//===--- ParseTentative.cpp - Ambiguity Resolution Parsing ----------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the tentative parsing portions of the Parser // interfaces, for ambiguity resolution. // //===----------------------------------------------------------------------===// #include "clang/Parse/Parser.h" #include "clang/Parse/ParseDiagnostic.h" #include "clang/Sema/ParsedTemplate.h" using namespace clang; /// isCXXDeclarationStatement - C++-specialized function that disambiguates /// between a declaration or an expression statement, when parsing function /// bodies. Returns true for declaration, false for expression. /// /// declaration-statement: /// block-declaration /// /// block-declaration: /// simple-declaration /// asm-definition /// namespace-alias-definition /// using-declaration /// using-directive /// [C++0x] static_assert-declaration /// /// asm-definition: /// 'asm' '(' string-literal ')' ';' /// /// namespace-alias-definition: /// 'namespace' identifier = qualified-namespace-specifier ';' /// /// using-declaration: /// 'using' typename[opt] '::'[opt] nested-name-specifier /// unqualified-id ';' /// 'using' '::' unqualified-id ; /// /// using-directive: /// 'using' 'namespace' '::'[opt] nested-name-specifier[opt] /// namespace-name ';' /// bool Parser::isCXXDeclarationStatement( bool DisambiguatingWithExpression /*=false*/) { assert(getLangOpts().CPlusPlus && "Must be called for C++ only."); switch (Tok.getKind()) { // asm-definition case tok::kw_asm: // namespace-alias-definition case tok::kw_namespace: // using-declaration // using-directive case tok::kw_using: // static_assert-declaration case tok::kw_static_assert: case tok::kw__Static_assert: return true; case tok::coloncolon: case tok::identifier: { if (DisambiguatingWithExpression) { RevertingTentativeParsingAction TPA(*this); // Parse the C++ scope specifier. CXXScopeSpec SS; ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, /*ObjectHasErrors=*/false, /*EnteringContext=*/true); switch (Tok.getKind()) { case tok::identifier: { IdentifierInfo *II = Tok.getIdentifierInfo(); bool isDeductionGuide = Actions.isDeductionGuideName( getCurScope(), *II, Tok.getLocation(), SS, /*Template=*/nullptr); if (Actions.isCurrentClassName(*II, getCurScope(), &SS) || isDeductionGuide) { if (isConstructorDeclarator( /*Unqualified=*/SS.isEmpty(), isDeductionGuide, /*IsFriend=*/DeclSpec::FriendSpecified::No)) return true; } else if (SS.isNotEmpty()) { // If the scope is not empty, it could alternatively be something like // a typedef or using declaration. That declaration might be private // in the global context, which would be diagnosed by calling into // isCXXSimpleDeclaration, but may actually be fine in the context of // member functions and static variable definitions. Check if the next // token is also an identifier and assume a declaration. // We cannot check if the scopes match because the declarations could // involve namespaces and friend declarations. if (NextToken().is(tok::identifier)) return true; } break; } case tok::kw_operator: return true; case tok::tilde: return true; default: break; } } } [[fallthrough]]; // simple-declaration default: return isCXXSimpleDeclaration(/*AllowForRangeDecl=*/false); } } /// isCXXSimpleDeclaration - C++-specialized function that disambiguates /// between a simple-declaration or an expression-statement. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. /// Returns false if the statement is disambiguated as expression. /// /// simple-declaration: /// decl-specifier-seq init-declarator-list[opt] ';' /// decl-specifier-seq ref-qualifier[opt] '[' identifier-list ']' /// brace-or-equal-initializer ';' [C++17] /// /// (if AllowForRangeDecl specified) /// for ( for-range-declaration : for-range-initializer ) statement /// /// for-range-declaration: /// decl-specifier-seq declarator /// decl-specifier-seq ref-qualifier[opt] '[' identifier-list ']' /// /// In any of the above cases there can be a preceding attribute-specifier-seq, /// but the caller is expected to handle that. bool Parser::isCXXSimpleDeclaration(bool AllowForRangeDecl) { // C++ 6.8p1: // There is an ambiguity in the grammar involving expression-statements and // declarations: An expression-statement with a function-style explicit type // conversion (5.2.3) as its leftmost subexpression can be indistinguishable // from a declaration where the first declarator starts with a '('. In those // cases the statement is a declaration. [Note: To disambiguate, the whole // statement might have to be examined to determine if it is an // expression-statement or a declaration]. // C++ 6.8p3: // The disambiguation is purely syntactic; that is, the meaning of the names // occurring in such a statement, beyond whether they are type-names or not, // is not generally used in or changed by the disambiguation. Class // templates are instantiated as necessary to determine if a qualified name // is a type-name. Disambiguation precedes parsing, and a statement // disambiguated as a declaration may be an ill-formed declaration. // We don't have to parse all of the decl-specifier-seq part. There's only // an ambiguity if the first decl-specifier is // simple-type-specifier/typename-specifier followed by a '(', which may // indicate a function-style cast expression. // isCXXDeclarationSpecifier will return TPResult::Ambiguous only in such // a case. bool InvalidAsDeclaration = false; TPResult TPR = isCXXDeclarationSpecifier( ImplicitTypenameContext::No, TPResult::False, &InvalidAsDeclaration); if (TPR != TPResult::Ambiguous) return TPR != TPResult::False; // Returns true for TPResult::True or // TPResult::Error. // FIXME: TryParseSimpleDeclaration doesn't look past the first initializer, // and so gets some cases wrong. We can't carry on if we've already seen // something which makes this statement invalid as a declaration in this case, // since it can cause us to misparse valid code. Revisit this once // TryParseInitDeclaratorList is fixed. if (InvalidAsDeclaration) return false; // FIXME: Add statistics about the number of ambiguous statements encountered // and how they were resolved (number of declarations+number of expressions). // Ok, we have a simple-type-specifier/typename-specifier followed by a '(', // or an identifier which doesn't resolve as anything. We need tentative // parsing... { RevertingTentativeParsingAction PA(*this); TPR = TryParseSimpleDeclaration(AllowForRangeDecl); } // In case of an error, let the declaration parsing code handle it. if (TPR == TPResult::Error) return true; // Declarations take precedence over expressions. if (TPR == TPResult::Ambiguous) TPR = TPResult::True; assert(TPR == TPResult::True || TPR == TPResult::False); return TPR == TPResult::True; } /// Try to consume a token sequence that we've already identified as /// (potentially) starting a decl-specifier. Parser::TPResult Parser::TryConsumeDeclarationSpecifier() { switch (Tok.getKind()) { case tok::kw__Atomic: if (NextToken().isNot(tok::l_paren)) { ConsumeToken(); break; } [[fallthrough]]; case tok::kw_typeof: case tok::kw___attribute: #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: #include "clang/Basic/TransformTypeTraits.def" { ConsumeToken(); if (Tok.isNot(tok::l_paren)) return TPResult::Error; ConsumeParen(); if (!SkipUntil(tok::r_paren)) return TPResult::Error; break; } case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: case tok::kw_enum: // elaborated-type-specifier: // class-key attribute-specifier-seq[opt] // nested-name-specifier[opt] identifier // class-key nested-name-specifier[opt] template[opt] simple-template-id // enum nested-name-specifier[opt] identifier // // FIXME: We don't support class-specifiers nor enum-specifiers here. ConsumeToken(); // Skip attributes. if (!TrySkipAttributes()) return TPResult::Error; if (TryAnnotateOptionalCXXScopeToken()) return TPResult::Error; if (Tok.is(tok::annot_cxxscope)) ConsumeAnnotationToken(); if (Tok.is(tok::identifier)) ConsumeToken(); else if (Tok.is(tok::annot_template_id)) ConsumeAnnotationToken(); else return TPResult::Error; break; case tok::annot_cxxscope: ConsumeAnnotationToken(); [[fallthrough]]; default: ConsumeAnyToken(); if (getLangOpts().ObjC && Tok.is(tok::less)) return TryParseProtocolQualifiers(); break; } return TPResult::Ambiguous; } /// simple-declaration: /// decl-specifier-seq init-declarator-list[opt] ';' /// /// (if AllowForRangeDecl specified) /// for ( for-range-declaration : for-range-initializer ) statement /// for-range-declaration: /// attribute-specifier-seqopt type-specifier-seq declarator /// Parser::TPResult Parser::TryParseSimpleDeclaration(bool AllowForRangeDecl) { bool DeclSpecifierIsAuto = Tok.is(tok::kw_auto); if (TryConsumeDeclarationSpecifier() == TPResult::Error) return TPResult::Error; // Two decl-specifiers in a row conclusively disambiguate this as being a // simple-declaration. Don't bother calling isCXXDeclarationSpecifier in the // overwhelmingly common case that the next token is a '('. if (Tok.isNot(tok::l_paren)) { TPResult TPR = isCXXDeclarationSpecifier(ImplicitTypenameContext::No); if (TPR == TPResult::Ambiguous) return TPResult::True; if (TPR == TPResult::True || TPR == TPResult::Error) return TPR; assert(TPR == TPResult::False); } TPResult TPR = TryParseInitDeclaratorList( /*mayHaveTrailingReturnType=*/DeclSpecifierIsAuto); if (TPR != TPResult::Ambiguous) return TPR; if (Tok.isNot(tok::semi) && (!AllowForRangeDecl || Tok.isNot(tok::colon))) return TPResult::False; return TPResult::Ambiguous; } /// Tentatively parse an init-declarator-list in order to disambiguate it from /// an expression. /// /// init-declarator-list: /// init-declarator /// init-declarator-list ',' init-declarator /// /// init-declarator: /// declarator initializer[opt] /// [GNU] declarator simple-asm-expr[opt] attributes[opt] initializer[opt] /// /// initializer: /// brace-or-equal-initializer /// '(' expression-list ')' /// /// brace-or-equal-initializer: /// '=' initializer-clause /// [C++11] braced-init-list /// /// initializer-clause: /// assignment-expression /// braced-init-list /// /// braced-init-list: /// '{' initializer-list ','[opt] '}' /// '{' '}' /// Parser::TPResult Parser::TryParseInitDeclaratorList(bool MayHaveTrailingReturnType) { while (true) { // declarator TPResult TPR = TryParseDeclarator( /*mayBeAbstract=*/false, /*mayHaveIdentifier=*/true, /*mayHaveDirectInit=*/false, /*mayHaveTrailingReturnType=*/MayHaveTrailingReturnType); if (TPR != TPResult::Ambiguous) return TPR; // [GNU] simple-asm-expr[opt] attributes[opt] if (Tok.isOneOf(tok::kw_asm, tok::kw___attribute)) return TPResult::True; // initializer[opt] if (Tok.is(tok::l_paren)) { // Parse through the parens. ConsumeParen(); if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; } else if (Tok.is(tok::l_brace)) { // A left-brace here is sufficient to disambiguate the parse; an // expression can never be followed directly by a braced-init-list. return TPResult::True; } else if (Tok.is(tok::equal) || isTokIdentifier_in()) { // MSVC and g++ won't examine the rest of declarators if '=' is // encountered; they just conclude that we have a declaration. // EDG parses the initializer completely, which is the proper behavior // for this case. // // At present, Clang follows MSVC and g++, since the parser does not have // the ability to parse an expression fully without recording the // results of that parse. // FIXME: Handle this case correctly. // // Also allow 'in' after an Objective-C declaration as in: // for (int (^b)(void) in array). Ideally this should be done in the // context of parsing for-init-statement of a foreach statement only. But, // in any other context 'in' is invalid after a declaration and parser // issues the error regardless of outcome of this decision. // FIXME: Change if above assumption does not hold. return TPResult::True; } if (!TryConsumeToken(tok::comma)) break; } return TPResult::Ambiguous; } struct Parser::ConditionDeclarationOrInitStatementState { Parser &P; bool CanBeExpression = true; bool CanBeCondition = true; bool CanBeInitStatement; bool CanBeForRangeDecl; ConditionDeclarationOrInitStatementState(Parser &P, bool CanBeInitStatement, bool CanBeForRangeDecl) : P(P), CanBeInitStatement(CanBeInitStatement), CanBeForRangeDecl(CanBeForRangeDecl) {} bool resolved() { return CanBeExpression + CanBeCondition + CanBeInitStatement + CanBeForRangeDecl < 2; } void markNotExpression() { CanBeExpression = false; if (!resolved()) { // FIXME: Unify the parsing codepaths for condition variables and // simple-declarations so that we don't need to eagerly figure out which // kind we have here. (Just parse init-declarators until we reach a // semicolon or right paren.) RevertingTentativeParsingAction PA(P); if (CanBeForRangeDecl) { // Skip until we hit a ')', ';', or a ':' with no matching '?'. // The final case is a for range declaration, the rest are not. unsigned QuestionColonDepth = 0; while (true) { P.SkipUntil({tok::r_paren, tok::semi, tok::question, tok::colon}, StopBeforeMatch); if (P.Tok.is(tok::question)) ++QuestionColonDepth; else if (P.Tok.is(tok::colon)) { if (QuestionColonDepth) --QuestionColonDepth; else { CanBeCondition = CanBeInitStatement = false; return; } } else { CanBeForRangeDecl = false; break; } P.ConsumeToken(); } } else { // Just skip until we hit a ')' or ';'. P.SkipUntil(tok::r_paren, tok::semi, StopBeforeMatch); } if (P.Tok.isNot(tok::r_paren)) CanBeCondition = CanBeForRangeDecl = false; if (P.Tok.isNot(tok::semi)) CanBeInitStatement = false; } } bool markNotCondition() { CanBeCondition = false; return resolved(); } bool markNotForRangeDecl() { CanBeForRangeDecl = false; return resolved(); } bool update(TPResult IsDecl) { switch (IsDecl) { case TPResult::True: markNotExpression(); assert(resolved() && "can't continue after tentative parsing bails out"); break; case TPResult::False: CanBeCondition = CanBeInitStatement = CanBeForRangeDecl = false; break; case TPResult::Ambiguous: break; case TPResult::Error: CanBeExpression = CanBeCondition = CanBeInitStatement = CanBeForRangeDecl = false; break; } return resolved(); } ConditionOrInitStatement result() const { assert(CanBeExpression + CanBeCondition + CanBeInitStatement + CanBeForRangeDecl < 2 && "result called but not yet resolved"); if (CanBeExpression) return ConditionOrInitStatement::Expression; if (CanBeCondition) return ConditionOrInitStatement::ConditionDecl; if (CanBeInitStatement) return ConditionOrInitStatement::InitStmtDecl; if (CanBeForRangeDecl) return ConditionOrInitStatement::ForRangeDecl; return ConditionOrInitStatement::Error; } }; bool Parser::isEnumBase(bool AllowSemi) { assert(Tok.is(tok::colon) && "should be looking at the ':'"); RevertingTentativeParsingAction PA(*this); // ':' ConsumeToken(); // type-specifier-seq bool InvalidAsDeclSpec = false; // FIXME: We could disallow non-type decl-specifiers here, but it makes no // difference: those specifiers are ill-formed regardless of the // interpretation. TPResult R = isCXXDeclarationSpecifier(ImplicitTypenameContext::No, /*BracedCastResult=*/TPResult::True, &InvalidAsDeclSpec); if (R == TPResult::Ambiguous) { // We either have a decl-specifier followed by '(' or an undeclared // identifier. if (TryConsumeDeclarationSpecifier() == TPResult::Error) return true; // If we get to the end of the enum-base, we hit either a '{' or a ';'. // Don't bother checking the enumerator-list. if (Tok.is(tok::l_brace) || (AllowSemi && Tok.is(tok::semi))) return true; // A second decl-specifier unambiguously indicatges an enum-base. R = isCXXDeclarationSpecifier(ImplicitTypenameContext::No, TPResult::True, &InvalidAsDeclSpec); } return R != TPResult::False; } /// Disambiguates between a declaration in a condition, a /// simple-declaration in an init-statement, and an expression for /// a condition of a if/switch statement. /// /// condition: /// expression /// type-specifier-seq declarator '=' assignment-expression /// [C++11] type-specifier-seq declarator '=' initializer-clause /// [C++11] type-specifier-seq declarator braced-init-list /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] /// '=' assignment-expression /// simple-declaration: /// decl-specifier-seq init-declarator-list[opt] ';' /// /// Note that, unlike isCXXSimpleDeclaration, we must disambiguate all the way /// to the ';' to disambiguate cases like 'int(x))' (an expression) from /// 'int(x);' (a simple-declaration in an init-statement). Parser::ConditionOrInitStatement Parser::isCXXConditionDeclarationOrInitStatement(bool CanBeInitStatement, bool CanBeForRangeDecl) { ConditionDeclarationOrInitStatementState State(*this, CanBeInitStatement, CanBeForRangeDecl); if (CanBeInitStatement && Tok.is(tok::kw_using)) return ConditionOrInitStatement::InitStmtDecl; if (State.update(isCXXDeclarationSpecifier(ImplicitTypenameContext::No))) return State.result(); // It might be a declaration; we need tentative parsing. RevertingTentativeParsingAction PA(*this); // FIXME: A tag definition unambiguously tells us this is an init-statement. bool MayHaveTrailingReturnType = Tok.is(tok::kw_auto); if (State.update(TryConsumeDeclarationSpecifier())) return State.result(); assert(Tok.is(tok::l_paren) && "Expected '('"); while (true) { // Consume a declarator. if (State.update(TryParseDeclarator( /*mayBeAbstract=*/false, /*mayHaveIdentifier=*/true, /*mayHaveDirectInit=*/false, /*mayHaveTrailingReturnType=*/MayHaveTrailingReturnType))) return State.result(); // Attributes, asm label, or an initializer imply this is not an expression. // FIXME: Disambiguate properly after an = instead of assuming that it's a // valid declaration. if (Tok.isOneOf(tok::equal, tok::kw_asm, tok::kw___attribute) || (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) { State.markNotExpression(); return State.result(); } // A colon here identifies a for-range declaration. if (State.CanBeForRangeDecl && Tok.is(tok::colon)) return ConditionOrInitStatement::ForRangeDecl; // At this point, it can't be a condition any more, because a condition // must have a brace-or-equal-initializer. if (State.markNotCondition()) return State.result(); // Likewise, it can't be a for-range declaration any more. if (State.markNotForRangeDecl()) return State.result(); // A parenthesized initializer could be part of an expression or a // simple-declaration. if (Tok.is(tok::l_paren)) { ConsumeParen(); SkipUntil(tok::r_paren, StopAtSemi); } if (!TryConsumeToken(tok::comma)) break; } // We reached the end. If it can now be some kind of decl, then it is. if (State.CanBeCondition && Tok.is(tok::r_paren)) return ConditionOrInitStatement::ConditionDecl; else if (State.CanBeInitStatement && Tok.is(tok::semi)) return ConditionOrInitStatement::InitStmtDecl; else return ConditionOrInitStatement::Expression; } /// Determine whether the next set of tokens contains a type-id. /// /// The context parameter states what context we're parsing right /// now, which affects how this routine copes with the token /// following the type-id. If the context is TypeIdInParens, we have /// already parsed the '(' and we will cease lookahead when we hit /// the corresponding ')'. If the context is /// TypeIdAsTemplateArgument, we've already parsed the '<' or ',' /// before this template argument, and will cease lookahead when we /// hit a '>', '>>' (in C++0x), or ','; or, in C++0x, an ellipsis immediately /// preceding such. Returns true for a type-id and false for an expression. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. /// /// type-id: /// type-specifier-seq abstract-declarator[opt] /// bool Parser::isCXXTypeId(TentativeCXXTypeIdContext Context, bool &isAmbiguous) { isAmbiguous = false; // C++ 8.2p2: // The ambiguity arising from the similarity between a function-style cast and // a type-id can occur in different contexts. The ambiguity appears as a // choice between a function-style cast expression and a declaration of a // type. The resolution is that any construct that could possibly be a type-id // in its syntactic context shall be considered a type-id. TPResult TPR = isCXXDeclarationSpecifier(ImplicitTypenameContext::No); if (TPR != TPResult::Ambiguous) return TPR != TPResult::False; // Returns true for TPResult::True or // TPResult::Error. // FIXME: Add statistics about the number of ambiguous statements encountered // and how they were resolved (number of declarations+number of expressions). // Ok, we have a simple-type-specifier/typename-specifier followed by a '('. // We need tentative parsing... RevertingTentativeParsingAction PA(*this); bool MayHaveTrailingReturnType = Tok.is(tok::kw_auto); // type-specifier-seq TryConsumeDeclarationSpecifier(); assert(Tok.is(tok::l_paren) && "Expected '('"); // declarator TPR = TryParseDeclarator(true /*mayBeAbstract*/, false /*mayHaveIdentifier*/, /*mayHaveDirectInit=*/false, MayHaveTrailingReturnType); // In case of an error, let the declaration parsing code handle it. if (TPR == TPResult::Error) TPR = TPResult::True; if (TPR == TPResult::Ambiguous) { // We are supposed to be inside parens, so if after the abstract declarator // we encounter a ')' this is a type-id, otherwise it's an expression. if (Context == TypeIdInParens && Tok.is(tok::r_paren)) { TPR = TPResult::True; isAmbiguous = true; // We are supposed to be inside the first operand to a _Generic selection // expression, so if we find a comma after the declarator, we've found a // type and not an expression. } else if (Context == TypeIdAsGenericSelectionArgument && Tok.is(tok::comma)) { TPR = TPResult::True; isAmbiguous = true; // We are supposed to be inside a template argument, so if after // the abstract declarator we encounter a '>', '>>' (in C++0x), or // ','; or, in C++0x, an ellipsis immediately preceding such, this // is a type-id. Otherwise, it's an expression. } else if (Context == TypeIdAsTemplateArgument && (Tok.isOneOf(tok::greater, tok::comma) || (getLangOpts().CPlusPlus11 && (Tok.isOneOf(tok::greatergreater, tok::greatergreatergreater) || (Tok.is(tok::ellipsis) && NextToken().isOneOf(tok::greater, tok::greatergreater, tok::greatergreatergreater, tok::comma)))))) { TPR = TPResult::True; isAmbiguous = true; } else if (Context == TypeIdInTrailingReturnType) { TPR = TPResult::True; isAmbiguous = true; } else TPR = TPResult::False; } assert(TPR == TPResult::True || TPR == TPResult::False); return TPR == TPResult::True; } /// Returns true if this is a C++11 attribute-specifier. Per /// C++11 [dcl.attr.grammar]p6, two consecutive left square bracket tokens /// always introduce an attribute. In Objective-C++11, this rule does not /// apply if either '[' begins a message-send. /// /// If Disambiguate is true, we try harder to determine whether a '[[' starts /// an attribute-specifier, and return CAK_InvalidAttributeSpecifier if not. /// /// If OuterMightBeMessageSend is true, we assume the outer '[' is either an /// Obj-C message send or the start of an attribute. Otherwise, we assume it /// is not an Obj-C message send. /// /// C++11 [dcl.attr.grammar]: /// /// attribute-specifier: /// '[' '[' attribute-list ']' ']' /// alignment-specifier /// /// attribute-list: /// attribute[opt] /// attribute-list ',' attribute[opt] /// attribute '...' /// attribute-list ',' attribute '...' /// /// attribute: /// attribute-token attribute-argument-clause[opt] /// /// attribute-token: /// identifier /// identifier '::' identifier /// /// attribute-argument-clause: /// '(' balanced-token-seq ')' Parser::CXX11AttributeKind Parser::isCXX11AttributeSpecifier(bool Disambiguate, bool OuterMightBeMessageSend) { // alignas is an attribute specifier in C++ but not in C23. if (Tok.is(tok::kw_alignas) && !getLangOpts().C23) return CAK_AttributeSpecifier; if (Tok.isRegularKeywordAttribute()) return CAK_AttributeSpecifier; if (Tok.isNot(tok::l_square) || NextToken().isNot(tok::l_square)) return CAK_NotAttributeSpecifier; // No tentative parsing if we don't need to look for ']]' or a lambda. if (!Disambiguate && !getLangOpts().ObjC) return CAK_AttributeSpecifier; // '[[using ns: ...]]' is an attribute. if (GetLookAheadToken(2).is(tok::kw_using)) return CAK_AttributeSpecifier; RevertingTentativeParsingAction PA(*this); // Opening brackets were checked for above. ConsumeBracket(); if (!getLangOpts().ObjC) { ConsumeBracket(); bool IsAttribute = SkipUntil(tok::r_square); IsAttribute &= Tok.is(tok::r_square); return IsAttribute ? CAK_AttributeSpecifier : CAK_InvalidAttributeSpecifier; } // In Obj-C++11, we need to distinguish four situations: // 1a) int x[[attr]]; C++11 attribute. // 1b) [[attr]]; C++11 statement attribute. // 2) int x[[obj](){ return 1; }()]; Lambda in array size/index. // 3a) int x[[obj get]]; Message send in array size/index. // 3b) [[Class alloc] init]; Message send in message send. // 4) [[obj]{ return self; }() doStuff]; Lambda in message send. // (1) is an attribute, (2) is ill-formed, and (3) and (4) are accepted. // Check to see if this is a lambda-expression. // FIXME: If this disambiguation is too slow, fold the tentative lambda parse // into the tentative attribute parse below. { RevertingTentativeParsingAction LambdaTPA(*this); LambdaIntroducer Intro; LambdaIntroducerTentativeParse Tentative; if (ParseLambdaIntroducer(Intro, &Tentative)) { // We hit a hard error after deciding this was not an attribute. // FIXME: Don't parse and annotate expressions when disambiguating // against an attribute. return CAK_NotAttributeSpecifier; } switch (Tentative) { case LambdaIntroducerTentativeParse::MessageSend: // Case 3: The inner construct is definitely a message send, so the // outer construct is definitely not an attribute. return CAK_NotAttributeSpecifier; case LambdaIntroducerTentativeParse::Success: case LambdaIntroducerTentativeParse::Incomplete: // This is a lambda-introducer or attribute-specifier. if (Tok.is(tok::r_square)) // Case 1: C++11 attribute. return CAK_AttributeSpecifier; if (OuterMightBeMessageSend) // Case 4: Lambda in message send. return CAK_NotAttributeSpecifier; // Case 2: Lambda in array size / index. return CAK_InvalidAttributeSpecifier; case LambdaIntroducerTentativeParse::Invalid: // No idea what this is; we couldn't parse it as a lambda-introducer. // Might still be an attribute-specifier or a message send. break; } } ConsumeBracket(); // If we don't have a lambda-introducer, then we have an attribute or a // message-send. bool IsAttribute = true; while (Tok.isNot(tok::r_square)) { if (Tok.is(tok::comma)) { // Case 1: Stray commas can only occur in attributes. return CAK_AttributeSpecifier; } // Parse the attribute-token, if present. // C++11 [dcl.attr.grammar]: // If a keyword or an alternative token that satisfies the syntactic // requirements of an identifier is contained in an attribute-token, // it is considered an identifier. SourceLocation Loc; if (!TryParseCXX11AttributeIdentifier(Loc)) { IsAttribute = false; break; } if (Tok.is(tok::coloncolon)) { ConsumeToken(); if (!TryParseCXX11AttributeIdentifier(Loc)) { IsAttribute = false; break; } } // Parse the attribute-argument-clause, if present. if (Tok.is(tok::l_paren)) { ConsumeParen(); if (!SkipUntil(tok::r_paren)) { IsAttribute = false; break; } } TryConsumeToken(tok::ellipsis); if (!TryConsumeToken(tok::comma)) break; } // An attribute must end ']]'. if (IsAttribute) { if (Tok.is(tok::r_square)) { ConsumeBracket(); IsAttribute = Tok.is(tok::r_square); } else { IsAttribute = false; } } if (IsAttribute) // Case 1: C++11 statement attribute. return CAK_AttributeSpecifier; // Case 3: Message send. return CAK_NotAttributeSpecifier; } bool Parser::TrySkipAttributes() { while (Tok.isOneOf(tok::l_square, tok::kw___attribute, tok::kw___declspec, tok::kw_alignas) || Tok.isRegularKeywordAttribute()) { if (Tok.is(tok::l_square)) { ConsumeBracket(); if (Tok.isNot(tok::l_square)) return false; ConsumeBracket(); if (!SkipUntil(tok::r_square) || Tok.isNot(tok::r_square)) return false; // Note that explicitly checking for `[[` and `]]` allows to fail as // expected in the case of the Objective-C message send syntax. ConsumeBracket(); } else if (Tok.isRegularKeywordAttribute() && !doesKeywordAttributeTakeArgs(Tok.getKind())) { ConsumeToken(); } else { ConsumeToken(); if (Tok.isNot(tok::l_paren)) return false; ConsumeParen(); if (!SkipUntil(tok::r_paren)) return false; } } return true; } Parser::TPResult Parser::TryParsePtrOperatorSeq() { while (true) { if (TryAnnotateOptionalCXXScopeToken(true)) return TPResult::Error; if (Tok.isOneOf(tok::star, tok::amp, tok::caret, tok::ampamp) || (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::star))) { // ptr-operator ConsumeAnyToken(); // Skip attributes. if (!TrySkipAttributes()) return TPResult::Error; while (Tok.isOneOf(tok::kw_const, tok::kw_volatile, tok::kw_restrict, tok::kw__Nonnull, tok::kw__Nullable, tok::kw__Nullable_result, tok::kw__Null_unspecified, tok::kw__Atomic)) ConsumeToken(); } else { return TPResult::True; } } } /// operator-function-id: /// 'operator' operator /// /// operator: one of /// new delete new[] delete[] + - * / % ^ [...] /// /// conversion-function-id: /// 'operator' conversion-type-id /// /// conversion-type-id: /// type-specifier-seq conversion-declarator[opt] /// /// conversion-declarator: /// ptr-operator conversion-declarator[opt] /// /// literal-operator-id: /// 'operator' string-literal identifier /// 'operator' user-defined-string-literal Parser::TPResult Parser::TryParseOperatorId() { assert(Tok.is(tok::kw_operator)); ConsumeToken(); // Maybe this is an operator-function-id. switch (Tok.getKind()) { case tok::kw_new: case tok::kw_delete: ConsumeToken(); if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { ConsumeBracket(); ConsumeBracket(); } return TPResult::True; #define OVERLOADED_OPERATOR(Name, Spelling, Token, Unary, Binary, MemOnly) \ case tok::Token: #define OVERLOADED_OPERATOR_MULTI(Name, Spelling, Unary, Binary, MemOnly) #include "clang/Basic/OperatorKinds.def" ConsumeToken(); return TPResult::True; case tok::l_square: if (NextToken().is(tok::r_square)) { ConsumeBracket(); ConsumeBracket(); return TPResult::True; } break; case tok::l_paren: if (NextToken().is(tok::r_paren)) { ConsumeParen(); ConsumeParen(); return TPResult::True; } break; default: break; } // Maybe this is a literal-operator-id. if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { bool FoundUDSuffix = false; do { FoundUDSuffix |= Tok.hasUDSuffix(); ConsumeStringToken(); } while (isTokenStringLiteral()); if (!FoundUDSuffix) { if (Tok.is(tok::identifier)) ConsumeToken(); else return TPResult::Error; } return TPResult::True; } // Maybe this is a conversion-function-id. bool AnyDeclSpecifiers = false; while (true) { TPResult TPR = isCXXDeclarationSpecifier(ImplicitTypenameContext::No); if (TPR == TPResult::Error) return TPR; if (TPR == TPResult::False) { if (!AnyDeclSpecifiers) return TPResult::Error; break; } if (TryConsumeDeclarationSpecifier() == TPResult::Error) return TPResult::Error; AnyDeclSpecifiers = true; } return TryParsePtrOperatorSeq(); } /// declarator: /// direct-declarator /// ptr-operator declarator /// /// direct-declarator: /// declarator-id /// direct-declarator '(' parameter-declaration-clause ')' /// cv-qualifier-seq[opt] exception-specification[opt] /// direct-declarator '[' constant-expression[opt] ']' /// '(' declarator ')' /// [GNU] '(' attributes declarator ')' /// /// abstract-declarator: /// ptr-operator abstract-declarator[opt] /// direct-abstract-declarator /// /// direct-abstract-declarator: /// direct-abstract-declarator[opt] /// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt] /// exception-specification[opt] /// direct-abstract-declarator[opt] '[' constant-expression[opt] ']' /// '(' abstract-declarator ')' /// [C++0x] ... /// /// ptr-operator: /// '*' cv-qualifier-seq[opt] /// '&' /// [C++0x] '&&' [TODO] /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] /// /// cv-qualifier-seq: /// cv-qualifier cv-qualifier-seq[opt] /// /// cv-qualifier: /// 'const' /// 'volatile' /// /// declarator-id: /// '...'[opt] id-expression /// /// id-expression: /// unqualified-id /// qualified-id [TODO] /// /// unqualified-id: /// identifier /// operator-function-id /// conversion-function-id /// literal-operator-id /// '~' class-name [TODO] /// '~' decltype-specifier [TODO] /// template-id [TODO] /// Parser::TPResult Parser::TryParseDeclarator(bool mayBeAbstract, bool mayHaveIdentifier, bool mayHaveDirectInit, bool mayHaveTrailingReturnType) { // declarator: // direct-declarator // ptr-operator declarator if (TryParsePtrOperatorSeq() == TPResult::Error) return TPResult::Error; // direct-declarator: // direct-abstract-declarator: if (Tok.is(tok::ellipsis)) ConsumeToken(); if ((Tok.isOneOf(tok::identifier, tok::kw_operator) || (Tok.is(tok::annot_cxxscope) && (NextToken().is(tok::identifier) || NextToken().is(tok::kw_operator)))) && mayHaveIdentifier) { // declarator-id if (Tok.is(tok::annot_cxxscope)) { CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation( Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); if (SS.isInvalid()) return TPResult::Error; ConsumeAnnotationToken(); } else if (Tok.is(tok::identifier)) { TentativelyDeclaredIdentifiers.push_back(Tok.getIdentifierInfo()); } if (Tok.is(tok::kw_operator)) { if (TryParseOperatorId() == TPResult::Error) return TPResult::Error; } else ConsumeToken(); } else if (Tok.is(tok::l_paren)) { ConsumeParen(); if (mayBeAbstract && (Tok.is(tok::r_paren) || // 'int()' is a function. // 'int(...)' is a function. (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren)) || isDeclarationSpecifier( ImplicitTypenameContext::No))) { // 'int(int)' is a function. // '(' parameter-declaration-clause ')' cv-qualifier-seq[opt] // exception-specification[opt] TPResult TPR = TryParseFunctionDeclarator(mayHaveTrailingReturnType); if (TPR != TPResult::Ambiguous) return TPR; } else { // '(' declarator ')' // '(' attributes declarator ')' // '(' abstract-declarator ')' if (Tok.isOneOf(tok::kw___attribute, tok::kw___declspec, tok::kw___cdecl, tok::kw___stdcall, tok::kw___fastcall, tok::kw___thiscall, tok::kw___regcall, tok::kw___vectorcall)) return TPResult::True; // attributes indicate declaration TPResult TPR = TryParseDeclarator(mayBeAbstract, mayHaveIdentifier); if (TPR != TPResult::Ambiguous) return TPR; if (Tok.isNot(tok::r_paren)) return TPResult::False; ConsumeParen(); } } else if (!mayBeAbstract) { return TPResult::False; } if (mayHaveDirectInit) return TPResult::Ambiguous; while (true) { TPResult TPR(TPResult::Ambiguous); if (Tok.is(tok::l_paren)) { // Check whether we have a function declarator or a possible ctor-style // initializer that follows the declarator. Note that ctor-style // initializers are not possible in contexts where abstract declarators // are allowed. if (!mayBeAbstract && !isCXXFunctionDeclarator()) break; // direct-declarator '(' parameter-declaration-clause ')' // cv-qualifier-seq[opt] exception-specification[opt] ConsumeParen(); TPR = TryParseFunctionDeclarator(mayHaveTrailingReturnType); } else if (Tok.is(tok::l_square)) { // direct-declarator '[' constant-expression[opt] ']' // direct-abstract-declarator[opt] '[' constant-expression[opt] ']' TPR = TryParseBracketDeclarator(); } else if (Tok.is(tok::kw_requires)) { // declarator requires-clause // A requires clause indicates a function declaration. TPR = TPResult::True; } else { break; } if (TPR != TPResult::Ambiguous) return TPR; } return TPResult::Ambiguous; } bool Parser::isTentativelyDeclared(IdentifierInfo *II) { return llvm::is_contained(TentativelyDeclaredIdentifiers, II); } namespace { class TentativeParseCCC final : public CorrectionCandidateCallback { public: TentativeParseCCC(const Token &Next) { WantRemainingKeywords = false; WantTypeSpecifiers = Next.isOneOf(tok::l_paren, tok::r_paren, tok::greater, tok::l_brace, tok::identifier, tok::comma); } bool ValidateCandidate(const TypoCorrection &Candidate) override { // Reject any candidate that only resolves to instance members since they // aren't viable as standalone identifiers instead of member references. if (Candidate.isResolved() && !Candidate.isKeyword() && llvm::all_of(Candidate, [](NamedDecl *ND) { return ND->isCXXInstanceMember(); })) return false; return CorrectionCandidateCallback::ValidateCandidate(Candidate); } std::unique_ptr clone() override { return std::make_unique(*this); } }; } /// isCXXDeclarationSpecifier - Returns TPResult::True if it is a declaration /// specifier, TPResult::False if it is not, TPResult::Ambiguous if it could /// be either a decl-specifier or a function-style cast, and TPResult::Error /// if a parsing error was found and reported. /// /// If InvalidAsDeclSpec is not null, some cases that would be ill-formed as /// declaration specifiers but possibly valid as some other kind of construct /// return TPResult::Ambiguous instead of TPResult::False. When this happens, /// the intent is to keep trying to disambiguate, on the basis that we might /// find a better reason to treat this construct as a declaration later on. /// When this happens and the name could possibly be valid in some other /// syntactic context, *InvalidAsDeclSpec is set to 'true'. The current cases /// that trigger this are: /// /// * When parsing X::Y (with no 'typename') where X is dependent /// * When parsing X where X is undeclared /// /// decl-specifier: /// storage-class-specifier /// type-specifier /// function-specifier /// 'friend' /// 'typedef' /// [C++11] 'constexpr' /// [C++20] 'consteval' /// [GNU] attributes declaration-specifiers[opt] /// /// storage-class-specifier: /// 'register' /// 'static' /// 'extern' /// 'mutable' /// 'auto' /// [GNU] '__thread' /// [C++11] 'thread_local' /// [C11] '_Thread_local' /// /// function-specifier: /// 'inline' /// 'virtual' /// 'explicit' /// /// typedef-name: /// identifier /// /// type-specifier: /// simple-type-specifier /// class-specifier /// enum-specifier /// elaborated-type-specifier /// typename-specifier /// cv-qualifier /// /// simple-type-specifier: /// '::'[opt] nested-name-specifier[opt] type-name /// '::'[opt] nested-name-specifier 'template' /// simple-template-id [TODO] /// 'char' /// 'wchar_t' /// 'bool' /// 'short' /// 'int' /// 'long' /// 'signed' /// 'unsigned' /// 'float' /// 'double' /// 'void' /// [GNU] typeof-specifier /// [GNU] '_Complex' /// [C++11] 'auto' /// [GNU] '__auto_type' /// [C++11] 'decltype' ( expression ) /// [C++1y] 'decltype' ( 'auto' ) /// /// type-name: /// class-name /// enum-name /// typedef-name /// /// elaborated-type-specifier: /// class-key '::'[opt] nested-name-specifier[opt] identifier /// class-key '::'[opt] nested-name-specifier[opt] 'template'[opt] /// simple-template-id /// 'enum' '::'[opt] nested-name-specifier[opt] identifier /// /// enum-name: /// identifier /// /// enum-specifier: /// 'enum' identifier[opt] '{' enumerator-list[opt] '}' /// 'enum' identifier[opt] '{' enumerator-list ',' '}' /// /// class-specifier: /// class-head '{' member-specification[opt] '}' /// /// class-head: /// class-key identifier[opt] base-clause[opt] /// class-key nested-name-specifier identifier base-clause[opt] /// class-key nested-name-specifier[opt] simple-template-id /// base-clause[opt] /// /// class-key: /// 'class' /// 'struct' /// 'union' /// /// cv-qualifier: /// 'const' /// 'volatile' /// [GNU] restrict /// Parser::TPResult Parser::isCXXDeclarationSpecifier(ImplicitTypenameContext AllowImplicitTypename, Parser::TPResult BracedCastResult, bool *InvalidAsDeclSpec) { auto IsPlaceholderSpecifier = [&](TemplateIdAnnotation *TemplateId, int Lookahead) { // We have a placeholder-constraint (we check for 'auto' or 'decltype' to // distinguish 'C;' from 'C auto c = 1;') return TemplateId->Kind == TNK_Concept_template && (GetLookAheadToken(Lookahead + 1) .isOneOf(tok::kw_auto, tok::kw_decltype, // If we have an identifier here, the user probably // forgot the 'auto' in the placeholder constraint, // e.g. 'C x = 2;' This will be diagnosed nicely // later, so disambiguate as a declaration. tok::identifier, // CVR qualifierslikely the same situation for the // user, so let this be diagnosed nicely later. We // cannot handle references here, as `C & Other` // and `C && Other` are both legal. tok::kw_const, tok::kw_volatile, tok::kw_restrict) || // While `C && Other` is legal, doing so while not specifying a // template argument is NOT, so see if we can fix up in that case at // minimum. Concepts require at least 1 template parameter, so we // can count on the argument count. // FIXME: In the future, we migth be able to have SEMA look up the // declaration for this concept, and see how many template // parameters it has. If the concept isn't fully specified, it is // possibly a situation where we want deduction, such as: // `BinaryConcept auto f = bar();` (TemplateId->NumArgs == 0 && GetLookAheadToken(Lookahead + 1).isOneOf(tok::amp, tok::ampamp))); }; switch (Tok.getKind()) { case tok::identifier: { if (GetLookAheadToken(1).is(tok::ellipsis) && GetLookAheadToken(2).is(tok::l_square)) { if (TryAnnotateTypeOrScopeToken()) return TPResult::Error; if (Tok.is(tok::identifier)) return TPResult::False; return isCXXDeclarationSpecifier(ImplicitTypenameContext::No, BracedCastResult, InvalidAsDeclSpec); } // Check for need to substitute AltiVec __vector keyword // for "vector" identifier. if (TryAltiVecVectorToken()) return TPResult::True; const Token &Next = NextToken(); // In 'foo bar', 'foo' is always a type name outside of Objective-C. if (!getLangOpts().ObjC && Next.is(tok::identifier)) return TPResult::True; // If this identifier was reverted from a token ID, and the next token // is a '(', we assume it to be a use of a type trait, so this // can never be a type name. if (Next.is(tok::l_paren) && Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier() && isRevertibleTypeTrait(Tok.getIdentifierInfo())) { return TPResult::False; } if (Next.isNot(tok::coloncolon) && Next.isNot(tok::less)) { // Determine whether this is a valid expression. If not, we will hit // a parse error one way or another. In that case, tell the caller that // this is ambiguous. Typo-correct to type and expression keywords and // to types and identifiers, in order to try to recover from errors. TentativeParseCCC CCC(Next); switch (TryAnnotateName(&CCC)) { case ANK_Error: return TPResult::Error; case ANK_TentativeDecl: return TPResult::False; case ANK_TemplateName: // In C++17, this could be a type template for class template argument // deduction. Try to form a type annotation for it. If we're in a // template template argument, we'll undo this when checking the // validity of the argument. if (getLangOpts().CPlusPlus17) { if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename)) return TPResult::Error; if (Tok.isNot(tok::identifier)) break; } // A bare type template-name which can't be a template template // argument is an error, and was probably intended to be a type. return GreaterThanIsOperator ? TPResult::True : TPResult::False; case ANK_Unresolved: return InvalidAsDeclSpec ? TPResult::Ambiguous : TPResult::False; case ANK_Success: break; } assert(Tok.isNot(tok::identifier) && "TryAnnotateName succeeded without producing an annotation"); } else { // This might possibly be a type with a dependent scope specifier and // a missing 'typename' keyword. Don't use TryAnnotateName in this case, // since it will annotate as a primary expression, and we want to use the // "missing 'typename'" logic. if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename)) return TPResult::Error; // If annotation failed, assume it's a non-type. // FIXME: If this happens due to an undeclared identifier, treat it as // ambiguous. if (Tok.is(tok::identifier)) return TPResult::False; } // We annotated this token as something. Recurse to handle whatever we got. return isCXXDeclarationSpecifier(AllowImplicitTypename, BracedCastResult, InvalidAsDeclSpec); } case tok::kw_typename: // typename T::type // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken(ImplicitTypenameContext::Yes)) return TPResult::Error; return isCXXDeclarationSpecifier(ImplicitTypenameContext::Yes, BracedCastResult, InvalidAsDeclSpec); case tok::kw_auto: { if (!getLangOpts().CPlusPlus23) return TPResult::True; if (NextToken().is(tok::l_brace)) return TPResult::False; if (NextToken().is(tok::l_paren)) return TPResult::Ambiguous; return TPResult::True; } case tok::coloncolon: { // ::foo::bar const Token &Next = NextToken(); if (Next.isOneOf(tok::kw_new, // ::new tok::kw_delete)) // ::delete return TPResult::False; [[fallthrough]]; } case tok::kw___super: case tok::kw_decltype: // Annotate typenames and C++ scope specifiers. If we get one, just // recurse to handle whatever we get. if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename)) return TPResult::Error; return isCXXDeclarationSpecifier(AllowImplicitTypename, BracedCastResult, InvalidAsDeclSpec); // decl-specifier: // storage-class-specifier // type-specifier // function-specifier // 'friend' // 'typedef' // 'constexpr' case tok::kw_friend: case tok::kw_typedef: case tok::kw_constexpr: case tok::kw_consteval: case tok::kw_constinit: // storage-class-specifier case tok::kw_register: case tok::kw_static: case tok::kw_extern: case tok::kw_mutable: case tok::kw___thread: case tok::kw_thread_local: case tok::kw__Thread_local: // function-specifier case tok::kw_inline: case tok::kw_virtual: case tok::kw_explicit: // Modules case tok::kw___module_private__: // Debugger support case tok::kw___unknown_anytype: // type-specifier: // simple-type-specifier // class-specifier // enum-specifier // elaborated-type-specifier // typename-specifier // cv-qualifier // class-specifier // elaborated-type-specifier case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: // enum-specifier case tok::kw_enum: // cv-qualifier case tok::kw_const: case tok::kw_volatile: return TPResult::True; // OpenCL address space qualifiers case tok::kw_private: if (!getLangOpts().OpenCL) return TPResult::False; [[fallthrough]]; case tok::kw___private: case tok::kw___local: case tok::kw___global: case tok::kw___constant: case tok::kw___generic: // OpenCL access qualifiers case tok::kw___read_only: case tok::kw___write_only: case tok::kw___read_write: // OpenCL pipe case tok::kw_pipe: // HLSL address space qualifiers case tok::kw_groupshared: case tok::kw_in: case tok::kw_inout: case tok::kw_out: // GNU case tok::kw_restrict: case tok::kw__Complex: case tok::kw___attribute: case tok::kw___auto_type: return TPResult::True; // Microsoft case tok::kw___declspec: case tok::kw___cdecl: case tok::kw___stdcall: case tok::kw___fastcall: case tok::kw___thiscall: case tok::kw___regcall: case tok::kw___vectorcall: case tok::kw___w64: case tok::kw___sptr: case tok::kw___uptr: case tok::kw___ptr64: case tok::kw___ptr32: case tok::kw___forceinline: case tok::kw___unaligned: case tok::kw__Nonnull: case tok::kw__Nullable: case tok::kw__Nullable_result: case tok::kw__Null_unspecified: case tok::kw___kindof: return TPResult::True; // WebAssemblyFuncref case tok::kw___funcref: return TPResult::True; // Borland case tok::kw___pascal: return TPResult::True; // AltiVec case tok::kw___vector: return TPResult::True; case tok::kw_this: { // Try to parse a C++23 Explicit Object Parameter // We do that in all language modes to produce a better diagnostic. if (getLangOpts().CPlusPlus) { RevertingTentativeParsingAction PA(*this); ConsumeToken(); return isCXXDeclarationSpecifier(AllowImplicitTypename, BracedCastResult, InvalidAsDeclSpec); } return TPResult::False; } case tok::annot_template_id: { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); // If lookup for the template-name found nothing, don't assume we have a // definitive disambiguation result yet. if ((TemplateId->hasInvalidName() || TemplateId->Kind == TNK_Undeclared_template) && InvalidAsDeclSpec) { // 'template-id(' can be a valid expression but not a valid decl spec if // the template-name is not declared, but we don't consider this to be a // definitive disambiguation. In any other context, it's an error either // way. *InvalidAsDeclSpec = NextToken().is(tok::l_paren); return TPResult::Ambiguous; } if (TemplateId->hasInvalidName()) return TPResult::Error; if (IsPlaceholderSpecifier(TemplateId, /*Lookahead=*/0)) return TPResult::True; if (TemplateId->Kind != TNK_Type_template) return TPResult::False; CXXScopeSpec SS; AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename); assert(Tok.is(tok::annot_typename)); goto case_typename; } case tok::annot_cxxscope: // foo::bar or ::foo::bar, but already parsed // We've already annotated a scope; try to annotate a type. if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename)) return TPResult::Error; if (!Tok.is(tok::annot_typename)) { if (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::annot_template_id)) { TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(NextToken()); if (TemplateId->hasInvalidName()) { if (InvalidAsDeclSpec) { *InvalidAsDeclSpec = NextToken().is(tok::l_paren); return TPResult::Ambiguous; } return TPResult::Error; } if (IsPlaceholderSpecifier(TemplateId, /*Lookahead=*/1)) return TPResult::True; } // If the next token is an identifier or a type qualifier, then this // can't possibly be a valid expression either. if (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier)) { CXXScopeSpec SS; Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); if (SS.getScopeRep() && SS.getScopeRep()->isDependent()) { RevertingTentativeParsingAction PA(*this); ConsumeAnnotationToken(); ConsumeToken(); bool isIdentifier = Tok.is(tok::identifier); TPResult TPR = TPResult::False; if (!isIdentifier) TPR = isCXXDeclarationSpecifier( AllowImplicitTypename, BracedCastResult, InvalidAsDeclSpec); if (isIdentifier || TPR == TPResult::True || TPR == TPResult::Error) return TPResult::Error; if (InvalidAsDeclSpec) { // We can't tell whether this is a missing 'typename' or a valid // expression. *InvalidAsDeclSpec = true; return TPResult::Ambiguous; } else { // In MS mode, if InvalidAsDeclSpec is not provided, and the tokens // are or the form *) or &) *> or &> &&>, this can't be an expression. // The typename must be missing. if (getLangOpts().MSVCCompat) { if (((Tok.is(tok::amp) || Tok.is(tok::star)) && (NextToken().is(tok::r_paren) || NextToken().is(tok::greater))) || (Tok.is(tok::ampamp) && NextToken().is(tok::greater))) return TPResult::True; } } } else { // Try to resolve the name. If it doesn't exist, assume it was // intended to name a type and keep disambiguating. switch (TryAnnotateName(/*CCC=*/nullptr, AllowImplicitTypename)) { case ANK_Error: return TPResult::Error; case ANK_TentativeDecl: return TPResult::False; case ANK_TemplateName: // In C++17, this could be a type template for class template // argument deduction. if (getLangOpts().CPlusPlus17) { if (TryAnnotateTypeOrScopeToken()) return TPResult::Error; // If we annotated then the current token should not still be :: // FIXME we may want to also check for tok::annot_typename but // currently don't have a test case. if (Tok.isNot(tok::annot_cxxscope)) break; } // A bare type template-name which can't be a template template // argument is an error, and was probably intended to be a type. // In C++17, this could be class template argument deduction. return (getLangOpts().CPlusPlus17 || GreaterThanIsOperator) ? TPResult::True : TPResult::False; case ANK_Unresolved: return InvalidAsDeclSpec ? TPResult::Ambiguous : TPResult::False; case ANK_Success: break; } // Annotated it, check again. assert(Tok.isNot(tok::annot_cxxscope) || NextToken().isNot(tok::identifier)); return isCXXDeclarationSpecifier(AllowImplicitTypename, BracedCastResult, InvalidAsDeclSpec); } } return TPResult::False; } // If that succeeded, fallthrough into the generic simple-type-id case. [[fallthrough]]; // The ambiguity resides in a simple-type-specifier/typename-specifier // followed by a '('. The '(' could either be the start of: // // direct-declarator: // '(' declarator ')' // // direct-abstract-declarator: // '(' parameter-declaration-clause ')' cv-qualifier-seq[opt] // exception-specification[opt] // '(' abstract-declarator ')' // // or part of a function-style cast expression: // // simple-type-specifier '(' expression-list[opt] ')' // // simple-type-specifier: case tok::annot_typename: case_typename: // In Objective-C, we might have a protocol-qualified type. if (getLangOpts().ObjC && NextToken().is(tok::less)) { // Tentatively parse the protocol qualifiers. RevertingTentativeParsingAction PA(*this); ConsumeAnyToken(); // The type token TPResult TPR = TryParseProtocolQualifiers(); bool isFollowedByParen = Tok.is(tok::l_paren); bool isFollowedByBrace = Tok.is(tok::l_brace); if (TPR == TPResult::Error) return TPResult::Error; if (isFollowedByParen) return TPResult::Ambiguous; if (getLangOpts().CPlusPlus11 && isFollowedByBrace) return BracedCastResult; return TPResult::True; } [[fallthrough]]; case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_bool: case tok::kw_short: case tok::kw_int: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw___bf16: case tok::kw__Float16: case tok::kw___float128: case tok::kw___ibm128: case tok::kw_void: case tok::annot_decltype: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Sat: case tok::annot_pack_indexing_type: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" if (NextToken().is(tok::l_paren)) return TPResult::Ambiguous; // This is a function-style cast in all cases we disambiguate other than // one: // struct S { // enum E : int { a = 4 }; // enum // enum E : int { 4 }; // bit-field // }; if (getLangOpts().CPlusPlus11 && NextToken().is(tok::l_brace)) return BracedCastResult; if (isStartOfObjCClassMessageMissingOpenBracket()) return TPResult::False; return TPResult::True; // GNU typeof support. case tok::kw_typeof: { if (NextToken().isNot(tok::l_paren)) return TPResult::True; RevertingTentativeParsingAction PA(*this); TPResult TPR = TryParseTypeofSpecifier(); bool isFollowedByParen = Tok.is(tok::l_paren); bool isFollowedByBrace = Tok.is(tok::l_brace); if (TPR == TPResult::Error) return TPResult::Error; if (isFollowedByParen) return TPResult::Ambiguous; if (getLangOpts().CPlusPlus11 && isFollowedByBrace) return BracedCastResult; return TPResult::True; } #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: #include "clang/Basic/TransformTypeTraits.def" return TPResult::True; // C11 _Alignas case tok::kw__Alignas: return TPResult::True; // C11 _Atomic case tok::kw__Atomic: return TPResult::True; case tok::kw__BitInt: case tok::kw__ExtInt: { if (NextToken().isNot(tok::l_paren)) return TPResult::Error; RevertingTentativeParsingAction PA(*this); ConsumeToken(); ConsumeParen(); if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; if (Tok.is(tok::l_paren)) return TPResult::Ambiguous; if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) return BracedCastResult; return TPResult::True; } default: return TPResult::False; } } bool Parser::isCXXDeclarationSpecifierAType() { switch (Tok.getKind()) { // typename-specifier case tok::annot_decltype: case tok::annot_pack_indexing_type: case tok::annot_template_id: case tok::annot_typename: case tok::kw_typeof: #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: #include "clang/Basic/TransformTypeTraits.def" return true; // elaborated-type-specifier case tok::kw_class: case tok::kw_struct: case tok::kw_union: case tok::kw___interface: case tok::kw_enum: return true; // simple-type-specifier case tok::kw_char: case tok::kw_wchar_t: case tok::kw_char8_t: case tok::kw_char16_t: case tok::kw_char32_t: case tok::kw_bool: case tok::kw_short: case tok::kw_int: case tok::kw__ExtInt: case tok::kw__BitInt: case tok::kw_long: case tok::kw___int64: case tok::kw___int128: case tok::kw_signed: case tok::kw_unsigned: case tok::kw_half: case tok::kw_float: case tok::kw_double: case tok::kw___bf16: case tok::kw__Float16: case tok::kw___float128: case tok::kw___ibm128: case tok::kw_void: case tok::kw___unknown_anytype: case tok::kw___auto_type: case tok::kw__Accum: case tok::kw__Fract: case tok::kw__Sat: #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: #include "clang/Basic/OpenCLImageTypes.def" return true; case tok::kw_auto: return getLangOpts().CPlusPlus11; case tok::kw__Atomic: // "_Atomic foo" return NextToken().is(tok::l_paren); default: return false; } } /// [GNU] typeof-specifier: /// 'typeof' '(' expressions ')' /// 'typeof' '(' type-name ')' /// Parser::TPResult Parser::TryParseTypeofSpecifier() { assert(Tok.is(tok::kw_typeof) && "Expected 'typeof'!"); ConsumeToken(); assert(Tok.is(tok::l_paren) && "Expected '('"); // Parse through the parens after 'typeof'. ConsumeParen(); if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; return TPResult::Ambiguous; } /// [ObjC] protocol-qualifiers: //// '<' identifier-list '>' Parser::TPResult Parser::TryParseProtocolQualifiers() { assert(Tok.is(tok::less) && "Expected '<' for qualifier list"); ConsumeToken(); do { if (Tok.isNot(tok::identifier)) return TPResult::Error; ConsumeToken(); if (Tok.is(tok::comma)) { ConsumeToken(); continue; } if (Tok.is(tok::greater)) { ConsumeToken(); return TPResult::Ambiguous; } } while (false); return TPResult::Error; } /// isCXXFunctionDeclarator - Disambiguates between a function declarator or /// a constructor-style initializer, when parsing declaration statements. /// Returns true for function declarator and false for constructor-style /// initializer. /// If during the disambiguation process a parsing error is encountered, /// the function returns true to let the declaration parsing code handle it. /// /// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt] /// exception-specification[opt] /// bool Parser::isCXXFunctionDeclarator( bool *IsAmbiguous, ImplicitTypenameContext AllowImplicitTypename) { // C++ 8.2p1: // The ambiguity arising from the similarity between a function-style cast and // a declaration mentioned in 6.8 can also occur in the context of a // declaration. In that context, the choice is between a function declaration // with a redundant set of parentheses around a parameter name and an object // declaration with a function-style cast as the initializer. Just as for the // ambiguities mentioned in 6.8, the resolution is to consider any construct // that could possibly be a declaration a declaration. RevertingTentativeParsingAction PA(*this); ConsumeParen(); bool InvalidAsDeclaration = false; TPResult TPR = TryParseParameterDeclarationClause( &InvalidAsDeclaration, /*VersusTemplateArgument=*/false, AllowImplicitTypename); if (TPR == TPResult::Ambiguous) { if (Tok.isNot(tok::r_paren)) TPR = TPResult::False; else { const Token &Next = NextToken(); if (Next.isOneOf(tok::amp, tok::ampamp, tok::kw_const, tok::kw_volatile, tok::kw_throw, tok::kw_noexcept, tok::l_square, tok::l_brace, tok::kw_try, tok::equal, tok::arrow) || isCXX11VirtSpecifier(Next)) // The next token cannot appear after a constructor-style initializer, // and can appear next in a function definition. This must be a function // declarator. TPR = TPResult::True; else if (InvalidAsDeclaration) // Use the absence of 'typename' as a tie-breaker. TPR = TPResult::False; } } if (IsAmbiguous && TPR == TPResult::Ambiguous) *IsAmbiguous = true; // In case of an error, let the declaration parsing code handle it. return TPR != TPResult::False; } /// parameter-declaration-clause: /// parameter-declaration-list[opt] '...'[opt] /// parameter-declaration-list ',' '...' /// /// parameter-declaration-list: /// parameter-declaration /// parameter-declaration-list ',' parameter-declaration /// /// parameter-declaration: /// attribute-specifier-seq[opt] decl-specifier-seq declarator attributes[opt] /// attribute-specifier-seq[opt] decl-specifier-seq declarator attributes[opt] /// '=' assignment-expression /// attribute-specifier-seq[opt] decl-specifier-seq abstract-declarator[opt] /// attributes[opt] /// attribute-specifier-seq[opt] decl-specifier-seq abstract-declarator[opt] /// attributes[opt] '=' assignment-expression /// Parser::TPResult Parser::TryParseParameterDeclarationClause( bool *InvalidAsDeclaration, bool VersusTemplateArgument, ImplicitTypenameContext AllowImplicitTypename) { if (Tok.is(tok::r_paren)) return TPResult::Ambiguous; // parameter-declaration-list[opt] '...'[opt] // parameter-declaration-list ',' '...' // // parameter-declaration-list: // parameter-declaration // parameter-declaration-list ',' parameter-declaration // while (true) { // '...'[opt] if (Tok.is(tok::ellipsis)) { ConsumeToken(); if (Tok.is(tok::r_paren)) return TPResult::True; // '...)' is a sign of a function declarator. else return TPResult::False; } // An attribute-specifier-seq here is a sign of a function declarator. if (isCXX11AttributeSpecifier(/*Disambiguate*/false, /*OuterMightBeMessageSend*/true)) return TPResult::True; ParsedAttributes attrs(AttrFactory); MaybeParseMicrosoftAttributes(attrs); // decl-specifier-seq // A parameter-declaration's initializer must be preceded by an '=', so // decl-specifier-seq '{' is not a parameter in C++11. TPResult TPR = isCXXDeclarationSpecifier( AllowImplicitTypename, TPResult::False, InvalidAsDeclaration); // A declaration-specifier (not followed by '(' or '{') means this can't be // an expression, but it could still be a template argument. if (TPR != TPResult::Ambiguous && !(VersusTemplateArgument && TPR == TPResult::True)) return TPR; bool SeenType = false; bool DeclarationSpecifierIsAuto = Tok.is(tok::kw_auto); do { SeenType |= isCXXDeclarationSpecifierAType(); if (TryConsumeDeclarationSpecifier() == TPResult::Error) return TPResult::Error; // If we see a parameter name, this can't be a template argument. if (SeenType && Tok.is(tok::identifier)) return TPResult::True; TPR = isCXXDeclarationSpecifier(AllowImplicitTypename, TPResult::False, InvalidAsDeclaration); if (TPR == TPResult::Error) return TPR; // Two declaration-specifiers means this can't be an expression. if (TPR == TPResult::True && !VersusTemplateArgument) return TPR; } while (TPR != TPResult::False); // declarator // abstract-declarator[opt] TPR = TryParseDeclarator( /*mayBeAbstract=*/true, /*mayHaveIdentifier=*/true, /*mayHaveDirectInit=*/false, /*mayHaveTrailingReturnType=*/DeclarationSpecifierIsAuto); if (TPR != TPResult::Ambiguous) return TPR; // [GNU] attributes[opt] if (Tok.is(tok::kw___attribute)) return TPResult::True; // If we're disambiguating a template argument in a default argument in // a class definition versus a parameter declaration, an '=' here // disambiguates the parse one way or the other. // If this is a parameter, it must have a default argument because // (a) the previous parameter did, and // (b) this must be the first declaration of the function, so we can't // inherit any default arguments from elsewhere. // FIXME: If we reach a ')' without consuming any '>'s, then this must // also be a function parameter (that's missing its default argument). if (VersusTemplateArgument) return Tok.is(tok::equal) ? TPResult::True : TPResult::False; if (Tok.is(tok::equal)) { // '=' assignment-expression // Parse through assignment-expression. if (!SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch)) return TPResult::Error; } if (Tok.is(tok::ellipsis)) { ConsumeToken(); if (Tok.is(tok::r_paren)) return TPResult::True; // '...)' is a sign of a function declarator. else return TPResult::False; } if (!TryConsumeToken(tok::comma)) break; } return TPResult::Ambiguous; } /// TryParseFunctionDeclarator - We parsed a '(' and we want to try to continue /// parsing as a function declarator. /// If TryParseFunctionDeclarator fully parsed the function declarator, it will /// return TPResult::Ambiguous, otherwise it will return either False() or /// Error(). /// /// '(' parameter-declaration-clause ')' cv-qualifier-seq[opt] /// exception-specification[opt] /// /// exception-specification: /// 'throw' '(' type-id-list[opt] ')' /// Parser::TPResult Parser::TryParseFunctionDeclarator(bool MayHaveTrailingReturnType) { // The '(' is already parsed. TPResult TPR = TryParseParameterDeclarationClause(); if (TPR == TPResult::Ambiguous && Tok.isNot(tok::r_paren)) TPR = TPResult::False; if (TPR == TPResult::False || TPR == TPResult::Error) return TPR; // Parse through the parens. if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; // cv-qualifier-seq while (Tok.isOneOf(tok::kw_const, tok::kw_volatile, tok::kw___unaligned, tok::kw_restrict)) ConsumeToken(); // ref-qualifier[opt] if (Tok.isOneOf(tok::amp, tok::ampamp)) ConsumeToken(); // exception-specification if (Tok.is(tok::kw_throw)) { ConsumeToken(); if (Tok.isNot(tok::l_paren)) return TPResult::Error; // Parse through the parens after 'throw'. ConsumeParen(); if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; } if (Tok.is(tok::kw_noexcept)) { ConsumeToken(); // Possibly an expression as well. if (Tok.is(tok::l_paren)) { // Find the matching rparen. ConsumeParen(); if (!SkipUntil(tok::r_paren, StopAtSemi)) return TPResult::Error; } } // attribute-specifier-seq if (!TrySkipAttributes()) return TPResult::Ambiguous; // trailing-return-type if (Tok.is(tok::arrow) && MayHaveTrailingReturnType) { if (TPR == TPResult::True) return TPR; ConsumeToken(); if (Tok.is(tok::identifier) && NameAfterArrowIsNonType()) { return TPResult::False; } if (isCXXTypeId(TentativeCXXTypeIdContext::TypeIdInTrailingReturnType)) return TPResult::True; } return TPResult::Ambiguous; } // When parsing an identifier after an arrow it may be a member expression, // in which case we should not annotate it as an independant expression // so we just lookup that name, if it's not a type the construct is not // a function declaration. bool Parser::NameAfterArrowIsNonType() { assert(Tok.is(tok::identifier)); Token Next = NextToken(); if (Next.is(tok::coloncolon)) return false; IdentifierInfo *Name = Tok.getIdentifierInfo(); SourceLocation NameLoc = Tok.getLocation(); CXXScopeSpec SS; TentativeParseCCC CCC(Next); Sema::NameClassification Classification = Actions.ClassifyName(getCurScope(), SS, Name, NameLoc, Next, &CCC); switch (Classification.getKind()) { case Sema::NC_OverloadSet: case Sema::NC_NonType: case Sema::NC_VarTemplate: case Sema::NC_FunctionTemplate: return true; default: break; } return false; } /// '[' constant-expression[opt] ']' /// Parser::TPResult Parser::TryParseBracketDeclarator() { ConsumeBracket(); // A constant-expression cannot begin with a '{', but the // expr-or-braced-init-list of a postfix-expression can. if (Tok.is(tok::l_brace)) return TPResult::False; if (!SkipUntil(tok::r_square, tok::comma, StopAtSemi | StopBeforeMatch)) return TPResult::Error; // If we hit a comma before the ']', this is not a constant-expression, // but might still be the expr-or-braced-init-list of a postfix-expression. if (Tok.isNot(tok::r_square)) return TPResult::False; ConsumeBracket(); return TPResult::Ambiguous; } /// Determine whether we might be looking at the '<' template-argument-list '>' /// of a template-id or simple-template-id, rather than a less-than comparison. /// This will often fail and produce an ambiguity, but should never be wrong /// if it returns True or False. Parser::TPResult Parser::isTemplateArgumentList(unsigned TokensToSkip) { if (!TokensToSkip) { if (Tok.isNot(tok::less)) return TPResult::False; if (NextToken().is(tok::greater)) return TPResult::True; } RevertingTentativeParsingAction PA(*this); while (TokensToSkip) { ConsumeAnyToken(); --TokensToSkip; } if (!TryConsumeToken(tok::less)) return TPResult::False; // We can't do much to tell an expression apart from a template-argument, // but one good distinguishing factor is that a "decl-specifier" not // followed by '(' or '{' can't appear in an expression. bool InvalidAsTemplateArgumentList = false; if (isCXXDeclarationSpecifier(ImplicitTypenameContext::No, TPResult::False, &InvalidAsTemplateArgumentList) == TPResult::True) return TPResult::True; if (InvalidAsTemplateArgumentList) return TPResult::False; // FIXME: In many contexts, X can only be a // template-argument-list. But that's not true in general: // // using b = int; // void f() { // int a = AD; // OK, declares b, not a template-id. // // X // ', int>' might be end of X's template argument list // // We might be able to disambiguate a few more cases if we're careful. // A template-argument-list must be terminated by a '>'. if (SkipUntil({tok::greater, tok::greatergreater, tok::greatergreatergreater}, StopAtSemi | StopBeforeMatch)) return TPResult::Ambiguous; return TPResult::False; } /// Determine whether we might be looking at the '(' of a C++20 explicit(bool) /// in an earlier language mode. Parser::TPResult Parser::isExplicitBool() { assert(Tok.is(tok::l_paren) && "expected to be looking at a '(' token"); RevertingTentativeParsingAction PA(*this); ConsumeParen(); // We can only have 'explicit' on a constructor, conversion function, or // deduction guide. The declarator of a deduction guide cannot be // parenthesized, so we know this isn't a deduction guide. So the only // thing we need to check for is some number of parens followed by either // the current class name or 'operator'. while (Tok.is(tok::l_paren)) ConsumeParen(); if (TryAnnotateOptionalCXXScopeToken()) return TPResult::Error; // Class-scope constructor and conversion function names can't really be // qualified, but we get better diagnostics if we assume they can be. CXXScopeSpec SS; if (Tok.is(tok::annot_cxxscope)) { Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); ConsumeAnnotationToken(); } // 'explicit(operator' might be explicit(bool) or the declaration of a // conversion function, but it's probably a conversion function. if (Tok.is(tok::kw_operator)) return TPResult::Ambiguous; // If this can't be a constructor name, it can only be explicit(bool). if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id)) return TPResult::True; if (!Actions.isCurrentClassName(Tok.is(tok::identifier) ? *Tok.getIdentifierInfo() : *takeTemplateIdAnnotation(Tok)->Name, getCurScope(), &SS)) return TPResult::True; // Formally, we must have a right-paren after the constructor name to match // the grammar for a constructor. But clang permits a parenthesized // constructor declarator, so also allow a constructor declarator to follow // with no ')' token after the constructor name. if (!NextToken().is(tok::r_paren) && !isConstructorDeclarator(/*Unqualified=*/SS.isEmpty(), /*DeductionGuide=*/false)) return TPResult::True; // Might be explicit(bool) or a parenthesized constructor name. return TPResult::Ambiguous; }