; PostCallback(N); N = N->getFirstSucc(); } return false; } static bool isNodeHidden(const ExplodedNode *N, const ExplodedGraph *G) { return N->isTrivial(); } static std::string getNodeLabel(const ExplodedNode *N, ExplodedGraph *G){ std::string Buf; llvm::raw_string_ostream Out(Buf); const bool IsDot = true; const unsigned int Space = 1; ProgramStateRef State = N->getState(); Out << "{ \"state_id\": " << State->getID() << ",\\l"; Indent(Out, Space, IsDot) << "\"program_points\": [\\l"; // Dump program point for all the previously skipped nodes. traverseHiddenNodes( N, [&](const ExplodedNode *OtherNode) { Indent(Out, Space + 1, IsDot) << "{ "; OtherNode->getLocation().printJson(Out, /*NL=*/"\\l"); Out << ", \"tag\": "; if (const ProgramPointTag *Tag = OtherNode->getLocation().getTag()) Out << '\"' << Tag->getTagDescription() << '\"'; else Out << "null"; Out << ", \"node_id\": " << OtherNode->getID() << ", \"is_sink\": " << OtherNode->isSink() << ", \"has_report\": " << nodeHasBugReport(OtherNode) << " }"; }, // Adds a comma and a new-line between each program point. [&](const ExplodedNode *) { Out << ",\\l"; }, [&](const ExplodedNode *) { return false; }); Out << "\\l"; // Adds a new-line to the last program point. Indent(Out, Space, IsDot) << "],\\l"; State->printDOT(Out, N->getLocationContext(), Space); Out << "\\l}\\l"; return Buf; } }; } // namespace llvm void ExprEngine::ViewGraph(bool trim) { std::string Filename = DumpGraph(trim); llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT); } void ExprEngine::ViewGraph(ArrayRef Nodes) { std::string Filename = DumpGraph(Nodes); llvm::DisplayGraph(Filename, false, llvm::GraphProgram::DOT); } std::string ExprEngine::DumpGraph(bool trim, StringRef Filename) { if (trim) { std::vector Src; // Iterate through the reports and get their nodes. for (const auto &Class : BR.equivalenceClasses()) { const auto *R = dyn_cast(Class.getReports()[0].get()); if (!R) continue; const auto *N = const_cast(R->getErrorNode()); Src.push_back(N); } return DumpGraph(Src, Filename); } return llvm::WriteGraph(&G, "ExprEngine", /*ShortNames=*/false, /*Title=*/"Exploded Graph", /*Filename=*/std::string(Filename)); } std::string ExprEngine::DumpGraph(ArrayRef Nodes, StringRef Filename) { std::unique_ptr TrimmedG(G.trim(Nodes)); if (!TrimmedG.get()) { llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; return ""; } return llvm::WriteGraph(TrimmedG.get(), "TrimmedExprEngine", /*ShortNames=*/false, /*Title=*/"Trimmed Exploded Graph", /*Filename=*/std::string(Filename)); } void *ProgramStateTrait::GDMIndex() { static int index = 0; return &index; } void ExprEngine::anchor() { }