//===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This contains code to emit Expr nodes with complex types as LLVM code. // //===----------------------------------------------------------------------===// #include "CGOpenMPRuntime.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "ConstantEmitter.h" #include "clang/AST/StmtVisitor.h" #include "llvm/ADT/STLExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/MDBuilder.h" #include "llvm/IR/Metadata.h" #include using namespace clang; using namespace CodeGen; //===----------------------------------------------------------------------===// // Complex Expression Emitter //===----------------------------------------------------------------------===// namespace llvm { extern cl::opt EnableSingleByteCoverage; } // namespace llvm typedef CodeGenFunction::ComplexPairTy ComplexPairTy; /// Return the complex type that we are meant to emit. static const ComplexType *getComplexType(QualType type) { type = type.getCanonicalType(); if (const ComplexType *comp = dyn_cast(type)) { return comp; } else { return cast(cast(type)->getValueType()); } } namespace { class ComplexExprEmitter : public StmtVisitor { CodeGenFunction &CGF; CGBuilderTy &Builder; bool IgnoreReal; bool IgnoreImag; bool FPHasBeenPromoted; public: ComplexExprEmitter(CodeGenFunction &cgf, bool ir = false, bool ii = false) : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii), FPHasBeenPromoted(false) {} //===--------------------------------------------------------------------===// // Utilities //===--------------------------------------------------------------------===// bool TestAndClearIgnoreReal() { bool I = IgnoreReal; IgnoreReal = false; return I; } bool TestAndClearIgnoreImag() { bool I = IgnoreImag; IgnoreImag = false; return I; } /// EmitLoadOfLValue - Given an expression with complex type that represents a /// value l-value, this method emits the address of the l-value, then loads /// and returns the result. ComplexPairTy EmitLoadOfLValue(const Expr *E) { return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); } ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); /// Emit a cast from complex value Val to DestType. ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType, SourceLocation Loc); /// Emit a cast from scalar value Val to DestType. ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, QualType DestType, SourceLocation Loc); //===--------------------------------------------------------------------===// // Visitor Methods //===--------------------------------------------------------------------===// ComplexPairTy Visit(Expr *E) { ApplyDebugLocation DL(CGF, E); return StmtVisitor::Visit(E); } ComplexPairTy VisitStmt(Stmt *S) { S->dump(llvm::errs(), CGF.getContext()); llvm_unreachable("Stmt can't have complex result type!"); } ComplexPairTy VisitExpr(Expr *S); ComplexPairTy VisitConstantExpr(ConstantExpr *E) { if (llvm::Constant *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) return ComplexPairTy(Result->getAggregateElement(0U), Result->getAggregateElement(1U)); return Visit(E->getSubExpr()); } ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { return Visit(GE->getResultExpr()); } ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); ComplexPairTy VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { return Visit(PE->getReplacement()); } ComplexPairTy VisitCoawaitExpr(CoawaitExpr *S) { return CGF.EmitCoawaitExpr(*S).getComplexVal(); } ComplexPairTy VisitCoyieldExpr(CoyieldExpr *S) { return CGF.EmitCoyieldExpr(*S).getComplexVal(); } ComplexPairTy VisitUnaryCoawait(const UnaryOperator *E) { return Visit(E->getSubExpr()); } ComplexPairTy emitConstant(const CodeGenFunction::ConstantEmission &Constant, Expr *E) { assert(Constant && "not a constant"); if (Constant.isReference()) return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), E->getExprLoc()); llvm::Constant *pair = Constant.getValue(); return ComplexPairTy(pair->getAggregateElement(0U), pair->getAggregateElement(1U)); } // l-values. ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) return emitConstant(Constant, E); return EmitLoadOfLValue(E); } ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { return CGF.EmitObjCMessageExpr(E).getComplexVal(); } ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitMemberExpr(MemberExpr *ME) { if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(ME)) { CGF.EmitIgnoredExpr(ME->getBase()); return emitConstant(Constant, ME); } return EmitLoadOfLValue(ME); } ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { if (E->isGLValue()) return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), E->getExprLoc()); return CGF.getOrCreateOpaqueRValueMapping(E).getComplexVal(); } ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { return CGF.EmitPseudoObjectRValue(E).getComplexVal(); } // FIXME: CompoundLiteralExpr ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { // Unlike for scalars, we don't have to worry about function->ptr demotion // here. if (E->changesVolatileQualification()) return EmitLoadOfLValue(E); return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); } ComplexPairTy VisitCastExpr(CastExpr *E) { if (const auto *ECE = dyn_cast(E)) CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); if (E->changesVolatileQualification()) return EmitLoadOfLValue(E); return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); } ComplexPairTy VisitCallExpr(const CallExpr *E); ComplexPairTy VisitStmtExpr(const StmtExpr *E); // Operators. ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) { LValue LV = CGF.EmitLValue(E->getSubExpr()); return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); } ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, false); } ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, false); } ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { return VisitPrePostIncDec(E, false, true); } ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { return VisitPrePostIncDec(E, true, true); } ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitUnaryPlus(const UnaryOperator *E, QualType PromotionType = QualType()); ComplexPairTy VisitPlus(const UnaryOperator *E, QualType PromotionType); ComplexPairTy VisitUnaryMinus(const UnaryOperator *E, QualType PromotionType = QualType()); ComplexPairTy VisitMinus(const UnaryOperator *E, QualType PromotionType); ComplexPairTy VisitUnaryNot (const UnaryOperator *E); // LNot,Real,Imag never return complex. ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { return Visit(E->getSubExpr()); } ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); return Visit(DAE->getExpr()); } ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); return Visit(DIE->getExpr()); } ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { CodeGenFunction::RunCleanupsScope Scope(CGF); ComplexPairTy Vals = Visit(E->getSubExpr()); // Defend against dominance problems caused by jumps out of expression // evaluation through the shared cleanup block. Scope.ForceCleanup({&Vals.first, &Vals.second}); return Vals; } ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { assert(E->getType()->isAnyComplexType() && "Expected complex type!"); QualType Elem = E->getType()->castAs()->getElementType(); llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); return ComplexPairTy(Null, Null); } ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { assert(E->getType()->isAnyComplexType() && "Expected complex type!"); QualType Elem = E->getType()->castAs()->getElementType(); llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); return ComplexPairTy(Null, Null); } struct BinOpInfo { ComplexPairTy LHS; ComplexPairTy RHS; QualType Ty; // Computation Type. FPOptions FPFeatures; }; BinOpInfo EmitBinOps(const BinaryOperator *E, QualType PromotionTy = QualType()); ComplexPairTy EmitPromoted(const Expr *E, QualType PromotionTy); ComplexPairTy EmitPromotedComplexOperand(const Expr *E, QualType PromotionTy); LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func) (const BinOpInfo &), RValue &Val); ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func) (const BinOpInfo &)); ComplexPairTy EmitBinAdd(const BinOpInfo &Op); ComplexPairTy EmitBinSub(const BinOpInfo &Op); ComplexPairTy EmitBinMul(const BinOpInfo &Op); ComplexPairTy EmitBinDiv(const BinOpInfo &Op); ComplexPairTy EmitAlgebraicDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, llvm::Value *D); ComplexPairTy EmitRangeReductionDiv(llvm::Value *A, llvm::Value *B, llvm::Value *C, llvm::Value *D); ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, const BinOpInfo &Op); QualType GetHigherPrecisionFPType(QualType ElementType) { const auto *CurrentBT = cast(ElementType); switch (CurrentBT->getKind()) { case BuiltinType::Kind::Float16: return CGF.getContext().FloatTy; case BuiltinType::Kind::Float: case BuiltinType::Kind::BFloat16: return CGF.getContext().DoubleTy; case BuiltinType::Kind::Double: return CGF.getContext().LongDoubleTy; default: return ElementType; } } QualType HigherPrecisionTypeForComplexArithmetic(QualType ElementType, bool IsDivOpCode) { QualType HigherElementType = GetHigherPrecisionFPType(ElementType); const llvm::fltSemantics &ElementTypeSemantics = CGF.getContext().getFloatTypeSemantics(ElementType); const llvm::fltSemantics &HigherElementTypeSemantics = CGF.getContext().getFloatTypeSemantics(HigherElementType); // Check that the promoted type can handle the intermediate values without // overflowing. This can be interpreted as: // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal) * 2 <= // LargerType.LargestFiniteVal. // In terms of exponent it gives this formula: // (SmallerType.LargestFiniteVal * SmallerType.LargestFiniteVal // doubles the exponent of SmallerType.LargestFiniteVal) if (llvm::APFloat::semanticsMaxExponent(ElementTypeSemantics) * 2 + 1 <= llvm::APFloat::semanticsMaxExponent(HigherElementTypeSemantics)) { FPHasBeenPromoted = true; return CGF.getContext().getComplexType(HigherElementType); } else { DiagnosticsEngine &Diags = CGF.CGM.getDiags(); Diags.Report(diag::warn_next_larger_fp_type_same_size_than_fp); return QualType(); } } QualType getPromotionType(FPOptionsOverride Features, QualType Ty, bool IsDivOpCode = false) { if (auto *CT = Ty->getAs()) { QualType ElementType = CT->getElementType(); bool IsFloatingType = ElementType->isFloatingType(); bool IsComplexRangePromoted = CGF.getLangOpts().getComplexRange() == LangOptions::ComplexRangeKind::CX_Promoted; bool HasNoComplexRangeOverride = !Features.hasComplexRangeOverride(); bool HasMatchingComplexRange = Features.hasComplexRangeOverride() && Features.getComplexRangeOverride() == CGF.getLangOpts().getComplexRange(); if (IsDivOpCode && IsFloatingType && IsComplexRangePromoted && (HasNoComplexRangeOverride || HasMatchingComplexRange)) return HigherPrecisionTypeForComplexArithmetic(ElementType, IsDivOpCode); if (ElementType.UseExcessPrecision(CGF.getContext())) return CGF.getContext().getComplexType(CGF.getContext().FloatTy); } if (Ty.UseExcessPrecision(CGF.getContext())) return CGF.getContext().FloatTy; return QualType(); } #define HANDLEBINOP(OP) \ ComplexPairTy VisitBin##OP(const BinaryOperator *E) { \ QualType promotionTy = getPromotionType( \ E->getStoredFPFeaturesOrDefault(), E->getType(), \ (E->getOpcode() == BinaryOperatorKind::BO_Div) ? true : false); \ ComplexPairTy result = EmitBin##OP(EmitBinOps(E, promotionTy)); \ if (!promotionTy.isNull()) \ result = CGF.EmitUnPromotedValue(result, E->getType()); \ return result; \ } HANDLEBINOP(Mul) HANDLEBINOP(Div) HANDLEBINOP(Add) HANDLEBINOP(Sub) #undef HANDLEBINOP ComplexPairTy VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { return Visit(E->getSemanticForm()); } // Compound assignments. ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); } ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); } ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); } ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); } // GCC rejects rem/and/or/xor for integer complex. // Logical and/or always return int, never complex. // No comparisons produce a complex result. LValue EmitBinAssignLValue(const BinaryOperator *E, ComplexPairTy &Val); ComplexPairTy VisitBinAssign (const BinaryOperator *E); ComplexPairTy VisitBinComma (const BinaryOperator *E); ComplexPairTy VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); ComplexPairTy VisitChooseExpr(ChooseExpr *CE); ComplexPairTy VisitInitListExpr(InitListExpr *E); ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { return EmitLoadOfLValue(E); } ComplexPairTy VisitVAArgExpr(VAArgExpr *E); ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { return CGF.EmitAtomicExpr(E).getComplexVal(); } ComplexPairTy VisitPackIndexingExpr(PackIndexingExpr *E) { return Visit(E->getSelectedExpr()); } }; } // end anonymous namespace. //===----------------------------------------------------------------------===// // Utilities //===----------------------------------------------------------------------===// Address CodeGenFunction::emitAddrOfRealComponent(Address addr, QualType complexType) { return Builder.CreateStructGEP(addr, 0, addr.getName() + ".realp"); } Address CodeGenFunction::emitAddrOfImagComponent(Address addr, QualType complexType) { return Builder.CreateStructGEP(addr, 1, addr.getName() + ".imagp"); } /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to /// load the real and imaginary pieces, returning them as Real/Imag. ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, SourceLocation loc) { assert(lvalue.isSimple() && "non-simple complex l-value?"); if (lvalue.getType()->isAtomicType()) return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); Address SrcPtr = lvalue.getAddress(); bool isVolatile = lvalue.isVolatileQualified(); llvm::Value *Real = nullptr, *Imag = nullptr; if (!IgnoreReal || isVolatile) { Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); } if (!IgnoreImag || isVolatile) { Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); } return ComplexPairTy(Real, Imag); } /// EmitStoreOfComplex - Store the specified real/imag parts into the /// specified value pointer. void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, bool isInit) { if (lvalue.getType()->isAtomicType() || (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); Address Ptr = lvalue.getAddress(); Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); } //===----------------------------------------------------------------------===// // Visitor Methods //===----------------------------------------------------------------------===// ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { CGF.ErrorUnsupported(E, "complex expression"); llvm::Type *EltTy = CGF.ConvertType(getComplexType(E->getType())->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return ComplexPairTy(U, U); } ComplexPairTy ComplexExprEmitter:: VisitImaginaryLiteral(const ImaginaryLiteral *IL) { llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); } ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { if (E->getCallReturnType(CGF.getContext())->isReferenceType()) return EmitLoadOfLValue(E); return CGF.EmitCallExpr(E).getComplexVal(); } ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { CodeGenFunction::StmtExprEvaluation eval(CGF); Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); assert(RetAlloca.isValid() && "Expected complex return value"); return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), E->getExprLoc()); } /// Emit a cast from complex value Val to DestType. ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, QualType DestType, SourceLocation Loc) { // Get the src/dest element type. SrcType = SrcType->castAs()->getElementType(); DestType = DestType->castAs()->getElementType(); // C99 6.3.1.6: When a value of complex type is converted to another // complex type, both the real and imaginary parts follow the conversion // rules for the corresponding real types. if (Val.first) Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); if (Val.second) Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); return Val; } ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, QualType DestType, SourceLocation Loc) { // Convert the input element to the element type of the complex. DestType = DestType->castAs()->getElementType(); Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); // Return (realval, 0). return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); } ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, QualType DestTy) { switch (CK) { case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); // Atomic to non-atomic casts may be more than a no-op for some platforms and // for some types. case CK_AtomicToNonAtomic: case CK_NonAtomicToAtomic: case CK_NoOp: case CK_LValueToRValue: case CK_UserDefinedConversion: return Visit(Op); case CK_LValueBitCast: { LValue origLV = CGF.EmitLValue(Op); Address V = origLV.getAddress().withElementType(CGF.ConvertType(DestTy)); return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); } case CK_LValueToRValueBitCast: { LValue SourceLVal = CGF.EmitLValue(Op); Address Addr = SourceLVal.getAddress().withElementType(CGF.ConvertTypeForMem(DestTy)); LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); return EmitLoadOfLValue(DestLV, Op->getExprLoc()); } case CK_BitCast: case CK_BaseToDerived: case CK_DerivedToBase: case CK_UncheckedDerivedToBase: case CK_Dynamic: case CK_ToUnion: case CK_ArrayToPointerDecay: case CK_FunctionToPointerDecay: case CK_NullToPointer: case CK_NullToMemberPointer: case CK_BaseToDerivedMemberPointer: case CK_DerivedToBaseMemberPointer: case CK_MemberPointerToBoolean: case CK_ReinterpretMemberPointer: case CK_ConstructorConversion: case CK_IntegralToPointer: case CK_PointerToIntegral: case CK_PointerToBoolean: case CK_ToVoid: case CK_VectorSplat: case CK_IntegralCast: case CK_BooleanToSignedIntegral: case CK_IntegralToBoolean: case CK_IntegralToFloating: case CK_FloatingToIntegral: case CK_FloatingToBoolean: case CK_FloatingCast: case CK_CPointerToObjCPointerCast: case CK_BlockPointerToObjCPointerCast: case CK_AnyPointerToBlockPointerCast: case CK_ObjCObjectLValueCast: case CK_FloatingComplexToReal: case CK_FloatingComplexToBoolean: case CK_IntegralComplexToReal: case CK_IntegralComplexToBoolean: case CK_ARCProduceObject: case CK_ARCConsumeObject: case CK_ARCReclaimReturnedObject: case CK_ARCExtendBlockObject: case CK_CopyAndAutoreleaseBlockObject: case CK_BuiltinFnToFnPtr: case CK_ZeroToOCLOpaqueType: case CK_AddressSpaceConversion: case CK_IntToOCLSampler: case CK_FloatingToFixedPoint: case CK_FixedPointToFloating: case CK_FixedPointCast: case CK_FixedPointToBoolean: case CK_FixedPointToIntegral: case CK_IntegralToFixedPoint: case CK_MatrixCast: case CK_HLSLVectorTruncation: case CK_HLSLArrayRValue: llvm_unreachable("invalid cast kind for complex value"); case CK_FloatingRealToComplex: case CK_IntegralRealToComplex: { CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), DestTy, Op->getExprLoc()); } case CK_FloatingComplexCast: case CK_FloatingComplexToIntegralComplex: case CK_IntegralComplexCast: case CK_IntegralComplexToFloatingComplex: { CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op); return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, Op->getExprLoc()); } } llvm_unreachable("unknown cast resulting in complex value"); } ComplexPairTy ComplexExprEmitter::VisitUnaryPlus(const UnaryOperator *E, QualType PromotionType) { E->hasStoredFPFeatures(); QualType promotionTy = PromotionType.isNull() ? getPromotionType(E->getStoredFPFeaturesOrDefault(), E->getSubExpr()->getType()) : PromotionType; ComplexPairTy result = VisitPlus(E, promotionTy); if (!promotionTy.isNull()) return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); return result; } ComplexPairTy ComplexExprEmitter::VisitPlus(const UnaryOperator *E, QualType PromotionType) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); if (!PromotionType.isNull()) return CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); return Visit(E->getSubExpr()); } ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E, QualType PromotionType) { QualType promotionTy = PromotionType.isNull() ? getPromotionType(E->getStoredFPFeaturesOrDefault(), E->getSubExpr()->getType()) : PromotionType; ComplexPairTy result = VisitMinus(E, promotionTy); if (!promotionTy.isNull()) return CGF.EmitUnPromotedValue(result, E->getSubExpr()->getType()); return result; } ComplexPairTy ComplexExprEmitter::VisitMinus(const UnaryOperator *E, QualType PromotionType) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); ComplexPairTy Op; if (!PromotionType.isNull()) Op = CGF.EmitPromotedComplexExpr(E->getSubExpr(), PromotionType); else Op = Visit(E->getSubExpr()); llvm::Value *ResR, *ResI; if (Op.first->getType()->isFloatingPointTy()) { ResR = Builder.CreateFNeg(Op.first, "neg.r"); ResI = Builder.CreateFNeg(Op.second, "neg.i"); } else { ResR = Builder.CreateNeg(Op.first, "neg.r"); ResI = Builder.CreateNeg(Op.second, "neg.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); // ~(a+ib) = a + i*-b ComplexPairTy Op = Visit(E->getSubExpr()); llvm::Value *ResI; if (Op.second->getType()->isFloatingPointTy()) ResI = Builder.CreateFNeg(Op.second, "conj.i"); else ResI = Builder.CreateNeg(Op.second, "conj.i"); return ComplexPairTy(Op.first, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { llvm::Value *ResR, *ResI; if (Op.LHS.first->getType()->isFloatingPointTy()) { CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); if (Op.LHS.second && Op.RHS.second) ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); else ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; assert(ResI && "Only one operand may be real!"); } else { ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); assert(Op.LHS.second && Op.RHS.second && "Both operands of integer complex operators must be complex!"); ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { llvm::Value *ResR, *ResI; if (Op.LHS.first->getType()->isFloatingPointTy()) { CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); if (Op.LHS.second && Op.RHS.second) ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); else ResI = Op.LHS.second ? Op.LHS.second : Builder.CreateFNeg(Op.RHS.second, "sub.i"); assert(ResI && "Only one operand may be real!"); } else { ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); assert(Op.LHS.second && Op.RHS.second && "Both operands of integer complex operators must be complex!"); ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); } return ComplexPairTy(ResR, ResI); } /// Emit a libcall for a binary operation on complex types. ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, const BinOpInfo &Op) { CallArgList Args; Args.add(RValue::get(Op.LHS.first), Op.Ty->castAs()->getElementType()); Args.add(RValue::get(Op.LHS.second), Op.Ty->castAs()->getElementType()); Args.add(RValue::get(Op.RHS.first), Op.Ty->castAs()->getElementType()); Args.add(RValue::get(Op.RHS.second), Op.Ty->castAs()->getElementType()); // We *must* use the full CG function call building logic here because the // complex type has special ABI handling. We also should not forget about // special calling convention which may be used for compiler builtins. // We create a function qualified type to state that this call does not have // any exceptions. FunctionProtoType::ExtProtoInfo EPI; EPI = EPI.withExceptionSpec( FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); SmallVector ArgsQTys( 4, Op.Ty->castAs()->getElementType()); QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( Args, cast(FQTy.getTypePtr()), false); llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); llvm::FunctionCallee Func = CGF.CGM.CreateRuntimeFunction( FTy, LibCallName, llvm::AttributeList(), true); CGCallee Callee = CGCallee::forDirect(Func, FQTy->getAs()); llvm::CallBase *Call; RValue Res = CGF.EmitCall(FuncInfo, Callee, ReturnValueSlot(), Args, &Call); Call->setCallingConv(CGF.CGM.getRuntimeCC()); return Res.getComplexVal(); } /// Lookup the libcall name for a given floating point type complex /// multiply. static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { switch (Ty->getTypeID()) { default: llvm_unreachable("Unsupported floating point type!"); case llvm::Type::HalfTyID: return "__mulhc3"; case llvm::Type::FloatTyID: return "__mulsc3"; case llvm::Type::DoubleTyID: return "__muldc3"; case llvm::Type::PPC_FP128TyID: return "__multc3"; case llvm::Type::X86_FP80TyID: return "__mulxc3"; case llvm::Type::FP128TyID: return "__multc3"; } } // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex // typed values. ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { using llvm::Value; Value *ResR, *ResI; llvm::MDBuilder MDHelper(CGF.getLLVMContext()); if (Op.LHS.first->getType()->isFloatingPointTy()) { // The general formulation is: // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) // // But we can fold away components which would be zero due to a real // operand according to C11 Annex G.5.1p2. CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); if (Op.LHS.second && Op.RHS.second) { // If both operands are complex, emit the core math directly, and then // test for NaNs. If we find NaNs in the result, we delegate to a libcall // to carefully re-compute the correct infinity representation if // possible. The expectation is that the presence of NaNs here is // *extremely* rare, and so the cost of the libcall is almost irrelevant. // This is good, because the libcall re-computes the core multiplication // exactly the same as we do here and re-tests for NaNs in order to be // a generic complex*complex libcall. // First compute the four products. Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); // The real part is the difference of the first two, the imaginary part is // the sum of the second. ResR = Builder.CreateFSub(AC, BD, "mul_r"); ResI = Builder.CreateFAdd(AD, BC, "mul_i"); if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic || Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved || Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted) return ComplexPairTy(ResR, ResI); // Emit the test for the real part becoming NaN and create a branch to // handle it. We test for NaN by comparing the number to itself. Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); llvm::BasicBlock *OrigBB = Branch->getParent(); // Give hint that we very much don't expect to see NaNs. llvm::MDNode *BrWeight = MDHelper.createUnlikelyBranchWeights(); Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); // Now test the imaginary part and create its branch. CGF.EmitBlock(INaNBB); Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); // Now emit the libcall on this slowest of the slow paths. CGF.EmitBlock(LibCallBB); Value *LibCallR, *LibCallI; std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); Builder.CreateBr(ContBB); // Finally continue execution by phi-ing together the different // computation paths. CGF.EmitBlock(ContBB); llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); RealPHI->addIncoming(ResR, OrigBB); RealPHI->addIncoming(ResR, INaNBB); RealPHI->addIncoming(LibCallR, LibCallBB); llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); ImagPHI->addIncoming(ResI, OrigBB); ImagPHI->addIncoming(ResI, INaNBB); ImagPHI->addIncoming(LibCallI, LibCallBB); return ComplexPairTy(RealPHI, ImagPHI); } assert((Op.LHS.second || Op.RHS.second) && "At least one operand must be complex!"); // If either of the operands is a real rather than a complex, the // imaginary component is ignored when computing the real component of the // result. ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); ResI = Op.LHS.second ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); } else { assert(Op.LHS.second && Op.RHS.second && "Both operands of integer complex operators must be complex!"); Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); } return ComplexPairTy(ResR, ResI); } ComplexPairTy ComplexExprEmitter::EmitAlgebraicDiv(llvm::Value *LHSr, llvm::Value *LHSi, llvm::Value *RHSr, llvm::Value *RHSi) { // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) llvm::Value *DSTr, *DSTi; llvm::Value *AC = Builder.CreateFMul(LHSr, RHSr); // a*c llvm::Value *BD = Builder.CreateFMul(LHSi, RHSi); // b*d llvm::Value *ACpBD = Builder.CreateFAdd(AC, BD); // ac+bd llvm::Value *CC = Builder.CreateFMul(RHSr, RHSr); // c*c llvm::Value *DD = Builder.CreateFMul(RHSi, RHSi); // d*d llvm::Value *CCpDD = Builder.CreateFAdd(CC, DD); // cc+dd llvm::Value *BC = Builder.CreateFMul(LHSi, RHSr); // b*c llvm::Value *AD = Builder.CreateFMul(LHSr, RHSi); // a*d llvm::Value *BCmAD = Builder.CreateFSub(BC, AD); // bc-ad DSTr = Builder.CreateFDiv(ACpBD, CCpDD); DSTi = Builder.CreateFDiv(BCmAD, CCpDD); return ComplexPairTy(DSTr, DSTi); } // EmitFAbs - Emit a call to @llvm.fabs. static llvm::Value *EmitllvmFAbs(CodeGenFunction &CGF, llvm::Value *Value) { llvm::Function *Func = CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Value->getType()); llvm::Value *Call = CGF.Builder.CreateCall(Func, Value); return Call; } // EmitRangeReductionDiv - Implements Smith's algorithm for complex division. // SMITH, R. L. Algorithm 116: Complex division. Commun. ACM 5, 8 (1962). ComplexPairTy ComplexExprEmitter::EmitRangeReductionDiv(llvm::Value *LHSr, llvm::Value *LHSi, llvm::Value *RHSr, llvm::Value *RHSi) { // FIXME: This could eventually be replaced by an LLVM intrinsic to // avoid this long IR sequence. // (a + ib) / (c + id) = (e + if) llvm::Value *FAbsRHSr = EmitllvmFAbs(CGF, RHSr); // |c| llvm::Value *FAbsRHSi = EmitllvmFAbs(CGF, RHSi); // |d| // |c| >= |d| llvm::Value *IsR = Builder.CreateFCmpUGT(FAbsRHSr, FAbsRHSi, "abs_cmp"); llvm::BasicBlock *TrueBB = CGF.createBasicBlock("abs_rhsr_greater_or_equal_abs_rhsi"); llvm::BasicBlock *FalseBB = CGF.createBasicBlock("abs_rhsr_less_than_abs_rhsi"); llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_div"); Builder.CreateCondBr(IsR, TrueBB, FalseBB); CGF.EmitBlock(TrueBB); // abs(c) >= abs(d) // r = d/c // tmp = c + rd // e = (a + br)/tmp // f = (b - ar)/tmp llvm::Value *DdC = Builder.CreateFDiv(RHSi, RHSr); // r=d/c llvm::Value *RD = Builder.CreateFMul(DdC, RHSi); // rd llvm::Value *CpRD = Builder.CreateFAdd(RHSr, RD); // tmp=c+rd llvm::Value *T3 = Builder.CreateFMul(LHSi, DdC); // br llvm::Value *T4 = Builder.CreateFAdd(LHSr, T3); // a+br llvm::Value *DSTTr = Builder.CreateFDiv(T4, CpRD); // (a+br)/tmp llvm::Value *T5 = Builder.CreateFMul(LHSr, DdC); // ar llvm::Value *T6 = Builder.CreateFSub(LHSi, T5); // b-ar llvm::Value *DSTTi = Builder.CreateFDiv(T6, CpRD); // (b-ar)/tmp Builder.CreateBr(ContBB); CGF.EmitBlock(FalseBB); // abs(c) < abs(d) // r = c/d // tmp = d + rc // e = (ar + b)/tmp // f = (br - a)/tmp llvm::Value *CdD = Builder.CreateFDiv(RHSr, RHSi); // r=c/d llvm::Value *RC = Builder.CreateFMul(CdD, RHSr); // rc llvm::Value *DpRC = Builder.CreateFAdd(RHSi, RC); // tmp=d+rc llvm::Value *T7 = Builder.CreateFMul(LHSr, CdD); // ar llvm::Value *T8 = Builder.CreateFAdd(T7, LHSi); // ar+b llvm::Value *DSTFr = Builder.CreateFDiv(T8, DpRC); // (ar+b)/tmp llvm::Value *T9 = Builder.CreateFMul(LHSi, CdD); // br llvm::Value *T10 = Builder.CreateFSub(T9, LHSr); // br-a llvm::Value *DSTFi = Builder.CreateFDiv(T10, DpRC); // (br-a)/tmp Builder.CreateBr(ContBB); // Phi together the computation paths. CGF.EmitBlock(ContBB); llvm::PHINode *VALr = Builder.CreatePHI(DSTTr->getType(), 2); VALr->addIncoming(DSTTr, TrueBB); VALr->addIncoming(DSTFr, FalseBB); llvm::PHINode *VALi = Builder.CreatePHI(DSTTi->getType(), 2); VALi->addIncoming(DSTTi, TrueBB); VALi->addIncoming(DSTFi, FalseBB); return ComplexPairTy(VALr, VALi); } // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex // typed values. ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; llvm::Value *DSTr, *DSTi; if (LHSr->getType()->isFloatingPointTy()) { CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Op.FPFeatures); if (!RHSi) { assert(LHSi && "Can have at most one non-complex operand!"); DSTr = Builder.CreateFDiv(LHSr, RHSr); DSTi = Builder.CreateFDiv(LHSi, RHSr); return ComplexPairTy(DSTr, DSTi); } llvm::Value *OrigLHSi = LHSi; if (!LHSi) LHSi = llvm::Constant::getNullValue(RHSi->getType()); if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Improved || (Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted && !FPHasBeenPromoted)) return EmitRangeReductionDiv(LHSr, LHSi, RHSr, RHSi); else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Basic || Op.FPFeatures.getComplexRange() == LangOptions::CX_Promoted) return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); // '-ffast-math' is used in the command line but followed by an // '-fno-cx-limited-range' or '-fcomplex-arithmetic=full'. else if (Op.FPFeatures.getComplexRange() == LangOptions::CX_Full) { LHSi = OrigLHSi; // If we have a complex operand on the RHS and FastMath is not allowed, we // delegate to a libcall to handle all of the complexities and minimize // underflow/overflow cases. When FastMath is allowed we construct the // divide inline using the same algorithm as for integer operands. BinOpInfo LibCallOp = Op; // If LHS was a real, supply a null imaginary part. if (!LHSi) LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); switch (LHSr->getType()->getTypeID()) { default: llvm_unreachable("Unsupported floating point type!"); case llvm::Type::HalfTyID: return EmitComplexBinOpLibCall("__divhc3", LibCallOp); case llvm::Type::FloatTyID: return EmitComplexBinOpLibCall("__divsc3", LibCallOp); case llvm::Type::DoubleTyID: return EmitComplexBinOpLibCall("__divdc3", LibCallOp); case llvm::Type::PPC_FP128TyID: return EmitComplexBinOpLibCall("__divtc3", LibCallOp); case llvm::Type::X86_FP80TyID: return EmitComplexBinOpLibCall("__divxc3", LibCallOp); case llvm::Type::FP128TyID: return EmitComplexBinOpLibCall("__divtc3", LibCallOp); } } else { return EmitAlgebraicDiv(LHSr, LHSi, RHSr, RHSi); } } else { assert(Op.LHS.second && Op.RHS.second && "Both operands of integer complex operators must be complex!"); // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad if (Op.Ty->castAs()->getElementType()->isUnsignedIntegerType()) { DSTr = Builder.CreateUDiv(Tmp3, Tmp6); DSTi = Builder.CreateUDiv(Tmp9, Tmp6); } else { DSTr = Builder.CreateSDiv(Tmp3, Tmp6); DSTi = Builder.CreateSDiv(Tmp9, Tmp6); } } return ComplexPairTy(DSTr, DSTi); } ComplexPairTy CodeGenFunction::EmitUnPromotedValue(ComplexPairTy result, QualType UnPromotionType) { llvm::Type *ComplexElementTy = ConvertType(UnPromotionType->castAs()->getElementType()); if (result.first) result.first = Builder.CreateFPTrunc(result.first, ComplexElementTy, "unpromotion"); if (result.second) result.second = Builder.CreateFPTrunc(result.second, ComplexElementTy, "unpromotion"); return result; } ComplexPairTy CodeGenFunction::EmitPromotedValue(ComplexPairTy result, QualType PromotionType) { llvm::Type *ComplexElementTy = ConvertType(PromotionType->castAs()->getElementType()); if (result.first) result.first = Builder.CreateFPExt(result.first, ComplexElementTy, "ext"); if (result.second) result.second = Builder.CreateFPExt(result.second, ComplexElementTy, "ext"); return result; } ComplexPairTy ComplexExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) { E = E->IgnoreParens(); if (auto BO = dyn_cast(E)) { switch (BO->getOpcode()) { #define HANDLE_BINOP(OP) \ case BO_##OP: \ return EmitBin##OP(EmitBinOps(BO, PromotionType)); HANDLE_BINOP(Add) HANDLE_BINOP(Sub) HANDLE_BINOP(Mul) HANDLE_BINOP(Div) #undef HANDLE_BINOP default: break; } } else if (auto UO = dyn_cast(E)) { switch (UO->getOpcode()) { case UO_Minus: return VisitMinus(UO, PromotionType); case UO_Plus: return VisitPlus(UO, PromotionType); default: break; } } auto result = Visit(const_cast(E)); if (!PromotionType.isNull()) return CGF.EmitPromotedValue(result, PromotionType); else return result; } ComplexPairTy CodeGenFunction::EmitPromotedComplexExpr(const Expr *E, QualType DstTy) { return ComplexExprEmitter(*this).EmitPromoted(E, DstTy); } ComplexPairTy ComplexExprEmitter::EmitPromotedComplexOperand(const Expr *E, QualType OverallPromotionType) { if (E->getType()->isAnyComplexType()) { if (!OverallPromotionType.isNull()) return CGF.EmitPromotedComplexExpr(E, OverallPromotionType); else return Visit(const_cast(E)); } else { if (!OverallPromotionType.isNull()) { QualType ComplexElementTy = OverallPromotionType->castAs()->getElementType(); return ComplexPairTy(CGF.EmitPromotedScalarExpr(E, ComplexElementTy), nullptr); } else { return ComplexPairTy(CGF.EmitScalarExpr(E), nullptr); } } } ComplexExprEmitter::BinOpInfo ComplexExprEmitter::EmitBinOps(const BinaryOperator *E, QualType PromotionType) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); BinOpInfo Ops; Ops.LHS = EmitPromotedComplexOperand(E->getLHS(), PromotionType); Ops.RHS = EmitPromotedComplexOperand(E->getRHS(), PromotionType); if (!PromotionType.isNull()) Ops.Ty = PromotionType; else Ops.Ty = E->getType(); Ops.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); return Ops; } LValue ComplexExprEmitter:: EmitCompoundAssignLValue(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), RValue &Val) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); QualType LHSTy = E->getLHS()->getType(); if (const AtomicType *AT = LHSTy->getAs()) LHSTy = AT->getValueType(); BinOpInfo OpInfo; OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); // Load the RHS and LHS operands. // __block variables need to have the rhs evaluated first, plus this should // improve codegen a little. QualType PromotionTypeCR; PromotionTypeCR = getPromotionType(E->getStoredFPFeaturesOrDefault(), E->getComputationResultType()); if (PromotionTypeCR.isNull()) PromotionTypeCR = E->getComputationResultType(); OpInfo.Ty = PromotionTypeCR; QualType ComplexElementTy = OpInfo.Ty->castAs()->getElementType(); QualType PromotionTypeRHS = getPromotionType( E->getStoredFPFeaturesOrDefault(), E->getRHS()->getType()); // The RHS should have been converted to the computation type. if (E->getRHS()->getType()->isRealFloatingType()) { if (!PromotionTypeRHS.isNull()) OpInfo.RHS = ComplexPairTy( CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS), nullptr); else { assert(CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); } } else { if (!PromotionTypeRHS.isNull()) { OpInfo.RHS = ComplexPairTy( CGF.EmitPromotedComplexExpr(E->getRHS(), PromotionTypeRHS)); } else { assert(CGF.getContext().hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); OpInfo.RHS = Visit(E->getRHS()); } } LValue LHS = CGF.EmitLValue(E->getLHS()); // Load from the l-value and convert it. SourceLocation Loc = E->getExprLoc(); QualType PromotionTypeLHS = getPromotionType( E->getStoredFPFeaturesOrDefault(), E->getComputationLHSType()); if (LHSTy->isAnyComplexType()) { ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); if (!PromotionTypeLHS.isNull()) OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, PromotionTypeLHS, Loc); else OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); } else { llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); // For floating point real operands we can directly pass the scalar form // to the binary operator emission and potentially get more efficient code. if (LHSTy->isRealFloatingType()) { QualType PromotedComplexElementTy; if (!PromotionTypeLHS.isNull()) { PromotedComplexElementTy = cast(PromotionTypeLHS)->getElementType(); if (!CGF.getContext().hasSameUnqualifiedType(PromotedComplexElementTy, PromotionTypeLHS)) LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, PromotedComplexElementTy, Loc); } else { if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); } OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); } else { OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); } } // Expand the binary operator. ComplexPairTy Result = (this->*Func)(OpInfo); // Truncate the result and store it into the LHS lvalue. if (LHSTy->isAnyComplexType()) { ComplexPairTy ResVal = EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); Val = RValue::getComplex(ResVal); } else { llvm::Value *ResVal = CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); Val = RValue::get(ResVal); } return LHS; } // Compound assignments. ComplexPairTy ComplexExprEmitter:: EmitCompoundAssign(const CompoundAssignOperator *E, ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ RValue Val; LValue LV = EmitCompoundAssignLValue(E, Func, Val); // The result of an assignment in C is the assigned r-value. if (!CGF.getLangOpts().CPlusPlus) return Val.getComplexVal(); // If the lvalue is non-volatile, return the computed value of the assignment. if (!LV.isVolatileQualified()) return Val.getComplexVal(); return EmitLoadOfLValue(LV, E->getExprLoc()); } LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, ComplexPairTy &Val) { assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), E->getRHS()->getType()) && "Invalid assignment"); TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); // Emit the RHS. __block variables need the RHS evaluated first. Val = Visit(E->getRHS()); // Compute the address to store into. LValue LHS = CGF.EmitLValue(E->getLHS()); // Store the result value into the LHS lvalue. EmitStoreOfComplex(Val, LHS, /*isInit*/ false); return LHS; } ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { ComplexPairTy Val; LValue LV = EmitBinAssignLValue(E, Val); // The result of an assignment in C is the assigned r-value. if (!CGF.getLangOpts().CPlusPlus) return Val; // If the lvalue is non-volatile, return the computed value of the assignment. if (!LV.isVolatileQualified()) return Val; return EmitLoadOfLValue(LV, E->getExprLoc()); } ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { CGF.EmitIgnoredExpr(E->getLHS()); return Visit(E->getRHS()); } ComplexPairTy ComplexExprEmitter:: VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { TestAndClearIgnoreReal(); TestAndClearIgnoreImag(); llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); // Bind the common expression if necessary. CodeGenFunction::OpaqueValueMapping binding(CGF, E); CodeGenFunction::ConditionalEvaluation eval(CGF); CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, CGF.getProfileCount(E)); eval.begin(CGF); CGF.EmitBlock(LHSBlock); if (llvm::EnableSingleByteCoverage) CGF.incrementProfileCounter(E->getTrueExpr()); else CGF.incrementProfileCounter(E); ComplexPairTy LHS = Visit(E->getTrueExpr()); LHSBlock = Builder.GetInsertBlock(); CGF.EmitBranch(ContBlock); eval.end(CGF); eval.begin(CGF); CGF.EmitBlock(RHSBlock); if (llvm::EnableSingleByteCoverage) CGF.incrementProfileCounter(E->getFalseExpr()); ComplexPairTy RHS = Visit(E->getFalseExpr()); RHSBlock = Builder.GetInsertBlock(); CGF.EmitBlock(ContBlock); if (llvm::EnableSingleByteCoverage) CGF.incrementProfileCounter(E); eval.end(CGF); // Create a PHI node for the real part. llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); RealPN->addIncoming(LHS.first, LHSBlock); RealPN->addIncoming(RHS.first, RHSBlock); // Create a PHI node for the imaginary part. llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); ImagPN->addIncoming(LHS.second, LHSBlock); ImagPN->addIncoming(RHS.second, RHSBlock); return ComplexPairTy(RealPN, ImagPN); } ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { return Visit(E->getChosenSubExpr()); } ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { bool Ignore = TestAndClearIgnoreReal(); (void)Ignore; assert (Ignore == false && "init list ignored"); Ignore = TestAndClearIgnoreImag(); (void)Ignore; assert (Ignore == false && "init list ignored"); if (E->getNumInits() == 2) { llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); return ComplexPairTy(Real, Imag); } else if (E->getNumInits() == 1) { return Visit(E->getInit(0)); } // Empty init list initializes to null assert(E->getNumInits() == 0 && "Unexpected number of inits"); QualType Ty = E->getType()->castAs()->getElementType(); llvm::Type* LTy = CGF.ConvertType(Ty); llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); return ComplexPairTy(zeroConstant, zeroConstant); } ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { Address ArgValue = Address::invalid(); RValue RV = CGF.EmitVAArg(E, ArgValue); if (!ArgValue.isValid()) { CGF.ErrorUnsupported(E, "complex va_arg expression"); llvm::Type *EltTy = CGF.ConvertType(E->getType()->castAs()->getElementType()); llvm::Value *U = llvm::UndefValue::get(EltTy); return ComplexPairTy(U, U); } return RV.getComplexVal(); } //===----------------------------------------------------------------------===// // Entry Point into this File //===----------------------------------------------------------------------===// /// EmitComplexExpr - Emit the computation of the specified expression of /// complex type, ignoring the result. ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, bool IgnoreImag) { assert(E && getComplexType(E->getType()) && "Invalid complex expression to emit"); return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) .Visit(const_cast(E)); } void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit) { assert(E && getComplexType(E->getType()) && "Invalid complex expression to emit"); ComplexExprEmitter Emitter(*this); ComplexPairTy Val = Emitter.Visit(const_cast(E)); Emitter.EmitStoreOfComplex(Val, dest, isInit); } /// EmitStoreOfComplex - Store a complex number into the specified l-value. void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit) { ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); } /// EmitLoadOfComplex - Load a complex number from the specified address. ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, SourceLocation loc) { return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); } LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { assert(E->getOpcode() == BO_Assign); ComplexPairTy Val; // ignored LValue LVal = ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); if (getLangOpts().OpenMP) CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this, E->getLHS()); return LVal; } typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( const ComplexExprEmitter::BinOpInfo &); static CompoundFunc getComplexOp(BinaryOperatorKind Op) { switch (Op) { case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; default: llvm_unreachable("unexpected complex compound assignment"); } } LValue CodeGenFunction:: EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { CompoundFunc Op = getComplexOp(E->getOpcode()); RValue Val; return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); } LValue CodeGenFunction:: EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, llvm::Value *&Result) { CompoundFunc Op = getComplexOp(E->getOpcode()); RValue Val; LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); Result = Val.getScalarVal(); return Ret; }