//===- LoongArch.cpp ------------------------------------------------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "ABIInfoImpl.h" #include "TargetInfo.h" using namespace clang; using namespace clang::CodeGen; // LoongArch ABI Implementation. Documented at // https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html // //===----------------------------------------------------------------------===// namespace { class LoongArchABIInfo : public DefaultABIInfo { private: // Size of the integer ('r') registers in bits. unsigned GRLen; // Size of the floating point ('f') registers in bits. unsigned FRLen; // Number of general-purpose argument registers. static const int NumGARs = 8; // Number of floating-point argument registers. static const int NumFARs = 8; bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const; public: LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen) : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {} void computeInfo(CGFunctionInfo &FI) const override; ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft, int &FARsLeft) const; ABIArgInfo classifyReturnType(QualType RetTy) const; RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, AggValueSlot Slot) const override; ABIArgInfo extendType(QualType Ty) const; bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededArgGPRs, int &NeededArgFPRs) const; ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const; }; } // end anonymous namespace void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const { QualType RetTy = FI.getReturnType(); if (!getCXXABI().classifyReturnType(FI)) FI.getReturnInfo() = classifyReturnType(RetTy); // IsRetIndirect is true if classifyArgumentType indicated the value should // be passed indirect, or if the type size is a scalar greater than 2*GRLen // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct // in LLVM IR, relying on the backend lowering code to rewrite the argument // list and pass indirectly on LA32. bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; if (!IsRetIndirect && RetTy->isScalarType() && getContext().getTypeSize(RetTy) > (2 * GRLen)) { if (RetTy->isComplexType() && FRLen) { QualType EltTy = RetTy->castAs()->getElementType(); IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen; } else { // This is a normal scalar > 2*GRLen, such as fp128 on LA32. IsRetIndirect = true; } } // We must track the number of GARs and FARs used in order to conform to the // LoongArch ABI. As GAR usage is different for variadic arguments, we must // also track whether we are examining a vararg or not. int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs; int FARsLeft = FRLen ? NumFARs : 0; int NumFixedArgs = FI.getNumRequiredArgs(); int ArgNum = 0; for (auto &ArgInfo : FI.arguments()) { ArgInfo.info = classifyArgumentType( ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft); ArgNum++; } } // Returns true if the struct is a potential candidate to be passed in FARs (and // GARs). If this function returns true, the caller is responsible for checking // that if there is only a single field then that field is a float. bool LoongArchABIInfo::detectFARsEligibleStructHelper( QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off) const { bool IsInt = Ty->isIntegralOrEnumerationType(); bool IsFloat = Ty->isRealFloatingType(); if (IsInt || IsFloat) { uint64_t Size = getContext().getTypeSize(Ty); if (IsInt && Size > GRLen) return false; // Can't be eligible if larger than the FP registers. Half precision isn't // currently supported on LoongArch and the ABI hasn't been confirmed, so // default to the integer ABI in that case. if (IsFloat && (Size > FRLen || Size < 32)) return false; // Can't be eligible if an integer type was already found (int+int pairs // are not eligible). if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) return false; if (!Field1Ty) { Field1Ty = CGT.ConvertType(Ty); Field1Off = CurOff; return true; } if (!Field2Ty) { Field2Ty = CGT.ConvertType(Ty); Field2Off = CurOff; return true; } return false; } if (auto CTy = Ty->getAs()) { if (Field1Ty) return false; QualType EltTy = CTy->getElementType(); if (getContext().getTypeSize(EltTy) > FRLen) return false; Field1Ty = CGT.ConvertType(EltTy); Field1Off = CurOff; Field2Ty = Field1Ty; Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); return true; } if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { uint64_t ArraySize = ATy->getZExtSize(); QualType EltTy = ATy->getElementType(); // Non-zero-length arrays of empty records make the struct ineligible to be // passed via FARs in C++. if (const auto *RTy = EltTy->getAs()) { if (ArraySize != 0 && isa(RTy->getDecl()) && isEmptyRecord(getContext(), EltTy, true, true)) return false; } CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); for (uint64_t i = 0; i < ArraySize; ++i) { if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off, Field2Ty, Field2Off)) return false; CurOff += EltSize; } return true; } if (const auto *RTy = Ty->getAs()) { // Structures with either a non-trivial destructor or a non-trivial // copy constructor are not eligible for the FP calling convention. if (getRecordArgABI(Ty, CGT.getCXXABI())) return false; const RecordDecl *RD = RTy->getDecl(); if (isEmptyRecord(getContext(), Ty, true, true) && (!RD->isUnion() || !isa(RD))) return true; // Unions aren't eligible unless they're empty in C (which is caught above). if (RD->isUnion()) return false; const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); // If this is a C++ record, check the bases first. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) { for (const CXXBaseSpecifier &B : CXXRD->bases()) { const auto *BDecl = cast(B.getType()->castAs()->getDecl()); if (!detectFARsEligibleStructHelper( B.getType(), CurOff + Layout.getBaseClassOffset(BDecl), Field1Ty, Field1Off, Field2Ty, Field2Off)) return false; } } for (const FieldDecl *FD : RD->fields()) { QualType QTy = FD->getType(); if (FD->isBitField()) { unsigned BitWidth = FD->getBitWidthValue(getContext()); // Zero-width bitfields are ignored. if (BitWidth == 0) continue; // Allow a bitfield with a type greater than GRLen as long as the // bitwidth is GRLen or less. if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) { QTy = getContext().getIntTypeForBitwidth(GRLen, false); } } if (!detectFARsEligibleStructHelper( QTy, CurOff + getContext().toCharUnitsFromBits( Layout.getFieldOffset(FD->getFieldIndex())), Field1Ty, Field1Off, Field2Ty, Field2Off)) return false; } return Field1Ty != nullptr; } return false; } // Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when // flattened it contains a single fp value, fp+fp, or int+fp of appropriate // size). If so, NeededFARs and NeededGARs are incremented appropriately. bool LoongArchABIInfo::detectFARsEligibleStruct( QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs, int &NeededFARs) const { Field1Ty = nullptr; Field2Ty = nullptr; NeededGARs = 0; NeededFARs = 0; if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off)) return false; if (!Field1Ty) return false; // Not really a candidate if we have a single int but no float. if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) return false; if (Field1Ty && Field1Ty->isFloatingPointTy()) NeededFARs++; else if (Field1Ty) NeededGARs++; if (Field2Ty && Field2Ty->isFloatingPointTy()) NeededFARs++; else if (Field2Ty) NeededGARs++; return true; } // Call getCoerceAndExpand for the two-element flattened struct described by // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an // appropriate coerceToType and unpaddedCoerceToType. ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct( llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, CharUnits Field2Off) const { SmallVector CoerceElts; SmallVector UnpaddedCoerceElts; if (!Field1Off.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); CoerceElts.push_back(Field1Ty); UnpaddedCoerceElts.push_back(Field1Ty); if (!Field2Ty) { return ABIArgInfo::getCoerceAndExpand( llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), UnpaddedCoerceElts[0]); } CharUnits Field2Align = CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty)); CharUnits Field1End = Field1Off + CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); CharUnits Padding = CharUnits::Zero(); if (Field2Off > Field2OffNoPadNoPack) Padding = Field2Off - Field2OffNoPadNoPack; else if (Field2Off != Field2Align && Field2Off > Field1End) Padding = Field2Off - Field1End; bool IsPacked = !Field2Off.isMultipleOf(Field2Align); if (!Padding.isZero()) CoerceElts.push_back(llvm::ArrayType::get( llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); CoerceElts.push_back(Field2Ty); UnpaddedCoerceElts.push_back(Field2Ty); return ABIArgInfo::getCoerceAndExpand( llvm::StructType::get(getVMContext(), CoerceElts, IsPacked), llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked)); } ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft, int &FARsLeft) const { assert(GARsLeft <= NumGARs && "GAR tracking underflow"); Ty = useFirstFieldIfTransparentUnion(Ty); // Structures with either a non-trivial destructor or a non-trivial // copy constructor are always passed indirectly. if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { if (GARsLeft) GARsLeft -= 1; return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == CGCXXABI::RAA_DirectInMemory); } uint64_t Size = getContext().getTypeSize(Ty); // Ignore empty struct or union whose size is zero, e.g. `struct { }` in C or // `struct { int a[0]; }` in C++. In C++, `struct { }` is empty but it's size // is 1 byte and g++ doesn't ignore it; clang++ matches this behaviour. if (isEmptyRecord(getContext(), Ty, true) && Size == 0) return ABIArgInfo::getIgnore(); // Pass floating point values via FARs if possible. if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && FRLen >= Size && FARsLeft) { FARsLeft--; return ABIArgInfo::getDirect(); } // Complex types for the *f or *d ABI must be passed directly rather than // using CoerceAndExpand. if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) { QualType EltTy = Ty->castAs()->getElementType(); if (getContext().getTypeSize(EltTy) <= FRLen) { FARsLeft -= 2; return ABIArgInfo::getDirect(); } } if (IsFixed && FRLen && Ty->isStructureOrClassType()) { llvm::Type *Field1Ty = nullptr; llvm::Type *Field2Ty = nullptr; CharUnits Field1Off = CharUnits::Zero(); CharUnits Field2Off = CharUnits::Zero(); int NeededGARs = 0; int NeededFARs = 0; bool IsCandidate = detectFARsEligibleStruct( Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs); if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) { GARsLeft -= NeededGARs; FARsLeft -= NeededFARs; return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty, Field2Off); } } uint64_t NeededAlign = getContext().getTypeAlign(Ty); // Determine the number of GARs needed to pass the current argument // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned" // register pairs, so may consume 3 registers. int NeededGARs = 1; if (!IsFixed && NeededAlign == 2 * GRLen) NeededGARs = 2 + (GARsLeft % 2); else if (Size > GRLen && Size <= 2 * GRLen) NeededGARs = 2; if (NeededGARs > GARsLeft) NeededGARs = GARsLeft; GARsLeft -= NeededGARs; if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { // Treat an enum type as its underlying type. if (const EnumType *EnumTy = Ty->getAs()) Ty = EnumTy->getDecl()->getIntegerType(); // All integral types are promoted to GRLen width. if (Size < GRLen && Ty->isIntegralOrEnumerationType()) return extendType(Ty); if (const auto *EIT = Ty->getAs()) { if (EIT->getNumBits() < GRLen) return extendType(Ty); if (EIT->getNumBits() > 128 || (!getContext().getTargetInfo().hasInt128Type() && EIT->getNumBits() > 64)) return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } return ABIArgInfo::getDirect(); } // Aggregates which are <= 2*GRLen will be passed in registers if possible, // so coerce to integers. if (Size <= 2 * GRLen) { // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is // required, and a 2-element GRLen array if only GRLen alignment is // required. if (Size <= GRLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), GRLen)); } if (getContext().getTypeAlign(Ty) == 2 * GRLen) { return ABIArgInfo::getDirect( llvm::IntegerType::get(getVMContext(), 2 * GRLen)); } return ABIArgInfo::getDirect( llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2)); } return getNaturalAlignIndirect(Ty, /*ByVal=*/false); } ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const { if (RetTy->isVoidType()) return ABIArgInfo::getIgnore(); // The rules for return and argument types are the same, so defer to // classifyArgumentType. int GARsLeft = 2; int FARsLeft = FRLen ? 2 : 0; return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft); } RValue LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, AggValueSlot Slot) const { CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8); // Empty records are ignored for parameter passing purposes. if (isEmptyRecord(getContext(), Ty, true)) return Slot.asRValue(); auto TInfo = getContext().getTypeInfoInChars(Ty); // Arguments bigger than 2*GRLen bytes are passed indirectly. return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo, SlotSize, /*AllowHigherAlign=*/true, Slot); } ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const { int TySize = getContext().getTypeSize(Ty); // LA64 ABI requires unsigned 32 bit integers to be sign extended. if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) return ABIArgInfo::getSignExtend(Ty); return ABIArgInfo::getExtend(Ty); } namespace { class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo { public: LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen) : TargetCodeGenInfo( std::make_unique(CGT, GRLen, FRLen)) {} }; } // namespace std::unique_ptr CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen, unsigned FLen) { return std::make_unique(CGM.getTypes(), GRLen, FLen); }