//===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // These classes wrap the information about a call or function // definition used to handle ABI compliancy. // //===----------------------------------------------------------------------===// #ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H #define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H #include "CGBuilder.h" #include "CGValue.h" #include "CodeGenModule.h" #include "clang/AST/Type.h" #include "clang/Basic/LLVM.h" #include "clang/Basic/SyncScope.h" #include "clang/Basic/TargetInfo.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringRef.h" namespace llvm { class Constant; class GlobalValue; class Type; class Value; } namespace clang { class Decl; namespace CodeGen { class ABIInfo; class CallArgList; class CodeGenFunction; class CGBlockInfo; class SwiftABIInfo; /// TargetCodeGenInfo - This class organizes various target-specific /// codegeneration issues, like target-specific attributes, builtins and so /// on. class TargetCodeGenInfo { std::unique_ptr Info; protected: // Target hooks supporting Swift calling conventions. The target must // initialize this field if it claims to support these calling conventions // by returning true from TargetInfo::checkCallingConvention for them. std::unique_ptr SwiftInfo; // Returns ABI info helper for the target. This is for use by derived classes. template const T &getABIInfo() const { return static_cast(*Info); } public: TargetCodeGenInfo(std::unique_ptr Info); virtual ~TargetCodeGenInfo(); /// getABIInfo() - Returns ABI info helper for the target. const ABIInfo &getABIInfo() const { return *Info; } /// Returns Swift ABI info helper for the target. const SwiftABIInfo &getSwiftABIInfo() const { assert(SwiftInfo && "Swift ABI info has not been initialized"); return *SwiftInfo; } /// setTargetAttributes - Provides a convenient hook to handle extra /// target-specific attributes for the given global. virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {} /// emitTargetMetadata - Provides a convenient hook to handle extra /// target-specific metadata for the given globals. virtual void emitTargetMetadata( CodeGen::CodeGenModule &CGM, const llvm::MapVector &MangledDeclNames) const {} /// Provides a convenient hook to handle extra target-specific globals. virtual void emitTargetGlobals(CodeGen::CodeGenModule &CGM) const {} /// Any further codegen related checks that need to be done on a function /// signature in a target specific manner. virtual void checkFunctionABI(CodeGenModule &CGM, const FunctionDecl *Decl) const {} /// Any further codegen related checks that need to be done on a function call /// in a target specific manner. virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, const FunctionDecl *Callee, const CallArgList &Args, QualType ReturnType) const {} /// Determines the size of struct _Unwind_Exception on this platform, /// in 8-bit units. The Itanium ABI defines this as: /// struct _Unwind_Exception { /// uint64 exception_class; /// _Unwind_Exception_Cleanup_Fn exception_cleanup; /// uint64 private_1; /// uint64 private_2; /// }; virtual unsigned getSizeOfUnwindException() const; /// Controls whether __builtin_extend_pointer should sign-extend /// pointers to uint64_t or zero-extend them (the default). Has /// no effect for targets: /// - that have 64-bit pointers, or /// - that cannot address through registers larger than pointers, or /// - that implicitly ignore/truncate the top bits when addressing /// through such registers. virtual bool extendPointerWithSExt() const { return false; } /// Determines the DWARF register number for the stack pointer, for /// exception-handling purposes. Implements __builtin_dwarf_sp_column. /// /// Returns -1 if the operation is unsupported by this target. virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { return -1; } /// Initializes the given DWARF EH register-size table, a char*. /// Implements __builtin_init_dwarf_reg_size_table. /// /// Returns true if the operation is unsupported by this target. virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return true; } /// Performs the code-generation required to convert a return /// address as stored by the system into the actual address of the /// next instruction that will be executed. /// /// Used by __builtin_extract_return_addr(). virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return Address; } /// Performs the code-generation required to convert the address /// of an instruction into a return address suitable for storage /// by the system in a return slot. /// /// Used by __builtin_frob_return_addr(). virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { return Address; } /// Performs a target specific test of a floating point value for things /// like IsNaN, Infinity, ... Nullptr is returned if no implementation /// exists. virtual llvm::Value * testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder, CodeGenModule &CGM) const { assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); return nullptr; } /// Corrects the low-level LLVM type for a given constraint and "usual" /// type. /// /// \returns A pointer to a new LLVM type, possibly the same as the original /// on success; 0 on failure. virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, StringRef Constraint, llvm::Type *Ty) const { return Ty; } /// Target hook to decide whether an inline asm operand can be passed /// by value. virtual bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, llvm::Type *Ty) const { return false; } /// Adds constraints and types for result registers. virtual void addReturnRegisterOutputs( CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, std::string &Constraints, std::vector &ResultRegTypes, std::vector &ResultTruncRegTypes, std::vector &ResultRegDests, std::string &AsmString, unsigned NumOutputs) const {} /// doesReturnSlotInterfereWithArgs - Return true if the target uses an /// argument slot for an 'sret' type. virtual bool doesReturnSlotInterfereWithArgs() const { return true; } /// Retrieve the address of a function to call immediately before /// calling objc_retainAutoreleasedReturnValue. The /// implementation of objc_autoreleaseReturnValue sniffs the /// instruction stream following its return address to decide /// whether it's a call to objc_retainAutoreleasedReturnValue. /// This can be prohibitively expensive, depending on the /// relocation model, and so on some targets it instead sniffs for /// a particular instruction sequence. This functions returns /// that instruction sequence in inline assembly, which will be /// empty if none is required. virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const { return ""; } /// Determine whether a call to objc_retainAutoreleasedReturnValue or /// objc_unsafeClaimAutoreleasedReturnValue should be marked as 'notail'. virtual bool markARCOptimizedReturnCallsAsNoTail() const { return false; } /// Return a constant used by UBSan as a signature to identify functions /// possessing type information, or 0 if the platform is unsupported. /// This magic number is invalid instruction encoding in many targets. virtual llvm::Constant * getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { return llvm::ConstantInt::get(CGM.Int32Ty, 0xc105cafe); } /// Determine whether a call to an unprototyped functions under /// the given calling convention should use the variadic /// convention or the non-variadic convention. /// /// There's a good reason to make a platform's variadic calling /// convention be different from its non-variadic calling /// convention: the non-variadic arguments can be passed in /// registers (better for performance), and the variadic arguments /// can be passed on the stack (also better for performance). If /// this is done, however, unprototyped functions *must* use the /// non-variadic convention, because C99 states that a call /// through an unprototyped function type must succeed if the /// function was defined with a non-variadic prototype with /// compatible parameters. Therefore, splitting the conventions /// makes it impossible to call a variadic function through an /// unprototyped type. Since function prototypes came out in the /// late 1970s, this is probably an acceptable trade-off. /// Nonetheless, not all platforms are willing to make it, and in /// particularly x86-64 bends over backwards to make the /// conventions compatible. /// /// The default is false. This is correct whenever: /// - the conventions are exactly the same, because it does not /// matter and the resulting IR will be somewhat prettier in /// certain cases; or /// - the conventions are substantively different in how they pass /// arguments, because in this case using the variadic convention /// will lead to C99 violations. /// /// However, some platforms make the conventions identical except /// for passing additional out-of-band information to a variadic /// function: for example, x86-64 passes the number of SSE /// arguments in %al. On these platforms, it is desirable to /// call unprototyped functions using the variadic convention so /// that unprototyped calls to varargs functions still succeed. /// /// Relatedly, platforms which pass the fixed arguments to this: /// A foo(B, C, D); /// differently than they would pass them to this: /// A foo(B, C, D, ...); /// may need to adjust the debugger-support code in Sema to do the /// right thing when calling a function with no know signature. virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args, const FunctionNoProtoType *fnType) const; /// Gets the linker options necessary to link a dependent library on this /// platform. virtual void getDependentLibraryOption(llvm::StringRef Lib, llvm::SmallString<24> &Opt) const; /// Gets the linker options necessary to detect object file mismatches on /// this platform. virtual void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, llvm::SmallString<32> &Opt) const {} /// Get LLVM calling convention for OpenCL kernel. virtual unsigned getOpenCLKernelCallingConv() const; /// Get target specific null pointer. /// \param T is the LLVM type of the null pointer. /// \param QT is the clang QualType of the null pointer. /// \return ConstantPointerNull with the given type \p T. /// Each target can override it to return its own desired constant value. virtual llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, llvm::PointerType *T, QualType QT) const; /// Get target favored AST address space of a global variable for languages /// other than OpenCL and CUDA. /// If \p D is nullptr, returns the default target favored address space /// for global variable. virtual LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, const VarDecl *D) const; /// Get the AST address space for alloca. virtual LangAS getASTAllocaAddressSpace() const { return LangAS::Default; } Address performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, Address Addr, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull = false) const; /// Perform address space cast of an expression of pointer type. /// \param V is the LLVM value to be casted to another address space. /// \param SrcAddr is the language address space of \p V. /// \param DestAddr is the targeted language address space. /// \param DestTy is the destination LLVM pointer type. /// \param IsNonNull is the flag indicating \p V is known to be non null. virtual llvm::Value *performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, llvm::Value *V, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy, bool IsNonNull = false) const; /// Perform address space cast of a constant expression of pointer type. /// \param V is the LLVM constant to be casted to another address space. /// \param SrcAddr is the language address space of \p V. /// \param DestAddr is the targeted language address space. /// \param DestTy is the destination LLVM pointer type. virtual llvm::Constant *performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *V, LangAS SrcAddr, LangAS DestAddr, llvm::Type *DestTy) const; /// Get address space of pointer parameter for __cxa_atexit. virtual LangAS getAddrSpaceOfCxaAtexitPtrParam() const { return LangAS::Default; } /// Get the syncscope used in LLVM IR. virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, SyncScope Scope, llvm::AtomicOrdering Ordering, llvm::LLVMContext &Ctx) const; /// Interface class for filling custom fields of a block literal for OpenCL. class TargetOpenCLBlockHelper { public: typedef std::pair ValueTy; TargetOpenCLBlockHelper() {} virtual ~TargetOpenCLBlockHelper() {} /// Get the custom field types for OpenCL blocks. virtual llvm::SmallVector getCustomFieldTypes() = 0; /// Get the custom field values for OpenCL blocks. virtual llvm::SmallVector getCustomFieldValues(CodeGenFunction &CGF, const CGBlockInfo &Info) = 0; virtual bool areAllCustomFieldValuesConstant(const CGBlockInfo &Info) = 0; /// Get the custom field values for OpenCL blocks if all values are LLVM /// constants. virtual llvm::SmallVector getCustomFieldValues(CodeGenModule &CGM, const CGBlockInfo &Info) = 0; }; virtual TargetOpenCLBlockHelper *getTargetOpenCLBlockHelper() const { return nullptr; } /// Create an OpenCL kernel for an enqueued block. The kernel function is /// a wrapper for the block invoke function with target-specific calling /// convention and ABI as an OpenCL kernel. The wrapper function accepts /// block context and block arguments in target-specific way and calls /// the original block invoke function. virtual llvm::Value * createEnqueuedBlockKernel(CodeGenFunction &CGF, llvm::Function *BlockInvokeFunc, llvm::Type *BlockTy) const; /// \return true if the target supports alias from the unmangled name to the /// mangled name of functions declared within an extern "C" region and marked /// as 'used', and having internal linkage. virtual bool shouldEmitStaticExternCAliases() const { return true; } /// \return true if annonymous zero-sized bitfields should be emitted to /// correctly distinguish between struct types whose memory layout is the /// same, but whose layout may differ when used as argument passed by value virtual bool shouldEmitDWARFBitFieldSeparators() const { return false; } virtual void setCUDAKernelCallingConvention(const FunctionType *&FT) const {} /// Return the device-side type for the CUDA device builtin surface type. virtual llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const { // By default, no change from the original one. return nullptr; } /// Return the device-side type for the CUDA device builtin texture type. virtual llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const { // By default, no change from the original one. return nullptr; } /// Return the WebAssembly externref reference type. virtual llvm::Type *getWasmExternrefReferenceType() const { return nullptr; } /// Return the WebAssembly funcref reference type. virtual llvm::Type *getWasmFuncrefReferenceType() const { return nullptr; } /// Emit the device-side copy of the builtin surface type. virtual bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, LValue Src) const { // DO NOTHING by default. return false; } /// Emit the device-side copy of the builtin texture type. virtual bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, LValue Src) const { // DO NOTHING by default. return false; } /// Return an LLVM type that corresponds to an OpenCL type. virtual llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const { return nullptr; } // Set the Branch Protection Attributes of the Function accordingly to the // BPI. Remove attributes that contradict with current BPI. static void setBranchProtectionFnAttributes(const TargetInfo::BranchProtectionInfo &BPI, llvm::Function &F); // Add the Branch Protection Attributes of the FuncAttrs. static void initBranchProtectionFnAttributes(const TargetInfo::BranchProtectionInfo &BPI, llvm::AttrBuilder &FuncAttrs); protected: static std::string qualifyWindowsLibrary(StringRef Lib); void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const; }; std::unique_ptr createDefaultTargetCodeGenInfo(CodeGenModule &CGM); enum class AArch64ABIKind { AAPCS = 0, DarwinPCS, Win64, AAPCSSoft, PAuthTest, }; std::unique_ptr createAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind Kind); std::unique_ptr createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind K); std::unique_ptr createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createARCTargetCodeGenInfo(CodeGenModule &CGM); enum class ARMABIKind { APCS = 0, AAPCS = 1, AAPCS_VFP = 2, AAPCS16_VFP = 3, }; std::unique_ptr createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind); std::unique_ptr createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K); std::unique_ptr createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR, unsigned NRR); std::unique_ptr createBPFTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen); std::unique_ptr createHexagonTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createLanaiTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen, unsigned FLen); std::unique_ptr createM68kTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32); std::unique_ptr createMSP430TargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createNVPTXTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createPNaClTargetCodeGenInfo(CodeGenModule &CGM); enum class PPC64_SVR4_ABIKind { ELFv1 = 0, ELFv2, }; std::unique_ptr createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit); std::unique_ptr createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI); std::unique_ptr createPPC64TargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createPPC64_SVR4_TargetCodeGenInfo(CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, bool SoftFloatABI); std::unique_ptr createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen, unsigned FLen, bool EABI); std::unique_ptr createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createSPIRVTargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createSparcV8TargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createSparcV9TargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector, bool SoftFloatABI); std::unique_ptr createTCETargetCodeGenInfo(CodeGenModule &CGM); std::unique_ptr createVETargetCodeGenInfo(CodeGenModule &CGM); enum class WebAssemblyABIKind { MVP = 0, ExperimentalMV = 1, }; std::unique_ptr createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM, WebAssemblyABIKind K); /// The AVX ABI level for X86 targets. enum class X86AVXABILevel { None, AVX, AVX512, }; std::unique_ptr createX86_32TargetCodeGenInfo( CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters, bool SoftFloatABI); std::unique_ptr createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, unsigned NumRegisterParameters); std::unique_ptr createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel); std::unique_ptr createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel); std::unique_ptr createXCoreTargetCodeGenInfo(CodeGenModule &CGM); } // namespace CodeGen } // namespace clang #endif // LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H