//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements decl-related attribute processing. // //===----------------------------------------------------------------------===// #include "clang/AST/ASTConsumer.h" #include "clang/AST/ASTContext.h" #include "clang/AST/ASTMutationListener.h" #include "clang/AST/CXXInheritance.h" #include "clang/AST/DeclCXX.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/ExprCXX.h" #include "clang/AST/Mangle.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/Type.h" #include "clang/Basic/CharInfo.h" #include "clang/Basic/Cuda.h" #include "clang/Basic/DarwinSDKInfo.h" #include "clang/Basic/HLSLRuntime.h" #include "clang/Basic/IdentifierTable.h" #include "clang/Basic/LangOptions.h" #include "clang/Basic/SourceLocation.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/TargetBuiltins.h" #include "clang/Basic/TargetInfo.h" #include "clang/Lex/Preprocessor.h" #include "clang/Sema/Attr.h" #include "clang/Sema/DeclSpec.h" #include "clang/Sema/DelayedDiagnostic.h" #include "clang/Sema/Initialization.h" #include "clang/Sema/Lookup.h" #include "clang/Sema/ParsedAttr.h" #include "clang/Sema/Scope.h" #include "clang/Sema/ScopeInfo.h" #include "clang/Sema/SemaAMDGPU.h" #include "clang/Sema/SemaARM.h" #include "clang/Sema/SemaAVR.h" #include "clang/Sema/SemaBPF.h" #include "clang/Sema/SemaCUDA.h" #include "clang/Sema/SemaHLSL.h" #include "clang/Sema/SemaInternal.h" #include "clang/Sema/SemaM68k.h" #include "clang/Sema/SemaMIPS.h" #include "clang/Sema/SemaMSP430.h" #include "clang/Sema/SemaObjC.h" #include "clang/Sema/SemaOpenCL.h" #include "clang/Sema/SemaOpenMP.h" #include "clang/Sema/SemaRISCV.h" #include "clang/Sema/SemaSYCL.h" #include "clang/Sema/SemaSwift.h" #include "clang/Sema/SemaWasm.h" #include "clang/Sema/SemaX86.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/STLForwardCompat.h" #include "llvm/ADT/StringExtras.h" #include "llvm/Demangle/Demangle.h" #include "llvm/IR/Assumptions.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/Support/Error.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TargetParser/Triple.h" #include using namespace clang; using namespace sema; namespace AttributeLangSupport { enum LANG { C, Cpp, ObjC }; } // end namespace AttributeLangSupport static unsigned getNumAttributeArgs(const ParsedAttr &AL) { // FIXME: Include the type in the argument list. return AL.getNumArgs() + AL.hasParsedType(); } SourceLocation Sema::getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); } /// Wrapper around checkUInt32Argument, with an extra check to be sure /// that the result will fit into a regular (signed) int. All args have the same /// purpose as they do in checkUInt32Argument. template static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr, int &Val, unsigned Idx = UINT_MAX) { uint32_t UVal; if (!S.checkUInt32Argument(AI, Expr, UVal, Idx)) return false; if (UVal > (uint32_t)std::numeric_limits::max()) { llvm::APSInt I(32); // for toString I = UVal; S.Diag(Expr->getExprLoc(), diag::err_ice_too_large) << toString(I, 10, false) << 32 << /* Unsigned */ 0; return false; } Val = UVal; return true; } bool Sema::checkStringLiteralArgumentAttr(const AttributeCommonInfo &CI, const Expr *E, StringRef &Str, SourceLocation *ArgLocation) { const auto *Literal = dyn_cast(E->IgnoreParenCasts()); if (ArgLocation) *ArgLocation = E->getBeginLoc(); if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { Diag(E->getBeginLoc(), diag::err_attribute_argument_type) << CI << AANT_ArgumentString; return false; } Str = Literal->getString(); return true; } bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum, StringRef &Str, SourceLocation *ArgLocation) { // Look for identifiers. If we have one emit a hint to fix it to a literal. if (AL.isArgIdent(ArgNum)) { IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum); Diag(Loc->Loc, diag::err_attribute_argument_type) << AL << AANT_ArgumentString << FixItHint::CreateInsertion(Loc->Loc, "\"") << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\""); Str = Loc->Ident->getName(); if (ArgLocation) *ArgLocation = Loc->Loc; return true; } // Now check for an actual string literal. Expr *ArgExpr = AL.getArgAsExpr(ArgNum); const auto *Literal = dyn_cast(ArgExpr->IgnoreParenCasts()); if (ArgLocation) *ArgLocation = ArgExpr->getBeginLoc(); if (!Literal || (!Literal->isUnevaluated() && !Literal->isOrdinary())) { Diag(ArgExpr->getBeginLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentString; return false; } Str = Literal->getString(); return checkStringLiteralArgumentAttr(AL, ArgExpr, Str, ArgLocation); } /// Check if the passed-in expression is of type int or bool. static bool isIntOrBool(Expr *Exp) { QualType QT = Exp->getType(); return QT->isBooleanType() || QT->isIntegerType(); } // Check to see if the type is a smart pointer of some kind. We assume // it's a smart pointer if it defines both operator-> and operator*. static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) { auto IsOverloadedOperatorPresent = [&S](const RecordDecl *Record, OverloadedOperatorKind Op) { DeclContextLookupResult Result = Record->lookup(S.Context.DeclarationNames.getCXXOperatorName(Op)); return !Result.empty(); }; const RecordDecl *Record = RT->getDecl(); bool foundStarOperator = IsOverloadedOperatorPresent(Record, OO_Star); bool foundArrowOperator = IsOverloadedOperatorPresent(Record, OO_Arrow); if (foundStarOperator && foundArrowOperator) return true; const CXXRecordDecl *CXXRecord = dyn_cast(Record); if (!CXXRecord) return false; for (const auto &BaseSpecifier : CXXRecord->bases()) { if (!foundStarOperator) foundStarOperator = IsOverloadedOperatorPresent( BaseSpecifier.getType()->getAsRecordDecl(), OO_Star); if (!foundArrowOperator) foundArrowOperator = IsOverloadedOperatorPresent( BaseSpecifier.getType()->getAsRecordDecl(), OO_Arrow); } if (foundStarOperator && foundArrowOperator) return true; return false; } /// Check if passed in Decl is a pointer type. /// Note that this function may produce an error message. /// \return true if the Decl is a pointer type; false otherwise static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); QualType QT = VD->getType(); if (QT->isAnyPointerType()) return true; if (const auto *RT = QT->getAs()) { // If it's an incomplete type, it could be a smart pointer; skip it. // (We don't want to force template instantiation if we can avoid it, // since that would alter the order in which templates are instantiated.) if (RT->isIncompleteType()) return true; if (threadSafetyCheckIsSmartPointer(S, RT)) return true; } S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer) << AL << QT; return false; } /// Checks that the passed in QualType either is of RecordType or points /// to RecordType. Returns the relevant RecordType, null if it does not exit. static const RecordType *getRecordType(QualType QT) { if (const auto *RT = QT->getAs()) return RT; // Now check if we point to record type. if (const auto *PT = QT->getAs()) return PT->getPointeeType()->getAs(); return nullptr; } template static bool checkRecordDeclForAttr(const RecordDecl *RD) { // Check if the record itself has the attribute. if (RD->hasAttr()) return true; // Else check if any base classes have the attribute. if (const auto *CRD = dyn_cast(RD)) { if (!CRD->forallBases([](const CXXRecordDecl *Base) { return !Base->hasAttr(); })) return true; } return false; } static bool checkRecordTypeForCapability(Sema &S, QualType Ty) { const RecordType *RT = getRecordType(Ty); if (!RT) return false; // Don't check for the capability if the class hasn't been defined yet. if (RT->isIncompleteType()) return true; // Allow smart pointers to be used as capability objects. // FIXME -- Check the type that the smart pointer points to. if (threadSafetyCheckIsSmartPointer(S, RT)) return true; return checkRecordDeclForAttr(RT->getDecl()); } static bool checkTypedefTypeForCapability(QualType Ty) { const auto *TD = Ty->getAs(); if (!TD) return false; TypedefNameDecl *TN = TD->getDecl(); if (!TN) return false; return TN->hasAttr(); } static bool typeHasCapability(Sema &S, QualType Ty) { if (checkTypedefTypeForCapability(Ty)) return true; if (checkRecordTypeForCapability(S, Ty)) return true; return false; } static bool isCapabilityExpr(Sema &S, const Expr *Ex) { // Capability expressions are simple expressions involving the boolean logic // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once // a DeclRefExpr is found, its type should be checked to determine whether it // is a capability or not. if (const auto *E = dyn_cast(Ex)) return isCapabilityExpr(S, E->getSubExpr()); else if (const auto *E = dyn_cast(Ex)) return isCapabilityExpr(S, E->getSubExpr()); else if (const auto *E = dyn_cast(Ex)) { if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf || E->getOpcode() == UO_Deref) return isCapabilityExpr(S, E->getSubExpr()); return false; } else if (const auto *E = dyn_cast(Ex)) { if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr) return isCapabilityExpr(S, E->getLHS()) && isCapabilityExpr(S, E->getRHS()); return false; } return typeHasCapability(S, Ex->getType()); } /// Checks that all attribute arguments, starting from Sidx, resolve to /// a capability object. /// \param Sidx The attribute argument index to start checking with. /// \param ParamIdxOk Whether an argument can be indexing into a function /// parameter list. static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args, unsigned Sidx = 0, bool ParamIdxOk = false) { if (Sidx == AL.getNumArgs()) { // If we don't have any capability arguments, the attribute implicitly // refers to 'this'. So we need to make sure that 'this' exists, i.e. we're // a non-static method, and that the class is a (scoped) capability. const auto *MD = dyn_cast(D); if (MD && !MD->isStatic()) { const CXXRecordDecl *RD = MD->getParent(); // FIXME -- need to check this again on template instantiation if (!checkRecordDeclForAttr(RD) && !checkRecordDeclForAttr(RD)) S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_capability_member) << AL << MD->getParent(); } else { S.Diag(AL.getLoc(), diag::warn_thread_attribute_not_on_non_static_member) << AL; } } for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) { Expr *ArgExp = AL.getArgAsExpr(Idx); if (ArgExp->isTypeDependent()) { // FIXME -- need to check this again on template instantiation Args.push_back(ArgExp); continue; } if (const auto *StrLit = dyn_cast(ArgExp)) { if (StrLit->getLength() == 0 || (StrLit->isOrdinary() && StrLit->getString() == "*")) { // Pass empty strings to the analyzer without warnings. // Treat "*" as the universal lock. Args.push_back(ArgExp); continue; } // We allow constant strings to be used as a placeholder for expressions // that are not valid C++ syntax, but warn that they are ignored. S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL; Args.push_back(ArgExp); continue; } QualType ArgTy = ArgExp->getType(); // A pointer to member expression of the form &MyClass::mu is treated // specially -- we need to look at the type of the member. if (const auto *UOp = dyn_cast(ArgExp)) if (UOp->getOpcode() == UO_AddrOf) if (const auto *DRE = dyn_cast(UOp->getSubExpr())) if (DRE->getDecl()->isCXXInstanceMember()) ArgTy = DRE->getDecl()->getType(); // First see if we can just cast to record type, or pointer to record type. const RecordType *RT = getRecordType(ArgTy); // Now check if we index into a record type function param. if(!RT && ParamIdxOk) { const auto *FD = dyn_cast(D); const auto *IL = dyn_cast(ArgExp); if(FD && IL) { unsigned int NumParams = FD->getNumParams(); llvm::APInt ArgValue = IL->getValue(); uint64_t ParamIdxFromOne = ArgValue.getZExtValue(); uint64_t ParamIdxFromZero = ParamIdxFromOne - 1; if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds_extra_info) << AL << Idx + 1 << NumParams; continue; } ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType(); } } // If the type does not have a capability, see if the components of the // expression have capabilities. This allows for writing C code where the // capability may be on the type, and the expression is a capability // boolean logic expression. Eg) requires_capability(A || B && !C) if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp)) S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable) << AL << ArgTy; Args.push_back(ArgExp); } } //===----------------------------------------------------------------------===// // Attribute Implementations //===----------------------------------------------------------------------===// static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!threadSafetyCheckIsPointer(S, D, AL)) return; D->addAttr(::new (S.Context) PtGuardedVarAttr(S.Context, AL)); } static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Arg) { SmallVector Args; // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size != 1) return false; Arg = Args[0]; return true; } static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *Arg = nullptr; if (!checkGuardedByAttrCommon(S, D, AL, Arg)) return; D->addAttr(::new (S.Context) GuardedByAttr(S.Context, AL, Arg)); } static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *Arg = nullptr; if (!checkGuardedByAttrCommon(S, D, AL, Arg)) return; if (!threadSafetyCheckIsPointer(S, D, AL)) return; D->addAttr(::new (S.Context) PtGuardedByAttr(S.Context, AL, Arg)); } static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { if (!AL.checkAtLeastNumArgs(S, 1)) return false; // Check that this attribute only applies to lockable types. QualType QT = cast(D)->getType(); if (!QT->isDependentType() && !typeHasCapability(S, QT)) { S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable) << AL; return false; } // Check that all arguments are lockable objects. checkAttrArgsAreCapabilityObjs(S, D, AL, Args); if (Args.empty()) return false; return true; } static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredAfterAttr(S.Context, AL, StartArg, Args.size())); } static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkAcquireOrderAttrCommon(S, D, AL, Args)) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) AcquiredBeforeAttr(S.Context, AL, StartArg, Args.size())); } static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { // zero or more arguments ok // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true); return true; } static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? nullptr : &Args[0]; D->addAttr(::new (S.Context) AssertSharedLockAttr(S.Context, AL, StartArg, Size)); } static void handleAssertExclusiveLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; unsigned Size = Args.size(); Expr **StartArg = Size == 0 ? nullptr : &Args[0]; D->addAttr(::new (S.Context) AssertExclusiveLockAttr(S.Context, AL, StartArg, Size)); } /// Checks to be sure that the given parameter number is in bounds, and /// is an integral type. Will emit appropriate diagnostics if this returns /// false. /// /// AttrArgNo is used to actually retrieve the argument, so it's base-0. template static bool checkParamIsIntegerType(Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNo) { assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument"); Expr *AttrArg = AI.getArgAsExpr(AttrArgNo); ParamIdx Idx; if (!S.checkFunctionOrMethodParameterIndex(D, AI, AttrArgNo + 1, AttrArg, Idx)) return false; QualType ParamTy = getFunctionOrMethodParamType(D, Idx.getASTIndex()); if (!ParamTy->isIntegerType() && !ParamTy->isCharType()) { SourceLocation SrcLoc = AttrArg->getBeginLoc(); S.Diag(SrcLoc, diag::err_attribute_integers_only) << AI << getFunctionOrMethodParamRange(D, Idx.getASTIndex()); return false; } return true; } static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 2)) return; assert(isFuncOrMethodForAttrSubject(D) && hasFunctionProto(D)); QualType RetTy = getFunctionOrMethodResultType(D); if (!RetTy->isPointerType()) { S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL; return; } const Expr *SizeExpr = AL.getArgAsExpr(0); int SizeArgNoVal; // Parameter indices are 1-indexed, hence Index=1 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Idx=*/1)) return; if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/0)) return; ParamIdx SizeArgNo(SizeArgNoVal, D); ParamIdx NumberArgNo; if (AL.getNumArgs() == 2) { const Expr *NumberExpr = AL.getArgAsExpr(1); int Val; // Parameter indices are 1-based, hence Index=2 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Idx=*/2)) return; if (!checkParamIsIntegerType(S, D, AL, /*AttrArgNo=*/1)) return; NumberArgNo = ParamIdx(Val, D); } D->addAttr(::new (S.Context) AllocSizeAttr(S.Context, AL, SizeArgNo, NumberArgNo)); } static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL, SmallVectorImpl &Args) { if (!AL.checkAtLeastNumArgs(S, 1)) return false; if (!isIntOrBool(AL.getArgAsExpr(0))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIntOrBool; return false; } // check that all arguments are lockable objects checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1); return true; } static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) SharedTrylockFunctionAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // check that the argument is lockable object SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size == 0) return; D->addAttr(::new (S.Context) LockReturnedAttr(S.Context, AL, Args[0])); } static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); unsigned Size = Args.size(); if (Size == 0) return; Expr **StartArg = &Args[0]; D->addAttr(::new (S.Context) LocksExcludedAttr(S.Context, AL, StartArg, Size)); } static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL, Expr *&Cond, StringRef &Msg) { Cond = AL.getArgAsExpr(0); if (!Cond->isTypeDependent()) { ExprResult Converted = S.PerformContextuallyConvertToBool(Cond); if (Converted.isInvalid()) return false; Cond = Converted.get(); } if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg)) return false; if (Msg.empty()) Msg = ""; SmallVector Diags; if (isa(D) && !Cond->isValueDependent() && !Expr::isPotentialConstantExprUnevaluated(Cond, cast(D), Diags)) { S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr) << AL; for (const PartialDiagnosticAt &PDiag : Diags) S.Diag(PDiag.first, PDiag.second); return false; } return true; } static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.Diag(AL.getLoc(), diag::ext_clang_enable_if); Expr *Cond; StringRef Msg; if (checkFunctionConditionAttr(S, D, AL, Cond, Msg)) D->addAttr(::new (S.Context) EnableIfAttr(S.Context, AL, Cond, Msg)); } static void handleErrorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef NewUserDiagnostic; if (!S.checkStringLiteralArgumentAttr(AL, 0, NewUserDiagnostic)) return; if (ErrorAttr *EA = S.mergeErrorAttr(D, AL, NewUserDiagnostic)) D->addAttr(EA); } static void handleExcludeFromExplicitInstantiationAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *PD = isa(D) ? cast(D) : D->getDeclContext()->getRedeclContext(); if (const auto *RD = dyn_cast(PD); RD && RD->isLocalClass()) { S.Diag(AL.getLoc(), diag::warn_attribute_exclude_from_explicit_instantiation_local_class) << AL << /*IsMember=*/!isa(D); return; } D->addAttr(::new (S.Context) ExcludeFromExplicitInstantiationAttr(S.Context, AL)); } namespace { /// Determines if a given Expr references any of the given function's /// ParmVarDecls, or the function's implicit `this` parameter (if applicable). class ArgumentDependenceChecker : public RecursiveASTVisitor { #ifndef NDEBUG const CXXRecordDecl *ClassType; #endif llvm::SmallPtrSet Parms; bool Result; public: ArgumentDependenceChecker(const FunctionDecl *FD) { #ifndef NDEBUG if (const auto *MD = dyn_cast(FD)) ClassType = MD->getParent(); else ClassType = nullptr; #endif Parms.insert(FD->param_begin(), FD->param_end()); } bool referencesArgs(Expr *E) { Result = false; TraverseStmt(E); return Result; } bool VisitCXXThisExpr(CXXThisExpr *E) { assert(E->getType()->getPointeeCXXRecordDecl() == ClassType && "`this` doesn't refer to the enclosing class?"); Result = true; return false; } bool VisitDeclRefExpr(DeclRefExpr *DRE) { if (const auto *PVD = dyn_cast(DRE->getDecl())) if (Parms.count(PVD)) { Result = true; return false; } return true; } }; } static void handleDiagnoseAsBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *DeclFD = cast(D); if (const auto *MethodDecl = dyn_cast(DeclFD)) if (!MethodDecl->isStatic()) { S.Diag(AL.getLoc(), diag::err_attribute_no_member_function) << AL; return; } auto DiagnoseType = [&](unsigned Index, AttributeArgumentNType T) { SourceLocation Loc = [&]() { auto Union = AL.getArg(Index - 1); if (Union.is()) return Union.get()->getBeginLoc(); return Union.get()->Loc; }(); S.Diag(Loc, diag::err_attribute_argument_n_type) << AL << Index << T; }; FunctionDecl *AttrFD = [&]() -> FunctionDecl * { if (!AL.isArgExpr(0)) return nullptr; auto *F = dyn_cast_if_present(AL.getArgAsExpr(0)); if (!F) return nullptr; return dyn_cast_if_present(F->getFoundDecl()); }(); if (!AttrFD || !AttrFD->getBuiltinID(true)) { DiagnoseType(1, AANT_ArgumentBuiltinFunction); return; } if (AttrFD->getNumParams() != AL.getNumArgs() - 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments_for) << AL << AttrFD << AttrFD->getNumParams(); return; } SmallVector Indices; for (unsigned I = 1; I < AL.getNumArgs(); ++I) { if (!AL.isArgExpr(I)) { DiagnoseType(I + 1, AANT_ArgumentIntegerConstant); return; } const Expr *IndexExpr = AL.getArgAsExpr(I); uint32_t Index; if (!S.checkUInt32Argument(AL, IndexExpr, Index, I + 1, false)) return; if (Index > DeclFD->getNumParams()) { S.Diag(AL.getLoc(), diag::err_attribute_bounds_for_function) << AL << Index << DeclFD << DeclFD->getNumParams(); return; } QualType T1 = AttrFD->getParamDecl(I - 1)->getType(); QualType T2 = DeclFD->getParamDecl(Index - 1)->getType(); if (T1.getCanonicalType().getUnqualifiedType() != T2.getCanonicalType().getUnqualifiedType()) { S.Diag(IndexExpr->getBeginLoc(), diag::err_attribute_parameter_types) << AL << Index << DeclFD << T2 << I << AttrFD << T1; return; } Indices.push_back(Index - 1); } D->addAttr(::new (S.Context) DiagnoseAsBuiltinAttr( S.Context, AL, AttrFD, Indices.data(), Indices.size())); } static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if); Expr *Cond; StringRef Msg; if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg)) return; StringRef DiagTypeStr; if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr)) return; DiagnoseIfAttr::DiagnosticType DiagType; if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) { S.Diag(AL.getArgAsExpr(2)->getBeginLoc(), diag::err_diagnose_if_invalid_diagnostic_type); return; } bool ArgDependent = false; if (const auto *FD = dyn_cast(D)) ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond); D->addAttr(::new (S.Context) DiagnoseIfAttr( S.Context, AL, Cond, Msg, DiagType, ArgDependent, cast(D))); } static void handleNoBuiltinAttr(Sema &S, Decl *D, const ParsedAttr &AL) { static constexpr const StringRef kWildcard = "*"; llvm::SmallVector Names; bool HasWildcard = false; const auto AddBuiltinName = [&Names, &HasWildcard](StringRef Name) { if (Name == kWildcard) HasWildcard = true; Names.push_back(Name); }; // Add previously defined attributes. if (const auto *NBA = D->getAttr()) for (StringRef BuiltinName : NBA->builtinNames()) AddBuiltinName(BuiltinName); // Add current attributes. if (AL.getNumArgs() == 0) AddBuiltinName(kWildcard); else for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef BuiltinName; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, I, BuiltinName, &LiteralLoc)) return; if (Builtin::Context::isBuiltinFunc(BuiltinName)) AddBuiltinName(BuiltinName); else S.Diag(LiteralLoc, diag::warn_attribute_no_builtin_invalid_builtin_name) << BuiltinName << AL; } // Repeating the same attribute is fine. llvm::sort(Names); Names.erase(std::unique(Names.begin(), Names.end()), Names.end()); // Empty no_builtin must be on its own. if (HasWildcard && Names.size() > 1) S.Diag(D->getLocation(), diag::err_attribute_no_builtin_wildcard_or_builtin_name) << AL; if (D->hasAttr()) D->dropAttr(); D->addAttr(::new (S.Context) NoBuiltinAttr(S.Context, AL, Names.data(), Names.size())); } static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->hasAttr()) { S.Diag(D->getBeginLoc(), diag::err_attribute_only_once_per_parameter) << AL; return; } Expr *E = AL.getArgAsExpr(0); uint32_t Type; if (!S.checkUInt32Argument(AL, E, Type, /*Idx=*/1)) return; // pass_object_size's argument is passed in as the second argument of // __builtin_object_size. So, it has the same constraints as that second // argument; namely, it must be in the range [0, 3]. if (Type > 3) { S.Diag(E->getBeginLoc(), diag::err_attribute_argument_out_of_range) << AL << 0 << 3 << E->getSourceRange(); return; } // pass_object_size is only supported on constant pointer parameters; as a // kindness to users, we allow the parameter to be non-const for declarations. // At this point, we have no clue if `D` belongs to a function declaration or // definition, so we defer the constness check until later. if (!cast(D)->getType()->isPointerType()) { S.Diag(D->getBeginLoc(), diag::err_attribute_pointers_only) << AL << 1; return; } D->addAttr(::new (S.Context) PassObjectSizeAttr(S.Context, AL, (int)Type)); } static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ConsumableAttr::ConsumedState DefaultState; if (AL.isArgIdent(0)) { IdentifierLoc *IL = AL.getArgAsIdent(0); if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(), DefaultState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) ConsumableAttr(S.Context, AL, DefaultState)); } static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD, const ParsedAttr &AL) { QualType ThisType = MD->getFunctionObjectParameterType(); if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) { if (!RD->hasAttr()) { S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) << RD; return false; } } return true; } static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; if (!checkForConsumableClass(S, cast(D), AL)) return; SmallVector States; for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) { CallableWhenAttr::ConsumedState CallableState; StringRef StateString; SourceLocation Loc; if (AL.isArgIdent(ArgIndex)) { IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex); StateString = Ident->Ident->getName(); Loc = Ident->Loc; } else { if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc)) return; } if (!CallableWhenAttr::ConvertStrToConsumedState(StateString, CallableState)) { S.Diag(Loc, diag::warn_attribute_type_not_supported) << AL << StateString; return; } States.push_back(CallableState); } D->addAttr(::new (S.Context) CallableWhenAttr(S.Context, AL, States.data(), States.size())); } static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ParamTypestateAttr::ConsumedState ParamState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef StateString = Ident->Ident->getName(); if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString, ParamState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << StateString; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. //QualType ReturnType = cast(D)->getType(); //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // //if (!RD || !RD->hasAttr()) { // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ParamTypestateAttr(S.Context, AL, ParamState)); } static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ReturnTypestateAttr::ConsumedState ReturnState; if (AL.isArgIdent(0)) { IdentifierLoc *IL = AL.getArgAsIdent(0); if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(), ReturnState)) { S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << AL << IL->Ident; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } // FIXME: This check is currently being done in the analysis. It can be // enabled here only after the parser propagates attributes at // template specialization definition, not declaration. // QualType ReturnType; // // if (const ParmVarDecl *Param = dyn_cast(D)) { // ReturnType = Param->getType(); // //} else if (const CXXConstructorDecl *Constructor = // dyn_cast(D)) { // ReturnType = Constructor->getFunctionObjectParameterType(); // //} else { // // ReturnType = cast(D)->getCallResultType(); //} // // const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl(); // // if (!RD || !RD->hasAttr()) { // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) << // ReturnType.getAsString(); // return; //} D->addAttr(::new (S.Context) ReturnTypestateAttr(S.Context, AL, ReturnState)); } static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!checkForConsumableClass(S, cast(D), AL)) return; SetTypestateAttr::ConsumedState NewState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << Param; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) SetTypestateAttr(S.Context, AL, NewState)); } static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!checkForConsumableClass(S, cast(D), AL)) return; TestTypestateAttr::ConsumedState TestState; if (AL.isArgIdent(0)) { IdentifierLoc *Ident = AL.getArgAsIdent(0); StringRef Param = Ident->Ident->getName(); if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) { S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported) << AL << Param; return; } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } D->addAttr(::new (S.Context) TestTypestateAttr(S.Context, AL, TestState)); } static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Remember this typedef decl, we will need it later for diagnostics. S.ExtVectorDecls.push_back(cast(D)); } static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (auto *TD = dyn_cast(D)) TD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); else if (auto *FD = dyn_cast(D)) { bool BitfieldByteAligned = (!FD->getType()->isDependentType() && !FD->getType()->isIncompleteType() && FD->isBitField() && S.Context.getTypeAlign(FD->getType()) <= 8); if (S.getASTContext().getTargetInfo().getTriple().isPS()) { if (BitfieldByteAligned) // The PS4/PS5 targets need to maintain ABI backwards compatibility. S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type) << AL << FD->getType(); else FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); } else { // Report warning about changed offset in the newer compiler versions. if (BitfieldByteAligned) S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield); FD->addAttr(::new (S.Context) PackedAttr(S.Context, AL)); } } else S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; } static void handlePreferredName(Sema &S, Decl *D, const ParsedAttr &AL) { auto *RD = cast(D); ClassTemplateDecl *CTD = RD->getDescribedClassTemplate(); assert(CTD && "attribute does not appertain to this declaration"); ParsedType PT = AL.getTypeArg(); TypeSourceInfo *TSI = nullptr; QualType T = S.GetTypeFromParser(PT, &TSI); if (!TSI) TSI = S.Context.getTrivialTypeSourceInfo(T, AL.getLoc()); if (!T.hasQualifiers() && T->isTypedefNameType()) { // Find the template name, if this type names a template specialization. const TemplateDecl *Template = nullptr; if (const auto *CTSD = dyn_cast_if_present( T->getAsCXXRecordDecl())) { Template = CTSD->getSpecializedTemplate(); } else if (const auto *TST = T->getAs()) { while (TST && TST->isTypeAlias()) TST = TST->getAliasedType()->getAs(); if (TST) Template = TST->getTemplateName().getAsTemplateDecl(); } if (Template && declaresSameEntity(Template, CTD)) { D->addAttr(::new (S.Context) PreferredNameAttr(S.Context, AL, TSI)); return; } } S.Diag(AL.getLoc(), diag::err_attribute_preferred_name_arg_invalid) << T << CTD; if (const auto *TT = T->getAs()) S.Diag(TT->getDecl()->getLocation(), diag::note_entity_declared_at) << TT->getDecl(); } bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) { if (RefOkay) { if (T->isReferenceType()) return true; } else { T = T.getNonReferenceType(); } // The nonnull attribute, and other similar attributes, can be applied to a // transparent union that contains a pointer type. if (const RecordType *UT = T->getAsUnionType()) { if (UT && UT->getDecl()->hasAttr()) { RecordDecl *UD = UT->getDecl(); for (const auto *I : UD->fields()) { QualType QT = I->getType(); if (QT->isAnyPointerType() || QT->isBlockPointerType()) return true; } } } return T->isAnyPointerType() || T->isBlockPointerType(); } static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL, SourceRange AttrParmRange, SourceRange TypeRange, bool isReturnValue = false) { if (!S.isValidPointerAttrType(T)) { if (isReturnValue) S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL << AttrParmRange << TypeRange; else S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) << AL << AttrParmRange << TypeRange << 0; return false; } return true; } static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector NonNullArgs; for (unsigned I = 0; I < AL.getNumArgs(); ++I) { Expr *Ex = AL.getArgAsExpr(I); ParamIdx Idx; if (!S.checkFunctionOrMethodParameterIndex(D, AL, I + 1, Ex, Idx)) return; // Is the function argument a pointer type? if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) && !attrNonNullArgCheck( S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL, Ex->getSourceRange(), getFunctionOrMethodParamRange(D, Idx.getASTIndex()))) continue; NonNullArgs.push_back(Idx); } // If no arguments were specified to __attribute__((nonnull)) then all pointer // arguments have a nonnull attribute; warn if there aren't any. Skip this // check if the attribute came from a macro expansion or a template // instantiation. if (NonNullArgs.empty() && AL.getLoc().isFileID() && !S.inTemplateInstantiation()) { bool AnyPointers = isFunctionOrMethodVariadic(D); for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E && !AnyPointers; ++I) { QualType T = getFunctionOrMethodParamType(D, I); if (T->isDependentType() || S.isValidPointerAttrType(T)) AnyPointers = true; } if (!AnyPointers) S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers); } ParamIdx *Start = NonNullArgs.data(); unsigned Size = NonNullArgs.size(); llvm::array_pod_sort(Start, Start + Size); D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, Start, Size)); } static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D, const ParsedAttr &AL) { if (AL.getNumArgs() > 0) { if (D->getFunctionType()) { handleNonNullAttr(S, D, AL); } else { S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args) << D->getSourceRange(); } return; } // Is the argument a pointer type? if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(), D->getSourceRange())) return; D->addAttr(::new (S.Context) NonNullAttr(S.Context, AL, nullptr, 0)); } static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) { QualType ResultType = getFunctionOrMethodResultType(D); SourceRange SR = getFunctionOrMethodResultSourceRange(D); if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR, /* isReturnValue */ true)) return; D->addAttr(::new (S.Context) ReturnsNonNullAttr(S.Context, AL)); } static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->isInvalidDecl()) return; // noescape only applies to pointer types. QualType T = cast(D)->getType(); if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) { S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only) << AL << AL.getRange() << 0; return; } D->addAttr(::new (S.Context) NoEscapeAttr(S.Context, AL)); } static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0), *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr; S.AddAssumeAlignedAttr(D, AL, E, OE); } static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.AddAllocAlignAttr(D, AL, AL.getArgAsExpr(0)); } void Sema::AddAssumeAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, Expr *OE) { QualType ResultType = getFunctionOrMethodResultType(D); SourceRange SR = getFunctionOrMethodResultSourceRange(D); AssumeAlignedAttr TmpAttr(Context, CI, E, OE); SourceLocation AttrLoc = TmpAttr.getLocation(); if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) { Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) << &TmpAttr << TmpAttr.getRange() << SR; return; } if (!E->isValueDependent()) { std::optional I = llvm::APSInt(64); if (!(I = E->getIntegerConstantExpr(Context))) { if (OE) Diag(AttrLoc, diag::err_attribute_argument_n_type) << &TmpAttr << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); else Diag(AttrLoc, diag::err_attribute_argument_type) << &TmpAttr << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } if (!I->isPowerOf2()) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } if (*I > Sema::MaximumAlignment) Diag(CI.getLoc(), diag::warn_assume_aligned_too_great) << CI.getRange() << Sema::MaximumAlignment; } if (OE && !OE->isValueDependent() && !OE->isIntegerConstantExpr(Context)) { Diag(AttrLoc, diag::err_attribute_argument_n_type) << &TmpAttr << 2 << AANT_ArgumentIntegerConstant << OE->getSourceRange(); return; } D->addAttr(::new (Context) AssumeAlignedAttr(Context, CI, E, OE)); } void Sema::AddAllocAlignAttr(Decl *D, const AttributeCommonInfo &CI, Expr *ParamExpr) { QualType ResultType = getFunctionOrMethodResultType(D); AllocAlignAttr TmpAttr(Context, CI, ParamIdx()); SourceLocation AttrLoc = CI.getLoc(); if (!ResultType->isDependentType() && !isValidPointerAttrType(ResultType, /* RefOkay */ true)) { Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only) << &TmpAttr << CI.getRange() << getFunctionOrMethodResultSourceRange(D); return; } ParamIdx Idx; const auto *FuncDecl = cast(D); if (!checkFunctionOrMethodParameterIndex(FuncDecl, TmpAttr, /*AttrArgNum=*/1, ParamExpr, Idx)) return; QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); if (!Ty->isDependentType() && !Ty->isIntegralType(Context) && !Ty->isAlignValT()) { Diag(ParamExpr->getBeginLoc(), diag::err_attribute_integers_only) << &TmpAttr << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange(); return; } D->addAttr(::new (Context) AllocAlignAttr(Context, CI, Idx)); } /// Normalize the attribute, __foo__ becomes foo. /// Returns true if normalization was applied. static bool normalizeName(StringRef &AttrName) { if (AttrName.size() > 4 && AttrName.starts_with("__") && AttrName.ends_with("__")) { AttrName = AttrName.drop_front(2).drop_back(2); return true; } return false; } static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // This attribute must be applied to a function declaration. The first // argument to the attribute must be an identifier, the name of the resource, // for example: malloc. The following arguments must be argument indexes, the // arguments must be of integer type for Returns, otherwise of pointer type. // The difference between Holds and Takes is that a pointer may still be used // after being held. free() should be __attribute((ownership_takes)), whereas // a list append function may well be __attribute((ownership_holds)). if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } // Figure out our Kind. OwnershipAttr::OwnershipKind K = OwnershipAttr(S.Context, AL, nullptr, nullptr, 0).getOwnKind(); // Check arguments. switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: if (AL.getNumArgs() < 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL << 2; return; } break; case OwnershipAttr::Returns: if (AL.getNumArgs() > 2) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 1; return; } break; } IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident; StringRef ModuleName = Module->getName(); if (normalizeName(ModuleName)) { Module = &S.PP.getIdentifierTable().get(ModuleName); } SmallVector OwnershipArgs; for (unsigned i = 1; i < AL.getNumArgs(); ++i) { Expr *Ex = AL.getArgAsExpr(i); ParamIdx Idx; if (!S.checkFunctionOrMethodParameterIndex(D, AL, i, Ex, Idx)) return; // Is the function argument a pointer type? QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex()); int Err = -1; // No error switch (K) { case OwnershipAttr::Takes: case OwnershipAttr::Holds: if (!T->isAnyPointerType() && !T->isBlockPointerType()) Err = 0; break; case OwnershipAttr::Returns: if (!T->isIntegerType()) Err = 1; break; } if (-1 != Err) { S.Diag(AL.getLoc(), diag::err_ownership_type) << AL << Err << Ex->getSourceRange(); return; } // Check we don't have a conflict with another ownership attribute. for (const auto *I : D->specific_attrs()) { // Cannot have two ownership attributes of different kinds for the same // index. if (I->getOwnKind() != K && llvm::is_contained(I->args(), Idx)) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << I << (AL.isRegularKeywordAttribute() || I->isRegularKeywordAttribute()); return; } else if (K == OwnershipAttr::Returns && I->getOwnKind() == OwnershipAttr::Returns) { // A returns attribute conflicts with any other returns attribute using // a different index. if (!llvm::is_contained(I->args(), Idx)) { S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch) << I->args_begin()->getSourceIndex(); if (I->args_size()) S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch) << Idx.getSourceIndex() << Ex->getSourceRange(); return; } } } OwnershipArgs.push_back(Idx); } ParamIdx *Start = OwnershipArgs.data(); unsigned Size = OwnershipArgs.size(); llvm::array_pod_sort(Start, Start + Size); D->addAttr(::new (S.Context) OwnershipAttr(S.Context, AL, Module, Start, Size)); } static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check the attribute arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } // gcc rejects // class c { // static int a __attribute__((weakref ("v2"))); // static int b() __attribute__((weakref ("f3"))); // }; // and ignores the attributes of // void f(void) { // static int a __attribute__((weakref ("v2"))); // } // we reject them const DeclContext *Ctx = D->getDeclContext()->getRedeclContext(); if (!Ctx->isFileContext()) { S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context) << cast(D); return; } // The GCC manual says // // At present, a declaration to which `weakref' is attached can only // be `static'. // // It also says // // Without a TARGET, // given as an argument to `weakref' or to `alias', `weakref' is // equivalent to `weak'. // // gcc 4.4.1 will accept // int a7 __attribute__((weakref)); // as // int a7 __attribute__((weak)); // This looks like a bug in gcc. We reject that for now. We should revisit // it if this behaviour is actually used. // GCC rejects // static ((alias ("y"), weakref)). // Should we? How to check that weakref is before or after alias? // FIXME: it would be good for us to keep the WeakRefAttr as-written instead // of transforming it into an AliasAttr. The WeakRefAttr never uses the // StringRef parameter it was given anyway. StringRef Str; if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str)) // GCC will accept anything as the argument of weakref. Should we // check for an existing decl? D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); D->addAttr(::new (S.Context) WeakRefAttr(S.Context, AL)); } // Mark alias/ifunc target as used. Due to name mangling, we look up the // demangled name ignoring parameters (not supported by microsoftDemangle // https://github.com/llvm/llvm-project/issues/88825). This should handle the // majority of use cases while leaving namespace scope names unmarked. static void markUsedForAliasOrIfunc(Sema &S, Decl *D, const ParsedAttr &AL, StringRef Str) { std::unique_ptr Demangled; if (S.getASTContext().getCXXABIKind() != TargetCXXABI::Microsoft) Demangled.reset(llvm::itaniumDemangle(Str, /*ParseParams=*/false)); std::unique_ptr MC(S.Context.createMangleContext()); SmallString<256> Name; const DeclarationNameInfo Target( &S.Context.Idents.get(Demangled ? Demangled.get() : Str), AL.getLoc()); LookupResult LR(S, Target, Sema::LookupOrdinaryName); if (S.LookupName(LR, S.TUScope)) { for (NamedDecl *ND : LR) { if (!isa(ND) && !isa(ND)) continue; if (MC->shouldMangleDeclName(ND)) { llvm::raw_svector_ostream Out(Name); Name.clear(); MC->mangleName(GlobalDecl(ND), Out); } else { Name = ND->getIdentifier()->getName(); } if (Name == Str) ND->markUsed(S.Context); } } } static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; // Aliases should be on declarations, not definitions. const auto *FD = cast(D); if (FD->isThisDeclarationADefinition()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1; return; } markUsedForAliasOrIfunc(S, D, AL, Str); D->addAttr(::new (S.Context) IFuncAttr(S.Context, AL, Str)); } static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; if (S.Context.getTargetInfo().getTriple().isOSDarwin()) { S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin); return; } if (S.Context.getTargetInfo().getTriple().isNVPTX()) { CudaVersion Version = ToCudaVersion(S.Context.getTargetInfo().getSDKVersion()); if (Version != CudaVersion::UNKNOWN && Version < CudaVersion::CUDA_100) S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx); } // Aliases should be on declarations, not definitions. if (const auto *FD = dyn_cast(D)) { if (FD->isThisDeclarationADefinition()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0; return; } } else { const auto *VD = cast(D); if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) { S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0; return; } } markUsedForAliasOrIfunc(S, D, AL, Str); D->addAttr(::new (S.Context) AliasAttr(S.Context, AL, Str)); } static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Model; SourceLocation LiteralLoc; // Check that it is a string. if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc)) return; // Check that the value. if (Model != "global-dynamic" && Model != "local-dynamic" && Model != "initial-exec" && Model != "local-exec") { S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg); return; } D->addAttr(::new (S.Context) TLSModelAttr(S.Context, AL, Model)); } static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) { QualType ResultType = getFunctionOrMethodResultType(D); if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) { D->addAttr(::new (S.Context) RestrictAttr(S.Context, AL)); return; } S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only) << AL << getFunctionOrMethodResultSourceRange(D); } static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Ensure we don't combine these with themselves, since that causes some // confusing behavior. if (AL.getParsedKind() == ParsedAttr::AT_CPUDispatch) { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *Other = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; S.Diag(Other->getLocation(), diag::note_conflicting_attribute); return; } } else if (AL.getParsedKind() == ParsedAttr::AT_CPUSpecific) { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *Other = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; S.Diag(Other->getLocation(), diag::note_conflicting_attribute); return; } } FunctionDecl *FD = cast(D); if (const auto *MD = dyn_cast(D)) { if (MD->getParent()->isLambda()) { S.Diag(AL.getLoc(), diag::err_attribute_dll_lambda) << AL; return; } } if (!AL.checkAtLeastNumArgs(S, 1)) return; SmallVector CPUs; for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) { if (!AL.isArgIdent(ArgNo)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo); StringRef CPUName = CPUArg->Ident->getName().trim(); if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) { S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value) << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch); return; } const TargetInfo &Target = S.Context.getTargetInfo(); if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) { return Target.CPUSpecificManglingCharacter(CPUName) == Target.CPUSpecificManglingCharacter(Cur->getName()); })) { S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries); return; } CPUs.push_back(CPUArg->Ident); } FD->setIsMultiVersion(true); if (AL.getKind() == ParsedAttr::AT_CPUSpecific) D->addAttr(::new (S.Context) CPUSpecificAttr(S.Context, AL, CPUs.data(), CPUs.size())); else D->addAttr(::new (S.Context) CPUDispatchAttr(S.Context, AL, CPUs.data(), CPUs.size())); } static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::Cpp; return; } D->addAttr(::new (S.Context) CommonAttr(S.Context, AL)); } static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.isDeclspecAttribute()) { const auto &Triple = S.getASTContext().getTargetInfo().getTriple(); const auto &Arch = Triple.getArch(); if (Arch != llvm::Triple::x86 && (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch) << AL << Triple.getArchName(); return; } // This form is not allowed to be written on a member function (static or // nonstatic) when in Microsoft compatibility mode. if (S.getLangOpts().MSVCCompat && isa(D)) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type_str) << AL << AL.isRegularKeywordAttribute() << "non-member functions"; return; } } D->addAttr(::new (S.Context) NakedAttr(S.Context, AL)); } static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { if (hasDeclarator(D)) return; if (!isa(D)) { S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type) << Attrs << Attrs.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; return; } D->addAttr(::new (S.Context) NoReturnAttr(S.Context, Attrs)); } static void handleStandardNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &A) { // The [[_Noreturn]] spelling is deprecated in C23, so if that was used, // issue an appropriate diagnostic. However, don't issue a diagnostic if the // attribute name comes from a macro expansion. We don't want to punish users // who write [[noreturn]] after including (where 'noreturn' // is defined as a macro which expands to '_Noreturn'). if (!S.getLangOpts().CPlusPlus && A.getSemanticSpelling() == CXX11NoReturnAttr::C23_Noreturn && !(A.getLoc().isMacroID() && S.getSourceManager().isInSystemMacro(A.getLoc()))) S.Diag(A.getLoc(), diag::warn_deprecated_noreturn_spelling) << A.getRange(); D->addAttr(::new (S.Context) CXX11NoReturnAttr(S.Context, A)); } static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) { if (!S.getLangOpts().CFProtectionBranch) S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored); else handleSimpleAttribute(S, D, Attrs); } bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) { if (!Attrs.checkExactlyNumArgs(*this, 0)) { Attrs.setInvalid(); return true; } return false; } bool Sema::CheckAttrTarget(const ParsedAttr &AL) { // Check whether the attribute is valid on the current target. if (!AL.existsInTarget(Context.getTargetInfo())) { Diag(AL.getLoc(), AL.isRegularKeywordAttribute() ? diag::err_keyword_not_supported_on_target : diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); AL.setInvalid(); return true; } return false; } static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The checking path for 'noreturn' and 'analyzer_noreturn' are different // because 'analyzer_noreturn' does not impact the type. if (!isFunctionOrMethodOrBlockForAttrSubject(D)) { ValueDecl *VD = dyn_cast(D); if (!VD || (!VD->getType()->isBlockPointerType() && !VD->getType()->isFunctionPointerType())) { S.Diag(AL.getLoc(), AL.isStandardAttributeSyntax() ? diag::err_attribute_wrong_decl_type : diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionMethodOrBlock; return; } } D->addAttr(::new (S.Context) AnalyzerNoReturnAttr(S.Context, AL)); } // PS3 PPU-specific. static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) { /* Returning a Vector Class in Registers According to the PPU ABI specifications, a class with a single member of vector type is returned in memory when used as the return value of a function. This results in inefficient code when implementing vector classes. To return the value in a single vector register, add the vecreturn attribute to the class definition. This attribute is also applicable to struct types. Example: struct Vector { __vector float xyzw; } __attribute__((vecreturn)); Vector Add(Vector lhs, Vector rhs) { Vector result; result.xyzw = vec_add(lhs.xyzw, rhs.xyzw); return result; // This will be returned in a register } */ if (VecReturnAttr *A = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A; return; } const auto *R = cast(D); int count = 0; if (!isa(R)) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } if (!cast(R)->isPOD()) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record); return; } for (const auto *I : R->fields()) { if ((count == 1) || !I->getType()->isVectorType()) { S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member); return; } count++; } D->addAttr(::new (S.Context) VecReturnAttr(S.Context, AL)); } static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D, const ParsedAttr &AL) { if (isa(D)) { // [[carries_dependency]] can only be applied to a parameter if it is a // parameter of a function declaration or lambda. if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) { S.Diag(AL.getLoc(), diag::err_carries_dependency_param_not_function_decl); return; } } D->addAttr(::new (S.Context) CarriesDependencyAttr(S.Context, AL)); } static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName(); // If this is spelled as the standard C++17 attribute, but not in C++17, warn // about using it as an extension. if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr) S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; D->addAttr(::new (S.Context) UnusedAttr(S.Context, AL)); } static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t priority = ConstructorAttr::DefaultPriority; if (S.getLangOpts().HLSL && AL.getNumArgs()) { S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); return; } if (AL.getNumArgs() && !S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) return; D->addAttr(::new (S.Context) ConstructorAttr(S.Context, AL, priority)); } static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t priority = DestructorAttr::DefaultPriority; if (AL.getNumArgs() && !S.checkUInt32Argument(AL, AL.getArgAsExpr(0), priority)) return; D->addAttr(::new (S.Context) DestructorAttr(S.Context, AL, priority)); } template static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) { // Handle the case where the attribute has a text message. StringRef Str; if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; D->addAttr(::new (S.Context) AttrTy(S.Context, AL, Str)); } static bool checkAvailabilityAttr(Sema &S, SourceRange Range, IdentifierInfo *Platform, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted) { StringRef PlatformName = AvailabilityAttr::getPrettyPlatformName(Platform->getName()); if (PlatformName.empty()) PlatformName = Platform->getName(); // Ensure that Introduced <= Deprecated <= Obsoleted (although not all // of these steps are needed). if (!Introduced.empty() && !Deprecated.empty() && !(Introduced <= Deprecated)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 1 << PlatformName << Deprecated.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Introduced.empty() && !Obsoleted.empty() && !(Introduced <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 0 << Introduced.getAsString(); return true; } if (!Deprecated.empty() && !Obsoleted.empty() && !(Deprecated <= Obsoleted)) { S.Diag(Range.getBegin(), diag::warn_availability_version_ordering) << 2 << PlatformName << Obsoleted.getAsString() << 1 << Deprecated.getAsString(); return true; } return false; } /// Check whether the two versions match. /// /// If either version tuple is empty, then they are assumed to match. If /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y. static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y, bool BeforeIsOkay) { if (X.empty() || Y.empty()) return true; if (X == Y) return true; if (BeforeIsOkay && X < Y) return true; return false; } AvailabilityAttr *Sema::mergeAvailabilityAttr( NamedDecl *D, const AttributeCommonInfo &CI, IdentifierInfo *Platform, bool Implicit, VersionTuple Introduced, VersionTuple Deprecated, VersionTuple Obsoleted, bool IsUnavailable, StringRef Message, bool IsStrict, StringRef Replacement, AvailabilityMergeKind AMK, int Priority, IdentifierInfo *Environment) { VersionTuple MergedIntroduced = Introduced; VersionTuple MergedDeprecated = Deprecated; VersionTuple MergedObsoleted = Obsoleted; bool FoundAny = false; bool OverrideOrImpl = false; switch (AMK) { case AMK_None: case AMK_Redeclaration: OverrideOrImpl = false; break; case AMK_Override: case AMK_ProtocolImplementation: case AMK_OptionalProtocolImplementation: OverrideOrImpl = true; break; } if (D->hasAttrs()) { AttrVec &Attrs = D->getAttrs(); for (unsigned i = 0, e = Attrs.size(); i != e;) { const auto *OldAA = dyn_cast(Attrs[i]); if (!OldAA) { ++i; continue; } IdentifierInfo *OldPlatform = OldAA->getPlatform(); if (OldPlatform != Platform) { ++i; continue; } IdentifierInfo *OldEnvironment = OldAA->getEnvironment(); if (OldEnvironment != Environment) { ++i; continue; } // If there is an existing availability attribute for this platform that // has a lower priority use the existing one and discard the new // attribute. if (OldAA->getPriority() < Priority) return nullptr; // If there is an existing attribute for this platform that has a higher // priority than the new attribute then erase the old one and continue // processing the attributes. if (OldAA->getPriority() > Priority) { Attrs.erase(Attrs.begin() + i); --e; continue; } FoundAny = true; VersionTuple OldIntroduced = OldAA->getIntroduced(); VersionTuple OldDeprecated = OldAA->getDeprecated(); VersionTuple OldObsoleted = OldAA->getObsoleted(); bool OldIsUnavailable = OldAA->getUnavailable(); if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) || !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) || !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) || !(OldIsUnavailable == IsUnavailable || (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) { if (OverrideOrImpl) { int Which = -1; VersionTuple FirstVersion; VersionTuple SecondVersion; if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) { Which = 0; FirstVersion = OldIntroduced; SecondVersion = Introduced; } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) { Which = 1; FirstVersion = Deprecated; SecondVersion = OldDeprecated; } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) { Which = 2; FirstVersion = Obsoleted; SecondVersion = OldObsoleted; } if (Which == -1) { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override_unavail) << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) << (AMK == AMK_Override); } else if (Which != 1 && AMK == AMK_OptionalProtocolImplementation) { // Allow different 'introduced' / 'obsoleted' availability versions // on a method that implements an optional protocol requirement. It // makes less sense to allow this for 'deprecated' as the user can't // see if the method is 'deprecated' as 'respondsToSelector' will // still return true when the method is deprecated. ++i; continue; } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability_override) << Which << AvailabilityAttr::getPrettyPlatformName(Platform->getName()) << FirstVersion.getAsString() << SecondVersion.getAsString() << (AMK == AMK_Override); } if (AMK == AMK_Override) Diag(CI.getLoc(), diag::note_overridden_method); else Diag(CI.getLoc(), diag::note_protocol_method); } else { Diag(OldAA->getLocation(), diag::warn_mismatched_availability); Diag(CI.getLoc(), diag::note_previous_attribute); } Attrs.erase(Attrs.begin() + i); --e; continue; } VersionTuple MergedIntroduced2 = MergedIntroduced; VersionTuple MergedDeprecated2 = MergedDeprecated; VersionTuple MergedObsoleted2 = MergedObsoleted; if (MergedIntroduced2.empty()) MergedIntroduced2 = OldIntroduced; if (MergedDeprecated2.empty()) MergedDeprecated2 = OldDeprecated; if (MergedObsoleted2.empty()) MergedObsoleted2 = OldObsoleted; if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform, MergedIntroduced2, MergedDeprecated2, MergedObsoleted2)) { Attrs.erase(Attrs.begin() + i); --e; continue; } MergedIntroduced = MergedIntroduced2; MergedDeprecated = MergedDeprecated2; MergedObsoleted = MergedObsoleted2; ++i; } } if (FoundAny && MergedIntroduced == Introduced && MergedDeprecated == Deprecated && MergedObsoleted == Obsoleted) return nullptr; // Only create a new attribute if !OverrideOrImpl, but we want to do // the checking. if (!checkAvailabilityAttr(*this, CI.getRange(), Platform, MergedIntroduced, MergedDeprecated, MergedObsoleted) && !OverrideOrImpl) { auto *Avail = ::new (Context) AvailabilityAttr( Context, CI, Platform, Introduced, Deprecated, Obsoleted, IsUnavailable, Message, IsStrict, Replacement, Priority, Environment); Avail->setImplicit(Implicit); return Avail; } return nullptr; } static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (isa( D)) { S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) << AL; return; } if (!AL.checkExactlyNumArgs(S, 1)) return; IdentifierLoc *Platform = AL.getArgAsIdent(0); IdentifierInfo *II = Platform->Ident; if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty()) S.Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Platform->Ident; auto *ND = dyn_cast(D); if (!ND) // We warned about this already, so just return. return; AvailabilityChange Introduced = AL.getAvailabilityIntroduced(); AvailabilityChange Deprecated = AL.getAvailabilityDeprecated(); AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted(); bool IsUnavailable = AL.getUnavailableLoc().isValid(); bool IsStrict = AL.getStrictLoc().isValid(); StringRef Str; if (const auto *SE = dyn_cast_if_present(AL.getMessageExpr())) Str = SE->getString(); StringRef Replacement; if (const auto *SE = dyn_cast_if_present(AL.getReplacementExpr())) Replacement = SE->getString(); if (II->isStr("swift")) { if (Introduced.isValid() || Obsoleted.isValid() || (!IsUnavailable && !Deprecated.isValid())) { S.Diag(AL.getLoc(), diag::warn_availability_swift_unavailable_deprecated_only); return; } } if (II->isStr("fuchsia")) { std::optional Min, Sub; if ((Min = Introduced.Version.getMinor()) || (Sub = Introduced.Version.getSubminor())) { S.Diag(AL.getLoc(), diag::warn_availability_fuchsia_unavailable_minor); return; } } if (S.getLangOpts().HLSL && IsStrict) S.Diag(AL.getStrictLoc(), diag::err_availability_unexpected_parameter) << "strict" << /* HLSL */ 0; int PriorityModifier = AL.isPragmaClangAttribute() ? Sema::AP_PragmaClangAttribute : Sema::AP_Explicit; const IdentifierLoc *EnvironmentLoc = AL.getEnvironment(); IdentifierInfo *IIEnvironment = nullptr; if (EnvironmentLoc) { if (S.getLangOpts().HLSL) { IIEnvironment = EnvironmentLoc->Ident; if (AvailabilityAttr::getEnvironmentType( EnvironmentLoc->Ident->getName()) == llvm::Triple::EnvironmentType::UnknownEnvironment) S.Diag(EnvironmentLoc->Loc, diag::warn_availability_unknown_environment) << EnvironmentLoc->Ident; } else { S.Diag(EnvironmentLoc->Loc, diag::err_availability_unexpected_parameter) << "environment" << /* C/C++ */ 1; } } AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, II, false /*Implicit*/, Introduced.Version, Deprecated.Version, Obsoleted.Version, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier, IIEnvironment); if (NewAttr) D->addAttr(NewAttr); // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning // matches before the start of the watchOS platform. if (S.Context.getTargetInfo().getTriple().isWatchOS()) { IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("watchos"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("watchos_app_extension"); if (NewII) { const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); const auto *IOSToWatchOSMapping = SDKInfo ? SDKInfo->getVersionMapping( DarwinSDKInfo::OSEnvPair::iOStoWatchOSPair()) : nullptr; auto adjustWatchOSVersion = [IOSToWatchOSMapping](VersionTuple Version) -> VersionTuple { if (Version.empty()) return Version; auto MinimumWatchOSVersion = VersionTuple(2, 0); if (IOSToWatchOSMapping) { if (auto MappedVersion = IOSToWatchOSMapping->map( Version, MinimumWatchOSVersion, std::nullopt)) { return *MappedVersion; } } auto Major = Version.getMajor(); auto NewMajor = Major >= 9 ? Major - 7 : 0; if (NewMajor >= 2) { if (Version.getMinor()) { if (Version.getSubminor()) return VersionTuple(NewMajor, *Version.getMinor(), *Version.getSubminor()); else return VersionTuple(NewMajor, *Version.getMinor()); } return VersionTuple(NewMajor); } return MinimumWatchOSVersion; }; auto NewIntroduced = adjustWatchOSVersion(Introduced.Version); auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version); auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version); AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment); if (NewAttr) D->addAttr(NewAttr); } } else if (S.Context.getTargetInfo().getTriple().isTvOS()) { // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning // matches before the start of the tvOS platform. IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("tvos"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("tvos_app_extension"); if (NewII) { const auto *SDKInfo = S.getDarwinSDKInfoForAvailabilityChecking(); const auto *IOSToTvOSMapping = SDKInfo ? SDKInfo->getVersionMapping( DarwinSDKInfo::OSEnvPair::iOStoTvOSPair()) : nullptr; auto AdjustTvOSVersion = [IOSToTvOSMapping](VersionTuple Version) -> VersionTuple { if (Version.empty()) return Version; if (IOSToTvOSMapping) { if (auto MappedVersion = IOSToTvOSMapping->map( Version, VersionTuple(0, 0), std::nullopt)) { return *MappedVersion; } } return Version; }; auto NewIntroduced = AdjustTvOSVersion(Introduced.Version); auto NewDeprecated = AdjustTvOSVersion(Deprecated.Version); auto NewObsoleted = AdjustTvOSVersion(Obsoleted.Version); AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, NewIntroduced, NewDeprecated, NewObsoleted, IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment); if (NewAttr) D->addAttr(NewAttr); } } else if (S.Context.getTargetInfo().getTriple().getOS() == llvm::Triple::IOS && S.Context.getTargetInfo().getTriple().isMacCatalystEnvironment()) { auto GetSDKInfo = [&]() { return S.getDarwinSDKInfoForAvailabilityChecking(AL.getRange().getBegin(), "macOS"); }; // Transcribe "ios" to "maccatalyst" (and add a new attribute). IdentifierInfo *NewII = nullptr; if (II->getName() == "ios") NewII = &S.Context.Idents.get("maccatalyst"); else if (II->getName() == "ios_app_extension") NewII = &S.Context.Idents.get("maccatalyst_app_extension"); if (NewII) { auto MinMacCatalystVersion = [](const VersionTuple &V) { if (V.empty()) return V; if (V.getMajor() < 13 || (V.getMajor() == 13 && V.getMinor() && *V.getMinor() < 1)) return VersionTuple(13, 1); // The min Mac Catalyst version is 13.1. return V; }; AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, MinMacCatalystVersion(Introduced.Version), MinMacCatalystVersion(Deprecated.Version), MinMacCatalystVersion(Obsoleted.Version), IsUnavailable, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform, IIEnvironment); if (NewAttr) D->addAttr(NewAttr); } else if (II->getName() == "macos" && GetSDKInfo() && (!Introduced.Version.empty() || !Deprecated.Version.empty() || !Obsoleted.Version.empty())) { if (const auto *MacOStoMacCatalystMapping = GetSDKInfo()->getVersionMapping( DarwinSDKInfo::OSEnvPair::macOStoMacCatalystPair())) { // Infer Mac Catalyst availability from the macOS availability attribute // if it has versioned availability. Don't infer 'unavailable'. This // inferred availability has lower priority than the other availability // attributes that are inferred from 'ios'. NewII = &S.Context.Idents.get("maccatalyst"); auto RemapMacOSVersion = [&](const VersionTuple &V) -> std::optional { if (V.empty()) return std::nullopt; // API_TO_BE_DEPRECATED is 100000. if (V.getMajor() == 100000) return VersionTuple(100000); // The minimum iosmac version is 13.1 return MacOStoMacCatalystMapping->map(V, VersionTuple(13, 1), std::nullopt); }; std::optional NewIntroduced = RemapMacOSVersion(Introduced.Version), NewDeprecated = RemapMacOSVersion(Deprecated.Version), NewObsoleted = RemapMacOSVersion(Obsoleted.Version); if (NewIntroduced || NewDeprecated || NewObsoleted) { auto VersionOrEmptyVersion = [](const std::optional &V) -> VersionTuple { return V ? *V : VersionTuple(); }; AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr( ND, AL, NewII, true /*Implicit*/, VersionOrEmptyVersion(NewIntroduced), VersionOrEmptyVersion(NewDeprecated), VersionOrEmptyVersion(NewObsoleted), /*IsUnavailable=*/false, Str, IsStrict, Replacement, Sema::AMK_None, PriorityModifier + Sema::AP_InferredFromOtherPlatform + Sema::AP_InferredFromOtherPlatform, IIEnvironment); if (NewAttr) D->addAttr(NewAttr); } } } } } static void handleExternalSourceSymbolAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 4)) return; StringRef Language; if (const auto *SE = dyn_cast_if_present(AL.getArgAsExpr(0))) Language = SE->getString(); StringRef DefinedIn; if (const auto *SE = dyn_cast_if_present(AL.getArgAsExpr(1))) DefinedIn = SE->getString(); bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr; StringRef USR; if (const auto *SE = dyn_cast_if_present(AL.getArgAsExpr(3))) USR = SE->getString(); D->addAttr(::new (S.Context) ExternalSourceSymbolAttr( S.Context, AL, Language, DefinedIn, IsGeneratedDeclaration, USR)); } template static T *mergeVisibilityAttr(Sema &S, Decl *D, const AttributeCommonInfo &CI, typename T::VisibilityType value) { T *existingAttr = D->getAttr(); if (existingAttr) { typename T::VisibilityType existingValue = existingAttr->getVisibility(); if (existingValue == value) return nullptr; S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility); S.Diag(CI.getLoc(), diag::note_previous_attribute); D->dropAttr(); } return ::new (S.Context) T(S.Context, CI, value); } VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, VisibilityAttr::VisibilityType Vis) { return ::mergeVisibilityAttr(*this, D, CI, Vis); } TypeVisibilityAttr * Sema::mergeTypeVisibilityAttr(Decl *D, const AttributeCommonInfo &CI, TypeVisibilityAttr::VisibilityType Vis) { return ::mergeVisibilityAttr(*this, D, CI, Vis); } static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL, bool isTypeVisibility) { // Visibility attributes don't mean anything on a typedef. if (isa(D)) { S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored) << AL; return; } // 'type_visibility' can only go on a type or namespace. if (isTypeVisibility && !(isa(D) || isa(D) || isa(D))) { S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedTypeOrNamespace; return; } // Check that the argument is a string literal. StringRef TypeStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc)) return; VisibilityAttr::VisibilityType type; if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) { S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL << TypeStr; return; } // Complain about attempts to use protected visibility on targets // (like Darwin) that don't support it. if (type == VisibilityAttr::Protected && !S.Context.getTargetInfo().hasProtectedVisibility()) { S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility); type = VisibilityAttr::Default; } Attr *newAttr; if (isTypeVisibility) { newAttr = S.mergeTypeVisibilityAttr( D, AL, (TypeVisibilityAttr::VisibilityType)type); } else { newAttr = S.mergeVisibilityAttr(D, AL, type); } if (newAttr) D->addAttr(newAttr); } static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel; if (AL.getNumArgs() > 0) { Expr *E = AL.getArgAsExpr(0); std::optional Idx = llvm::APSInt(32); if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } if (Idx->isSigned() && Idx->isNegative()) { S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero) << E->getSourceRange(); return; } sentinel = Idx->getZExtValue(); } unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos; if (AL.getNumArgs() > 1) { Expr *E = AL.getArgAsExpr(1); std::optional Idx = llvm::APSInt(32); if (E->isTypeDependent() || !(Idx = E->getIntegerConstantExpr(S.Context))) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 2 << AANT_ArgumentIntegerConstant << E->getSourceRange(); return; } nullPos = Idx->getZExtValue(); if ((Idx->isSigned() && Idx->isNegative()) || nullPos > 1) { // FIXME: This error message could be improved, it would be nice // to say what the bounds actually are. S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one) << E->getSourceRange(); return; } } if (const auto *FD = dyn_cast(D)) { const FunctionType *FT = FD->getType()->castAs(); if (isa(FT)) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments); return; } if (!cast(FT)->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (const auto *MD = dyn_cast(D)) { if (!MD->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0; return; } } else if (const auto *BD = dyn_cast(D)) { if (!BD->isVariadic()) { S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1; return; } } else if (const auto *V = dyn_cast(D)) { QualType Ty = V->getType(); if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) { const FunctionType *FT = Ty->isFunctionPointerType() ? D->getFunctionType() : Ty->castAs() ->getPointeeType() ->castAs(); if (!cast(FT)->isVariadic()) { int m = Ty->isFunctionPointerType() ? 0 : 1; S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m; return; } } else { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionMethodOrBlock; return; } } else { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionMethodOrBlock; return; } D->addAttr(::new (S.Context) SentinelAttr(S.Context, AL, sentinel, nullPos)); } static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) { if (D->getFunctionType() && D->getFunctionType()->getReturnType()->isVoidType() && !isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 0; return; } if (const auto *MD = dyn_cast(D)) if (MD->getReturnType()->isVoidType()) { S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method) << AL << 1; return; } StringRef Str; if (AL.isStandardAttributeSyntax() && !AL.getScopeName()) { // The standard attribute cannot be applied to variable declarations such // as a function pointer. if (isa(D)) S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type_str) << AL << AL.isRegularKeywordAttribute() << "functions, classes, or enumerations"; // If this is spelled as the standard C++17 attribute, but not in C++17, // warn about using it as an extension. If there are attribute arguments, // then claim it's a C++20 extension instead. // FIXME: If WG14 does not seem likely to adopt the same feature, add an // extension warning for C23 mode. const LangOptions &LO = S.getLangOpts(); if (AL.getNumArgs() == 1) { if (LO.CPlusPlus && !LO.CPlusPlus20) S.Diag(AL.getLoc(), diag::ext_cxx20_attr) << AL; // Since this is spelled [[nodiscard]], get the optional string // literal. If in C++ mode, but not in C++20 mode, diagnose as an // extension. // FIXME: C23 should support this feature as well, even as an extension. if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, nullptr)) return; } else if (LO.CPlusPlus && !LO.CPlusPlus17) S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL; } if ((!AL.isGNUAttribute() && !(AL.isStandardAttributeSyntax() && AL.isClangScope())) && isa(D)) { S.Diag(AL.getLoc(), diag::warn_unused_result_typedef_unsupported_spelling) << AL.isGNUScope(); return; } D->addAttr(::new (S.Context) WarnUnusedResultAttr(S.Context, AL, Str)); } static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // weak_import only applies to variable & function declarations. bool isDef = false; if (!D->canBeWeakImported(isDef)) { if (isDef) S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition) << "weak_import"; else if (isa(D) || isa(D) || (S.Context.getTargetInfo().getTriple().isOSDarwin() && (isa(D) || isa(D)))) { // Nothing to warn about here. } else S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedVariableOrFunction; return; } D->addAttr(::new (S.Context) WeakImportAttr(S.Context, AL)); } // Handles reqd_work_group_size and work_group_size_hint. template static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t WGSize[3]; for (unsigned i = 0; i < 3; ++i) { const Expr *E = AL.getArgAsExpr(i); if (!S.checkUInt32Argument(AL, E, WGSize[i], i, /*StrictlyUnsigned=*/true)) return; if (WGSize[i] == 0) { S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero) << AL << E->getSourceRange(); return; } } WorkGroupAttr *Existing = D->getAttr(); if (Existing && !(Existing->getXDim() == WGSize[0] && Existing->getYDim() == WGSize[1] && Existing->getZDim() == WGSize[2])) S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; D->addAttr(::new (S.Context) WorkGroupAttr(S.Context, AL, WGSize[0], WGSize[1], WGSize[2])); } static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.hasParsedType()) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } TypeSourceInfo *ParmTSI = nullptr; QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); assert(ParmTSI && "no type source info for attribute argument"); if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() && (ParmType->isBooleanType() || !ParmType->isIntegralType(S.getASTContext()))) { S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << 2 << AL; return; } if (VecTypeHintAttr *A = D->getAttr()) { if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) { S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; return; } } D->addAttr(::new (S.Context) VecTypeHintAttr(S.Context, AL, ParmTSI)); } SectionAttr *Sema::mergeSectionAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name) { // Explicit or partial specializations do not inherit // the section attribute from the primary template. if (const auto *FD = dyn_cast(D)) { if (CI.getAttributeSpellingListIndex() == SectionAttr::Declspec_allocate && FD->isFunctionTemplateSpecialization()) return nullptr; } if (SectionAttr *ExistingAttr = D->getAttr()) { if (ExistingAttr->getName() == Name) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) << 1 /*section*/; Diag(CI.getLoc(), diag::note_previous_attribute); return nullptr; } return ::new (Context) SectionAttr(Context, CI, Name); } llvm::Error Sema::isValidSectionSpecifier(StringRef SecName) { if (!Context.getTargetInfo().getTriple().isOSDarwin()) return llvm::Error::success(); // Let MCSectionMachO validate this. StringRef Segment, Section; unsigned TAA, StubSize; bool HasTAA; return llvm::MCSectionMachO::ParseSectionSpecifier(SecName, Segment, Section, TAA, HasTAA, StubSize); } bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) { if (llvm::Error E = isValidSectionSpecifier(SecName)) { Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << toString(std::move(E)) << 1 /*'section'*/; return false; } return true; } static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the sections's single // argument. StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) return; if (!S.checkSectionName(LiteralLoc, Str)) return; SectionAttr *NewAttr = S.mergeSectionAttr(D, AL, Str); if (NewAttr) { D->addAttr(NewAttr); if (isa(D)) S.UnifySection(NewAttr->getName(), ASTContext::PSF_Execute | ASTContext::PSF_Read, cast(D)); } } static void handleCodeModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; // Check that it is a string. if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) return; llvm::CodeModel::Model CM; if (!CodeModelAttr::ConvertStrToModel(Str, CM)) { S.Diag(LiteralLoc, diag::err_attr_codemodel_arg) << Str; return; } D->addAttr(::new (S.Context) CodeModelAttr(S.Context, AL, CM)); } // This is used for `__declspec(code_seg("segname"))` on a decl. // `#pragma code_seg("segname")` uses checkSectionName() instead. static bool checkCodeSegName(Sema &S, SourceLocation LiteralLoc, StringRef CodeSegName) { if (llvm::Error E = S.isValidSectionSpecifier(CodeSegName)) { S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << toString(std::move(E)) << 0 /*'code-seg'*/; return false; } return true; } CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Name) { // Explicit or partial specializations do not inherit // the code_seg attribute from the primary template. if (const auto *FD = dyn_cast(D)) { if (FD->isFunctionTemplateSpecialization()) return nullptr; } if (const auto *ExistingAttr = D->getAttr()) { if (ExistingAttr->getName() == Name) return nullptr; Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section) << 0 /*codeseg*/; Diag(CI.getLoc(), diag::note_previous_attribute); return nullptr; } return ::new (Context) CodeSegAttr(Context, CI, Name); } static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc)) return; if (!checkCodeSegName(S, LiteralLoc, Str)) return; if (const auto *ExistingAttr = D->getAttr()) { if (!ExistingAttr->isImplicit()) { S.Diag(AL.getLoc(), ExistingAttr->getName() == Str ? diag::warn_duplicate_codeseg_attribute : diag::err_conflicting_codeseg_attribute); return; } D->dropAttr(); } if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL, Str)) D->addAttr(CSA); } bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) { enum FirstParam { Unsupported, Duplicate, Unknown }; enum SecondParam { None, CPU, Tune }; enum ThirdParam { Target, TargetClones }; if (AttrStr.contains("fpmath=")) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "fpmath=" << Target; // Diagnose use of tune if target doesn't support it. if (!Context.getTargetInfo().supportsTargetAttributeTune() && AttrStr.contains("tune=")) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "tune=" << Target; ParsedTargetAttr ParsedAttrs = Context.getTargetInfo().parseTargetAttr(AttrStr); if (!ParsedAttrs.CPU.empty() && !Context.getTargetInfo().isValidCPUName(ParsedAttrs.CPU)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unknown << CPU << ParsedAttrs.CPU << Target; if (!ParsedAttrs.Tune.empty() && !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Tune)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unknown << Tune << ParsedAttrs.Tune << Target; if (Context.getTargetInfo().getTriple().isRISCV() && ParsedAttrs.Duplicate != "") return Diag(LiteralLoc, diag::err_duplicate_target_attribute) << Duplicate << None << ParsedAttrs.Duplicate << Target; if (ParsedAttrs.Duplicate != "") return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Duplicate << None << ParsedAttrs.Duplicate << Target; for (const auto &Feature : ParsedAttrs.Features) { auto CurFeature = StringRef(Feature).drop_front(); // remove + or -. if (!Context.getTargetInfo().isValidFeatureName(CurFeature)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << CurFeature << Target; } TargetInfo::BranchProtectionInfo BPI{}; StringRef DiagMsg; if (ParsedAttrs.BranchProtection.empty()) return false; if (!Context.getTargetInfo().validateBranchProtection( ParsedAttrs.BranchProtection, ParsedAttrs.CPU, BPI, DiagMsg)) { if (DiagMsg.empty()) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "branch-protection" << Target; return Diag(LiteralLoc, diag::err_invalid_branch_protection_spec) << DiagMsg; } if (!DiagMsg.empty()) Diag(LiteralLoc, diag::warn_unsupported_branch_protection_spec) << DiagMsg; return false; } bool Sema::checkTargetVersionAttr(SourceLocation LiteralLoc, Decl *D, StringRef AttrStr) { enum FirstParam { Unsupported }; enum SecondParam { None }; enum ThirdParam { Target, TargetClones, TargetVersion }; llvm::SmallVector Features; AttrStr.split(Features, "+"); for (auto &CurFeature : Features) { CurFeature = CurFeature.trim(); if (CurFeature == "default") continue; if (!Context.getTargetInfo().validateCpuSupports(CurFeature)) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << CurFeature << TargetVersion; } return false; } static void handleTargetVersionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || S.checkTargetVersionAttr(LiteralLoc, D, Str)) return; TargetVersionAttr *NewAttr = ::new (S.Context) TargetVersionAttr(S.Context, AL, Str); D->addAttr(NewAttr); } static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) || S.checkTargetAttr(LiteralLoc, Str)) return; TargetAttr *NewAttr = ::new (S.Context) TargetAttr(S.Context, AL, Str); D->addAttr(NewAttr); } bool Sema::checkTargetClonesAttrString( SourceLocation LiteralLoc, StringRef Str, const StringLiteral *Literal, Decl *D, bool &HasDefault, bool &HasCommas, bool &HasNotDefault, SmallVectorImpl> &StringsBuffer) { enum FirstParam { Unsupported, Duplicate, Unknown }; enum SecondParam { None, CPU, Tune }; enum ThirdParam { Target, TargetClones }; HasCommas = HasCommas || Str.contains(','); const TargetInfo &TInfo = Context.getTargetInfo(); // Warn on empty at the beginning of a string. if (Str.size() == 0) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "" << TargetClones; std::pair Parts = {{}, Str}; while (!Parts.second.empty()) { Parts = Parts.second.split(','); StringRef Cur = Parts.first.trim(); SourceLocation CurLoc = Literal->getLocationOfByte(Cur.data() - Literal->getString().data(), getSourceManager(), getLangOpts(), TInfo); bool DefaultIsDupe = false; bool HasCodeGenImpact = false; if (Cur.empty()) return Diag(CurLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "" << TargetClones; if (TInfo.getTriple().isAArch64()) { // AArch64 target clones specific if (Cur == "default") { DefaultIsDupe = HasDefault; HasDefault = true; if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe) Diag(CurLoc, diag::warn_target_clone_duplicate_options); else StringsBuffer.push_back(Cur); } else { std::pair CurParts = {{}, Cur}; llvm::SmallVector CurFeatures; while (!CurParts.second.empty()) { CurParts = CurParts.second.split('+'); StringRef CurFeature = CurParts.first.trim(); if (!TInfo.validateCpuSupports(CurFeature)) { Diag(CurLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << CurFeature << TargetClones; continue; } if (TInfo.doesFeatureAffectCodeGen(CurFeature)) HasCodeGenImpact = true; CurFeatures.push_back(CurFeature); } // Canonize TargetClones Attributes llvm::sort(CurFeatures); SmallString<64> Res; for (auto &CurFeat : CurFeatures) { if (!Res.empty()) Res.append("+"); Res.append(CurFeat); } if (llvm::is_contained(StringsBuffer, Res) || DefaultIsDupe) Diag(CurLoc, diag::warn_target_clone_duplicate_options); else if (!HasCodeGenImpact) // Ignore features in target_clone attribute that don't impact // code generation Diag(CurLoc, diag::warn_target_clone_no_impact_options); else if (!Res.empty()) { StringsBuffer.push_back(Res); HasNotDefault = true; } } } else { // Other targets ( currently X86 ) if (Cur.starts_with("arch=")) { if (!Context.getTargetInfo().isValidCPUName( Cur.drop_front(sizeof("arch=") - 1))) return Diag(CurLoc, diag::warn_unsupported_target_attribute) << Unsupported << CPU << Cur.drop_front(sizeof("arch=") - 1) << TargetClones; } else if (Cur == "default") { DefaultIsDupe = HasDefault; HasDefault = true; } else if (!Context.getTargetInfo().isValidFeatureName(Cur)) return Diag(CurLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << Cur << TargetClones; if (llvm::is_contained(StringsBuffer, Cur) || DefaultIsDupe) Diag(CurLoc, diag::warn_target_clone_duplicate_options); // Note: Add even if there are duplicates, since it changes name mangling. StringsBuffer.push_back(Cur); } } if (Str.rtrim().ends_with(",")) return Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Unsupported << None << "" << TargetClones; return false; } static void handleTargetClonesAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.Context.getTargetInfo().getTriple().isAArch64() && !S.Context.getTargetInfo().hasFeature("fmv")) return; // Ensure we don't combine these with themselves, since that causes some // confusing behavior. if (const auto *Other = D->getAttr()) { S.Diag(AL.getLoc(), diag::err_disallowed_duplicate_attribute) << AL; S.Diag(Other->getLocation(), diag::note_conflicting_attribute); return; } if (checkAttrMutualExclusion(S, D, AL)) return; SmallVector Strings; SmallVector, 2> StringsBuffer; bool HasCommas = false, HasDefault = false, HasNotDefault = false; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef CurStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, I, CurStr, &LiteralLoc) || S.checkTargetClonesAttrString( LiteralLoc, CurStr, cast(AL.getArgAsExpr(I)->IgnoreParenCasts()), D, HasDefault, HasCommas, HasNotDefault, StringsBuffer)) return; } for (auto &SmallStr : StringsBuffer) Strings.push_back(SmallStr.str()); if (HasCommas && AL.getNumArgs() > 1) S.Diag(AL.getLoc(), diag::warn_target_clone_mixed_values); if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasDefault) { // Add default attribute if there is no one HasDefault = true; Strings.push_back("default"); } if (!HasDefault) { S.Diag(AL.getLoc(), diag::err_target_clone_must_have_default); return; } // FIXME: We could probably figure out how to get this to work for lambdas // someday. if (const auto *MD = dyn_cast(D)) { if (MD->getParent()->isLambda()) { S.Diag(D->getLocation(), diag::err_multiversion_doesnt_support) << static_cast(MultiVersionKind::TargetClones) << /*Lambda*/ 9; return; } } // No multiversion if we have default version only. if (S.Context.getTargetInfo().getTriple().isAArch64() && !HasNotDefault) return; cast(D)->setIsMultiVersion(); TargetClonesAttr *NewAttr = ::new (S.Context) TargetClonesAttr(S.Context, AL, Strings.data(), Strings.size()); D->addAttr(NewAttr); } static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0); uint32_t VecWidth; if (!S.checkUInt32Argument(AL, E, VecWidth)) { AL.setInvalid(); return; } MinVectorWidthAttr *Existing = D->getAttr(); if (Existing && Existing->getVectorWidth() != VecWidth) { S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL; return; } D->addAttr(::new (S.Context) MinVectorWidthAttr(S.Context, AL, VecWidth)); } static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) { Expr *E = AL.getArgAsExpr(0); SourceLocation Loc = E->getExprLoc(); FunctionDecl *FD = nullptr; DeclarationNameInfo NI; // gcc only allows for simple identifiers. Since we support more than gcc, we // will warn the user. if (auto *DRE = dyn_cast(E)) { if (DRE->hasQualifier()) S.Diag(Loc, diag::warn_cleanup_ext); FD = dyn_cast(DRE->getDecl()); NI = DRE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1 << NI.getName(); return; } } else if (auto *ULE = dyn_cast(E)) { if (ULE->hasExplicitTemplateArgs()) S.Diag(Loc, diag::warn_cleanup_ext); FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true); NI = ULE->getNameInfo(); if (!FD) { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2 << NI.getName(); if (ULE->getType() == S.Context.OverloadTy) S.NoteAllOverloadCandidates(ULE); return; } } else { S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0; return; } if (FD->getNumParams() != 1) { S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg) << NI.getName(); return; } // We're currently more strict than GCC about what function types we accept. // If this ever proves to be a problem it should be easy to fix. QualType Ty = S.Context.getPointerType(cast(D)->getType()); QualType ParamTy = FD->getParamDecl(0)->getType(); if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(), ParamTy, Ty) != Sema::Compatible) { S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type) << NI.getName() << ParamTy << Ty; return; } VarDecl *VD = cast(D); // Create a reference to the variable declaration. This is a fake/dummy // reference. DeclRefExpr *VariableReference = DeclRefExpr::Create( S.Context, NestedNameSpecifierLoc{}, FD->getLocation(), VD, false, DeclarationNameInfo{VD->getDeclName(), VD->getLocation()}, VD->getType(), VK_LValue); // Create a unary operator expression that represents taking the address of // the variable. This is a fake/dummy expression. Expr *AddressOfVariable = UnaryOperator::Create( S.Context, VariableReference, UnaryOperatorKind::UO_AddrOf, S.Context.getPointerType(VD->getType()), VK_PRValue, OK_Ordinary, Loc, +false, FPOptionsOverride{}); // Create a function call expression. This is a fake/dummy call expression. CallExpr *FunctionCallExpression = CallExpr::Create(S.Context, E, ArrayRef{AddressOfVariable}, S.Context.VoidTy, VK_PRValue, Loc, FPOptionsOverride{}); if (S.CheckFunctionCall(FD, FunctionCallExpression, FD->getType()->getAs())) { return; } D->addAttr(::new (S.Context) CleanupAttr(S.Context, AL, FD)); } static void handleEnumExtensibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 0 << AANT_ArgumentIdentifier; return; } EnumExtensibilityAttr::Kind ExtensibilityKind; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(), ExtensibilityKind)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } D->addAttr(::new (S.Context) EnumExtensibilityAttr(S.Context, AL, ExtensibilityKind)); } /// Handle __attribute__((format_arg((idx)))) attribute based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const Expr *IdxExpr = AL.getArgAsExpr(0); ParamIdx Idx; if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, IdxExpr, Idx)) return; // Make sure the format string is really a string. QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex()); bool NotNSStringTy = !S.ObjC().isNSStringType(Ty); if (NotNSStringTy && !S.ObjC().isCFStringType(Ty) && (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType())) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); return; } Ty = getFunctionOrMethodResultType(D); // replace instancetype with the class type auto Instancetype = S.Context.getObjCInstanceTypeDecl()->getTypeForDecl(); if (Ty->getAs() == Instancetype) if (auto *OMD = dyn_cast(D)) if (auto *Interface = OMD->getClassInterface()) Ty = S.Context.getObjCObjectPointerType( QualType(Interface->getTypeForDecl(), 0)); if (!S.ObjC().isNSStringType(Ty, /*AllowNSAttributedString=*/true) && !S.ObjC().isCFStringType(Ty) && (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType())) { S.Diag(AL.getLoc(), diag::err_format_attribute_result_not) << (NotNSStringTy ? "string type" : "NSString") << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0); return; } D->addAttr(::new (S.Context) FormatArgAttr(S.Context, AL, Idx)); } enum FormatAttrKind { CFStringFormat, NSStringFormat, StrftimeFormat, SupportedFormat, IgnoredFormat, InvalidFormat }; /// getFormatAttrKind - Map from format attribute names to supported format /// types. static FormatAttrKind getFormatAttrKind(StringRef Format) { return llvm::StringSwitch(Format) // Check for formats that get handled specially. .Case("NSString", NSStringFormat) .Case("CFString", CFStringFormat) .Case("strftime", StrftimeFormat) // Otherwise, check for supported formats. .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat) .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat) .Case("kprintf", SupportedFormat) // OpenBSD. .Case("freebsd_kprintf", SupportedFormat) // FreeBSD. .Case("os_trace", SupportedFormat) .Case("os_log", SupportedFormat) .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat) .Default(InvalidFormat); } /// Handle __attribute__((init_priority(priority))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.getLangOpts().CPlusPlus) { S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL; return; } if (S.getLangOpts().HLSL) { S.Diag(AL.getLoc(), diag::err_hlsl_init_priority_unsupported); return; } if (S.getCurFunctionOrMethodDecl()) { S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); AL.setInvalid(); return; } QualType T = cast(D)->getType(); if (S.Context.getAsArrayType(T)) T = S.Context.getBaseElementType(T); if (!T->getAs()) { S.Diag(AL.getLoc(), diag::err_init_priority_object_attr); AL.setInvalid(); return; } Expr *E = AL.getArgAsExpr(0); uint32_t prioritynum; if (!S.checkUInt32Argument(AL, E, prioritynum)) { AL.setInvalid(); return; } // Only perform the priority check if the attribute is outside of a system // header. Values <= 100 are reserved for the implementation, and libc++ // benefits from being able to specify values in that range. if ((prioritynum < 101 || prioritynum > 65535) && !S.getSourceManager().isInSystemHeader(AL.getLoc())) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range) << E->getSourceRange() << AL << 101 << 65535; AL.setInvalid(); return; } D->addAttr(::new (S.Context) InitPriorityAttr(S.Context, AL, prioritynum)); } ErrorAttr *Sema::mergeErrorAttr(Decl *D, const AttributeCommonInfo &CI, StringRef NewUserDiagnostic) { if (const auto *EA = D->getAttr()) { std::string NewAttr = CI.getNormalizedFullName(); assert((NewAttr == "error" || NewAttr == "warning") && "unexpected normalized full name"); bool Match = (EA->isError() && NewAttr == "error") || (EA->isWarning() && NewAttr == "warning"); if (!Match) { Diag(EA->getLocation(), diag::err_attributes_are_not_compatible) << CI << EA << (CI.isRegularKeywordAttribute() || EA->isRegularKeywordAttribute()); Diag(CI.getLoc(), diag::note_conflicting_attribute); return nullptr; } if (EA->getUserDiagnostic() != NewUserDiagnostic) { Diag(CI.getLoc(), diag::warn_duplicate_attribute) << EA; Diag(EA->getLoc(), diag::note_previous_attribute); } D->dropAttr(); } return ::new (Context) ErrorAttr(Context, CI, NewUserDiagnostic); } FormatAttr *Sema::mergeFormatAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Format, int FormatIdx, int FirstArg) { // Check whether we already have an equivalent format attribute. for (auto *F : D->specific_attrs()) { if (F->getType() == Format && F->getFormatIdx() == FormatIdx && F->getFirstArg() == FirstArg) { // If we don't have a valid location for this attribute, adopt the // location. if (F->getLocation().isInvalid()) F->setRange(CI.getRange()); return nullptr; } } return ::new (Context) FormatAttr(Context, CI, Format, FormatIdx, FirstArg); } /// Handle __attribute__((format(type,idx,firstarg))) attributes based on /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } // In C++ the implicit 'this' function parameter also counts, and they are // counted from one. bool HasImplicitThisParam = isInstanceMethod(D); unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; StringRef Format = II->getName(); if (normalizeName(Format)) { // If we've modified the string name, we need a new identifier for it. II = &S.Context.Idents.get(Format); } // Check for supported formats. FormatAttrKind Kind = getFormatAttrKind(Format); if (Kind == IgnoredFormat) return; if (Kind == InvalidFormat) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II->getName(); return; } // checks for the 2nd argument Expr *IdxExpr = AL.getArgAsExpr(1); uint32_t Idx; if (!S.checkUInt32Argument(AL, IdxExpr, Idx, 2)) return; if (Idx < 1 || Idx > NumArgs) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << 2 << IdxExpr->getSourceRange(); return; } // FIXME: Do we need to bounds check? unsigned ArgIdx = Idx - 1; if (HasImplicitThisParam) { if (ArgIdx == 0) { S.Diag(AL.getLoc(), diag::err_format_attribute_implicit_this_format_string) << IdxExpr->getSourceRange(); return; } ArgIdx--; } // make sure the format string is really a string QualType Ty = getFunctionOrMethodParamType(D, ArgIdx); if (!S.ObjC().isNSStringType(Ty, true) && !S.ObjC().isCFStringType(Ty) && (!Ty->isPointerType() || !Ty->castAs()->getPointeeType()->isCharType())) { S.Diag(AL.getLoc(), diag::err_format_attribute_not) << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, ArgIdx); return; } // check the 3rd argument Expr *FirstArgExpr = AL.getArgAsExpr(2); uint32_t FirstArg; if (!S.checkUInt32Argument(AL, FirstArgExpr, FirstArg, 3)) return; // FirstArg == 0 is is always valid. if (FirstArg != 0) { if (Kind == StrftimeFormat) { // If the kind is strftime, FirstArg must be 0 because strftime does not // use any variadic arguments. S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter) << FirstArgExpr->getSourceRange() << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), "0"); return; } else if (isFunctionOrMethodVariadic(D)) { // Else, if the function is variadic, then FirstArg must be 0 or the // "position" of the ... parameter. It's unusual to use 0 with variadic // functions, so the fixit proposes the latter. if (FirstArg != NumArgs + 1) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << 3 << FirstArgExpr->getSourceRange() << FixItHint::CreateReplacement(FirstArgExpr->getSourceRange(), std::to_string(NumArgs + 1)); return; } } else { // Inescapable GCC compatibility diagnostic. S.Diag(D->getLocation(), diag::warn_gcc_requires_variadic_function) << AL; if (FirstArg <= Idx) { // Else, the function is not variadic, and FirstArg must be 0 or any // parameter after the format parameter. We don't offer a fixit because // there are too many possible good values. S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << 3 << FirstArgExpr->getSourceRange(); return; } } } FormatAttr *NewAttr = S.mergeFormatAttr(D, AL, II, Idx, FirstArg); if (NewAttr) D->addAttr(NewAttr); } /// Handle __attribute__((callback(CalleeIdx, PayloadIdx0, ...))) attributes. static void handleCallbackAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The index that identifies the callback callee is mandatory. if (AL.getNumArgs() == 0) { S.Diag(AL.getLoc(), diag::err_callback_attribute_no_callee) << AL.getRange(); return; } bool HasImplicitThisParam = isInstanceMethod(D); int32_t NumArgs = getFunctionOrMethodNumParams(D); FunctionDecl *FD = D->getAsFunction(); assert(FD && "Expected a function declaration!"); llvm::StringMap NameIdxMapping; NameIdxMapping["__"] = -1; NameIdxMapping["this"] = 0; int Idx = 1; for (const ParmVarDecl *PVD : FD->parameters()) NameIdxMapping[PVD->getName()] = Idx++; auto UnknownName = NameIdxMapping.end(); SmallVector EncodingIndices; for (unsigned I = 0, E = AL.getNumArgs(); I < E; ++I) { SourceRange SR; int32_t ArgIdx; if (AL.isArgIdent(I)) { IdentifierLoc *IdLoc = AL.getArgAsIdent(I); auto It = NameIdxMapping.find(IdLoc->Ident->getName()); if (It == UnknownName) { S.Diag(AL.getLoc(), diag::err_callback_attribute_argument_unknown) << IdLoc->Ident << IdLoc->Loc; return; } SR = SourceRange(IdLoc->Loc); ArgIdx = It->second; } else if (AL.isArgExpr(I)) { Expr *IdxExpr = AL.getArgAsExpr(I); // If the expression is not parseable as an int32_t we have a problem. if (!S.checkUInt32Argument(AL, IdxExpr, (uint32_t &)ArgIdx, I + 1, false)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (I + 1) << IdxExpr->getSourceRange(); return; } // Check oob, excluding the special values, 0 and -1. if (ArgIdx < -1 || ArgIdx > NumArgs) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << (I + 1) << IdxExpr->getSourceRange(); return; } SR = IdxExpr->getSourceRange(); } else { llvm_unreachable("Unexpected ParsedAttr argument type!"); } if (ArgIdx == 0 && !HasImplicitThisParam) { S.Diag(AL.getLoc(), diag::err_callback_implicit_this_not_available) << (I + 1) << SR; return; } // Adjust for the case we do not have an implicit "this" parameter. In this // case we decrease all positive values by 1 to get LLVM argument indices. if (!HasImplicitThisParam && ArgIdx > 0) ArgIdx -= 1; EncodingIndices.push_back(ArgIdx); } int CalleeIdx = EncodingIndices.front(); // Check if the callee index is proper, thus not "this" and not "unknown". // This means the "CalleeIdx" has to be non-negative if "HasImplicitThisParam" // is false and positive if "HasImplicitThisParam" is true. if (CalleeIdx < (int)HasImplicitThisParam) { S.Diag(AL.getLoc(), diag::err_callback_attribute_invalid_callee) << AL.getRange(); return; } // Get the callee type, note the index adjustment as the AST doesn't contain // the this type (which the callee cannot reference anyway!). const Type *CalleeType = getFunctionOrMethodParamType(D, CalleeIdx - HasImplicitThisParam) .getTypePtr(); if (!CalleeType || !CalleeType->isFunctionPointerType()) { S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) << AL.getRange(); return; } const Type *CalleeFnType = CalleeType->getPointeeType()->getUnqualifiedDesugaredType(); // TODO: Check the type of the callee arguments. const auto *CalleeFnProtoType = dyn_cast(CalleeFnType); if (!CalleeFnProtoType) { S.Diag(AL.getLoc(), diag::err_callback_callee_no_function_type) << AL.getRange(); return; } if (CalleeFnProtoType->getNumParams() > EncodingIndices.size() - 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << (unsigned)(EncodingIndices.size() - 1); return; } if (CalleeFnProtoType->getNumParams() < EncodingIndices.size() - 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << (unsigned)(EncodingIndices.size() - 1); return; } if (CalleeFnProtoType->isVariadic()) { S.Diag(AL.getLoc(), diag::err_callback_callee_is_variadic) << AL.getRange(); return; } // Do not allow multiple callback attributes. if (D->hasAttr()) { S.Diag(AL.getLoc(), diag::err_callback_attribute_multiple) << AL.getRange(); return; } D->addAttr(::new (S.Context) CallbackAttr( S.Context, AL, EncodingIndices.data(), EncodingIndices.size())); } static bool isFunctionLike(const Type &T) { // Check for explicit function types. // 'called_once' is only supported in Objective-C and it has // function pointers and block pointers. return T.isFunctionPointerType() || T.isBlockPointerType(); } /// Handle 'called_once' attribute. static void handleCalledOnceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // 'called_once' only applies to parameters representing functions. QualType T = cast(D)->getType(); if (!isFunctionLike(*T)) { S.Diag(AL.getLoc(), diag::err_called_once_attribute_wrong_type); return; } D->addAttr(::new (S.Context) CalledOnceAttr(S.Context, AL)); } static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Try to find the underlying union declaration. RecordDecl *RD = nullptr; const auto *TD = dyn_cast(D); if (TD && TD->getUnderlyingType()->isUnionType()) RD = TD->getUnderlyingType()->getAsUnionType()->getDecl(); else RD = dyn_cast(D); if (!RD || !RD->isUnion()) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedUnion; return; } if (!RD->isCompleteDefinition()) { if (!RD->isBeingDefined()) S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_not_definition); return; } RecordDecl::field_iterator Field = RD->field_begin(), FieldEnd = RD->field_end(); if (Field == FieldEnd) { S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields); return; } FieldDecl *FirstField = *Field; QualType FirstType = FirstField->getType(); if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) { S.Diag(FirstField->getLocation(), diag::warn_transparent_union_attribute_floating) << FirstType->isVectorType() << FirstType; return; } if (FirstType->isIncompleteType()) return; uint64_t FirstSize = S.Context.getTypeSize(FirstType); uint64_t FirstAlign = S.Context.getTypeAlign(FirstType); for (; Field != FieldEnd; ++Field) { QualType FieldType = Field->getType(); if (FieldType->isIncompleteType()) return; // FIXME: this isn't fully correct; we also need to test whether the // members of the union would all have the same calling convention as the // first member of the union. Checking just the size and alignment isn't // sufficient (consider structs passed on the stack instead of in registers // as an example). if (S.Context.getTypeSize(FieldType) != FirstSize || S.Context.getTypeAlign(FieldType) > FirstAlign) { // Warn if we drop the attribute. bool isSize = S.Context.getTypeSize(FieldType) != FirstSize; unsigned FieldBits = isSize ? S.Context.getTypeSize(FieldType) : S.Context.getTypeAlign(FieldType); S.Diag(Field->getLocation(), diag::warn_transparent_union_attribute_field_size_align) << isSize << *Field << FieldBits; unsigned FirstBits = isSize ? FirstSize : FirstAlign; S.Diag(FirstField->getLocation(), diag::note_transparent_union_first_field_size_align) << isSize << FirstBits; return; } } RD->addAttr(::new (S.Context) TransparentUnionAttr(S.Context, AL)); } void Sema::AddAnnotationAttr(Decl *D, const AttributeCommonInfo &CI, StringRef Str, MutableArrayRef Args) { auto *Attr = AnnotateAttr::Create(Context, Str, Args.data(), Args.size(), CI); if (ConstantFoldAttrArgs( CI, MutableArrayRef(Attr->args_begin(), Attr->args_end()))) { D->addAttr(Attr); } } static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Make sure that there is a string literal as the annotation's first // argument. StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; llvm::SmallVector Args; Args.reserve(AL.getNumArgs() - 1); for (unsigned Idx = 1; Idx < AL.getNumArgs(); Idx++) { assert(!AL.isArgIdent(Idx)); Args.push_back(AL.getArgAsExpr(Idx)); } S.AddAnnotationAttr(D, AL, Str, Args); } static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) { S.AddAlignValueAttr(D, AL, AL.getArgAsExpr(0)); } void Sema::AddAlignValueAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E) { AlignValueAttr TmpAttr(Context, CI, E); SourceLocation AttrLoc = CI.getLoc(); QualType T; if (const auto *TD = dyn_cast(D)) T = TD->getUnderlyingType(); else if (const auto *VD = dyn_cast(D)) T = VD->getType(); else llvm_unreachable("Unknown decl type for align_value"); if (!T->isDependentType() && !T->isAnyPointerType() && !T->isReferenceType() && !T->isMemberPointerType()) { Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only) << &TmpAttr << T << D->getSourceRange(); return; } if (!E->isValueDependent()) { llvm::APSInt Alignment; ExprResult ICE = VerifyIntegerConstantExpression( E, &Alignment, diag::err_align_value_attribute_argument_not_int); if (ICE.isInvalid()) return; if (!Alignment.isPowerOf2()) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } D->addAttr(::new (Context) AlignValueAttr(Context, CI, ICE.get())); return; } // Save dependent expressions in the AST to be instantiated. D->addAttr(::new (Context) AlignValueAttr(Context, CI, E)); } static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.hasParsedType()) { const ParsedType &TypeArg = AL.getTypeArg(); TypeSourceInfo *TInfo; (void)S.GetTypeFromParser( ParsedType::getFromOpaquePtr(TypeArg.getAsOpaquePtr()), &TInfo); if (AL.isPackExpansion() && !TInfo->getType()->containsUnexpandedParameterPack()) { S.Diag(AL.getEllipsisLoc(), diag::err_pack_expansion_without_parameter_packs); return; } if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(TInfo->getTypeLoc().getBeginLoc(), TInfo, Sema::UPPC_Expression)) return; S.AddAlignedAttr(D, AL, TInfo, AL.isPackExpansion()); return; } // check the attribute arguments. if (AL.getNumArgs() > 1) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } if (AL.getNumArgs() == 0) { D->addAttr(::new (S.Context) AlignedAttr(S.Context, AL, true, nullptr)); return; } Expr *E = AL.getArgAsExpr(0); if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) { S.Diag(AL.getEllipsisLoc(), diag::err_pack_expansion_without_parameter_packs); return; } if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E)) return; S.AddAlignedAttr(D, AL, E, AL.isPackExpansion()); } /// Perform checking of type validity /// /// C++11 [dcl.align]p1: /// An alignment-specifier may be applied to a variable or to a class /// data member, but it shall not be applied to a bit-field, a function /// parameter, the formal parameter of a catch clause, or a variable /// declared with the register storage class specifier. An /// alignment-specifier may also be applied to the declaration of a class /// or enumeration type. /// CWG 2354: /// CWG agreed to remove permission for alignas to be applied to /// enumerations. /// C11 6.7.5/2: /// An alignment attribute shall not be specified in a declaration of /// a typedef, or a bit-field, or a function, or a parameter, or an /// object declared with the register storage-class specifier. static bool validateAlignasAppliedType(Sema &S, Decl *D, const AlignedAttr &Attr, SourceLocation AttrLoc) { int DiagKind = -1; if (isa(D)) { DiagKind = 0; } else if (const auto *VD = dyn_cast(D)) { if (VD->getStorageClass() == SC_Register) DiagKind = 1; if (VD->isExceptionVariable()) DiagKind = 2; } else if (const auto *FD = dyn_cast(D)) { if (FD->isBitField()) DiagKind = 3; } else if (const auto *ED = dyn_cast(D)) { if (ED->getLangOpts().CPlusPlus) DiagKind = 4; } else if (!isa(D)) { return S.Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &Attr << Attr.isRegularKeywordAttribute() << (Attr.isC11() ? ExpectedVariableOrField : ExpectedVariableFieldOrTag); } if (DiagKind != -1) { return S.Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type) << &Attr << DiagKind; } return false; } void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, Expr *E, bool IsPackExpansion) { AlignedAttr TmpAttr(Context, CI, true, E); SourceLocation AttrLoc = CI.getLoc(); // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. if (TmpAttr.isAlignas() && validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) return; if (E->isValueDependent()) { // We can't support a dependent alignment on a non-dependent type, // because we have no way to model that a type is "alignment-dependent" // but not dependent in any other way. if (const auto *TND = dyn_cast(D)) { if (!TND->getUnderlyingType()->isDependentType()) { Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) << E->getSourceRange(); return; } } // Save dependent expressions in the AST to be instantiated. AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, E); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); return; } // FIXME: Cache the number on the AL object? llvm::APSInt Alignment; ExprResult ICE = VerifyIntegerConstantExpression( E, &Alignment, diag::err_aligned_attribute_argument_not_int); if (ICE.isInvalid()) return; uint64_t MaximumAlignment = Sema::MaximumAlignment; if (Context.getTargetInfo().getTriple().isOSBinFormatCOFF()) MaximumAlignment = std::min(MaximumAlignment, uint64_t(8192)); if (Alignment > MaximumAlignment) { Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaximumAlignment << E->getSourceRange(); return; } uint64_t AlignVal = Alignment.getZExtValue(); // C++11 [dcl.align]p2: // -- if the constant expression evaluates to zero, the alignment // specifier shall have no effect // C11 6.7.5p6: // An alignment specification of zero has no effect. if (!(TmpAttr.isAlignas() && !Alignment)) { if (!llvm::isPowerOf2_64(AlignVal)) { Diag(AttrLoc, diag::err_alignment_not_power_of_two) << E->getSourceRange(); return; } } const auto *VD = dyn_cast(D); if (VD) { unsigned MaxTLSAlign = Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign()) .getQuantity(); if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD->getTLSKind() != VarDecl::TLS_None) { Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) << (unsigned)AlignVal << VD << MaxTLSAlign; return; } } // On AIX, an aligned attribute can not decrease the alignment when applied // to a variable declaration with vector type. if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { const Type *Ty = VD->getType().getTypePtr(); if (Ty->isVectorType() && AlignVal < 16) { Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) << VD->getType() << 16; return; } } AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, true, ICE.get()); AA->setPackExpansion(IsPackExpansion); AA->setCachedAlignmentValue( static_cast(AlignVal * Context.getCharWidth())); D->addAttr(AA); } void Sema::AddAlignedAttr(Decl *D, const AttributeCommonInfo &CI, TypeSourceInfo *TS, bool IsPackExpansion) { AlignedAttr TmpAttr(Context, CI, false, TS); SourceLocation AttrLoc = CI.getLoc(); // C++11 alignas(...) and C11 _Alignas(...) have additional requirements. if (TmpAttr.isAlignas() && validateAlignasAppliedType(*this, D, TmpAttr, AttrLoc)) return; if (TS->getType()->isDependentType()) { // We can't support a dependent alignment on a non-dependent type, // because we have no way to model that a type is "type-dependent" // but not dependent in any other way. if (const auto *TND = dyn_cast(D)) { if (!TND->getUnderlyingType()->isDependentType()) { Diag(AttrLoc, diag::err_alignment_dependent_typedef_name) << TS->getTypeLoc().getSourceRange(); return; } } AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); AA->setPackExpansion(IsPackExpansion); D->addAttr(AA); return; } const auto *VD = dyn_cast(D); unsigned AlignVal = TmpAttr.getAlignment(Context); // On AIX, an aligned attribute can not decrease the alignment when applied // to a variable declaration with vector type. if (VD && Context.getTargetInfo().getTriple().isOSAIX()) { const Type *Ty = VD->getType().getTypePtr(); if (Ty->isVectorType() && Context.toCharUnitsFromBits(AlignVal).getQuantity() < 16) { Diag(VD->getLocation(), diag::warn_aligned_attr_underaligned) << VD->getType() << 16; return; } } AlignedAttr *AA = ::new (Context) AlignedAttr(Context, CI, false, TS); AA->setPackExpansion(IsPackExpansion); AA->setCachedAlignmentValue(AlignVal); D->addAttr(AA); } void Sema::CheckAlignasUnderalignment(Decl *D) { assert(D->hasAttrs() && "no attributes on decl"); QualType UnderlyingTy, DiagTy; if (const auto *VD = dyn_cast(D)) { UnderlyingTy = DiagTy = VD->getType(); } else { UnderlyingTy = DiagTy = Context.getTagDeclType(cast(D)); if (const auto *ED = dyn_cast(D)) UnderlyingTy = ED->getIntegerType(); } if (DiagTy->isDependentType() || DiagTy->isIncompleteType()) return; // C++11 [dcl.align]p5, C11 6.7.5/4: // The combined effect of all alignment attributes in a declaration shall // not specify an alignment that is less strict than the alignment that // would otherwise be required for the entity being declared. AlignedAttr *AlignasAttr = nullptr; AlignedAttr *LastAlignedAttr = nullptr; unsigned Align = 0; for (auto *I : D->specific_attrs()) { if (I->isAlignmentDependent()) return; if (I->isAlignas()) AlignasAttr = I; Align = std::max(Align, I->getAlignment(Context)); LastAlignedAttr = I; } if (Align && DiagTy->isSizelessType()) { Diag(LastAlignedAttr->getLocation(), diag::err_attribute_sizeless_type) << LastAlignedAttr << DiagTy; } else if (AlignasAttr && Align) { CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align); CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy); if (NaturalAlign > RequestedAlign) Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned) << DiagTy << (unsigned)NaturalAlign.getQuantity(); } } bool Sema::checkMSInheritanceAttrOnDefinition( CXXRecordDecl *RD, SourceRange Range, bool BestCase, MSInheritanceModel ExplicitModel) { assert(RD->hasDefinition() && "RD has no definition!"); // We may not have seen base specifiers or any virtual methods yet. We will // have to wait until the record is defined to catch any mismatches. if (!RD->getDefinition()->isCompleteDefinition()) return false; // The unspecified model never matches what a definition could need. if (ExplicitModel == MSInheritanceModel::Unspecified) return false; if (BestCase) { if (RD->calculateInheritanceModel() == ExplicitModel) return false; } else { if (RD->calculateInheritanceModel() <= ExplicitModel) return false; } Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance) << 0 /*definition*/; Diag(RD->getDefinition()->getLocation(), diag::note_defined_here) << RD; return true; } /// parseModeAttrArg - Parses attribute mode string and returns parsed type /// attribute. static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth, bool &IntegerMode, bool &ComplexMode, FloatModeKind &ExplicitType) { IntegerMode = true; ComplexMode = false; ExplicitType = FloatModeKind::NoFloat; switch (Str.size()) { case 2: switch (Str[0]) { case 'Q': DestWidth = 8; break; case 'H': DestWidth = 16; break; case 'S': DestWidth = 32; break; case 'D': DestWidth = 64; break; case 'X': DestWidth = 96; break; case 'K': // KFmode - IEEE quad precision (__float128) ExplicitType = FloatModeKind::Float128; DestWidth = Str[1] == 'I' ? 0 : 128; break; case 'T': ExplicitType = FloatModeKind::LongDouble; DestWidth = 128; break; case 'I': ExplicitType = FloatModeKind::Ibm128; DestWidth = Str[1] == 'I' ? 0 : 128; break; } if (Str[1] == 'F') { IntegerMode = false; } else if (Str[1] == 'C') { IntegerMode = false; ComplexMode = true; } else if (Str[1] != 'I') { DestWidth = 0; } break; case 4: // FIXME: glibc uses 'word' to define register_t; this is narrower than a // pointer on PIC16 and other embedded platforms. if (Str == "word") DestWidth = S.Context.getTargetInfo().getRegisterWidth(); else if (Str == "byte") DestWidth = S.Context.getTargetInfo().getCharWidth(); break; case 7: if (Str == "pointer") DestWidth = S.Context.getTargetInfo().getPointerWidth(LangAS::Default); break; case 11: if (Str == "unwind_word") DestWidth = S.Context.getTargetInfo().getUnwindWordWidth(); break; } } /// handleModeAttr - This attribute modifies the width of a decl with primitive /// type. /// /// Despite what would be logical, the mode attribute is a decl attribute, not a /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be /// HImode, not an intermediate pointer. static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // This attribute isn't documented, but glibc uses it. It changes // the width of an int or unsigned int to the specified size. if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident; S.AddModeAttr(D, AL, Name); } void Sema::AddModeAttr(Decl *D, const AttributeCommonInfo &CI, IdentifierInfo *Name, bool InInstantiation) { StringRef Str = Name->getName(); normalizeName(Str); SourceLocation AttrLoc = CI.getLoc(); unsigned DestWidth = 0; bool IntegerMode = true; bool ComplexMode = false; FloatModeKind ExplicitType = FloatModeKind::NoFloat; llvm::APInt VectorSize(64, 0); if (Str.size() >= 4 && Str[0] == 'V') { // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2). size_t StrSize = Str.size(); size_t VectorStringLength = 0; while ((VectorStringLength + 1) < StrSize && isdigit(Str[VectorStringLength + 1])) ++VectorStringLength; if (VectorStringLength && !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) && VectorSize.isPowerOf2()) { parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth, IntegerMode, ComplexMode, ExplicitType); // Avoid duplicate warning from template instantiation. if (!InInstantiation) Diag(AttrLoc, diag::warn_vector_mode_deprecated); } else { VectorSize = 0; } } if (!VectorSize) parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode, ExplicitType); // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t // and friends, at least with glibc. // FIXME: Make sure floating-point mappings are accurate // FIXME: Support XF and TF types if (!DestWidth) { Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name; return; } QualType OldTy; if (const auto *TD = dyn_cast(D)) OldTy = TD->getUnderlyingType(); else if (const auto *ED = dyn_cast(D)) { // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'. // Try to get type from enum declaration, default to int. OldTy = ED->getIntegerType(); if (OldTy.isNull()) OldTy = Context.IntTy; } else OldTy = cast(D)->getType(); if (OldTy->isDependentType()) { D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); return; } // Base type can also be a vector type (see PR17453). // Distinguish between base type and base element type. QualType OldElemTy = OldTy; if (const auto *VT = OldTy->getAs()) OldElemTy = VT->getElementType(); // GCC allows 'mode' attribute on enumeration types (even incomplete), except // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected. if ((isa(D) || OldElemTy->getAs()) && VectorSize.getBoolValue()) { Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << CI.getRange(); return; } bool IntegralOrAnyEnumType = (OldElemTy->isIntegralOrEnumerationType() && !OldElemTy->isBitIntType()) || OldElemTy->getAs(); if (!OldElemTy->getAs() && !OldElemTy->isComplexType() && !IntegralOrAnyEnumType) Diag(AttrLoc, diag::err_mode_not_primitive); else if (IntegerMode) { if (!IntegralOrAnyEnumType) Diag(AttrLoc, diag::err_mode_wrong_type); } else if (ComplexMode) { if (!OldElemTy->isComplexType()) Diag(AttrLoc, diag::err_mode_wrong_type); } else { if (!OldElemTy->isFloatingType()) Diag(AttrLoc, diag::err_mode_wrong_type); } QualType NewElemTy; if (IntegerMode) NewElemTy = Context.getIntTypeForBitwidth(DestWidth, OldElemTy->isSignedIntegerType()); else NewElemTy = Context.getRealTypeForBitwidth(DestWidth, ExplicitType); if (NewElemTy.isNull()) { // Only emit diagnostic on host for 128-bit mode attribute if (!(DestWidth == 128 && getLangOpts().CUDAIsDevice)) Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name; return; } if (ComplexMode) { NewElemTy = Context.getComplexType(NewElemTy); } QualType NewTy = NewElemTy; if (VectorSize.getBoolValue()) { NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(), VectorKind::Generic); } else if (const auto *OldVT = OldTy->getAs()) { // Complex machine mode does not support base vector types. if (ComplexMode) { Diag(AttrLoc, diag::err_complex_mode_vector_type); return; } unsigned NumElements = Context.getTypeSize(OldElemTy) * OldVT->getNumElements() / Context.getTypeSize(NewElemTy); NewTy = Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind()); } if (NewTy.isNull()) { Diag(AttrLoc, diag::err_mode_wrong_type); return; } // Install the new type. if (auto *TD = dyn_cast(D)) TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy); else if (auto *ED = dyn_cast(D)) ED->setIntegerType(NewTy); else cast(D)->setType(NewTy); D->addAttr(::new (Context) ModeAttr(Context, CI, Name)); } static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) { D->addAttr(::new (S.Context) NoDebugAttr(S.Context, AL)); } AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, const AttributeCommonInfo &CI, const IdentifierInfo *Ident) { if (OptimizeNoneAttr *Optnone = D->getAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << Ident; Diag(Optnone->getLocation(), diag::note_conflicting_attribute); return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) AlwaysInlineAttr(Context, CI); } InternalLinkageAttr *Sema::mergeInternalLinkageAttr(Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { // Attribute applies to Var but not any subclass of it (like ParmVar, // ImplicitParm or VarTemplateSpecialization). if (VD->getKind() != Decl::Var) { Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : ExpectedVariableOrFunction); return nullptr; } // Attribute does not apply to non-static local variables. if (VD->hasLocalStorage()) { Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); return nullptr; } } return ::new (Context) InternalLinkageAttr(Context, AL); } InternalLinkageAttr * Sema::mergeInternalLinkageAttr(Decl *D, const InternalLinkageAttr &AL) { if (const auto *VD = dyn_cast(D)) { // Attribute applies to Var but not any subclass of it (like ParmVar, // ImplicitParm or VarTemplateSpecialization). if (VD->getKind() != Decl::Var) { Diag(AL.getLocation(), diag::warn_attribute_wrong_decl_type) << &AL << AL.isRegularKeywordAttribute() << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass : ExpectedVariableOrFunction); return nullptr; } // Attribute does not apply to non-static local variables. if (VD->hasLocalStorage()) { Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage); return nullptr; } } return ::new (Context) InternalLinkageAttr(Context, AL); } MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, const AttributeCommonInfo &CI) { if (OptimizeNoneAttr *Optnone = D->getAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'minsize'"; Diag(Optnone->getLocation(), diag::note_conflicting_attribute); return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) MinSizeAttr(Context, CI); } OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, const AttributeCommonInfo &CI) { if (AlwaysInlineAttr *Inline = D->getAttr()) { Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline; Diag(CI.getLoc(), diag::note_conflicting_attribute); D->dropAttr(); } if (MinSizeAttr *MinSize = D->getAttr()) { Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize; Diag(CI.getLoc(), diag::note_conflicting_attribute); D->dropAttr(); } if (D->hasAttr()) return nullptr; return ::new (Context) OptimizeNoneAttr(Context, CI); } static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(D, AL, AL.getAttrName())) D->addAttr(Inline); } static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(D, AL)) D->addAttr(MinSize); } static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(D, AL)) D->addAttr(Optnone); } static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } // constexpr variable may already get an implicit constant attr, which should // be replaced by the explicit constant attr. if (auto *A = D->getAttr()) { if (!A->isImplicit()) return; D->dropAttr(); } D->addAttr(::new (S.Context) CUDAConstantAttr(S.Context, AL)); } static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); // extern __shared__ is only allowed on arrays with no length (e.g. // "int x[]"). if (!S.getLangOpts().GPURelocatableDeviceCode && VD->hasExternalStorage() && !isa(VD->getType())) { S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD; return; } if (S.getLangOpts().CUDA && VD->hasLocalStorage() && S.CUDA().DiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared) << llvm::to_underlying(S.CUDA().CurrentTarget())) return; D->addAttr(::new (S.Context) CUDASharedAttr(S.Context, AL)); } static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *FD = cast(D); if (!FD->getReturnType()->isVoidType() && !FD->getReturnType()->getAs() && !FD->getReturnType()->isInstantiationDependentType()) { SourceRange RTRange = FD->getReturnTypeSourceRange(); S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return) << FD->getType() << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") : FixItHint()); return; } if (const auto *Method = dyn_cast(FD)) { if (Method->isInstance()) { S.Diag(Method->getBeginLoc(), diag::err_kern_is_nonstatic_method) << Method; return; } S.Diag(Method->getBeginLoc(), diag::warn_kern_is_method) << Method; } // Only warn for "inline" when compiling for host, to cut down on noise. if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice) S.Diag(FD->getBeginLoc(), diag::warn_kern_is_inline) << FD; if (AL.getKind() == ParsedAttr::AT_NVPTXKernel) D->addAttr(::new (S.Context) NVPTXKernelAttr(S.Context, AL)); else D->addAttr(::new (S.Context) CUDAGlobalAttr(S.Context, AL)); // In host compilation the kernel is emitted as a stub function, which is // a helper function for launching the kernel. The instructions in the helper // function has nothing to do with the source code of the kernel. Do not emit // debug info for the stub function to avoid confusing the debugger. if (S.LangOpts.HIP && !S.LangOpts.CUDAIsDevice) D->addAttr(NoDebugAttr::CreateImplicit(S.Context)); } static void handleDeviceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } } if (auto *A = D->getAttr()) { if (!A->isImplicit()) return; D->dropAttr(); } D->addAttr(::new (S.Context) CUDADeviceAttr(S.Context, AL)); } static void handleManagedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *VD = dyn_cast(D)) { if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_cuda_nonstatic_constdev); return; } } if (!D->hasAttr()) D->addAttr(::new (S.Context) HIPManagedAttr(S.Context, AL)); if (!D->hasAttr()) D->addAttr(CUDADeviceAttr::CreateImplicit(S.Context)); } static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *Fn = cast(D); if (!Fn->isInlineSpecified()) { S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline); return; } if (S.LangOpts.CPlusPlus && Fn->getStorageClass() != SC_Extern) S.Diag(AL.getLoc(), diag::warn_gnu_inline_cplusplus_without_extern); D->addAttr(::new (S.Context) GNUInlineAttr(S.Context, AL)); } static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (hasDeclarator(D)) return; // Diagnostic is emitted elsewhere: here we store the (valid) AL // in the Decl node for syntactic reasoning, e.g., pretty-printing. CallingConv CC; if (S.CheckCallingConvAttr( AL, CC, /*FD*/ nullptr, S.CUDA().IdentifyTarget(dyn_cast(D)))) return; if (!isa(D)) { S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedFunctionOrMethod; return; } switch (AL.getKind()) { case ParsedAttr::AT_FastCall: D->addAttr(::new (S.Context) FastCallAttr(S.Context, AL)); return; case ParsedAttr::AT_StdCall: D->addAttr(::new (S.Context) StdCallAttr(S.Context, AL)); return; case ParsedAttr::AT_ThisCall: D->addAttr(::new (S.Context) ThisCallAttr(S.Context, AL)); return; case ParsedAttr::AT_CDecl: D->addAttr(::new (S.Context) CDeclAttr(S.Context, AL)); return; case ParsedAttr::AT_Pascal: D->addAttr(::new (S.Context) PascalAttr(S.Context, AL)); return; case ParsedAttr::AT_SwiftCall: D->addAttr(::new (S.Context) SwiftCallAttr(S.Context, AL)); return; case ParsedAttr::AT_SwiftAsyncCall: D->addAttr(::new (S.Context) SwiftAsyncCallAttr(S.Context, AL)); return; case ParsedAttr::AT_VectorCall: D->addAttr(::new (S.Context) VectorCallAttr(S.Context, AL)); return; case ParsedAttr::AT_MSABI: D->addAttr(::new (S.Context) MSABIAttr(S.Context, AL)); return; case ParsedAttr::AT_SysVABI: D->addAttr(::new (S.Context) SysVABIAttr(S.Context, AL)); return; case ParsedAttr::AT_RegCall: D->addAttr(::new (S.Context) RegCallAttr(S.Context, AL)); return; case ParsedAttr::AT_Pcs: { PcsAttr::PCSType PCS; switch (CC) { case CC_AAPCS: PCS = PcsAttr::AAPCS; break; case CC_AAPCS_VFP: PCS = PcsAttr::AAPCS_VFP; break; default: llvm_unreachable("unexpected calling convention in pcs attribute"); } D->addAttr(::new (S.Context) PcsAttr(S.Context, AL, PCS)); return; } case ParsedAttr::AT_AArch64VectorPcs: D->addAttr(::new (S.Context) AArch64VectorPcsAttr(S.Context, AL)); return; case ParsedAttr::AT_AArch64SVEPcs: D->addAttr(::new (S.Context) AArch64SVEPcsAttr(S.Context, AL)); return; case ParsedAttr::AT_AMDGPUKernelCall: D->addAttr(::new (S.Context) AMDGPUKernelCallAttr(S.Context, AL)); return; case ParsedAttr::AT_IntelOclBicc: D->addAttr(::new (S.Context) IntelOclBiccAttr(S.Context, AL)); return; case ParsedAttr::AT_PreserveMost: D->addAttr(::new (S.Context) PreserveMostAttr(S.Context, AL)); return; case ParsedAttr::AT_PreserveAll: D->addAttr(::new (S.Context) PreserveAllAttr(S.Context, AL)); return; case ParsedAttr::AT_M68kRTD: D->addAttr(::new (S.Context) M68kRTDAttr(S.Context, AL)); return; case ParsedAttr::AT_PreserveNone: D->addAttr(::new (S.Context) PreserveNoneAttr(S.Context, AL)); return; case ParsedAttr::AT_RISCVVectorCC: D->addAttr(::new (S.Context) RISCVVectorCCAttr(S.Context, AL)); return; default: llvm_unreachable("unexpected attribute kind"); } } static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.getAttributeSpellingListIndex() == SuppressAttr::CXX11_gsl_suppress) { // Suppression attribute with GSL spelling requires at least 1 argument. if (!AL.checkAtLeastNumArgs(S, 1)) return; } std::vector DiagnosticIdentifiers; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef RuleName; if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr)) return; DiagnosticIdentifiers.push_back(RuleName); } D->addAttr(::new (S.Context) SuppressAttr(S.Context, AL, DiagnosticIdentifiers.data(), DiagnosticIdentifiers.size())); } static void handleLifetimeCategoryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { TypeSourceInfo *DerefTypeLoc = nullptr; QualType ParmType; if (AL.hasParsedType()) { ParmType = S.GetTypeFromParser(AL.getTypeArg(), &DerefTypeLoc); unsigned SelectIdx = ~0U; if (ParmType->isReferenceType()) SelectIdx = 0; else if (ParmType->isArrayType()) SelectIdx = 1; if (SelectIdx != ~0U) { S.Diag(AL.getLoc(), diag::err_attribute_invalid_argument) << SelectIdx << AL; return; } } // To check if earlier decl attributes do not conflict the newly parsed ones // we always add (and check) the attribute to the canonical decl. We need // to repeat the check for attribute mutual exclusion because we're attaching // all of the attributes to the canonical declaration rather than the current // declaration. D = D->getCanonicalDecl(); if (AL.getKind() == ParsedAttr::AT_Owner) { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *OAttr = D->getAttr()) { const Type *ExistingDerefType = OAttr->getDerefTypeLoc() ? OAttr->getDerefType().getTypePtr() : nullptr; if (ExistingDerefType != ParmType.getTypePtrOrNull()) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << OAttr << (AL.isRegularKeywordAttribute() || OAttr->isRegularKeywordAttribute()); S.Diag(OAttr->getLocation(), diag::note_conflicting_attribute); } return; } for (Decl *Redecl : D->redecls()) { Redecl->addAttr(::new (S.Context) OwnerAttr(S.Context, AL, DerefTypeLoc)); } } else { if (checkAttrMutualExclusion(S, D, AL)) return; if (const auto *PAttr = D->getAttr()) { const Type *ExistingDerefType = PAttr->getDerefTypeLoc() ? PAttr->getDerefType().getTypePtr() : nullptr; if (ExistingDerefType != ParmType.getTypePtrOrNull()) { S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible) << AL << PAttr << (AL.isRegularKeywordAttribute() || PAttr->isRegularKeywordAttribute()); S.Diag(PAttr->getLocation(), diag::note_conflicting_attribute); } return; } for (Decl *Redecl : D->redecls()) { Redecl->addAttr(::new (S.Context) PointerAttr(S.Context, AL, DerefTypeLoc)); } } } static void handleRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (checkAttrMutualExclusion(S, D, AL)) return; if (!D->hasAttr()) D->addAttr(::new (S.Context) RandomizeLayoutAttr(S.Context, AL)); } static void handleNoRandomizeLayoutAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (checkAttrMutualExclusion(S, D, AL)) return; if (!D->hasAttr()) D->addAttr(::new (S.Context) NoRandomizeLayoutAttr(S.Context, AL)); } bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC, const FunctionDecl *FD, CUDAFunctionTarget CFT) { if (Attrs.isInvalid()) return true; if (Attrs.hasProcessingCache()) { CC = (CallingConv) Attrs.getProcessingCache(); return false; } unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0; if (!Attrs.checkExactlyNumArgs(*this, ReqArgs)) { Attrs.setInvalid(); return true; } // TODO: diagnose uses of these conventions on the wrong target. switch (Attrs.getKind()) { case ParsedAttr::AT_CDecl: CC = CC_C; break; case ParsedAttr::AT_FastCall: CC = CC_X86FastCall; break; case ParsedAttr::AT_StdCall: CC = CC_X86StdCall; break; case ParsedAttr::AT_ThisCall: CC = CC_X86ThisCall; break; case ParsedAttr::AT_Pascal: CC = CC_X86Pascal; break; case ParsedAttr::AT_SwiftCall: CC = CC_Swift; break; case ParsedAttr::AT_SwiftAsyncCall: CC = CC_SwiftAsync; break; case ParsedAttr::AT_VectorCall: CC = CC_X86VectorCall; break; case ParsedAttr::AT_AArch64VectorPcs: CC = CC_AArch64VectorCall; break; case ParsedAttr::AT_AArch64SVEPcs: CC = CC_AArch64SVEPCS; break; case ParsedAttr::AT_AMDGPUKernelCall: CC = CC_AMDGPUKernelCall; break; case ParsedAttr::AT_RegCall: CC = CC_X86RegCall; break; case ParsedAttr::AT_MSABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C : CC_Win64; break; case ParsedAttr::AT_SysVABI: CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV : CC_C; break; case ParsedAttr::AT_Pcs: { StringRef StrRef; if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) { Attrs.setInvalid(); return true; } if (StrRef == "aapcs") { CC = CC_AAPCS; break; } else if (StrRef == "aapcs-vfp") { CC = CC_AAPCS_VFP; break; } Attrs.setInvalid(); Diag(Attrs.getLoc(), diag::err_invalid_pcs); return true; } case ParsedAttr::AT_IntelOclBicc: CC = CC_IntelOclBicc; break; case ParsedAttr::AT_PreserveMost: CC = CC_PreserveMost; break; case ParsedAttr::AT_PreserveAll: CC = CC_PreserveAll; break; case ParsedAttr::AT_M68kRTD: CC = CC_M68kRTD; break; case ParsedAttr::AT_PreserveNone: CC = CC_PreserveNone; break; case ParsedAttr::AT_RISCVVectorCC: CC = CC_RISCVVectorCall; break; default: llvm_unreachable("unexpected attribute kind"); } TargetInfo::CallingConvCheckResult A = TargetInfo::CCCR_OK; const TargetInfo &TI = Context.getTargetInfo(); // CUDA functions may have host and/or device attributes which indicate // their targeted execution environment, therefore the calling convention // of functions in CUDA should be checked against the target deduced based // on their host/device attributes. if (LangOpts.CUDA) { auto *Aux = Context.getAuxTargetInfo(); assert(FD || CFT != CUDAFunctionTarget::InvalidTarget); auto CudaTarget = FD ? CUDA().IdentifyTarget(FD) : CFT; bool CheckHost = false, CheckDevice = false; switch (CudaTarget) { case CUDAFunctionTarget::HostDevice: CheckHost = true; CheckDevice = true; break; case CUDAFunctionTarget::Host: CheckHost = true; break; case CUDAFunctionTarget::Device: case CUDAFunctionTarget::Global: CheckDevice = true; break; case CUDAFunctionTarget::InvalidTarget: llvm_unreachable("unexpected cuda target"); } auto *HostTI = LangOpts.CUDAIsDevice ? Aux : &TI; auto *DeviceTI = LangOpts.CUDAIsDevice ? &TI : Aux; if (CheckHost && HostTI) A = HostTI->checkCallingConvention(CC); if (A == TargetInfo::CCCR_OK && CheckDevice && DeviceTI) A = DeviceTI->checkCallingConvention(CC); } else { A = TI.checkCallingConvention(CC); } switch (A) { case TargetInfo::CCCR_OK: break; case TargetInfo::CCCR_Ignore: // Treat an ignored convention as if it was an explicit C calling convention // attribute. For example, __stdcall on Win x64 functions as __cdecl, so // that command line flags that change the default convention to // __vectorcall don't affect declarations marked __stdcall. CC = CC_C; break; case TargetInfo::CCCR_Error: Diag(Attrs.getLoc(), diag::error_cconv_unsupported) << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; break; case TargetInfo::CCCR_Warning: { Diag(Attrs.getLoc(), diag::warn_cconv_unsupported) << Attrs << (int)CallingConventionIgnoredReason::ForThisTarget; // This convention is not valid for the target. Use the default function or // method calling convention. bool IsCXXMethod = false, IsVariadic = false; if (FD) { IsCXXMethod = FD->isCXXInstanceMember(); IsVariadic = FD->isVariadic(); } CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod); break; } } Attrs.setProcessingCache((unsigned) CC); return false; } bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) { if (AL.isInvalid()) return true; if (!AL.checkExactlyNumArgs(*this, 1)) { AL.setInvalid(); return true; } uint32_t NP; Expr *NumParamsExpr = AL.getArgAsExpr(0); if (!checkUInt32Argument(AL, NumParamsExpr, NP)) { AL.setInvalid(); return true; } if (Context.getTargetInfo().getRegParmMax() == 0) { Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform) << NumParamsExpr->getSourceRange(); AL.setInvalid(); return true; } numParams = NP; if (numParams > Context.getTargetInfo().getRegParmMax()) { Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number) << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange(); AL.setInvalid(); return true; } return false; } // Helper to get OffloadArch. static OffloadArch getOffloadArch(const TargetInfo &TI) { if (!TI.getTriple().isNVPTX()) llvm_unreachable("getOffloadArch is only valid for NVPTX triple"); auto &TO = TI.getTargetOpts(); return StringToOffloadArch(TO.CPU); } // Checks whether an argument of launch_bounds attribute is // acceptable, performs implicit conversion to Rvalue, and returns // non-nullptr Expr result on success. Otherwise, it returns nullptr // and may output an error. static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E, const CUDALaunchBoundsAttr &AL, const unsigned Idx) { if (S.DiagnoseUnexpandedParameterPack(E)) return nullptr; // Accept template arguments for now as they depend on something else. // We'll get to check them when they eventually get instantiated. if (E->isValueDependent()) return E; std::optional I = llvm::APSInt(64); if (!(I = E->getIntegerConstantExpr(S.Context))) { S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type) << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange(); return nullptr; } // Make sure we can fit it in 32 bits. if (!I->isIntN(32)) { S.Diag(E->getExprLoc(), diag::err_ice_too_large) << toString(*I, 10, false) << 32 << /* Unsigned */ 1; return nullptr; } if (*I < 0) S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative) << &AL << Idx << E->getSourceRange(); // We may need to perform implicit conversion of the argument. InitializedEntity Entity = InitializedEntity::InitializeParameter( S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false); ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E); assert(!ValArg.isInvalid() && "Unexpected PerformCopyInitialization() failure."); return ValArg.getAs(); } CUDALaunchBoundsAttr * Sema::CreateLaunchBoundsAttr(const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks) { CUDALaunchBoundsAttr TmpAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0); if (!MaxThreads) return nullptr; if (MinBlocks) { MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1); if (!MinBlocks) return nullptr; } if (MaxBlocks) { // '.maxclusterrank' ptx directive requires .target sm_90 or higher. auto SM = getOffloadArch(Context.getTargetInfo()); if (SM == OffloadArch::UNKNOWN || SM < OffloadArch::SM_90) { Diag(MaxBlocks->getBeginLoc(), diag::warn_cuda_maxclusterrank_sm_90) << OffloadArchToString(SM) << CI << MaxBlocks->getSourceRange(); // Ignore it by setting MaxBlocks to null; MaxBlocks = nullptr; } else { MaxBlocks = makeLaunchBoundsArgExpr(*this, MaxBlocks, TmpAttr, 2); if (!MaxBlocks) return nullptr; } } return ::new (Context) CUDALaunchBoundsAttr(Context, CI, MaxThreads, MinBlocks, MaxBlocks); } void Sema::AddLaunchBoundsAttr(Decl *D, const AttributeCommonInfo &CI, Expr *MaxThreads, Expr *MinBlocks, Expr *MaxBlocks) { if (auto *Attr = CreateLaunchBoundsAttr(CI, MaxThreads, MinBlocks, MaxBlocks)) D->addAttr(Attr); } static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1) || !AL.checkAtMostNumArgs(S, 3)) return; S.AddLaunchBoundsAttr(D, AL, AL.getArgAsExpr(0), AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr, AL.getNumArgs() > 2 ? AL.getArgAsExpr(2) : nullptr); } static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << /* arg num = */ 1 << AANT_ArgumentIdentifier; return; } ParamIdx ArgumentIdx; if (!S.checkFunctionOrMethodParameterIndex(D, AL, 2, AL.getArgAsExpr(1), ArgumentIdx)) return; ParamIdx TypeTagIdx; if (!S.checkFunctionOrMethodParameterIndex(D, AL, 3, AL.getArgAsExpr(2), TypeTagIdx)) return; bool IsPointer = AL.getAttrName()->getName() == "pointer_with_type_tag"; if (IsPointer) { // Ensure that buffer has a pointer type. unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex(); if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) || !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType()) S.Diag(AL.getLoc(), diag::err_attribute_pointers_only) << AL << 0; } D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr( S.Context, AL, AL.getArgAsIdent(0)->Ident, ArgumentIdx, TypeTagIdx, IsPointer)); } static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } if (!AL.checkExactlyNumArgs(S, 1)) return; if (!isa(D)) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedVariable; return; } IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident; TypeSourceInfo *MatchingCTypeLoc = nullptr; S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc); assert(MatchingCTypeLoc && "no type source info for attribute argument"); D->addAttr(::new (S.Context) TypeTagForDatatypeAttr( S.Context, AL, PointerKind, MatchingCTypeLoc, AL.getLayoutCompatible(), AL.getMustBeNull())); } static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { ParamIdx ArgCount; if (!S.checkFunctionOrMethodParameterIndex(D, AL, 1, AL.getArgAsExpr(0), ArgCount, true /* CanIndexImplicitThis */)) return; // ArgCount isn't a parameter index [0;n), it's a count [1;n] D->addAttr(::new (S.Context) XRayLogArgsAttr(S.Context, AL, ArgCount.getSourceIndex())); } static void handlePatchableFunctionEntryAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (S.Context.getTargetInfo().getTriple().isOSAIX()) { S.Diag(AL.getLoc(), diag::err_aix_attr_unsupported) << AL; return; } uint32_t Count = 0, Offset = 0; if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Count, 0, true)) return; if (AL.getNumArgs() == 2) { Expr *Arg = AL.getArgAsExpr(1); if (!S.checkUInt32Argument(AL, Arg, Offset, 1, true)) return; if (Count < Offset) { S.Diag(S.getAttrLoc(AL), diag::err_attribute_argument_out_of_range) << &AL << 0 << Count << Arg->getBeginLoc(); return; } } D->addAttr(::new (S.Context) PatchableFunctionEntryAttr(S.Context, AL, Count, Offset)); } static void handleBuiltinAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type) << AL << 1 << AANT_ArgumentIdentifier; return; } IdentifierInfo *Ident = AL.getArgAsIdent(0)->Ident; unsigned BuiltinID = Ident->getBuiltinID(); StringRef AliasName = cast(D)->getIdentifier()->getName(); bool IsAArch64 = S.Context.getTargetInfo().getTriple().isAArch64(); bool IsARM = S.Context.getTargetInfo().getTriple().isARM(); bool IsRISCV = S.Context.getTargetInfo().getTriple().isRISCV(); bool IsHLSL = S.Context.getLangOpts().HLSL; if ((IsAArch64 && !S.ARM().SveAliasValid(BuiltinID, AliasName)) || (IsARM && !S.ARM().MveAliasValid(BuiltinID, AliasName) && !S.ARM().CdeAliasValid(BuiltinID, AliasName)) || (IsRISCV && !S.RISCV().isAliasValid(BuiltinID, AliasName)) || (!IsAArch64 && !IsARM && !IsRISCV && !IsHLSL)) { S.Diag(AL.getLoc(), diag::err_attribute_builtin_alias) << AL; return; } D->addAttr(::new (S.Context) BuiltinAliasAttr(S.Context, AL, Ident)); } static void handleNullableTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.isUsedAsTypeAttr()) return; if (auto *CRD = dyn_cast(D); !CRD || !(CRD->isClass() || CRD->isStruct())) { S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type_str) << AL << AL.isRegularKeywordAttribute() << "classes"; return; } handleSimpleAttribute(S, D, AL); } static void handlePreferredTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.hasParsedType()) { S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments) << AL << 1; return; } TypeSourceInfo *ParmTSI = nullptr; QualType QT = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI); assert(ParmTSI && "no type source info for attribute argument"); S.RequireCompleteType(ParmTSI->getTypeLoc().getBeginLoc(), QT, diag::err_incomplete_type); D->addAttr(::new (S.Context) PreferredTypeAttr(S.Context, AL, ParmTSI)); } //===----------------------------------------------------------------------===// // Microsoft specific attribute handlers. //===----------------------------------------------------------------------===// UuidAttr *Sema::mergeUuidAttr(Decl *D, const AttributeCommonInfo &CI, StringRef UuidAsWritten, MSGuidDecl *GuidDecl) { if (const auto *UA = D->getAttr()) { if (declaresSameEntity(UA->getGuidDecl(), GuidDecl)) return nullptr; if (!UA->getGuid().empty()) { Diag(UA->getLocation(), diag::err_mismatched_uuid); Diag(CI.getLoc(), diag::note_previous_uuid); D->dropAttr(); } } return ::new (Context) UuidAttr(Context, CI, UuidAsWritten, GuidDecl); } static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::C; return; } StringRef OrigStrRef; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, OrigStrRef, &LiteralLoc)) return; // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former. StringRef StrRef = OrigStrRef; if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}') StrRef = StrRef.drop_front().drop_back(); // Validate GUID length. if (StrRef.size() != 36) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } for (unsigned i = 0; i < 36; ++i) { if (i == 8 || i == 13 || i == 18 || i == 23) { if (StrRef[i] != '-') { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } else if (!isHexDigit(StrRef[i])) { S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid); return; } } // Convert to our parsed format and canonicalize. MSGuidDecl::Parts Parsed; StrRef.substr(0, 8).getAsInteger(16, Parsed.Part1); StrRef.substr(9, 4).getAsInteger(16, Parsed.Part2); StrRef.substr(14, 4).getAsInteger(16, Parsed.Part3); for (unsigned i = 0; i != 8; ++i) StrRef.substr(19 + 2 * i + (i >= 2 ? 1 : 0), 2) .getAsInteger(16, Parsed.Part4And5[i]); MSGuidDecl *Guid = S.Context.getMSGuidDecl(Parsed); // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's // the only thing in the [] list, the [] too), and add an insertion of // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas // separating attributes nor of the [ and the ] are in the AST. // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc" // on cfe-dev. if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling. S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated); UuidAttr *UA = S.mergeUuidAttr(D, AL, OrigStrRef, Guid); if (UA) D->addAttr(UA); } static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.LangOpts.CPlusPlus) { S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang) << AL << AttributeLangSupport::C; return; } MSInheritanceAttr *IA = S.mergeMSInheritanceAttr( D, AL, /*BestCase=*/true, (MSInheritanceModel)AL.getSemanticSpelling()); if (IA) { D->addAttr(IA); S.Consumer.AssignInheritanceModel(cast(D)); } } static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) { const auto *VD = cast(D); if (!S.Context.getTargetInfo().isTLSSupported()) { S.Diag(AL.getLoc(), diag::err_thread_unsupported); return; } if (VD->getTSCSpec() != TSCS_unspecified) { S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable); return; } if (VD->hasLocalStorage()) { S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)"; return; } D->addAttr(::new (S.Context) ThreadAttr(S.Context, AL)); } static void handleMSConstexprAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!S.getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2022_3)) { S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); return; } auto *FD = cast(D); if (FD->isConstexprSpecified() || FD->isConsteval()) { S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) << FD->isConsteval() << FD; return; } if (auto *MD = dyn_cast(FD)) { if (!S.getLangOpts().CPlusPlus20 && MD->isVirtual()) { S.Diag(AL.getLoc(), diag::err_ms_constexpr_cannot_be_applied) << /*virtual*/ 2 << MD; return; } } D->addAttr(::new (S.Context) MSConstexprAttr(S.Context, AL)); } static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Tags; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef Tag; if (!S.checkStringLiteralArgumentAttr(AL, I, Tag)) return; Tags.push_back(Tag); } if (const auto *NS = dyn_cast(D)) { if (!NS->isInline()) { S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0; return; } if (NS->isAnonymousNamespace()) { S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1; return; } if (AL.getNumArgs() == 0) Tags.push_back(NS->getName()); } else if (!AL.checkAtLeastNumArgs(S, 1)) return; // Store tags sorted and without duplicates. llvm::sort(Tags); Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end()); D->addAttr(::new (S.Context) AbiTagAttr(S.Context, AL, Tags.data(), Tags.size())); } static bool hasBTFDeclTagAttr(Decl *D, StringRef Tag) { for (const auto *I : D->specific_attrs()) { if (I->getBTFDeclTag() == Tag) return true; } return false; } static void handleBTFDeclTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Str; if (!S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; if (hasBTFDeclTagAttr(D, Str)) return; D->addAttr(::new (S.Context) BTFDeclTagAttr(S.Context, AL, Str)); } BTFDeclTagAttr *Sema::mergeBTFDeclTagAttr(Decl *D, const BTFDeclTagAttr &AL) { if (hasBTFDeclTagAttr(D, AL.getBTFDeclTag())) return nullptr; return ::new (Context) BTFDeclTagAttr(Context, AL, AL.getBTFDeclTag()); } static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Dispatch the interrupt attribute based on the current target. switch (S.Context.getTargetInfo().getTriple().getArch()) { case llvm::Triple::msp430: S.MSP430().handleInterruptAttr(D, AL); break; case llvm::Triple::mipsel: case llvm::Triple::mips: S.MIPS().handleInterruptAttr(D, AL); break; case llvm::Triple::m68k: S.M68k().handleInterruptAttr(D, AL); break; case llvm::Triple::x86: case llvm::Triple::x86_64: S.X86().handleAnyInterruptAttr(D, AL); break; case llvm::Triple::avr: S.AVR().handleInterruptAttr(D, AL); break; case llvm::Triple::riscv32: case llvm::Triple::riscv64: S.RISCV().handleInterruptAttr(D, AL); break; default: S.ARM().handleInterruptAttr(D, AL); break; } } static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) { uint32_t Version; Expr *VersionExpr = static_cast(AL.getArgAsExpr(0)); if (!S.checkUInt32Argument(AL, AL.getArgAsExpr(0), Version)) return; // TODO: Investigate what happens with the next major version of MSVC. if (Version != LangOptions::MSVC2015 / 100) { S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds) << AL << Version << VersionExpr->getSourceRange(); return; } // The attribute expects a "major" version number like 19, but new versions of // MSVC have moved to updating the "minor", or less significant numbers, so we // have to multiply by 100 now. Version *= 100; D->addAttr(::new (S.Context) LayoutVersionAttr(S.Context, AL, Version)); } DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, const AttributeCommonInfo &CI) { if (D->hasAttr()) { Diag(CI.getLoc(), diag::warn_attribute_ignored) << "'dllimport'"; return nullptr; } if (D->hasAttr()) return nullptr; return ::new (Context) DLLImportAttr(Context, CI); } DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, const AttributeCommonInfo &CI) { if (DLLImportAttr *Import = D->getAttr()) { Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import; D->dropAttr(); } if (D->hasAttr()) return nullptr; return ::new (Context) DLLExportAttr(Context, CI); } static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) { if (isa(D) && (S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored) << A; return; } if (const auto *FD = dyn_cast(D)) { if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport && !(S.Context.getTargetInfo().shouldDLLImportComdatSymbols())) { // MinGW doesn't allow dllimport on inline functions. S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline) << A; return; } } if (const auto *MD = dyn_cast(D)) { if ((S.Context.getTargetInfo().shouldDLLImportComdatSymbols()) && MD->getParent()->isLambda()) { S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A; return; } } Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport ? (Attr *)S.mergeDLLExportAttr(D, A) : (Attr *)S.mergeDLLImportAttr(D, A); if (NewAttr) D->addAttr(NewAttr); } MSInheritanceAttr * Sema::mergeMSInheritanceAttr(Decl *D, const AttributeCommonInfo &CI, bool BestCase, MSInheritanceModel Model) { if (MSInheritanceAttr *IA = D->getAttr()) { if (IA->getInheritanceModel() == Model) return nullptr; Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance) << 1 /*previous declaration*/; Diag(CI.getLoc(), diag::note_previous_ms_inheritance); D->dropAttr(); } auto *RD = cast(D); if (RD->hasDefinition()) { if (checkMSInheritanceAttrOnDefinition(RD, CI.getRange(), BestCase, Model)) { return nullptr; } } else { if (isa(RD)) { Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) << 1 /*partial specialization*/; return nullptr; } if (RD->getDescribedClassTemplate()) { Diag(CI.getLoc(), diag::warn_ignored_ms_inheritance) << 0 /*primary template*/; return nullptr; } } return ::new (Context) MSInheritanceAttr(Context, CI, BestCase); } static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The capability attributes take a single string parameter for the name of // the capability they represent. The lockable attribute does not take any // parameters. However, semantically, both attributes represent the same // concept, and so they use the same semantic attribute. Eventually, the // lockable attribute will be removed. // // For backward compatibility, any capability which has no specified string // literal will be considered a "mutex." StringRef N("mutex"); SourceLocation LiteralLoc; if (AL.getKind() == ParsedAttr::AT_Capability && !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc)) return; D->addAttr(::new (S.Context) CapabilityAttr(S.Context, AL, N)); } static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) AssertCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) AcquireCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { SmallVector Args; if (!checkTryLockFunAttrCommon(S, D, AL, Args)) return; D->addAttr(::new (S.Context) TryAcquireCapabilityAttr( S.Context, AL, AL.getArgAsExpr(0), Args.data(), Args.size())); } static void handleReleaseCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check that all arguments are lockable objects. SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true); D->addAttr(::new (S.Context) ReleaseCapabilityAttr(S.Context, AL, Args.data(), Args.size())); } static void handleRequiresCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; // check that all arguments are lockable objects SmallVector Args; checkAttrArgsAreCapabilityObjs(S, D, AL, Args); if (Args.empty()) return; RequiresCapabilityAttr *RCA = ::new (S.Context) RequiresCapabilityAttr(S.Context, AL, Args.data(), Args.size()); D->addAttr(RCA); } static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (const auto *NSD = dyn_cast(D)) { if (NSD->isAnonymousNamespace()) { S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace); // Do not want to attach the attribute to the namespace because that will // cause confusing diagnostic reports for uses of declarations within the // namespace. return; } } else if (isa(D)) { S.Diag(AL.getRange().getBegin(), diag::warn_deprecated_ignored_on_using) << AL; return; } // Handle the cases where the attribute has a text message. StringRef Str, Replacement; if (AL.isArgExpr(0) && AL.getArgAsExpr(0) && !S.checkStringLiteralArgumentAttr(AL, 0, Str)) return; // Support a single optional message only for Declspec and [[]] spellings. if (AL.isDeclspecAttribute() || AL.isStandardAttributeSyntax()) AL.checkAtMostNumArgs(S, 1); else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) && !S.checkStringLiteralArgumentAttr(AL, 1, Replacement)) return; if (!S.getLangOpts().CPlusPlus14 && AL.isCXX11Attribute() && !AL.isGNUScope()) S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL; D->addAttr(::new (S.Context) DeprecatedAttr(S.Context, AL, Str, Replacement)); } static bool isGlobalVar(const Decl *D) { if (const auto *S = dyn_cast(D)) return S->hasGlobalStorage(); return false; } static bool isSanitizerAttributeAllowedOnGlobals(StringRef Sanitizer) { return Sanitizer == "address" || Sanitizer == "hwaddress" || Sanitizer == "memtag"; } static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (!AL.checkAtLeastNumArgs(S, 1)) return; std::vector Sanitizers; for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) { StringRef SanitizerName; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc)) return; if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == SanitizerMask() && SanitizerName != "coverage") S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName; else if (isGlobalVar(D) && !isSanitizerAttributeAllowedOnGlobals(SanitizerName)) S.Diag(D->getLocation(), diag::warn_attribute_type_not_supported_global) << AL << SanitizerName; Sanitizers.push_back(SanitizerName); } D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, AL, Sanitizers.data(), Sanitizers.size())); } static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef AttrName = AL.getAttrName()->getName(); normalizeName(AttrName); StringRef SanitizerName = llvm::StringSwitch(AttrName) .Case("no_address_safety_analysis", "address") .Case("no_sanitize_address", "address") .Case("no_sanitize_thread", "thread") .Case("no_sanitize_memory", "memory"); if (isGlobalVar(D) && SanitizerName != "address") S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << AL << AL.isRegularKeywordAttribute() << ExpectedFunction; // FIXME: Rather than create a NoSanitizeSpecificAttr, this creates a // NoSanitizeAttr object; but we need to calculate the correct spelling list // index rather than incorrectly assume the index for NoSanitizeSpecificAttr // has the same spellings as the index for NoSanitizeAttr. We don't have a // general way to "translate" between the two, so this hack attempts to work // around the issue with hard-coded indices. This is critical for calling // getSpelling() or prettyPrint() on the resulting semantic attribute object // without failing assertions. unsigned TranslatedSpellingIndex = 0; if (AL.isStandardAttributeSyntax()) TranslatedSpellingIndex = 1; AttributeCommonInfo Info = AL; Info.setAttributeSpellingListIndex(TranslatedSpellingIndex); D->addAttr(::new (S.Context) NoSanitizeAttr(S.Context, Info, &SanitizerName, 1)); } static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (InternalLinkageAttr *Internal = S.mergeInternalLinkageAttr(D, AL)) D->addAttr(Internal); } static void handleZeroCallUsedRegsAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check that the argument is a string literal. StringRef KindStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc)) return; ZeroCallUsedRegsAttr::ZeroCallUsedRegsKind Kind; if (!ZeroCallUsedRegsAttr::ConvertStrToZeroCallUsedRegsKind(KindStr, Kind)) { S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL << KindStr; return; } D->dropAttr(); D->addAttr(ZeroCallUsedRegsAttr::Create(S.Context, Kind, AL)); } static void handleCountedByAttrField(Sema &S, Decl *D, const ParsedAttr &AL) { auto *FD = dyn_cast(D); assert(FD); auto *CountExpr = AL.getArgAsExpr(0); if (!CountExpr) return; bool CountInBytes; bool OrNull; switch (AL.getKind()) { case ParsedAttr::AT_CountedBy: CountInBytes = false; OrNull = false; break; case ParsedAttr::AT_CountedByOrNull: CountInBytes = false; OrNull = true; break; case ParsedAttr::AT_SizedBy: CountInBytes = true; OrNull = false; break; case ParsedAttr::AT_SizedByOrNull: CountInBytes = true; OrNull = true; break; default: llvm_unreachable("unexpected counted_by family attribute"); } llvm::SmallVector Decls; if (S.CheckCountedByAttrOnField(FD, CountExpr, Decls, CountInBytes, OrNull)) return; QualType CAT = S.BuildCountAttributedArrayOrPointerType( FD->getType(), CountExpr, CountInBytes, OrNull); FD->setType(CAT); } static void handleFunctionReturnThunksAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef KindStr; SourceLocation LiteralLoc; if (!S.checkStringLiteralArgumentAttr(AL, 0, KindStr, &LiteralLoc)) return; FunctionReturnThunksAttr::Kind Kind; if (!FunctionReturnThunksAttr::ConvertStrToKind(KindStr, Kind)) { S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported) << AL << KindStr; return; } // FIXME: it would be good to better handle attribute merging rather than // silently replacing the existing attribute, so long as it does not break // the expected codegen tests. D->dropAttr(); D->addAttr(FunctionReturnThunksAttr::Create(S.Context, Kind, AL)); } static void handleAvailableOnlyInDefaultEvalMethod(Sema &S, Decl *D, const ParsedAttr &AL) { assert(isa(D) && "This attribute only applies to a typedef"); handleSimpleAttribute(S, D, AL); } static void handleNoMergeAttr(Sema &S, Decl *D, const ParsedAttr &AL) { auto *VDecl = dyn_cast(D); if (VDecl && !VDecl->isFunctionPointerType()) { S.Diag(AL.getLoc(), diag::warn_attribute_ignored_non_function_pointer) << AL << VDecl; return; } D->addAttr(NoMergeAttr::Create(S.Context, AL)); } static void handleNoUniqueAddressAttr(Sema &S, Decl *D, const ParsedAttr &AL) { D->addAttr(NoUniqueAddressAttr::Create(S.Context, AL)); } static void handleDestroyAttr(Sema &S, Decl *D, const ParsedAttr &A) { if (!cast(D)->hasGlobalStorage()) { S.Diag(D->getLocation(), diag::err_destroy_attr_on_non_static_var) << (A.getKind() == ParsedAttr::AT_AlwaysDestroy); return; } if (A.getKind() == ParsedAttr::AT_AlwaysDestroy) handleSimpleAttribute(S, D, A); else handleSimpleAttribute(S, D, A); } static void handleUninitializedAttr(Sema &S, Decl *D, const ParsedAttr &AL) { assert(cast(D)->getStorageDuration() == SD_Automatic && "uninitialized is only valid on automatic duration variables"); D->addAttr(::new (S.Context) UninitializedAttr(S.Context, AL)); } static void handleMIGServerRoutineAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Check that the return type is a `typedef int kern_return_t` or a typedef // around it, because otherwise MIG convention checks make no sense. // BlockDecl doesn't store a return type, so it's annoying to check, // so let's skip it for now. if (!isa(D)) { QualType T = getFunctionOrMethodResultType(D); bool IsKernReturnT = false; while (const auto *TT = T->getAs()) { IsKernReturnT = (TT->getDecl()->getName() == "kern_return_t"); T = TT->desugar(); } if (!IsKernReturnT || T.getCanonicalType() != S.getASTContext().IntTy) { S.Diag(D->getBeginLoc(), diag::warn_mig_server_routine_does_not_return_kern_return_t); return; } } handleSimpleAttribute(S, D, AL); } static void handleMSAllocatorAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // Warn if the return type is not a pointer or reference type. if (auto *FD = dyn_cast(D)) { QualType RetTy = FD->getReturnType(); if (!RetTy->isPointerType() && !RetTy->isReferenceType()) { S.Diag(AL.getLoc(), diag::warn_declspec_allocator_nonpointer) << AL.getRange() << RetTy; return; } } handleSimpleAttribute(S, D, AL); } static void handleAcquireHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { if (AL.isUsedAsTypeAttr()) return; // Warn if the parameter is definitely not an output parameter. if (const auto *PVD = dyn_cast(D)) { if (PVD->getType()->isIntegerType()) { S.Diag(AL.getLoc(), diag::err_attribute_output_parameter) << AL.getRange(); return; } } StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; D->addAttr(AcquireHandleAttr::Create(S.Context, Argument, AL)); } template static void handleHandleAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; D->addAttr(Attr::Create(S.Context, Argument, AL)); } template static void handleUnsafeBufferUsage(Sema &S, Decl *D, const ParsedAttr &AL) { D->addAttr(Attr::Create(S.Context, AL)); } static void handleCFGuardAttr(Sema &S, Decl *D, const ParsedAttr &AL) { // The guard attribute takes a single identifier argument. if (!AL.isArgIdent(0)) { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } CFGuardAttr::GuardArg Arg; IdentifierInfo *II = AL.getArgAsIdent(0)->Ident; if (!CFGuardAttr::ConvertStrToGuardArg(II->getName(), Arg)) { S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II; return; } D->addAttr(::new (S.Context) CFGuardAttr(S.Context, AL, Arg)); } template static const AttrTy *findEnforceTCBAttrByName(Decl *D, StringRef Name) { auto Attrs = D->specific_attrs(); auto I = llvm::find_if(Attrs, [Name](const AttrTy *A) { return A->getTCBName() == Name; }); return I == Attrs.end() ? nullptr : *I; } template static void handleEnforceTCBAttr(Sema &S, Decl *D, const ParsedAttr &AL) { StringRef Argument; if (!S.checkStringLiteralArgumentAttr(AL, 0, Argument)) return; // A function cannot be have both regular and leaf membership in the same TCB. if (const ConflictingAttrTy *ConflictingAttr = findEnforceTCBAttrByName(D, Argument)) { // We could attach a note to the other attribute but in this case // there's no need given how the two are very close to each other. S.Diag(AL.getLoc(), diag::err_tcb_conflicting_attributes) << AL.getAttrName()->getName() << ConflictingAttr->getAttrName()->getName() << Argument; // Error recovery: drop the non-leaf attribute so that to suppress // all future warnings caused by erroneous attributes. The leaf attribute // needs to be kept because it can only suppresses warnings, not cause them. D->dropAttr(); return; } D->addAttr(AttrTy::Create(S.Context, Argument, AL)); } template static AttrTy *mergeEnforceTCBAttrImpl(Sema &S, Decl *D, const AttrTy &AL) { // Check if the new redeclaration has different leaf-ness in the same TCB. StringRef TCBName = AL.getTCBName(); if (const ConflictingAttrTy *ConflictingAttr = findEnforceTCBAttrByName(D, TCBName)) { S.Diag(ConflictingAttr->getLoc(), diag::err_tcb_conflicting_attributes) << ConflictingAttr->getAttrName()->getName() << AL.getAttrName()->getName() << TCBName; // Add a note so that the user could easily find the conflicting attribute. S.Diag(AL.getLoc(), diag::note_conflicting_attribute); // More error recovery. D->dropAttr(); return nullptr; } ASTContext &Context = S.getASTContext(); return ::new(Context) AttrTy(Context, AL, AL.getTCBName()); } EnforceTCBAttr *Sema::mergeEnforceTCBAttr(Decl *D, const EnforceTCBAttr &AL) { return mergeEnforceTCBAttrImpl( *this, D, AL); } EnforceTCBLeafAttr *Sema::mergeEnforceTCBLeafAttr( Decl *D, const EnforceTCBLeafAttr &AL) { return mergeEnforceTCBAttrImpl( *this, D, AL); } static void handleVTablePointerAuthentication(Sema &S, Decl *D, const ParsedAttr &AL) { CXXRecordDecl *Decl = cast(D); const uint32_t NumArgs = AL.getNumArgs(); if (NumArgs > 4) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4; AL.setInvalid(); } if (NumArgs == 0) { S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments) << AL; AL.setInvalid(); return; } if (D->getAttr()) { S.Diag(AL.getLoc(), diag::err_duplicated_vtable_pointer_auth) << Decl; AL.setInvalid(); } auto KeyType = VTablePointerAuthenticationAttr::VPtrAuthKeyType::DefaultKey; if (AL.isArgIdent(0)) { IdentifierLoc *IL = AL.getArgAsIdent(0); if (!VTablePointerAuthenticationAttr::ConvertStrToVPtrAuthKeyType( IL->Ident->getName(), KeyType)) { S.Diag(IL->Loc, diag::err_invalid_authentication_key) << IL->Ident; AL.setInvalid(); } if (KeyType == VTablePointerAuthenticationAttr::DefaultKey && !S.getLangOpts().PointerAuthCalls) { S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 0; AL.setInvalid(); } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; return; } auto AddressDiversityMode = VTablePointerAuthenticationAttr:: AddressDiscriminationMode::DefaultAddressDiscrimination; if (AL.getNumArgs() > 1) { if (AL.isArgIdent(1)) { IdentifierLoc *IL = AL.getArgAsIdent(1); if (!VTablePointerAuthenticationAttr:: ConvertStrToAddressDiscriminationMode(IL->Ident->getName(), AddressDiversityMode)) { S.Diag(IL->Loc, diag::err_invalid_address_discrimination) << IL->Ident; AL.setInvalid(); } if (AddressDiversityMode == VTablePointerAuthenticationAttr::DefaultAddressDiscrimination && !S.getLangOpts().PointerAuthCalls) { S.Diag(IL->Loc, diag::err_no_default_vtable_pointer_auth) << 1; AL.setInvalid(); } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; } } auto ED = VTablePointerAuthenticationAttr::ExtraDiscrimination:: DefaultExtraDiscrimination; if (AL.getNumArgs() > 2) { if (AL.isArgIdent(2)) { IdentifierLoc *IL = AL.getArgAsIdent(2); if (!VTablePointerAuthenticationAttr::ConvertStrToExtraDiscrimination( IL->Ident->getName(), ED)) { S.Diag(IL->Loc, diag::err_invalid_extra_discrimination) << IL->Ident; AL.setInvalid(); } if (ED == VTablePointerAuthenticationAttr::DefaultExtraDiscrimination && !S.getLangOpts().PointerAuthCalls) { S.Diag(AL.getLoc(), diag::err_no_default_vtable_pointer_auth) << 2; AL.setInvalid(); } } else { S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL << AANT_ArgumentIdentifier; } } uint32_t CustomDiscriminationValue = 0; if (ED == VTablePointerAuthenticationAttr::CustomDiscrimination) { if (NumArgs < 4) { S.Diag(AL.getLoc(), diag::err_missing_custom_discrimination) << AL << 4; AL.setInvalid(); return; } if (NumArgs > 4) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 4; AL.setInvalid(); } if (!AL.isArgExpr(3) || !S.checkUInt32Argument(AL, AL.getArgAsExpr(3), CustomDiscriminationValue)) { S.Diag(AL.getLoc(), diag::err_invalid_custom_discrimination); AL.setInvalid(); } } else if (NumArgs > 3) { S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments) << AL << 3; AL.setInvalid(); } Decl->addAttr(::new (S.Context) VTablePointerAuthenticationAttr( S.Context, AL, KeyType, AddressDiversityMode, ED, CustomDiscriminationValue)); } //===----------------------------------------------------------------------===// // Top Level Sema Entry Points //===----------------------------------------------------------------------===// // Returns true if the attribute must delay setting its arguments until after // template instantiation, and false otherwise. static bool MustDelayAttributeArguments(const ParsedAttr &AL) { // Only attributes that accept expression parameter packs can delay arguments. if (!AL.acceptsExprPack()) return false; bool AttrHasVariadicArg = AL.hasVariadicArg(); unsigned AttrNumArgs = AL.getNumArgMembers(); for (size_t I = 0; I < std::min(AL.getNumArgs(), AttrNumArgs); ++I) { bool IsLastAttrArg = I == (AttrNumArgs - 1); // If the argument is the last argument and it is variadic it can contain // any expression. if (IsLastAttrArg && AttrHasVariadicArg) return false; Expr *E = AL.getArgAsExpr(I); bool ArgMemberCanHoldExpr = AL.isParamExpr(I); // If the expression is a pack expansion then arguments must be delayed // unless the argument is an expression and it is the last argument of the // attribute. if (isa(E)) return !(IsLastAttrArg && ArgMemberCanHoldExpr); // Last case is if the expression is value dependent then it must delay // arguments unless the corresponding argument is able to hold the // expression. if (E->isValueDependent() && !ArgMemberCanHoldExpr) return true; } return false; } /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if /// the attribute applies to decls. If the attribute is a type attribute, just /// silently ignore it if a GNU attribute. static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D, const ParsedAttr &AL, const Sema::ProcessDeclAttributeOptions &Options) { if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute) return; // Ignore C++11 attributes on declarator chunks: they appertain to the type // instead. Note, isCXX11Attribute() will look at whether the attribute is // [[]] or alignas, while isC23Attribute() will only look at [[]]. This is // important for ensuring that alignas in C23 is properly handled on a // structure member declaration because it is a type-specifier-qualifier in // C but still applies to the declaration rather than the type. if ((S.getLangOpts().CPlusPlus ? AL.isCXX11Attribute() : AL.isC23Attribute()) && !Options.IncludeCXX11Attributes) return; // Unknown attributes are automatically warned on. Target-specific attributes // which do not apply to the current target architecture are treated as // though they were unknown attributes. if (AL.getKind() == ParsedAttr::UnknownAttribute || !AL.existsInTarget(S.Context.getTargetInfo())) { S.Diag(AL.getLoc(), AL.isRegularKeywordAttribute() ? (unsigned)diag::err_keyword_not_supported_on_target : AL.isDeclspecAttribute() ? (unsigned)diag::warn_unhandled_ms_attribute_ignored : (unsigned)diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); return; } // Check if argument population must delayed to after template instantiation. bool MustDelayArgs = MustDelayAttributeArguments(AL); // Argument number check must be skipped if arguments are delayed. if (S.checkCommonAttributeFeatures(D, AL, MustDelayArgs)) return; if (MustDelayArgs) { AL.handleAttrWithDelayedArgs(S, D); return; } switch (AL.getKind()) { default: if (AL.getInfo().handleDeclAttribute(S, D, AL) != ParsedAttrInfo::NotHandled) break; if (!AL.isStmtAttr()) { assert(AL.isTypeAttr() && "Non-type attribute not handled"); } if (AL.isTypeAttr()) { if (Options.IgnoreTypeAttributes) break; if (!AL.isStandardAttributeSyntax() && !AL.isRegularKeywordAttribute()) { // Non-[[]] type attributes are handled in processTypeAttrs(); silently // move on. break; } // According to the C and C++ standards, we should never see a // [[]] type attribute on a declaration. However, we have in the past // allowed some type attributes to "slide" to the `DeclSpec`, so we need // to continue to support this legacy behavior. We only do this, however, // if // - we actually have a `DeclSpec`, i.e. if we're looking at a // `DeclaratorDecl`, or // - we are looking at an alias-declaration, where historically we have // allowed type attributes after the identifier to slide to the type. if (AL.slidesFromDeclToDeclSpecLegacyBehavior() && isa(D)) { // Suggest moving the attribute to the type instead, but only for our // own vendor attributes; moving other vendors' attributes might hurt // portability. if (AL.isClangScope()) { S.Diag(AL.getLoc(), diag::warn_type_attribute_deprecated_on_decl) << AL << D->getLocation(); } // Allow this type attribute to be handled in processTypeAttrs(); // silently move on. break; } if (AL.getKind() == ParsedAttr::AT_Regparm) { // `regparm` is a special case: It's a type attribute but we still want // to treat it as if it had been written on the declaration because that // way we'll be able to handle it directly in `processTypeAttr()`. // If we treated `regparm` it as if it had been written on the // `DeclSpec`, the logic in `distributeFunctionTypeAttrFromDeclSepc()` // would try to move it to the declarator, but that doesn't work: We // can't remove the attribute from the list of declaration attributes // because it might be needed by other declarators in the same // declaration. break; } if (AL.getKind() == ParsedAttr::AT_VectorSize) { // `vector_size` is a special case: It's a type attribute semantically, // but GCC expects the [[]] syntax to be written on the declaration (and // warns that the attribute has no effect if it is placed on the // decl-specifier-seq). // Silently move on and allow the attribute to be handled in // processTypeAttr(). break; } if (AL.getKind() == ParsedAttr::AT_NoDeref) { // FIXME: `noderef` currently doesn't work correctly in [[]] syntax. // See https://github.com/llvm/llvm-project/issues/55790 for details. // We allow processTypeAttrs() to emit a warning and silently move on. break; } } // N.B., ClangAttrEmitter.cpp emits a diagnostic helper that ensures a // statement attribute is not written on a declaration, but this code is // needed for type attributes as well as statement attributes in Attr.td // that do not list any subjects. S.Diag(AL.getLoc(), diag::err_attribute_invalid_on_decl) << AL << AL.isRegularKeywordAttribute() << D->getLocation(); break; case ParsedAttr::AT_Interrupt: handleInterruptAttr(S, D, AL); break; case ParsedAttr::AT_X86ForceAlignArgPointer: S.X86().handleForceAlignArgPointerAttr(D, AL); break; case ParsedAttr::AT_ReadOnlyPlacement: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_DLLExport: case ParsedAttr::AT_DLLImport: handleDLLAttr(S, D, AL); break; case ParsedAttr::AT_AMDGPUFlatWorkGroupSize: S.AMDGPU().handleAMDGPUFlatWorkGroupSizeAttr(D, AL); break; case ParsedAttr::AT_AMDGPUWavesPerEU: S.AMDGPU().handleAMDGPUWavesPerEUAttr(D, AL); break; case ParsedAttr::AT_AMDGPUNumSGPR: S.AMDGPU().handleAMDGPUNumSGPRAttr(D, AL); break; case ParsedAttr::AT_AMDGPUNumVGPR: S.AMDGPU().handleAMDGPUNumVGPRAttr(D, AL); break; case ParsedAttr::AT_AMDGPUMaxNumWorkGroups: S.AMDGPU().handleAMDGPUMaxNumWorkGroupsAttr(D, AL); break; case ParsedAttr::AT_AVRSignal: S.AVR().handleSignalAttr(D, AL); break; case ParsedAttr::AT_BPFPreserveAccessIndex: S.BPF().handlePreserveAccessIndexAttr(D, AL); break; case ParsedAttr::AT_BPFPreserveStaticOffset: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_BTFDeclTag: handleBTFDeclTagAttr(S, D, AL); break; case ParsedAttr::AT_WebAssemblyExportName: S.Wasm().handleWebAssemblyExportNameAttr(D, AL); break; case ParsedAttr::AT_WebAssemblyImportModule: S.Wasm().handleWebAssemblyImportModuleAttr(D, AL); break; case ParsedAttr::AT_WebAssemblyImportName: S.Wasm().handleWebAssemblyImportNameAttr(D, AL); break; case ParsedAttr::AT_IBOutlet: S.ObjC().handleIBOutlet(D, AL); break; case ParsedAttr::AT_IBOutletCollection: S.ObjC().handleIBOutletCollection(D, AL); break; case ParsedAttr::AT_IFunc: handleIFuncAttr(S, D, AL); break; case ParsedAttr::AT_Alias: handleAliasAttr(S, D, AL); break; case ParsedAttr::AT_Aligned: handleAlignedAttr(S, D, AL); break; case ParsedAttr::AT_AlignValue: handleAlignValueAttr(S, D, AL); break; case ParsedAttr::AT_AllocSize: handleAllocSizeAttr(S, D, AL); break; case ParsedAttr::AT_AlwaysInline: handleAlwaysInlineAttr(S, D, AL); break; case ParsedAttr::AT_AnalyzerNoReturn: handleAnalyzerNoReturnAttr(S, D, AL); break; case ParsedAttr::AT_TLSModel: handleTLSModelAttr(S, D, AL); break; case ParsedAttr::AT_Annotate: handleAnnotateAttr(S, D, AL); break; case ParsedAttr::AT_Availability: handleAvailabilityAttr(S, D, AL); break; case ParsedAttr::AT_CarriesDependency: handleDependencyAttr(S, scope, D, AL); break; case ParsedAttr::AT_CPUDispatch: case ParsedAttr::AT_CPUSpecific: handleCPUSpecificAttr(S, D, AL); break; case ParsedAttr::AT_Common: handleCommonAttr(S, D, AL); break; case ParsedAttr::AT_CUDAConstant: handleConstantAttr(S, D, AL); break; case ParsedAttr::AT_PassObjectSize: handlePassObjectSizeAttr(S, D, AL); break; case ParsedAttr::AT_Constructor: handleConstructorAttr(S, D, AL); break; case ParsedAttr::AT_Deprecated: handleDeprecatedAttr(S, D, AL); break; case ParsedAttr::AT_Destructor: handleDestructorAttr(S, D, AL); break; case ParsedAttr::AT_EnableIf: handleEnableIfAttr(S, D, AL); break; case ParsedAttr::AT_Error: handleErrorAttr(S, D, AL); break; case ParsedAttr::AT_ExcludeFromExplicitInstantiation: handleExcludeFromExplicitInstantiationAttr(S, D, AL); break; case ParsedAttr::AT_DiagnoseIf: handleDiagnoseIfAttr(S, D, AL); break; case ParsedAttr::AT_DiagnoseAsBuiltin: handleDiagnoseAsBuiltinAttr(S, D, AL); break; case ParsedAttr::AT_NoBuiltin: handleNoBuiltinAttr(S, D, AL); break; case ParsedAttr::AT_ExtVectorType: handleExtVectorTypeAttr(S, D, AL); break; case ParsedAttr::AT_ExternalSourceSymbol: handleExternalSourceSymbolAttr(S, D, AL); break; case ParsedAttr::AT_MinSize: handleMinSizeAttr(S, D, AL); break; case ParsedAttr::AT_OptimizeNone: handleOptimizeNoneAttr(S, D, AL); break; case ParsedAttr::AT_EnumExtensibility: handleEnumExtensibilityAttr(S, D, AL); break; case ParsedAttr::AT_SYCLKernel: S.SYCL().handleKernelAttr(D, AL); break; case ParsedAttr::AT_SYCLSpecialClass: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_Format: handleFormatAttr(S, D, AL); break; case ParsedAttr::AT_FormatArg: handleFormatArgAttr(S, D, AL); break; case ParsedAttr::AT_Callback: handleCallbackAttr(S, D, AL); break; case ParsedAttr::AT_CalledOnce: handleCalledOnceAttr(S, D, AL); break; case ParsedAttr::AT_NVPTXKernel: case ParsedAttr::AT_CUDAGlobal: handleGlobalAttr(S, D, AL); break; case ParsedAttr::AT_CUDADevice: handleDeviceAttr(S, D, AL); break; case ParsedAttr::AT_HIPManaged: handleManagedAttr(S, D, AL); break; case ParsedAttr::AT_GNUInline: handleGNUInlineAttr(S, D, AL); break; case ParsedAttr::AT_CUDALaunchBounds: handleLaunchBoundsAttr(S, D, AL); break; case ParsedAttr::AT_Restrict: handleRestrictAttr(S, D, AL); break; case ParsedAttr::AT_Mode: handleModeAttr(S, D, AL); break; case ParsedAttr::AT_NonNull: if (auto *PVD = dyn_cast(D)) handleNonNullAttrParameter(S, PVD, AL); else handleNonNullAttr(S, D, AL); break; case ParsedAttr::AT_ReturnsNonNull: handleReturnsNonNullAttr(S, D, AL); break; case ParsedAttr::AT_NoEscape: handleNoEscapeAttr(S, D, AL); break; case ParsedAttr::AT_MaybeUndef: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_AssumeAligned: handleAssumeAlignedAttr(S, D, AL); break; case ParsedAttr::AT_AllocAlign: handleAllocAlignAttr(S, D, AL); break; case ParsedAttr::AT_Ownership: handleOwnershipAttr(S, D, AL); break; case ParsedAttr::AT_Naked: handleNakedAttr(S, D, AL); break; case ParsedAttr::AT_NoReturn: handleNoReturnAttr(S, D, AL); break; case ParsedAttr::AT_CXX11NoReturn: handleStandardNoReturnAttr(S, D, AL); break; case ParsedAttr::AT_AnyX86NoCfCheck: handleNoCfCheckAttr(S, D, AL); break; case ParsedAttr::AT_NoThrow: if (!AL.isUsedAsTypeAttr()) handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_CUDAShared: handleSharedAttr(S, D, AL); break; case ParsedAttr::AT_VecReturn: handleVecReturnAttr(S, D, AL); break; case ParsedAttr::AT_ObjCOwnership: S.ObjC().handleOwnershipAttr(D, AL); break; case ParsedAttr::AT_ObjCPreciseLifetime: S.ObjC().handlePreciseLifetimeAttr(D, AL); break; case ParsedAttr::AT_ObjCReturnsInnerPointer: S.ObjC().handleReturnsInnerPointerAttr(D, AL); break; case ParsedAttr::AT_ObjCRequiresSuper: S.ObjC().handleRequiresSuperAttr(D, AL); break; case ParsedAttr::AT_ObjCBridge: S.ObjC().handleBridgeAttr(D, AL); break; case ParsedAttr::AT_ObjCBridgeMutable: S.ObjC().handleBridgeMutableAttr(D, AL); break; case ParsedAttr::AT_ObjCBridgeRelated: S.ObjC().handleBridgeRelatedAttr(D, AL); break; case ParsedAttr::AT_ObjCDesignatedInitializer: S.ObjC().handleDesignatedInitializer(D, AL); break; case ParsedAttr::AT_ObjCRuntimeName: S.ObjC().handleRuntimeName(D, AL); break; case ParsedAttr::AT_ObjCBoxable: S.ObjC().handleBoxable(D, AL); break; case ParsedAttr::AT_NSErrorDomain: S.ObjC().handleNSErrorDomain(D, AL); break; case ParsedAttr::AT_CFConsumed: case ParsedAttr::AT_NSConsumed: case ParsedAttr::AT_OSConsumed: S.ObjC().AddXConsumedAttr(D, AL, S.ObjC().parsedAttrToRetainOwnershipKind(AL), /*IsTemplateInstantiation=*/false); break; case ParsedAttr::AT_OSReturnsRetainedOnZero: handleSimpleAttributeOrDiagnose( S, D, AL, S.ObjC().isValidOSObjectOutParameter(D), diag::warn_ns_attribute_wrong_parameter_type, /*Extra Args=*/AL, /*pointer-to-OSObject-pointer*/ 3, AL.getRange()); break; case ParsedAttr::AT_OSReturnsRetainedOnNonZero: handleSimpleAttributeOrDiagnose( S, D, AL, S.ObjC().isValidOSObjectOutParameter(D), diag::warn_ns_attribute_wrong_parameter_type, /*Extra Args=*/AL, /*pointer-to-OSObject-poointer*/ 3, AL.getRange()); break; case ParsedAttr::AT_NSReturnsAutoreleased: case ParsedAttr::AT_NSReturnsNotRetained: case ParsedAttr::AT_NSReturnsRetained: case ParsedAttr::AT_CFReturnsNotRetained: case ParsedAttr::AT_CFReturnsRetained: case ParsedAttr::AT_OSReturnsNotRetained: case ParsedAttr::AT_OSReturnsRetained: S.ObjC().handleXReturnsXRetainedAttr(D, AL); break; case ParsedAttr::AT_WorkGroupSizeHint: handleWorkGroupSize(S, D, AL); break; case ParsedAttr::AT_ReqdWorkGroupSize: handleWorkGroupSize(S, D, AL); break; case ParsedAttr::AT_OpenCLIntelReqdSubGroupSize: S.OpenCL().handleSubGroupSize(D, AL); break; case ParsedAttr::AT_VecTypeHint: handleVecTypeHint(S, D, AL); break; case ParsedAttr::AT_InitPriority: handleInitPriorityAttr(S, D, AL); break; case ParsedAttr::AT_Packed: handlePackedAttr(S, D, AL); break; case ParsedAttr::AT_PreferredName: handlePreferredName(S, D, AL); break; case ParsedAttr::AT_Section: handleSectionAttr(S, D, AL); break; case ParsedAttr::AT_CodeModel: handleCodeModelAttr(S, D, AL); break; case ParsedAttr::AT_RandomizeLayout: handleRandomizeLayoutAttr(S, D, AL); break; case ParsedAttr::AT_NoRandomizeLayout: handleNoRandomizeLayoutAttr(S, D, AL); break; case ParsedAttr::AT_CodeSeg: handleCodeSegAttr(S, D, AL); break; case ParsedAttr::AT_Target: handleTargetAttr(S, D, AL); break; case ParsedAttr::AT_TargetVersion: handleTargetVersionAttr(S, D, AL); break; case ParsedAttr::AT_TargetClones: handleTargetClonesAttr(S, D, AL); break; case ParsedAttr::AT_MinVectorWidth: handleMinVectorWidthAttr(S, D, AL); break; case ParsedAttr::AT_Unavailable: handleAttrWithMessage(S, D, AL); break; case ParsedAttr::AT_OMPAssume: S.OpenMP().handleOMPAssumeAttr(D, AL); break; case ParsedAttr::AT_ObjCDirect: S.ObjC().handleDirectAttr(D, AL); break; case ParsedAttr::AT_ObjCDirectMembers: S.ObjC().handleDirectMembersAttr(D, AL); handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_ObjCExplicitProtocolImpl: S.ObjC().handleSuppresProtocolAttr(D, AL); break; case ParsedAttr::AT_Unused: handleUnusedAttr(S, D, AL); break; case ParsedAttr::AT_Visibility: handleVisibilityAttr(S, D, AL, false); break; case ParsedAttr::AT_TypeVisibility: handleVisibilityAttr(S, D, AL, true); break; case ParsedAttr::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, AL); break; case ParsedAttr::AT_WeakRef: handleWeakRefAttr(S, D, AL); break; case ParsedAttr::AT_WeakImport: handleWeakImportAttr(S, D, AL); break; case ParsedAttr::AT_TransparentUnion: handleTransparentUnionAttr(S, D, AL); break; case ParsedAttr::AT_ObjCMethodFamily: S.ObjC().handleMethodFamilyAttr(D, AL); break; case ParsedAttr::AT_ObjCNSObject: S.ObjC().handleNSObject(D, AL); break; case ParsedAttr::AT_ObjCIndependentClass: S.ObjC().handleIndependentClass(D, AL); break; case ParsedAttr::AT_Blocks: S.ObjC().handleBlocksAttr(D, AL); break; case ParsedAttr::AT_Sentinel: handleSentinelAttr(S, D, AL); break; case ParsedAttr::AT_Cleanup: handleCleanupAttr(S, D, AL); break; case ParsedAttr::AT_NoDebug: handleNoDebugAttr(S, D, AL); break; case ParsedAttr::AT_CmseNSEntry: S.ARM().handleCmseNSEntryAttr(D, AL); break; case ParsedAttr::AT_StdCall: case ParsedAttr::AT_CDecl: case ParsedAttr::AT_FastCall: case ParsedAttr::AT_ThisCall: case ParsedAttr::AT_Pascal: case ParsedAttr::AT_RegCall: case ParsedAttr::AT_SwiftCall: case ParsedAttr::AT_SwiftAsyncCall: case ParsedAttr::AT_VectorCall: case ParsedAttr::AT_MSABI: case ParsedAttr::AT_SysVABI: case ParsedAttr::AT_Pcs: case ParsedAttr::AT_IntelOclBicc: case ParsedAttr::AT_PreserveMost: case ParsedAttr::AT_PreserveAll: case ParsedAttr::AT_AArch64VectorPcs: case ParsedAttr::AT_AArch64SVEPcs: case ParsedAttr::AT_AMDGPUKernelCall: case ParsedAttr::AT_M68kRTD: case ParsedAttr::AT_PreserveNone: case ParsedAttr::AT_RISCVVectorCC: handleCallConvAttr(S, D, AL); break; case ParsedAttr::AT_Suppress: handleSuppressAttr(S, D, AL); break; case ParsedAttr::AT_Owner: case ParsedAttr::AT_Pointer: handleLifetimeCategoryAttr(S, D, AL); break; case ParsedAttr::AT_OpenCLAccess: S.OpenCL().handleAccessAttr(D, AL); break; case ParsedAttr::AT_OpenCLNoSVM: S.OpenCL().handleNoSVMAttr(D, AL); break; case ParsedAttr::AT_SwiftContext: S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftContext); break; case ParsedAttr::AT_SwiftAsyncContext: S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftAsyncContext); break; case ParsedAttr::AT_SwiftErrorResult: S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftErrorResult); break; case ParsedAttr::AT_SwiftIndirectResult: S.Swift().AddParameterABIAttr(D, AL, ParameterABI::SwiftIndirectResult); break; case ParsedAttr::AT_InternalLinkage: handleInternalLinkageAttr(S, D, AL); break; case ParsedAttr::AT_ZeroCallUsedRegs: handleZeroCallUsedRegsAttr(S, D, AL); break; case ParsedAttr::AT_FunctionReturnThunks: handleFunctionReturnThunksAttr(S, D, AL); break; case ParsedAttr::AT_NoMerge: handleNoMergeAttr(S, D, AL); break; case ParsedAttr::AT_NoUniqueAddress: handleNoUniqueAddressAttr(S, D, AL); break; case ParsedAttr::AT_AvailableOnlyInDefaultEvalMethod: handleAvailableOnlyInDefaultEvalMethod(S, D, AL); break; case ParsedAttr::AT_CountedBy: case ParsedAttr::AT_CountedByOrNull: case ParsedAttr::AT_SizedBy: case ParsedAttr::AT_SizedByOrNull: handleCountedByAttrField(S, D, AL); break; // Microsoft attributes: case ParsedAttr::AT_LayoutVersion: handleLayoutVersion(S, D, AL); break; case ParsedAttr::AT_Uuid: handleUuidAttr(S, D, AL); break; case ParsedAttr::AT_MSInheritance: handleMSInheritanceAttr(S, D, AL); break; case ParsedAttr::AT_Thread: handleDeclspecThreadAttr(S, D, AL); break; case ParsedAttr::AT_MSConstexpr: handleMSConstexprAttr(S, D, AL); break; case ParsedAttr::AT_HybridPatchable: handleSimpleAttribute(S, D, AL); break; // HLSL attributes: case ParsedAttr::AT_HLSLNumThreads: S.HLSL().handleNumThreadsAttr(D, AL); break; case ParsedAttr::AT_HLSLSV_GroupIndex: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_HLSLSV_DispatchThreadID: S.HLSL().handleSV_DispatchThreadIDAttr(D, AL); break; case ParsedAttr::AT_HLSLPackOffset: S.HLSL().handlePackOffsetAttr(D, AL); break; case ParsedAttr::AT_HLSLShader: S.HLSL().handleShaderAttr(D, AL); break; case ParsedAttr::AT_HLSLResourceBinding: S.HLSL().handleResourceBindingAttr(D, AL); break; case ParsedAttr::AT_HLSLResourceClass: S.HLSL().handleResourceClassAttr(D, AL); break; case ParsedAttr::AT_HLSLParamModifier: S.HLSL().handleParamModifierAttr(D, AL); break; case ParsedAttr::AT_AbiTag: handleAbiTagAttr(S, D, AL); break; case ParsedAttr::AT_CFGuard: handleCFGuardAttr(S, D, AL); break; // Thread safety attributes: case ParsedAttr::AT_AssertExclusiveLock: handleAssertExclusiveLockAttr(S, D, AL); break; case ParsedAttr::AT_AssertSharedLock: handleAssertSharedLockAttr(S, D, AL); break; case ParsedAttr::AT_PtGuardedVar: handlePtGuardedVarAttr(S, D, AL); break; case ParsedAttr::AT_NoSanitize: handleNoSanitizeAttr(S, D, AL); break; case ParsedAttr::AT_NoSanitizeSpecific: handleNoSanitizeSpecificAttr(S, D, AL); break; case ParsedAttr::AT_GuardedBy: handleGuardedByAttr(S, D, AL); break; case ParsedAttr::AT_PtGuardedBy: handlePtGuardedByAttr(S, D, AL); break; case ParsedAttr::AT_ExclusiveTrylockFunction: handleExclusiveTrylockFunctionAttr(S, D, AL); break; case ParsedAttr::AT_LockReturned: handleLockReturnedAttr(S, D, AL); break; case ParsedAttr::AT_LocksExcluded: handleLocksExcludedAttr(S, D, AL); break; case ParsedAttr::AT_SharedTrylockFunction: handleSharedTrylockFunctionAttr(S, D, AL); break; case ParsedAttr::AT_AcquiredBefore: handleAcquiredBeforeAttr(S, D, AL); break; case ParsedAttr::AT_AcquiredAfter: handleAcquiredAfterAttr(S, D, AL); break; // Capability analysis attributes. case ParsedAttr::AT_Capability: case ParsedAttr::AT_Lockable: handleCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_RequiresCapability: handleRequiresCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_AssertCapability: handleAssertCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_AcquireCapability: handleAcquireCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_ReleaseCapability: handleReleaseCapabilityAttr(S, D, AL); break; case ParsedAttr::AT_TryAcquireCapability: handleTryAcquireCapabilityAttr(S, D, AL); break; // Consumed analysis attributes. case ParsedAttr::AT_Consumable: handleConsumableAttr(S, D, AL); break; case ParsedAttr::AT_CallableWhen: handleCallableWhenAttr(S, D, AL); break; case ParsedAttr::AT_ParamTypestate: handleParamTypestateAttr(S, D, AL); break; case ParsedAttr::AT_ReturnTypestate: handleReturnTypestateAttr(S, D, AL); break; case ParsedAttr::AT_SetTypestate: handleSetTypestateAttr(S, D, AL); break; case ParsedAttr::AT_TestTypestate: handleTestTypestateAttr(S, D, AL); break; // Type safety attributes. case ParsedAttr::AT_ArgumentWithTypeTag: handleArgumentWithTypeTagAttr(S, D, AL); break; case ParsedAttr::AT_TypeTagForDatatype: handleTypeTagForDatatypeAttr(S, D, AL); break; // Swift attributes. case ParsedAttr::AT_SwiftAsyncName: S.Swift().handleAsyncName(D, AL); break; case ParsedAttr::AT_SwiftAttr: S.Swift().handleAttrAttr(D, AL); break; case ParsedAttr::AT_SwiftBridge: S.Swift().handleBridge(D, AL); break; case ParsedAttr::AT_SwiftError: S.Swift().handleError(D, AL); break; case ParsedAttr::AT_SwiftName: S.Swift().handleName(D, AL); break; case ParsedAttr::AT_SwiftNewType: S.Swift().handleNewType(D, AL); break; case ParsedAttr::AT_SwiftAsync: S.Swift().handleAsyncAttr(D, AL); break; case ParsedAttr::AT_SwiftAsyncError: S.Swift().handleAsyncError(D, AL); break; // XRay attributes. case ParsedAttr::AT_XRayLogArgs: handleXRayLogArgsAttr(S, D, AL); break; case ParsedAttr::AT_PatchableFunctionEntry: handlePatchableFunctionEntryAttr(S, D, AL); break; case ParsedAttr::AT_AlwaysDestroy: case ParsedAttr::AT_NoDestroy: handleDestroyAttr(S, D, AL); break; case ParsedAttr::AT_Uninitialized: handleUninitializedAttr(S, D, AL); break; case ParsedAttr::AT_ObjCExternallyRetained: S.ObjC().handleExternallyRetainedAttr(D, AL); break; case ParsedAttr::AT_MIGServerRoutine: handleMIGServerRoutineAttr(S, D, AL); break; case ParsedAttr::AT_MSAllocator: handleMSAllocatorAttr(S, D, AL); break; case ParsedAttr::AT_ArmBuiltinAlias: S.ARM().handleBuiltinAliasAttr(D, AL); break; case ParsedAttr::AT_ArmLocallyStreaming: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_ArmNew: S.ARM().handleNewAttr(D, AL); break; case ParsedAttr::AT_AcquireHandle: handleAcquireHandleAttr(S, D, AL); break; case ParsedAttr::AT_ReleaseHandle: handleHandleAttr(S, D, AL); break; case ParsedAttr::AT_UnsafeBufferUsage: handleUnsafeBufferUsage(S, D, AL); break; case ParsedAttr::AT_UseHandle: handleHandleAttr(S, D, AL); break; case ParsedAttr::AT_EnforceTCB: handleEnforceTCBAttr(S, D, AL); break; case ParsedAttr::AT_EnforceTCBLeaf: handleEnforceTCBAttr(S, D, AL); break; case ParsedAttr::AT_BuiltinAlias: handleBuiltinAliasAttr(S, D, AL); break; case ParsedAttr::AT_PreferredType: handlePreferredTypeAttr(S, D, AL); break; case ParsedAttr::AT_UsingIfExists: handleSimpleAttribute(S, D, AL); break; case ParsedAttr::AT_TypeNullable: handleNullableTypeAttr(S, D, AL); break; case ParsedAttr::AT_VTablePointerAuthentication: handleVTablePointerAuthentication(S, D, AL); break; } } void Sema::ProcessDeclAttributeList( Scope *S, Decl *D, const ParsedAttributesView &AttrList, const ProcessDeclAttributeOptions &Options) { if (AttrList.empty()) return; for (const ParsedAttr &AL : AttrList) ProcessDeclAttribute(*this, S, D, AL, Options); // FIXME: We should be able to handle these cases in TableGen. // GCC accepts // static int a9 __attribute__((weakref)); // but that looks really pointless. We reject it. if (D->hasAttr() && !D->hasAttr()) { Diag(AttrList.begin()->getLoc(), diag::err_attribute_weakref_without_alias) << cast(D); D->dropAttr(); return; } // FIXME: We should be able to handle this in TableGen as well. It would be // good to have a way to specify "these attributes must appear as a group", // for these. Additionally, it would be good to have a way to specify "these // attribute must never appear as a group" for attributes like cold and hot. if (!D->hasAttr()) { // These attributes cannot be applied to a non-kernel function. if (const auto *A = D->getAttr()) { // FIXME: This emits a different error message than // diag::err_attribute_wrong_decl_type + ExpectedKernelFunction. Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A; D->setInvalidDecl(); } else if (!D->hasAttr()) { if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; D->setInvalidDecl(); } else if (const auto *A = D->getAttr()) { Diag(D->getLocation(), diag::err_attribute_wrong_decl_type) << A << A->isRegularKeywordAttribute() << ExpectedKernelFunction; D->setInvalidDecl(); } } } // Do this check after processing D's attributes because the attribute // objc_method_family can change whether the given method is in the init // family, and it can be applied after objc_designated_initializer. This is a // bit of a hack, but we need it to be compatible with versions of clang that // processed the attribute list in the wrong order. if (D->hasAttr() && cast(D)->getMethodFamily() != OMF_init) { Diag(D->getLocation(), diag::err_designated_init_attr_non_init); D->dropAttr(); } } void Sema::ProcessDeclAttributeDelayed(Decl *D, const ParsedAttributesView &AttrList) { for (const ParsedAttr &AL : AttrList) if (AL.getKind() == ParsedAttr::AT_TransparentUnion) { handleTransparentUnionAttr(*this, D, AL); break; } // For BPFPreserveAccessIndexAttr, we want to populate the attributes // to fields and inner records as well. if (D && D->hasAttr()) BPF().handlePreserveAIRecord(cast(D)); } bool Sema::ProcessAccessDeclAttributeList( AccessSpecDecl *ASDecl, const ParsedAttributesView &AttrList) { for (const ParsedAttr &AL : AttrList) { if (AL.getKind() == ParsedAttr::AT_Annotate) { ProcessDeclAttribute(*this, nullptr, ASDecl, AL, ProcessDeclAttributeOptions()); } else { Diag(AL.getLoc(), diag::err_only_annotate_after_access_spec); return true; } } return false; } /// checkUnusedDeclAttributes - Check a list of attributes to see if it /// contains any decl attributes that we should warn about. static void checkUnusedDeclAttributes(Sema &S, const ParsedAttributesView &A) { for (const ParsedAttr &AL : A) { // Only warn if the attribute is an unignored, non-type attribute. if (AL.isUsedAsTypeAttr() || AL.isInvalid()) continue; if (AL.getKind() == ParsedAttr::IgnoredAttribute) continue; if (AL.getKind() == ParsedAttr::UnknownAttribute) { S.Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL << AL.getRange(); } else { S.Diag(AL.getLoc(), diag::warn_attribute_not_on_decl) << AL << AL.getRange(); } } } void Sema::checkUnusedDeclAttributes(Declarator &D) { ::checkUnusedDeclAttributes(*this, D.getDeclarationAttributes()); ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes()); ::checkUnusedDeclAttributes(*this, D.getAttributes()); for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs()); } NamedDecl *Sema::DeclClonePragmaWeak(NamedDecl *ND, const IdentifierInfo *II, SourceLocation Loc) { assert(isa(ND) || isa(ND)); NamedDecl *NewD = nullptr; if (auto *FD = dyn_cast(ND)) { FunctionDecl *NewFD; // FIXME: Missing call to CheckFunctionDeclaration(). // FIXME: Mangling? // FIXME: Is the qualifier info correct? // FIXME: Is the DeclContext correct? NewFD = FunctionDecl::Create( FD->getASTContext(), FD->getDeclContext(), Loc, Loc, DeclarationName(II), FD->getType(), FD->getTypeSourceInfo(), SC_None, getCurFPFeatures().isFPConstrained(), false /*isInlineSpecified*/, FD->hasPrototype(), ConstexprSpecKind::Unspecified, FD->getTrailingRequiresClause()); NewD = NewFD; if (FD->getQualifier()) NewFD->setQualifierInfo(FD->getQualifierLoc()); // Fake up parameter variables; they are declared as if this were // a typedef. QualType FDTy = FD->getType(); if (const auto *FT = FDTy->getAs()) { SmallVector Params; for (const auto &AI : FT->param_types()) { ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI); Param->setScopeInfo(0, Params.size()); Params.push_back(Param); } NewFD->setParams(Params); } } else if (auto *VD = dyn_cast(ND)) { NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(), VD->getInnerLocStart(), VD->getLocation(), II, VD->getType(), VD->getTypeSourceInfo(), VD->getStorageClass()); if (VD->getQualifier()) cast(NewD)->setQualifierInfo(VD->getQualifierLoc()); } return NewD; } void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, const WeakInfo &W) { if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...)) IdentifierInfo *NDId = ND->getIdentifier(); NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation()); NewD->addAttr( AliasAttr::CreateImplicit(Context, NDId->getName(), W.getLocation())); NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); WeakTopLevelDecl.push_back(NewD); // FIXME: "hideous" code from Sema::LazilyCreateBuiltin // to insert Decl at TU scope, sorry. DeclContext *SavedContext = CurContext; CurContext = Context.getTranslationUnitDecl(); NewD->setDeclContext(CurContext); NewD->setLexicalDeclContext(CurContext); PushOnScopeChains(NewD, S); CurContext = SavedContext; } else { // just add weak to existing ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation())); } } void Sema::ProcessPragmaWeak(Scope *S, Decl *D) { // It's valid to "forward-declare" #pragma weak, in which case we // have to do this. LoadExternalWeakUndeclaredIdentifiers(); if (WeakUndeclaredIdentifiers.empty()) return; NamedDecl *ND = nullptr; if (auto *VD = dyn_cast(D)) if (VD->isExternC()) ND = VD; if (auto *FD = dyn_cast(D)) if (FD->isExternC()) ND = FD; if (!ND) return; if (IdentifierInfo *Id = ND->getIdentifier()) { auto I = WeakUndeclaredIdentifiers.find(Id); if (I != WeakUndeclaredIdentifiers.end()) { auto &WeakInfos = I->second; for (const auto &W : WeakInfos) DeclApplyPragmaWeak(S, ND, W); std::remove_reference_t EmptyWeakInfos; WeakInfos.swap(EmptyWeakInfos); } } } /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in /// it, apply them to D. This is a bit tricky because PD can have attributes /// specified in many different places, and we need to find and apply them all. void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) { // Ordering of attributes can be important, so we take care to process // attributes in the order in which they appeared in the source code. auto ProcessAttributesWithSliding = [&](const ParsedAttributesView &Src, const ProcessDeclAttributeOptions &Options) { ParsedAttributesView NonSlidingAttrs; for (ParsedAttr &AL : Src) { // FIXME: this sliding is specific to standard attributes and should // eventually be deprecated and removed as those are not intended to // slide to anything. if ((AL.isStandardAttributeSyntax() || AL.isAlignas()) && AL.slidesFromDeclToDeclSpecLegacyBehavior()) { // Skip processing the attribute, but do check if it appertains to // the declaration. This is needed for the `MatrixType` attribute, // which, despite being a type attribute, defines a `SubjectList` // that only allows it to be used on typedef declarations. AL.diagnoseAppertainsTo(*this, D); } else { NonSlidingAttrs.addAtEnd(&AL); } } ProcessDeclAttributeList(S, D, NonSlidingAttrs, Options); }; // First, process attributes that appeared on the declaration itself (but // only if they don't have the legacy behavior of "sliding" to the DeclSepc). ProcessAttributesWithSliding(PD.getDeclarationAttributes(), {}); // Apply decl attributes from the DeclSpec if present. ProcessAttributesWithSliding(PD.getDeclSpec().getAttributes(), ProcessDeclAttributeOptions() .WithIncludeCXX11Attributes(false) .WithIgnoreTypeAttributes(true)); // Walk the declarator structure, applying decl attributes that were in a type // position to the decl itself. This handles cases like: // int *__attr__(x)** D; // when X is a decl attribute. for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i) { ProcessDeclAttributeList(S, D, PD.getTypeObject(i).getAttrs(), ProcessDeclAttributeOptions() .WithIncludeCXX11Attributes(false) .WithIgnoreTypeAttributes(true)); } // Finally, apply any attributes on the decl itself. ProcessDeclAttributeList(S, D, PD.getAttributes()); // Apply additional attributes specified by '#pragma clang attribute'. AddPragmaAttributes(S, D); // Look for API notes that map to attributes. ProcessAPINotes(D); } /// Is the given declaration allowed to use a forbidden type? /// If so, it'll still be annotated with an attribute that makes it /// illegal to actually use. static bool isForbiddenTypeAllowed(Sema &S, Decl *D, const DelayedDiagnostic &diag, UnavailableAttr::ImplicitReason &reason) { // Private ivars are always okay. Unfortunately, people don't // always properly make their ivars private, even in system headers. // Plus we need to make fields okay, too. if (!isa(D) && !isa(D) && !isa(D)) return false; // Silently accept unsupported uses of __weak in both user and system // declarations when it's been disabled, for ease of integration with // -fno-objc-arc files. We do have to take some care against attempts // to define such things; for now, we've only done that for ivars // and properties. if ((isa(D) || isa(D))) { if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled || diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) { reason = UnavailableAttr::IR_ForbiddenWeak; return true; } } // Allow all sorts of things in system headers. if (S.Context.getSourceManager().isInSystemHeader(D->getLocation())) { // Currently, all the failures dealt with this way are due to ARC // restrictions. reason = UnavailableAttr::IR_ARCForbiddenType; return true; } return false; } /// Handle a delayed forbidden-type diagnostic. static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &DD, Decl *D) { auto Reason = UnavailableAttr::IR_None; if (D && isForbiddenTypeAllowed(S, D, DD, Reason)) { assert(Reason && "didn't set reason?"); D->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", Reason, DD.Loc)); return; } if (S.getLangOpts().ObjCAutoRefCount) if (const auto *FD = dyn_cast(D)) { // FIXME: we may want to suppress diagnostics for all // kind of forbidden type messages on unavailable functions. if (FD->hasAttr() && DD.getForbiddenTypeDiagnostic() == diag::err_arc_array_param_no_ownership) { DD.Triggered = true; return; } } S.Diag(DD.Loc, DD.getForbiddenTypeDiagnostic()) << DD.getForbiddenTypeOperand() << DD.getForbiddenTypeArgument(); DD.Triggered = true; } void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) { assert(DelayedDiagnostics.getCurrentPool()); DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool(); DelayedDiagnostics.popWithoutEmitting(state); // When delaying diagnostics to run in the context of a parsed // declaration, we only want to actually emit anything if parsing // succeeds. if (!decl) return; // We emit all the active diagnostics in this pool or any of its // parents. In general, we'll get one pool for the decl spec // and a child pool for each declarator; in a decl group like: // deprecated_typedef foo, *bar, baz(); // only the declarator pops will be passed decls. This is correct; // we really do need to consider delayed diagnostics from the decl spec // for each of the different declarations. const DelayedDiagnosticPool *pool = &poppedPool; do { bool AnyAccessFailures = false; for (DelayedDiagnosticPool::pool_iterator i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) { // This const_cast is a bit lame. Really, Triggered should be mutable. DelayedDiagnostic &diag = const_cast(*i); if (diag.Triggered) continue; switch (diag.Kind) { case DelayedDiagnostic::Availability: // Don't bother giving deprecation/unavailable diagnostics if // the decl is invalid. if (!decl->isInvalidDecl()) handleDelayedAvailabilityCheck(diag, decl); break; case DelayedDiagnostic::Access: // Only produce one access control diagnostic for a structured binding // declaration: we don't need to tell the user that all the fields are // inaccessible one at a time. if (AnyAccessFailures && isa(decl)) continue; HandleDelayedAccessCheck(diag, decl); if (diag.Triggered) AnyAccessFailures = true; break; case DelayedDiagnostic::ForbiddenType: handleDelayedForbiddenType(*this, diag, decl); break; } } } while ((pool = pool->getParent())); } void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) { DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool(); assert(curPool && "re-emitting in undelayed context not supported"); curPool->steal(pool); }