//===--- CGDebugInfo.cpp - Emit Debug Information for a Module ------------===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This coordinates the debug information generation while generating code. // //===----------------------------------------------------------------------===// #include "CGDebugInfo.h" #include "CGBlocks.h" #include "CGCXXABI.h" #include "CGObjCRuntime.h" #include "CGRecordLayout.h" #include "CodeGenFunction.h" #include "CodeGenModule.h" #include "ConstantEmitter.h" #include "TargetInfo.h" #include "clang/AST/ASTContext.h" #include "clang/AST/Attr.h" #include "clang/AST/DeclFriend.h" #include "clang/AST/DeclObjC.h" #include "clang/AST/DeclTemplate.h" #include "clang/AST/Expr.h" #include "clang/AST/RecordLayout.h" #include "clang/AST/RecursiveASTVisitor.h" #include "clang/AST/VTableBuilder.h" #include "clang/Basic/CodeGenOptions.h" #include "clang/Basic/FileManager.h" #include "clang/Basic/SourceManager.h" #include "clang/Basic/Version.h" #include "clang/CodeGen/ModuleBuilder.h" #include "clang/Frontend/FrontendOptions.h" #include "clang/Lex/HeaderSearchOptions.h" #include "clang/Lex/ModuleMap.h" #include "clang/Lex/PreprocessorOptions.h" #include "llvm/ADT/DenseSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Metadata.h" #include "llvm/IR/Module.h" #include "llvm/Support/FileSystem.h" #include "llvm/Support/MD5.h" #include "llvm/Support/Path.h" #include "llvm/Support/SHA1.h" #include "llvm/Support/SHA256.h" #include "llvm/Support/TimeProfiler.h" #include using namespace clang; using namespace clang::CodeGen; static uint32_t getTypeAlignIfRequired(const Type *Ty, const ASTContext &Ctx) { auto TI = Ctx.getTypeInfo(Ty); if (TI.isAlignRequired()) return TI.Align; // MaxFieldAlignmentAttr is the attribute added to types // declared after #pragma pack(n). if (auto *Decl = Ty->getAsRecordDecl()) if (Decl->hasAttr()) return TI.Align; return 0; } static uint32_t getTypeAlignIfRequired(QualType Ty, const ASTContext &Ctx) { return getTypeAlignIfRequired(Ty.getTypePtr(), Ctx); } static uint32_t getDeclAlignIfRequired(const Decl *D, const ASTContext &Ctx) { return D->hasAttr() ? D->getMaxAlignment() : 0; } CGDebugInfo::CGDebugInfo(CodeGenModule &CGM) : CGM(CGM), DebugKind(CGM.getCodeGenOpts().getDebugInfo()), DebugTypeExtRefs(CGM.getCodeGenOpts().DebugTypeExtRefs), DBuilder(CGM.getModule()) { CreateCompileUnit(); } CGDebugInfo::~CGDebugInfo() { assert(LexicalBlockStack.empty() && "Region stack mismatch, stack not empty!"); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, SourceLocation TemporaryLocation) : CGF(&CGF) { init(TemporaryLocation); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, bool DefaultToEmpty, SourceLocation TemporaryLocation) : CGF(&CGF) { init(TemporaryLocation, DefaultToEmpty); } void ApplyDebugLocation::init(SourceLocation TemporaryLocation, bool DefaultToEmpty) { auto *DI = CGF->getDebugInfo(); if (!DI) { CGF = nullptr; return; } OriginalLocation = CGF->Builder.getCurrentDebugLocation(); if (OriginalLocation && !DI->CGM.getExpressionLocationsEnabled()) return; if (TemporaryLocation.isValid()) { DI->EmitLocation(CGF->Builder, TemporaryLocation); return; } if (DefaultToEmpty) { CGF->Builder.SetCurrentDebugLocation(llvm::DebugLoc()); return; } // Construct a location that has a valid scope, but no line info. assert(!DI->LexicalBlockStack.empty()); CGF->Builder.SetCurrentDebugLocation( llvm::DILocation::get(DI->LexicalBlockStack.back()->getContext(), 0, 0, DI->LexicalBlockStack.back(), DI->getInlinedAt())); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, const Expr *E) : CGF(&CGF) { init(E->getExprLoc()); } ApplyDebugLocation::ApplyDebugLocation(CodeGenFunction &CGF, llvm::DebugLoc Loc) : CGF(&CGF) { if (!CGF.getDebugInfo()) { this->CGF = nullptr; return; } OriginalLocation = CGF.Builder.getCurrentDebugLocation(); if (Loc) CGF.Builder.SetCurrentDebugLocation(std::move(Loc)); } ApplyDebugLocation::~ApplyDebugLocation() { // Query CGF so the location isn't overwritten when location updates are // temporarily disabled (for C++ default function arguments) if (CGF) CGF->Builder.SetCurrentDebugLocation(std::move(OriginalLocation)); } ApplyInlineDebugLocation::ApplyInlineDebugLocation(CodeGenFunction &CGF, GlobalDecl InlinedFn) : CGF(&CGF) { if (!CGF.getDebugInfo()) { this->CGF = nullptr; return; } auto &DI = *CGF.getDebugInfo(); SavedLocation = DI.getLocation(); assert((DI.getInlinedAt() == CGF.Builder.getCurrentDebugLocation()->getInlinedAt()) && "CGDebugInfo and IRBuilder are out of sync"); DI.EmitInlineFunctionStart(CGF.Builder, InlinedFn); } ApplyInlineDebugLocation::~ApplyInlineDebugLocation() { if (!CGF) return; auto &DI = *CGF->getDebugInfo(); DI.EmitInlineFunctionEnd(CGF->Builder); DI.EmitLocation(CGF->Builder, SavedLocation); } void CGDebugInfo::setLocation(SourceLocation Loc) { // If the new location isn't valid return. if (Loc.isInvalid()) return; CurLoc = CGM.getContext().getSourceManager().getExpansionLoc(Loc); // If we've changed files in the middle of a lexical scope go ahead // and create a new lexical scope with file node if it's different // from the one in the scope. if (LexicalBlockStack.empty()) return; SourceManager &SM = CGM.getContext().getSourceManager(); auto *Scope = cast(LexicalBlockStack.back()); PresumedLoc PCLoc = SM.getPresumedLoc(CurLoc); if (PCLoc.isInvalid() || Scope->getFile() == getOrCreateFile(CurLoc)) return; if (auto *LBF = dyn_cast(Scope)) { LexicalBlockStack.pop_back(); LexicalBlockStack.emplace_back(DBuilder.createLexicalBlockFile( LBF->getScope(), getOrCreateFile(CurLoc))); } else if (isa(Scope) || isa(Scope)) { LexicalBlockStack.pop_back(); LexicalBlockStack.emplace_back( DBuilder.createLexicalBlockFile(Scope, getOrCreateFile(CurLoc))); } } llvm::DIScope *CGDebugInfo::getDeclContextDescriptor(const Decl *D) { llvm::DIScope *Mod = getParentModuleOrNull(D); return getContextDescriptor(cast(D->getDeclContext()), Mod ? Mod : TheCU); } llvm::DIScope *CGDebugInfo::getContextDescriptor(const Decl *Context, llvm::DIScope *Default) { if (!Context) return Default; auto I = RegionMap.find(Context); if (I != RegionMap.end()) { llvm::Metadata *V = I->second; return dyn_cast_or_null(V); } // Check namespace. if (const auto *NSDecl = dyn_cast(Context)) return getOrCreateNamespace(NSDecl); if (const auto *RDecl = dyn_cast(Context)) if (!RDecl->isDependentType()) return getOrCreateType(CGM.getContext().getTypeDeclType(RDecl), TheCU->getFile()); return Default; } PrintingPolicy CGDebugInfo::getPrintingPolicy() const { PrintingPolicy PP = CGM.getContext().getPrintingPolicy(); // If we're emitting codeview, it's important to try to match MSVC's naming so // that visualizers written for MSVC will trigger for our class names. In // particular, we can't have spaces between arguments of standard templates // like basic_string and vector, but we must have spaces between consecutive // angle brackets that close nested template argument lists. if (CGM.getCodeGenOpts().EmitCodeView) { PP.MSVCFormatting = true; PP.SplitTemplateClosers = true; } else { // For DWARF, printing rules are underspecified. // SplitTemplateClosers yields better interop with GCC and GDB (PR46052). PP.SplitTemplateClosers = true; } PP.SuppressInlineNamespace = false; PP.PrintCanonicalTypes = true; PP.UsePreferredNames = false; PP.AlwaysIncludeTypeForTemplateArgument = true; PP.UseEnumerators = false; // Apply -fdebug-prefix-map. PP.Callbacks = &PrintCB; return PP; } StringRef CGDebugInfo::getFunctionName(const FunctionDecl *FD) { return internString(GetName(FD)); } StringRef CGDebugInfo::getObjCMethodName(const ObjCMethodDecl *OMD) { SmallString<256> MethodName; llvm::raw_svector_ostream OS(MethodName); OS << (OMD->isInstanceMethod() ? '-' : '+') << '['; const DeclContext *DC = OMD->getDeclContext(); if (const auto *OID = dyn_cast(DC)) { OS << OID->getName(); } else if (const auto *OID = dyn_cast(DC)) { OS << OID->getName(); } else if (const auto *OC = dyn_cast(DC)) { if (OC->IsClassExtension()) { OS << OC->getClassInterface()->getName(); } else { OS << OC->getIdentifier()->getNameStart() << '(' << OC->getIdentifier()->getNameStart() << ')'; } } else if (const auto *OCD = dyn_cast(DC)) { OS << OCD->getClassInterface()->getName() << '(' << OCD->getName() << ')'; } OS << ' ' << OMD->getSelector().getAsString() << ']'; return internString(OS.str()); } StringRef CGDebugInfo::getSelectorName(Selector S) { return internString(S.getAsString()); } StringRef CGDebugInfo::getClassName(const RecordDecl *RD) { if (isa(RD)) { // Copy this name on the side and use its reference. return internString(GetName(RD)); } // quick optimization to avoid having to intern strings that are already // stored reliably elsewhere if (const IdentifierInfo *II = RD->getIdentifier()) return II->getName(); // The CodeView printer in LLVM wants to see the names of unnamed types // because they need to have a unique identifier. // These names are used to reconstruct the fully qualified type names. if (CGM.getCodeGenOpts().EmitCodeView) { if (const TypedefNameDecl *D = RD->getTypedefNameForAnonDecl()) { assert(RD->getDeclContext() == D->getDeclContext() && "Typedef should not be in another decl context!"); assert(D->getDeclName().getAsIdentifierInfo() && "Typedef was not named!"); return D->getDeclName().getAsIdentifierInfo()->getName(); } if (CGM.getLangOpts().CPlusPlus) { StringRef Name; ASTContext &Context = CGM.getContext(); if (const DeclaratorDecl *DD = Context.getDeclaratorForUnnamedTagDecl(RD)) // Anonymous types without a name for linkage purposes have their // declarator mangled in if they have one. Name = DD->getName(); else if (const TypedefNameDecl *TND = Context.getTypedefNameForUnnamedTagDecl(RD)) // Anonymous types without a name for linkage purposes have their // associate typedef mangled in if they have one. Name = TND->getName(); // Give lambdas a display name based on their name mangling. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) if (CXXRD->isLambda()) return internString( CGM.getCXXABI().getMangleContext().getLambdaString(CXXRD)); if (!Name.empty()) { SmallString<256> UnnamedType(" CGDebugInfo::computeChecksum(FileID FID, SmallString<64> &Checksum) const { Checksum.clear(); if (!CGM.getCodeGenOpts().EmitCodeView && CGM.getCodeGenOpts().DwarfVersion < 5) return std::nullopt; SourceManager &SM = CGM.getContext().getSourceManager(); std::optional MemBuffer = SM.getBufferOrNone(FID); if (!MemBuffer) return std::nullopt; auto Data = llvm::arrayRefFromStringRef(MemBuffer->getBuffer()); switch (CGM.getCodeGenOpts().getDebugSrcHash()) { case clang::CodeGenOptions::DSH_MD5: llvm::toHex(llvm::MD5::hash(Data), /*LowerCase=*/true, Checksum); return llvm::DIFile::CSK_MD5; case clang::CodeGenOptions::DSH_SHA1: llvm::toHex(llvm::SHA1::hash(Data), /*LowerCase=*/true, Checksum); return llvm::DIFile::CSK_SHA1; case clang::CodeGenOptions::DSH_SHA256: llvm::toHex(llvm::SHA256::hash(Data), /*LowerCase=*/true, Checksum); return llvm::DIFile::CSK_SHA256; } llvm_unreachable("Unhandled DebugSrcHashKind enum"); } std::optional CGDebugInfo::getSource(const SourceManager &SM, FileID FID) { if (!CGM.getCodeGenOpts().EmbedSource) return std::nullopt; bool SourceInvalid = false; StringRef Source = SM.getBufferData(FID, &SourceInvalid); if (SourceInvalid) return std::nullopt; return Source; } llvm::DIFile *CGDebugInfo::getOrCreateFile(SourceLocation Loc) { SourceManager &SM = CGM.getContext().getSourceManager(); StringRef FileName; FileID FID; std::optional> CSInfo; if (Loc.isInvalid()) { // The DIFile used by the CU is distinct from the main source file. Call // createFile() below for canonicalization if the source file was specified // with an absolute path. FileName = TheCU->getFile()->getFilename(); CSInfo = TheCU->getFile()->getChecksum(); } else { PresumedLoc PLoc = SM.getPresumedLoc(Loc); FileName = PLoc.getFilename(); if (FileName.empty()) { FileName = TheCU->getFile()->getFilename(); } else { FileName = PLoc.getFilename(); } FID = PLoc.getFileID(); } // Cache the results. auto It = DIFileCache.find(FileName.data()); if (It != DIFileCache.end()) { // Verify that the information still exists. if (llvm::Metadata *V = It->second) return cast(V); } // Put Checksum at a scope where it will persist past the createFile call. SmallString<64> Checksum; if (!CSInfo) { std::optional CSKind = computeChecksum(FID, Checksum); if (CSKind) CSInfo.emplace(*CSKind, Checksum); } return createFile(FileName, CSInfo, getSource(SM, SM.getFileID(Loc))); } llvm::DIFile *CGDebugInfo::createFile( StringRef FileName, std::optional> CSInfo, std::optional Source) { StringRef Dir; StringRef File; std::string RemappedFile = remapDIPath(FileName); std::string CurDir = remapDIPath(getCurrentDirname()); SmallString<128> DirBuf; SmallString<128> FileBuf; if (llvm::sys::path::is_absolute(RemappedFile)) { // Strip the common prefix (if it is more than just "/" or "C:\") from // current directory and FileName for a more space-efficient encoding. auto FileIt = llvm::sys::path::begin(RemappedFile); auto FileE = llvm::sys::path::end(RemappedFile); auto CurDirIt = llvm::sys::path::begin(CurDir); auto CurDirE = llvm::sys::path::end(CurDir); for (; CurDirIt != CurDirE && *CurDirIt == *FileIt; ++CurDirIt, ++FileIt) llvm::sys::path::append(DirBuf, *CurDirIt); if (llvm::sys::path::root_path(DirBuf) == DirBuf) { // Don't strip the common prefix if it is only the root ("/" or "C:\") // since that would make LLVM diagnostic locations confusing. Dir = {}; File = RemappedFile; } else { for (; FileIt != FileE; ++FileIt) llvm::sys::path::append(FileBuf, *FileIt); Dir = DirBuf; File = FileBuf; } } else { if (!llvm::sys::path::is_absolute(FileName)) Dir = CurDir; File = RemappedFile; } llvm::DIFile *F = DBuilder.createFile(File, Dir, CSInfo, Source); DIFileCache[FileName.data()].reset(F); return F; } std::string CGDebugInfo::remapDIPath(StringRef Path) const { SmallString<256> P = Path; for (auto &[From, To] : llvm::reverse(CGM.getCodeGenOpts().DebugPrefixMap)) if (llvm::sys::path::replace_path_prefix(P, From, To)) break; return P.str().str(); } unsigned CGDebugInfo::getLineNumber(SourceLocation Loc) { if (Loc.isInvalid()) return 0; SourceManager &SM = CGM.getContext().getSourceManager(); return SM.getPresumedLoc(Loc).getLine(); } unsigned CGDebugInfo::getColumnNumber(SourceLocation Loc, bool Force) { // We may not want column information at all. if (!Force && !CGM.getCodeGenOpts().DebugColumnInfo) return 0; // If the location is invalid then use the current column. if (Loc.isInvalid() && CurLoc.isInvalid()) return 0; SourceManager &SM = CGM.getContext().getSourceManager(); PresumedLoc PLoc = SM.getPresumedLoc(Loc.isValid() ? Loc : CurLoc); return PLoc.isValid() ? PLoc.getColumn() : 0; } StringRef CGDebugInfo::getCurrentDirname() { if (!CGM.getCodeGenOpts().DebugCompilationDir.empty()) return CGM.getCodeGenOpts().DebugCompilationDir; if (!CWDName.empty()) return CWDName; llvm::ErrorOr CWD = CGM.getFileSystem()->getCurrentWorkingDirectory(); if (!CWD) return StringRef(); return CWDName = internString(*CWD); } void CGDebugInfo::CreateCompileUnit() { SmallString<64> Checksum; std::optional CSKind; std::optional> CSInfo; // Should we be asking the SourceManager for the main file name, instead of // accepting it as an argument? This just causes the main file name to // mismatch with source locations and create extra lexical scopes or // mismatched debug info (a CU with a DW_AT_file of "-", because that's what // the driver passed, but functions/other things have DW_AT_file of "" // because that's what the SourceManager says) // Get absolute path name. SourceManager &SM = CGM.getContext().getSourceManager(); auto &CGO = CGM.getCodeGenOpts(); const LangOptions &LO = CGM.getLangOpts(); std::string MainFileName = CGO.MainFileName; if (MainFileName.empty()) MainFileName = ""; // The main file name provided via the "-main-file-name" option contains just // the file name itself with no path information. This file name may have had // a relative path, so we look into the actual file entry for the main // file to determine the real absolute path for the file. std::string MainFileDir; if (OptionalFileEntryRef MainFile = SM.getFileEntryRefForID(SM.getMainFileID())) { MainFileDir = std::string(MainFile->getDir().getName()); if (!llvm::sys::path::is_absolute(MainFileName)) { llvm::SmallString<1024> MainFileDirSS(MainFileDir); llvm::sys::path::Style Style = LO.UseTargetPathSeparator ? (CGM.getTarget().getTriple().isOSWindows() ? llvm::sys::path::Style::windows_backslash : llvm::sys::path::Style::posix) : llvm::sys::path::Style::native; llvm::sys::path::append(MainFileDirSS, Style, MainFileName); MainFileName = std::string( llvm::sys::path::remove_leading_dotslash(MainFileDirSS, Style)); } // If the main file name provided is identical to the input file name, and // if the input file is a preprocessed source, use the module name for // debug info. The module name comes from the name specified in the first // linemarker if the input is a preprocessed source. In this case we don't // know the content to compute a checksum. if (MainFile->getName() == MainFileName && FrontendOptions::getInputKindForExtension( MainFile->getName().rsplit('.').second) .isPreprocessed()) { MainFileName = CGM.getModule().getName().str(); } else { CSKind = computeChecksum(SM.getMainFileID(), Checksum); } } llvm::dwarf::SourceLanguage LangTag; if (LO.CPlusPlus) { if (LO.ObjC) LangTag = llvm::dwarf::DW_LANG_ObjC_plus_plus; else if (CGO.DebugStrictDwarf && CGO.DwarfVersion < 5) LangTag = llvm::dwarf::DW_LANG_C_plus_plus; else if (LO.CPlusPlus14) LangTag = llvm::dwarf::DW_LANG_C_plus_plus_14; else if (LO.CPlusPlus11) LangTag = llvm::dwarf::DW_LANG_C_plus_plus_11; else LangTag = llvm::dwarf::DW_LANG_C_plus_plus; } else if (LO.ObjC) { LangTag = llvm::dwarf::DW_LANG_ObjC; } else if (LO.OpenCL && (!CGM.getCodeGenOpts().DebugStrictDwarf || CGM.getCodeGenOpts().DwarfVersion >= 5)) { LangTag = llvm::dwarf::DW_LANG_OpenCL; } else if (LO.RenderScript) { LangTag = llvm::dwarf::DW_LANG_GOOGLE_RenderScript; } else if (LO.C11 && !(CGO.DebugStrictDwarf && CGO.DwarfVersion < 5)) { LangTag = llvm::dwarf::DW_LANG_C11; } else if (LO.C99) { LangTag = llvm::dwarf::DW_LANG_C99; } else { LangTag = llvm::dwarf::DW_LANG_C89; } std::string Producer = getClangFullVersion(); // Figure out which version of the ObjC runtime we have. unsigned RuntimeVers = 0; if (LO.ObjC) RuntimeVers = LO.ObjCRuntime.isNonFragile() ? 2 : 1; llvm::DICompileUnit::DebugEmissionKind EmissionKind; switch (DebugKind) { case llvm::codegenoptions::NoDebugInfo: case llvm::codegenoptions::LocTrackingOnly: EmissionKind = llvm::DICompileUnit::NoDebug; break; case llvm::codegenoptions::DebugLineTablesOnly: EmissionKind = llvm::DICompileUnit::LineTablesOnly; break; case llvm::codegenoptions::DebugDirectivesOnly: EmissionKind = llvm::DICompileUnit::DebugDirectivesOnly; break; case llvm::codegenoptions::DebugInfoConstructor: case llvm::codegenoptions::LimitedDebugInfo: case llvm::codegenoptions::FullDebugInfo: case llvm::codegenoptions::UnusedTypeInfo: EmissionKind = llvm::DICompileUnit::FullDebug; break; } uint64_t DwoId = 0; auto &CGOpts = CGM.getCodeGenOpts(); // The DIFile used by the CU is distinct from the main source // file. Its directory part specifies what becomes the // DW_AT_comp_dir (the compilation directory), even if the source // file was specified with an absolute path. if (CSKind) CSInfo.emplace(*CSKind, Checksum); llvm::DIFile *CUFile = DBuilder.createFile( remapDIPath(MainFileName), remapDIPath(getCurrentDirname()), CSInfo, getSource(SM, SM.getMainFileID())); StringRef Sysroot, SDK; if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) { Sysroot = CGM.getHeaderSearchOpts().Sysroot; auto B = llvm::sys::path::rbegin(Sysroot); auto E = llvm::sys::path::rend(Sysroot); auto It = std::find_if(B, E, [](auto SDK) { return SDK.ends_with(".sdk"); }); if (It != E) SDK = *It; } llvm::DICompileUnit::DebugNameTableKind NameTableKind = static_cast( CGOpts.DebugNameTable); if (CGM.getTarget().getTriple().isNVPTX()) NameTableKind = llvm::DICompileUnit::DebugNameTableKind::None; else if (CGM.getTarget().getTriple().getVendor() == llvm::Triple::Apple) NameTableKind = llvm::DICompileUnit::DebugNameTableKind::Apple; // Create new compile unit. TheCU = DBuilder.createCompileUnit( LangTag, CUFile, CGOpts.EmitVersionIdentMetadata ? Producer : "", LO.Optimize || CGOpts.PrepareForLTO || CGOpts.PrepareForThinLTO, CGOpts.DwarfDebugFlags, RuntimeVers, CGOpts.SplitDwarfFile, EmissionKind, DwoId, CGOpts.SplitDwarfInlining, CGOpts.DebugInfoForProfiling, NameTableKind, CGOpts.DebugRangesBaseAddress, remapDIPath(Sysroot), SDK); } llvm::DIType *CGDebugInfo::CreateType(const BuiltinType *BT) { llvm::dwarf::TypeKind Encoding; StringRef BTName; switch (BT->getKind()) { #define BUILTIN_TYPE(Id, SingletonId) #define PLACEHOLDER_TYPE(Id, SingletonId) case BuiltinType::Id: #include "clang/AST/BuiltinTypes.def" case BuiltinType::Dependent: llvm_unreachable("Unexpected builtin type"); case BuiltinType::NullPtr: return DBuilder.createNullPtrType(); case BuiltinType::Void: return nullptr; case BuiltinType::ObjCClass: if (!ClassTy) ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_class", TheCU, TheCU->getFile(), 0); return ClassTy; case BuiltinType::ObjCId: { // typedef struct objc_class *Class; // typedef struct objc_object { // Class isa; // } *id; if (ObjTy) return ObjTy; if (!ClassTy) ClassTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_class", TheCU, TheCU->getFile(), 0); unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); auto *ISATy = DBuilder.createPointerType(ClassTy, Size); ObjTy = DBuilder.createStructType(TheCU, "objc_object", TheCU->getFile(), 0, 0, 0, llvm::DINode::FlagZero, nullptr, llvm::DINodeArray()); DBuilder.replaceArrays( ObjTy, DBuilder.getOrCreateArray(&*DBuilder.createMemberType( ObjTy, "isa", TheCU->getFile(), 0, Size, 0, 0, llvm::DINode::FlagZero, ISATy))); return ObjTy; } case BuiltinType::ObjCSel: { if (!SelTy) SelTy = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, "objc_selector", TheCU, TheCU->getFile(), 0); return SelTy; } #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ case BuiltinType::Id: \ return getOrCreateStructPtrType("opencl_" #ImgType "_" #Suffix "_t", \ SingletonId); #include "clang/Basic/OpenCLImageTypes.def" case BuiltinType::OCLSampler: return getOrCreateStructPtrType("opencl_sampler_t", OCLSamplerDITy); case BuiltinType::OCLEvent: return getOrCreateStructPtrType("opencl_event_t", OCLEventDITy); case BuiltinType::OCLClkEvent: return getOrCreateStructPtrType("opencl_clk_event_t", OCLClkEventDITy); case BuiltinType::OCLQueue: return getOrCreateStructPtrType("opencl_queue_t", OCLQueueDITy); case BuiltinType::OCLReserveID: return getOrCreateStructPtrType("opencl_reserve_id_t", OCLReserveIDDITy); #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ case BuiltinType::Id: \ return getOrCreateStructPtrType("opencl_" #ExtType, Id##Ty); #include "clang/Basic/OpenCLExtensionTypes.def" #define SVE_TYPE(Name, Id, SingletonId) case BuiltinType::Id: #include "clang/Basic/AArch64SVEACLETypes.def" { ASTContext::BuiltinVectorTypeInfo Info = // For svcount_t, only the lower 2 bytes are relevant. BT->getKind() == BuiltinType::SveCount ? ASTContext::BuiltinVectorTypeInfo( CGM.getContext().BoolTy, llvm::ElementCount::getFixed(16), 1) : CGM.getContext().getBuiltinVectorTypeInfo(BT); // A single vector of bytes may not suffice as the representation of // svcount_t tuples because of the gap between the active 16bits of // successive tuple members. Currently no such tuples are defined for // svcount_t, so assert that NumVectors is 1. assert((BT->getKind() != BuiltinType::SveCount || Info.NumVectors == 1) && "Unsupported number of vectors for svcount_t"); // Debuggers can't extract 1bit from a vector, so will display a // bitpattern for predicates instead. unsigned NumElems = Info.EC.getKnownMinValue() * Info.NumVectors; if (Info.ElementType == CGM.getContext().BoolTy) { NumElems /= 8; Info.ElementType = CGM.getContext().UnsignedCharTy; } llvm::Metadata *LowerBound, *UpperBound; LowerBound = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); if (Info.EC.isScalable()) { unsigned NumElemsPerVG = NumElems / 2; SmallVector Expr( {llvm::dwarf::DW_OP_constu, NumElemsPerVG, llvm::dwarf::DW_OP_bregx, /* AArch64::VG */ 46, 0, llvm::dwarf::DW_OP_mul, llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); UpperBound = DBuilder.createExpression(Expr); } else UpperBound = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), NumElems - 1)); llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); llvm::DIType *ElemTy = getOrCreateType(Info.ElementType, TheCU->getFile()); auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); return DBuilder.createVectorType(/*Size*/ 0, Align, ElemTy, SubscriptArray); } // It doesn't make sense to generate debug info for PowerPC MMA vector types. // So we return a safe type here to avoid generating an error. #define PPC_VECTOR_TYPE(Name, Id, size) \ case BuiltinType::Id: #include "clang/Basic/PPCTypes.def" return CreateType(cast(CGM.getContext().IntTy)); #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: #include "clang/Basic/RISCVVTypes.def" { ASTContext::BuiltinVectorTypeInfo Info = CGM.getContext().getBuiltinVectorTypeInfo(BT); unsigned ElementCount = Info.EC.getKnownMinValue(); unsigned SEW = CGM.getContext().getTypeSize(Info.ElementType); bool Fractional = false; unsigned LMUL; unsigned FixedSize = ElementCount * SEW; if (Info.ElementType == CGM.getContext().BoolTy) { // Mask type only occupies one vector register. LMUL = 1; } else if (FixedSize < 64) { // In RVV scalable vector types, we encode 64 bits in the fixed part. Fractional = true; LMUL = 64 / FixedSize; } else { LMUL = FixedSize / 64; } // Element count = (VLENB / SEW) x LMUL SmallVector Expr( // The DW_OP_bregx operation has two operands: a register which is // specified by an unsigned LEB128 number, followed by a signed LEB128 // offset. {llvm::dwarf::DW_OP_bregx, // Read the contents of a register. 4096 + 0xC22, // RISC-V VLENB CSR register. 0, // Offset for DW_OP_bregx. It is dummy here. llvm::dwarf::DW_OP_constu, SEW / 8, // SEW is in bits. llvm::dwarf::DW_OP_div, llvm::dwarf::DW_OP_constu, LMUL}); if (Fractional) Expr.push_back(llvm::dwarf::DW_OP_div); else Expr.push_back(llvm::dwarf::DW_OP_mul); // Element max index = count - 1 Expr.append({llvm::dwarf::DW_OP_constu, 1, llvm::dwarf::DW_OP_minus}); auto *LowerBound = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), 0)); auto *UpperBound = DBuilder.createExpression(Expr); llvm::Metadata *Subscript = DBuilder.getOrCreateSubrange( /*count*/ nullptr, LowerBound, UpperBound, /*stride*/ nullptr); llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); llvm::DIType *ElemTy = getOrCreateType(Info.ElementType, TheCU->getFile()); auto Align = getTypeAlignIfRequired(BT, CGM.getContext()); return DBuilder.createVectorType(/*Size=*/0, Align, ElemTy, SubscriptArray); } #define WASM_REF_TYPE(Name, MangledName, Id, SingletonId, AS) \ case BuiltinType::Id: { \ if (!SingletonId) \ SingletonId = \ DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, \ MangledName, TheCU, TheCU->getFile(), 0); \ return SingletonId; \ } #include "clang/Basic/WebAssemblyReferenceTypes.def" #define AMDGPU_OPAQUE_PTR_TYPE(Name, MangledName, AS, Width, Align, Id, \ SingletonId) \ case BuiltinType::Id: { \ if (!SingletonId) \ SingletonId = \ DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, \ MangledName, TheCU, TheCU->getFile(), 0); \ return SingletonId; \ } #include "clang/Basic/AMDGPUTypes.def" case BuiltinType::UChar: case BuiltinType::Char_U: Encoding = llvm::dwarf::DW_ATE_unsigned_char; break; case BuiltinType::Char_S: case BuiltinType::SChar: Encoding = llvm::dwarf::DW_ATE_signed_char; break; case BuiltinType::Char8: case BuiltinType::Char16: case BuiltinType::Char32: Encoding = llvm::dwarf::DW_ATE_UTF; break; case BuiltinType::UShort: case BuiltinType::UInt: case BuiltinType::UInt128: case BuiltinType::ULong: case BuiltinType::WChar_U: case BuiltinType::ULongLong: Encoding = llvm::dwarf::DW_ATE_unsigned; break; case BuiltinType::Short: case BuiltinType::Int: case BuiltinType::Int128: case BuiltinType::Long: case BuiltinType::WChar_S: case BuiltinType::LongLong: Encoding = llvm::dwarf::DW_ATE_signed; break; case BuiltinType::Bool: Encoding = llvm::dwarf::DW_ATE_boolean; break; case BuiltinType::Half: case BuiltinType::Float: case BuiltinType::LongDouble: case BuiltinType::Float16: case BuiltinType::BFloat16: case BuiltinType::Float128: case BuiltinType::Double: case BuiltinType::Ibm128: // FIXME: For targets where long double, __ibm128 and __float128 have the // same size, they are currently indistinguishable in the debugger without // some special treatment. However, there is currently no consensus on // encoding and this should be updated once a DWARF encoding exists for // distinct floating point types of the same size. Encoding = llvm::dwarf::DW_ATE_float; break; case BuiltinType::ShortAccum: case BuiltinType::Accum: case BuiltinType::LongAccum: case BuiltinType::ShortFract: case BuiltinType::Fract: case BuiltinType::LongFract: case BuiltinType::SatShortFract: case BuiltinType::SatFract: case BuiltinType::SatLongFract: case BuiltinType::SatShortAccum: case BuiltinType::SatAccum: case BuiltinType::SatLongAccum: Encoding = llvm::dwarf::DW_ATE_signed_fixed; break; case BuiltinType::UShortAccum: case BuiltinType::UAccum: case BuiltinType::ULongAccum: case BuiltinType::UShortFract: case BuiltinType::UFract: case BuiltinType::ULongFract: case BuiltinType::SatUShortAccum: case BuiltinType::SatUAccum: case BuiltinType::SatULongAccum: case BuiltinType::SatUShortFract: case BuiltinType::SatUFract: case BuiltinType::SatULongFract: Encoding = llvm::dwarf::DW_ATE_unsigned_fixed; break; } BTName = BT->getName(CGM.getLangOpts()); // Bit size and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(BT); return DBuilder.createBasicType(BTName, Size, Encoding); } llvm::DIType *CGDebugInfo::CreateType(const BitIntType *Ty) { StringRef Name = Ty->isUnsigned() ? "unsigned _BitInt" : "_BitInt"; llvm::dwarf::TypeKind Encoding = Ty->isUnsigned() ? llvm::dwarf::DW_ATE_unsigned : llvm::dwarf::DW_ATE_signed; return DBuilder.createBasicType(Name, CGM.getContext().getTypeSize(Ty), Encoding); } llvm::DIType *CGDebugInfo::CreateType(const ComplexType *Ty) { // Bit size and offset of the type. llvm::dwarf::TypeKind Encoding = llvm::dwarf::DW_ATE_complex_float; if (Ty->isComplexIntegerType()) Encoding = llvm::dwarf::DW_ATE_lo_user; uint64_t Size = CGM.getContext().getTypeSize(Ty); return DBuilder.createBasicType("complex", Size, Encoding); } static void stripUnusedQualifiers(Qualifiers &Q) { // Ignore these qualifiers for now. Q.removeObjCGCAttr(); Q.removeAddressSpace(); Q.removeObjCLifetime(); Q.removeUnaligned(); } static llvm::dwarf::Tag getNextQualifier(Qualifiers &Q) { if (Q.hasConst()) { Q.removeConst(); return llvm::dwarf::DW_TAG_const_type; } if (Q.hasVolatile()) { Q.removeVolatile(); return llvm::dwarf::DW_TAG_volatile_type; } if (Q.hasRestrict()) { Q.removeRestrict(); return llvm::dwarf::DW_TAG_restrict_type; } return (llvm::dwarf::Tag)0; } llvm::DIType *CGDebugInfo::CreateQualifiedType(QualType Ty, llvm::DIFile *Unit) { QualifierCollector Qc; const Type *T = Qc.strip(Ty); stripUnusedQualifiers(Qc); // We will create one Derived type for one qualifier and recurse to handle any // additional ones. llvm::dwarf::Tag Tag = getNextQualifier(Qc); if (!Tag) { assert(Qc.empty() && "Unknown type qualifier for debug info"); return getOrCreateType(QualType(T, 0), Unit); } auto *FromTy = getOrCreateType(Qc.apply(CGM.getContext(), T), Unit); // No need to fill in the Name, Line, Size, Alignment, Offset in case of // CVR derived types. return DBuilder.createQualifiedType(Tag, FromTy); } llvm::DIType *CGDebugInfo::CreateQualifiedType(const FunctionProtoType *F, llvm::DIFile *Unit) { FunctionProtoType::ExtProtoInfo EPI = F->getExtProtoInfo(); Qualifiers &Q = EPI.TypeQuals; stripUnusedQualifiers(Q); // We will create one Derived type for one qualifier and recurse to handle any // additional ones. llvm::dwarf::Tag Tag = getNextQualifier(Q); if (!Tag) { assert(Q.empty() && "Unknown type qualifier for debug info"); return nullptr; } auto *FromTy = getOrCreateType(CGM.getContext().getFunctionType(F->getReturnType(), F->getParamTypes(), EPI), Unit); // No need to fill in the Name, Line, Size, Alignment, Offset in case of // CVR derived types. return DBuilder.createQualifiedType(Tag, FromTy); } llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectPointerType *Ty, llvm::DIFile *Unit) { // The frontend treats 'id' as a typedef to an ObjCObjectType, // whereas 'id' is treated as an ObjCPointerType. For the // debug info, we want to emit 'id' in both cases. if (Ty->isObjCQualifiedIdType()) return getOrCreateType(CGM.getContext().getObjCIdType(), Unit); return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const PointerType *Ty, llvm::DIFile *Unit) { return CreatePointerLikeType(llvm::dwarf::DW_TAG_pointer_type, Ty, Ty->getPointeeType(), Unit); } /// \return whether a C++ mangling exists for the type defined by TD. static bool hasCXXMangling(const TagDecl *TD, llvm::DICompileUnit *TheCU) { switch (TheCU->getSourceLanguage()) { case llvm::dwarf::DW_LANG_C_plus_plus: case llvm::dwarf::DW_LANG_C_plus_plus_11: case llvm::dwarf::DW_LANG_C_plus_plus_14: return true; case llvm::dwarf::DW_LANG_ObjC_plus_plus: return isa(TD) || isa(TD); default: return false; } } // Determines if the debug info for this tag declaration needs a type // identifier. The purpose of the unique identifier is to deduplicate type // information for identical types across TUs. Because of the C++ one definition // rule (ODR), it is valid to assume that the type is defined the same way in // every TU and its debug info is equivalent. // // C does not have the ODR, and it is common for codebases to contain multiple // different definitions of a struct with the same name in different TUs. // Therefore, if the type doesn't have a C++ mangling, don't give it an // identifer. Type information in C is smaller and simpler than C++ type // information, so the increase in debug info size is negligible. // // If the type is not externally visible, it should be unique to the current TU, // and should not need an identifier to participate in type deduplication. // However, when emitting CodeView, the format internally uses these // unique type name identifers for references between debug info. For example, // the method of a class in an anonymous namespace uses the identifer to refer // to its parent class. The Microsoft C++ ABI attempts to provide unique names // for such types, so when emitting CodeView, always use identifiers for C++ // types. This may create problems when attempting to emit CodeView when the MS // C++ ABI is not in use. static bool needsTypeIdentifier(const TagDecl *TD, CodeGenModule &CGM, llvm::DICompileUnit *TheCU) { // We only add a type identifier for types with C++ name mangling. if (!hasCXXMangling(TD, TheCU)) return false; // Externally visible types with C++ mangling need a type identifier. if (TD->isExternallyVisible()) return true; // CodeView types with C++ mangling need a type identifier. if (CGM.getCodeGenOpts().EmitCodeView) return true; return false; } // Returns a unique type identifier string if one exists, or an empty string. static SmallString<256> getTypeIdentifier(const TagType *Ty, CodeGenModule &CGM, llvm::DICompileUnit *TheCU) { SmallString<256> Identifier; const TagDecl *TD = Ty->getDecl(); if (!needsTypeIdentifier(TD, CGM, TheCU)) return Identifier; if (const auto *RD = dyn_cast(TD)) if (RD->getDefinition()) if (RD->isDynamicClass() && CGM.getVTableLinkage(RD) == llvm::GlobalValue::ExternalLinkage) return Identifier; // TODO: This is using the RTTI name. Is there a better way to get // a unique string for a type? llvm::raw_svector_ostream Out(Identifier); CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(QualType(Ty, 0), Out); return Identifier; } /// \return the appropriate DWARF tag for a composite type. static llvm::dwarf::Tag getTagForRecord(const RecordDecl *RD) { llvm::dwarf::Tag Tag; if (RD->isStruct() || RD->isInterface()) Tag = llvm::dwarf::DW_TAG_structure_type; else if (RD->isUnion()) Tag = llvm::dwarf::DW_TAG_union_type; else { // FIXME: This could be a struct type giving a default visibility different // than C++ class type, but needs llvm metadata changes first. assert(RD->isClass()); Tag = llvm::dwarf::DW_TAG_class_type; } return Tag; } llvm::DICompositeType * CGDebugInfo::getOrCreateRecordFwdDecl(const RecordType *Ty, llvm::DIScope *Ctx) { const RecordDecl *RD = Ty->getDecl(); if (llvm::DIType *T = getTypeOrNull(CGM.getContext().getRecordType(RD))) return cast(T); llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); const unsigned Line = getLineNumber(RD->getLocation().isValid() ? RD->getLocation() : CurLoc); StringRef RDName = getClassName(RD); uint64_t Size = 0; uint32_t Align = 0; const RecordDecl *D = RD->getDefinition(); if (D && D->isCompleteDefinition()) Size = CGM.getContext().getTypeSize(Ty); llvm::DINode::DIFlags Flags = llvm::DINode::FlagFwdDecl; // Add flag to nontrivial forward declarations. To be consistent with MSVC, // add the flag if a record has no definition because we don't know whether // it will be trivial or not. if (const CXXRecordDecl *CXXRD = dyn_cast(RD)) if (!CXXRD->hasDefinition() || (CXXRD->hasDefinition() && !CXXRD->isTrivial())) Flags |= llvm::DINode::FlagNonTrivial; // Create the type. SmallString<256> Identifier; // Don't include a linkage name in line tables only. if (CGM.getCodeGenOpts().hasReducedDebugInfo()) Identifier = getTypeIdentifier(Ty, CGM, TheCU); llvm::DICompositeType *RetTy = DBuilder.createReplaceableCompositeType( getTagForRecord(RD), RDName, Ctx, DefUnit, Line, 0, Size, Align, Flags, Identifier); if (CGM.getCodeGenOpts().DebugFwdTemplateParams) if (auto *TSpecial = dyn_cast(RD)) DBuilder.replaceArrays(RetTy, llvm::DINodeArray(), CollectCXXTemplateParams(TSpecial, DefUnit)); ReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(Ty), std::make_tuple(static_cast(RetTy))); return RetTy; } llvm::DIType *CGDebugInfo::CreatePointerLikeType(llvm::dwarf::Tag Tag, const Type *Ty, QualType PointeeTy, llvm::DIFile *Unit) { // Bit size, align and offset of the type. // Size is always the size of a pointer. uint64_t Size = CGM.getContext().getTypeSize(Ty); auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); std::optional DWARFAddressSpace = CGM.getTarget().getDWARFAddressSpace( CGM.getTypes().getTargetAddressSpace(PointeeTy)); SmallVector Annots; auto *BTFAttrTy = dyn_cast(PointeeTy); while (BTFAttrTy) { StringRef Tag = BTFAttrTy->getAttr()->getBTFTypeTag(); if (!Tag.empty()) { llvm::Metadata *Ops[2] = { llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_type_tag")), llvm::MDString::get(CGM.getLLVMContext(), Tag)}; Annots.insert(Annots.begin(), llvm::MDNode::get(CGM.getLLVMContext(), Ops)); } BTFAttrTy = dyn_cast(BTFAttrTy->getWrappedType()); } llvm::DINodeArray Annotations = nullptr; if (Annots.size() > 0) Annotations = DBuilder.getOrCreateArray(Annots); if (Tag == llvm::dwarf::DW_TAG_reference_type || Tag == llvm::dwarf::DW_TAG_rvalue_reference_type) return DBuilder.createReferenceType(Tag, getOrCreateType(PointeeTy, Unit), Size, Align, DWARFAddressSpace); else return DBuilder.createPointerType(getOrCreateType(PointeeTy, Unit), Size, Align, DWARFAddressSpace, StringRef(), Annotations); } llvm::DIType *CGDebugInfo::getOrCreateStructPtrType(StringRef Name, llvm::DIType *&Cache) { if (Cache) return Cache; Cache = DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, Name, TheCU, TheCU->getFile(), 0); unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); Cache = DBuilder.createPointerType(Cache, Size); return Cache; } uint64_t CGDebugInfo::collectDefaultElementTypesForBlockPointer( const BlockPointerType *Ty, llvm::DIFile *Unit, llvm::DIDerivedType *DescTy, unsigned LineNo, SmallVectorImpl &EltTys) { QualType FType; // Advanced by calls to CreateMemberType in increments of FType, then // returned as the overall size of the default elements. uint64_t FieldOffset = 0; // Blocks in OpenCL have unique constraints which make the standard fields // redundant while requiring size and align fields for enqueue_kernel. See // initializeForBlockHeader in CGBlocks.cpp if (CGM.getLangOpts().OpenCL) { FType = CGM.getContext().IntTy; EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__align", &FieldOffset)); } else { FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); FType = CGM.getContext().IntTy; EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__reserved", &FieldOffset)); FType = CGM.getContext().getPointerType(Ty->getPointeeType()); EltTys.push_back(CreateMemberType(Unit, FType, "__FuncPtr", &FieldOffset)); FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); uint64_t FieldSize = CGM.getContext().getTypeSize(Ty); uint32_t FieldAlign = CGM.getContext().getTypeAlign(Ty); EltTys.push_back(DBuilder.createMemberType( Unit, "__descriptor", nullptr, LineNo, FieldSize, FieldAlign, FieldOffset, llvm::DINode::FlagZero, DescTy)); FieldOffset += FieldSize; } return FieldOffset; } llvm::DIType *CGDebugInfo::CreateType(const BlockPointerType *Ty, llvm::DIFile *Unit) { SmallVector EltTys; QualType FType; uint64_t FieldOffset; llvm::DINodeArray Elements; FieldOffset = 0; FType = CGM.getContext().UnsignedLongTy; EltTys.push_back(CreateMemberType(Unit, FType, "reserved", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "Size", &FieldOffset)); Elements = DBuilder.getOrCreateArray(EltTys); EltTys.clear(); llvm::DINode::DIFlags Flags = llvm::DINode::FlagAppleBlock; auto *EltTy = DBuilder.createStructType(Unit, "__block_descriptor", nullptr, 0, FieldOffset, 0, Flags, nullptr, Elements); // Bit size, align and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(Ty); auto *DescTy = DBuilder.createPointerType(EltTy, Size); FieldOffset = collectDefaultElementTypesForBlockPointer(Ty, Unit, DescTy, 0, EltTys); Elements = DBuilder.getOrCreateArray(EltTys); // The __block_literal_generic structs are marked with a special // DW_AT_APPLE_BLOCK attribute and are an implementation detail only // the debugger needs to know about. To allow type uniquing, emit // them without a name or a location. EltTy = DBuilder.createStructType(Unit, "", nullptr, 0, FieldOffset, 0, Flags, nullptr, Elements); return DBuilder.createPointerType(EltTy, Size); } static llvm::SmallVector GetTemplateArgs(const TemplateDecl *TD, const TemplateSpecializationType *Ty) { assert(Ty->isTypeAlias()); // TemplateSpecializationType doesn't know if its template args are // being substituted into a parameter pack. We can find out if that's // the case now by inspecting the TypeAliasTemplateDecl template // parameters. Insert Ty's template args into SpecArgs, bundling args // passed to a parameter pack into a TemplateArgument::Pack. It also // doesn't know the value of any defaulted args, so collect those now // too. SmallVector SpecArgs; ArrayRef SubstArgs = Ty->template_arguments(); for (const NamedDecl *Param : TD->getTemplateParameters()->asArray()) { // If Param is a parameter pack, pack the remaining arguments. if (Param->isParameterPack()) { SpecArgs.push_back(TemplateArgument(SubstArgs)); break; } // Skip defaulted args. // FIXME: Ideally, we wouldn't do this. We can read the default values // for each parameter. However, defaulted arguments which are dependent // values or dependent types can't (easily?) be resolved here. if (SubstArgs.empty()) { // If SubstArgs is now empty (we're taking from it each iteration) and // this template parameter isn't a pack, then that should mean we're // using default values for the remaining template parameters (after // which there may be an empty pack too which we will ignore). break; } // Take the next argument. SpecArgs.push_back(SubstArgs.front()); SubstArgs = SubstArgs.drop_front(); } return SpecArgs; } llvm::DIType *CGDebugInfo::CreateType(const TemplateSpecializationType *Ty, llvm::DIFile *Unit) { assert(Ty->isTypeAlias()); llvm::DIType *Src = getOrCreateType(Ty->getAliasedType(), Unit); const TemplateDecl *TD = Ty->getTemplateName().getAsTemplateDecl(); if (isa(TD)) return Src; const auto *AliasDecl = cast(TD)->getTemplatedDecl(); if (AliasDecl->hasAttr()) return Src; SmallString<128> NS; llvm::raw_svector_ostream OS(NS); auto PP = getPrintingPolicy(); Ty->getTemplateName().print(OS, PP, TemplateName::Qualified::None); SourceLocation Loc = AliasDecl->getLocation(); if (CGM.getCodeGenOpts().DebugTemplateAlias && // FIXME: This is a workaround for the issue // https://github.com/llvm/llvm-project/issues/89774 // The TemplateSpecializationType doesn't contain any instantiation // information; dependent template arguments can't be resolved. For now, // fall back to DW_TAG_typedefs for template aliases that are // instantiation dependent, e.g.: // ``` // template // using A = int; // // template // struct S { // using AA = A; // Instantiation dependent. // AA aa; // }; // // S<0> s; // ``` // S::AA's underlying type A is dependent on I so will be emitted as a // DW_TAG_typedef. !Ty->isInstantiationDependentType()) { auto ArgVector = ::GetTemplateArgs(TD, Ty); TemplateArgs Args = {TD->getTemplateParameters(), ArgVector}; // FIXME: Respect DebugTemplateNameKind::Mangled, e.g. by using GetName. // Note we can't use GetName without additional work: TypeAliasTemplateDecl // doesn't have instantiation information, so // TypeAliasTemplateDecl::getNameForDiagnostic wouldn't have access to the // template args. std::string Name; llvm::raw_string_ostream OS(Name); TD->getNameForDiagnostic(OS, PP, /*Qualified=*/false); if (CGM.getCodeGenOpts().getDebugSimpleTemplateNames() != llvm::codegenoptions::DebugTemplateNamesKind::Simple || !HasReconstitutableArgs(Args.Args)) printTemplateArgumentList(OS, Args.Args, PP); llvm::DIDerivedType *AliasTy = DBuilder.createTemplateAlias( Src, Name, getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(AliasDecl), CollectTemplateParams(Args, Unit)); return AliasTy; } // Disable PrintCanonicalTypes here because we want // the DW_AT_name to benefit from the TypePrinter's ability // to skip defaulted template arguments. // // FIXME: Once -gsimple-template-names is enabled by default // and we attach template parameters to alias template DIEs // we don't need to worry about customizing the PrintingPolicy // here anymore. PP.PrintCanonicalTypes = false; printTemplateArgumentList(OS, Ty->template_arguments(), PP, TD->getTemplateParameters()); return DBuilder.createTypedef(Src, OS.str(), getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(AliasDecl)); } /// Convert an AccessSpecifier into the corresponding DINode flag. /// As an optimization, return 0 if the access specifier equals the /// default for the containing type. static llvm::DINode::DIFlags getAccessFlag(AccessSpecifier Access, const RecordDecl *RD) { AccessSpecifier Default = clang::AS_none; if (RD && RD->isClass()) Default = clang::AS_private; else if (RD && (RD->isStruct() || RD->isUnion())) Default = clang::AS_public; if (Access == Default) return llvm::DINode::FlagZero; switch (Access) { case clang::AS_private: return llvm::DINode::FlagPrivate; case clang::AS_protected: return llvm::DINode::FlagProtected; case clang::AS_public: return llvm::DINode::FlagPublic; case clang::AS_none: return llvm::DINode::FlagZero; } llvm_unreachable("unexpected access enumerator"); } llvm::DIType *CGDebugInfo::CreateType(const TypedefType *Ty, llvm::DIFile *Unit) { llvm::DIType *Underlying = getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit); if (Ty->getDecl()->hasAttr()) return Underlying; // We don't set size information, but do specify where the typedef was // declared. SourceLocation Loc = Ty->getDecl()->getLocation(); uint32_t Align = getDeclAlignIfRequired(Ty->getDecl(), CGM.getContext()); // Typedefs are derived from some other type. llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(Ty->getDecl()); llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; const DeclContext *DC = Ty->getDecl()->getDeclContext(); if (isa(DC)) Flags = getAccessFlag(Ty->getDecl()->getAccess(), cast(DC)); return DBuilder.createTypedef(Underlying, Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(Ty->getDecl()), Align, Flags, Annotations); } static unsigned getDwarfCC(CallingConv CC) { switch (CC) { case CC_C: // Avoid emitting DW_AT_calling_convention if the C convention was used. return 0; case CC_X86StdCall: return llvm::dwarf::DW_CC_BORLAND_stdcall; case CC_X86FastCall: return llvm::dwarf::DW_CC_BORLAND_msfastcall; case CC_X86ThisCall: return llvm::dwarf::DW_CC_BORLAND_thiscall; case CC_X86VectorCall: return llvm::dwarf::DW_CC_LLVM_vectorcall; case CC_X86Pascal: return llvm::dwarf::DW_CC_BORLAND_pascal; case CC_Win64: return llvm::dwarf::DW_CC_LLVM_Win64; case CC_X86_64SysV: return llvm::dwarf::DW_CC_LLVM_X86_64SysV; case CC_AAPCS: case CC_AArch64VectorCall: case CC_AArch64SVEPCS: return llvm::dwarf::DW_CC_LLVM_AAPCS; case CC_AAPCS_VFP: return llvm::dwarf::DW_CC_LLVM_AAPCS_VFP; case CC_IntelOclBicc: return llvm::dwarf::DW_CC_LLVM_IntelOclBicc; case CC_SpirFunction: return llvm::dwarf::DW_CC_LLVM_SpirFunction; case CC_OpenCLKernel: case CC_AMDGPUKernelCall: return llvm::dwarf::DW_CC_LLVM_OpenCLKernel; case CC_Swift: return llvm::dwarf::DW_CC_LLVM_Swift; case CC_SwiftAsync: return llvm::dwarf::DW_CC_LLVM_SwiftTail; case CC_PreserveMost: return llvm::dwarf::DW_CC_LLVM_PreserveMost; case CC_PreserveAll: return llvm::dwarf::DW_CC_LLVM_PreserveAll; case CC_X86RegCall: return llvm::dwarf::DW_CC_LLVM_X86RegCall; case CC_M68kRTD: return llvm::dwarf::DW_CC_LLVM_M68kRTD; case CC_PreserveNone: return llvm::dwarf::DW_CC_LLVM_PreserveNone; case CC_RISCVVectorCall: return llvm::dwarf::DW_CC_LLVM_RISCVVectorCall; } return 0; } static llvm::DINode::DIFlags getRefFlags(const FunctionProtoType *Func) { llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; if (Func->getExtProtoInfo().RefQualifier == RQ_LValue) Flags |= llvm::DINode::FlagLValueReference; if (Func->getExtProtoInfo().RefQualifier == RQ_RValue) Flags |= llvm::DINode::FlagRValueReference; return Flags; } llvm::DIType *CGDebugInfo::CreateType(const FunctionType *Ty, llvm::DIFile *Unit) { const auto *FPT = dyn_cast(Ty); if (FPT) { if (llvm::DIType *QTy = CreateQualifiedType(FPT, Unit)) return QTy; } // Create the type without any qualifiers SmallVector EltTys; // Add the result type at least. EltTys.push_back(getOrCreateType(Ty->getReturnType(), Unit)); llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; // Set up remainder of arguments if there is a prototype. // otherwise emit it as a variadic function. if (!FPT) { EltTys.push_back(DBuilder.createUnspecifiedParameter()); } else { Flags = getRefFlags(FPT); for (const QualType &ParamType : FPT->param_types()) EltTys.push_back(getOrCreateType(ParamType, Unit)); if (FPT->isVariadic()) EltTys.push_back(DBuilder.createUnspecifiedParameter()); } llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); llvm::DIType *F = DBuilder.createSubroutineType( EltTypeArray, Flags, getDwarfCC(Ty->getCallConv())); return F; } llvm::DIDerivedType * CGDebugInfo::createBitFieldType(const FieldDecl *BitFieldDecl, llvm::DIScope *RecordTy, const RecordDecl *RD) { StringRef Name = BitFieldDecl->getName(); QualType Ty = BitFieldDecl->getType(); if (BitFieldDecl->hasAttr()) Ty = BitFieldDecl->getAttr()->getType(); SourceLocation Loc = BitFieldDecl->getLocation(); llvm::DIFile *VUnit = getOrCreateFile(Loc); llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); // Get the location for the field. llvm::DIFile *File = getOrCreateFile(Loc); unsigned Line = getLineNumber(Loc); const CGBitFieldInfo &BitFieldInfo = CGM.getTypes().getCGRecordLayout(RD).getBitFieldInfo(BitFieldDecl); uint64_t SizeInBits = BitFieldInfo.Size; assert(SizeInBits > 0 && "found named 0-width bitfield"); uint64_t StorageOffsetInBits = CGM.getContext().toBits(BitFieldInfo.StorageOffset); uint64_t Offset = BitFieldInfo.Offset; // The bit offsets for big endian machines are reversed for big // endian target, compensate for that as the DIDerivedType requires // un-reversed offsets. if (CGM.getDataLayout().isBigEndian()) Offset = BitFieldInfo.StorageSize - BitFieldInfo.Size - Offset; uint64_t OffsetInBits = StorageOffsetInBits + Offset; llvm::DINode::DIFlags Flags = getAccessFlag(BitFieldDecl->getAccess(), RD); llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(BitFieldDecl); return DBuilder.createBitFieldMemberType( RecordTy, Name, File, Line, SizeInBits, OffsetInBits, StorageOffsetInBits, Flags, DebugType, Annotations); } llvm::DIDerivedType *CGDebugInfo::createBitFieldSeparatorIfNeeded( const FieldDecl *BitFieldDecl, const llvm::DIDerivedType *BitFieldDI, llvm::ArrayRef PreviousFieldsDI, const RecordDecl *RD) { if (!CGM.getTargetCodeGenInfo().shouldEmitDWARFBitFieldSeparators()) return nullptr; /* Add a *single* zero-bitfield separator between two non-zero bitfields separated by one or more zero-bitfields. This is used to distinguish between structures such the ones below, where the memory layout is the same, but how the ABI assigns fields to registers differs. struct foo { int space[4]; char a : 8; // on amdgpu, passed on v4 char b : 8; char x : 8; char y : 8; }; struct bar { int space[4]; char a : 8; // on amdgpu, passed on v4 char b : 8; char : 0; char x : 8; // passed on v5 char y : 8; }; */ if (PreviousFieldsDI.empty()) return nullptr; // If we already emitted metadata for a 0-length bitfield, nothing to do here. auto *PreviousMDEntry = PreviousFieldsDI.empty() ? nullptr : PreviousFieldsDI.back(); auto *PreviousMDField = dyn_cast_or_null(PreviousMDEntry); if (!PreviousMDField || !PreviousMDField->isBitField() || PreviousMDField->getSizeInBits() == 0) return nullptr; auto PreviousBitfield = RD->field_begin(); std::advance(PreviousBitfield, BitFieldDecl->getFieldIndex() - 1); assert(PreviousBitfield->isBitField()); ASTContext &Context = CGM.getContext(); if (!PreviousBitfield->isZeroLengthBitField(Context)) return nullptr; QualType Ty = PreviousBitfield->getType(); SourceLocation Loc = PreviousBitfield->getLocation(); llvm::DIFile *VUnit = getOrCreateFile(Loc); llvm::DIType *DebugType = getOrCreateType(Ty, VUnit); llvm::DIScope *RecordTy = BitFieldDI->getScope(); llvm::DIFile *File = getOrCreateFile(Loc); unsigned Line = getLineNumber(Loc); uint64_t StorageOffsetInBits = cast(BitFieldDI->getStorageOffsetInBits()) ->getZExtValue(); llvm::DINode::DIFlags Flags = getAccessFlag(PreviousBitfield->getAccess(), RD); llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(*PreviousBitfield); return DBuilder.createBitFieldMemberType( RecordTy, "", File, Line, 0, StorageOffsetInBits, StorageOffsetInBits, Flags, DebugType, Annotations); } llvm::DIType *CGDebugInfo::createFieldType( StringRef name, QualType type, SourceLocation loc, AccessSpecifier AS, uint64_t offsetInBits, uint32_t AlignInBits, llvm::DIFile *tunit, llvm::DIScope *scope, const RecordDecl *RD, llvm::DINodeArray Annotations) { llvm::DIType *debugType = getOrCreateType(type, tunit); // Get the location for the field. llvm::DIFile *file = getOrCreateFile(loc); const unsigned line = getLineNumber(loc.isValid() ? loc : CurLoc); uint64_t SizeInBits = 0; auto Align = AlignInBits; if (!type->isIncompleteArrayType()) { TypeInfo TI = CGM.getContext().getTypeInfo(type); SizeInBits = TI.Width; if (!Align) Align = getTypeAlignIfRequired(type, CGM.getContext()); } llvm::DINode::DIFlags flags = getAccessFlag(AS, RD); return DBuilder.createMemberType(scope, name, file, line, SizeInBits, Align, offsetInBits, flags, debugType, Annotations); } llvm::DISubprogram * CGDebugInfo::createInlinedTrapSubprogram(StringRef FuncName, llvm::DIFile *FileScope) { // We are caching the subprogram because we don't want to duplicate // subprograms with the same message. Note that `SPFlagDefinition` prevents // subprograms from being uniqued. llvm::DISubprogram *&SP = InlinedTrapFuncMap[FuncName]; if (!SP) { llvm::DISubroutineType *DIFnTy = DBuilder.createSubroutineType(nullptr); SP = DBuilder.createFunction( /*Scope=*/FileScope, /*Name=*/FuncName, /*LinkageName=*/StringRef(), /*File=*/FileScope, /*LineNo=*/0, /*Ty=*/DIFnTy, /*ScopeLine=*/0, /*Flags=*/llvm::DINode::FlagArtificial, /*SPFlags=*/llvm::DISubprogram::SPFlagDefinition, /*TParams=*/nullptr, /*ThrownTypes=*/nullptr, /*Annotations=*/nullptr); } return SP; } void CGDebugInfo::CollectRecordLambdaFields( const CXXRecordDecl *CXXDecl, SmallVectorImpl &elements, llvm::DIType *RecordTy) { // For C++11 Lambdas a Field will be the same as a Capture, but the Capture // has the name and the location of the variable so we should iterate over // both concurrently. const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(CXXDecl); RecordDecl::field_iterator Field = CXXDecl->field_begin(); unsigned fieldno = 0; for (CXXRecordDecl::capture_const_iterator I = CXXDecl->captures_begin(), E = CXXDecl->captures_end(); I != E; ++I, ++Field, ++fieldno) { const LambdaCapture &C = *I; if (C.capturesVariable()) { SourceLocation Loc = C.getLocation(); assert(!Field->isBitField() && "lambdas don't have bitfield members!"); ValueDecl *V = C.getCapturedVar(); StringRef VName = V->getName(); llvm::DIFile *VUnit = getOrCreateFile(Loc); auto Align = getDeclAlignIfRequired(V, CGM.getContext()); llvm::DIType *FieldType = createFieldType( VName, Field->getType(), Loc, Field->getAccess(), layout.getFieldOffset(fieldno), Align, VUnit, RecordTy, CXXDecl); elements.push_back(FieldType); } else if (C.capturesThis()) { // TODO: Need to handle 'this' in some way by probably renaming the // this of the lambda class and having a field member of 'this' or // by using AT_object_pointer for the function and having that be // used as 'this' for semantic references. FieldDecl *f = *Field; llvm::DIFile *VUnit = getOrCreateFile(f->getLocation()); QualType type = f->getType(); StringRef ThisName = CGM.getCodeGenOpts().EmitCodeView ? "__this" : "this"; llvm::DIType *fieldType = createFieldType( ThisName, type, f->getLocation(), f->getAccess(), layout.getFieldOffset(fieldno), VUnit, RecordTy, CXXDecl); elements.push_back(fieldType); } } } llvm::DIDerivedType * CGDebugInfo::CreateRecordStaticField(const VarDecl *Var, llvm::DIType *RecordTy, const RecordDecl *RD) { // Create the descriptor for the static variable, with or without // constant initializers. Var = Var->getCanonicalDecl(); llvm::DIFile *VUnit = getOrCreateFile(Var->getLocation()); llvm::DIType *VTy = getOrCreateType(Var->getType(), VUnit); unsigned LineNumber = getLineNumber(Var->getLocation()); StringRef VName = Var->getName(); // FIXME: to avoid complications with type merging we should // emit the constant on the definition instead of the declaration. llvm::Constant *C = nullptr; if (Var->getInit()) { const APValue *Value = Var->evaluateValue(); if (Value) { if (Value->isInt()) C = llvm::ConstantInt::get(CGM.getLLVMContext(), Value->getInt()); if (Value->isFloat()) C = llvm::ConstantFP::get(CGM.getLLVMContext(), Value->getFloat()); } } llvm::DINode::DIFlags Flags = getAccessFlag(Var->getAccess(), RD); auto Tag = CGM.getCodeGenOpts().DwarfVersion >= 5 ? llvm::dwarf::DW_TAG_variable : llvm::dwarf::DW_TAG_member; auto Align = getDeclAlignIfRequired(Var, CGM.getContext()); llvm::DIDerivedType *GV = DBuilder.createStaticMemberType( RecordTy, VName, VUnit, LineNumber, VTy, Flags, C, Tag, Align); StaticDataMemberCache[Var->getCanonicalDecl()].reset(GV); return GV; } void CGDebugInfo::CollectRecordNormalField( const FieldDecl *field, uint64_t OffsetInBits, llvm::DIFile *tunit, SmallVectorImpl &elements, llvm::DIType *RecordTy, const RecordDecl *RD) { StringRef name = field->getName(); QualType type = field->getType(); // Ignore unnamed fields unless they're anonymous structs/unions. if (name.empty() && !type->isRecordType()) return; llvm::DIType *FieldType; if (field->isBitField()) { llvm::DIDerivedType *BitFieldType; FieldType = BitFieldType = createBitFieldType(field, RecordTy, RD); if (llvm::DIType *Separator = createBitFieldSeparatorIfNeeded(field, BitFieldType, elements, RD)) elements.push_back(Separator); } else { auto Align = getDeclAlignIfRequired(field, CGM.getContext()); llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(field); FieldType = createFieldType(name, type, field->getLocation(), field->getAccess(), OffsetInBits, Align, tunit, RecordTy, RD, Annotations); } elements.push_back(FieldType); } void CGDebugInfo::CollectRecordNestedType( const TypeDecl *TD, SmallVectorImpl &elements) { QualType Ty = CGM.getContext().getTypeDeclType(TD); // Injected class names are not considered nested records. if (isa(Ty)) return; SourceLocation Loc = TD->getLocation(); llvm::DIType *nestedType = getOrCreateType(Ty, getOrCreateFile(Loc)); elements.push_back(nestedType); } void CGDebugInfo::CollectRecordFields( const RecordDecl *record, llvm::DIFile *tunit, SmallVectorImpl &elements, llvm::DICompositeType *RecordTy) { const auto *CXXDecl = dyn_cast(record); if (CXXDecl && CXXDecl->isLambda()) CollectRecordLambdaFields(CXXDecl, elements, RecordTy); else { const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(record); // Field number for non-static fields. unsigned fieldNo = 0; // Static and non-static members should appear in the same order as // the corresponding declarations in the source program. for (const auto *I : record->decls()) if (const auto *V = dyn_cast(I)) { if (V->hasAttr()) continue; // Skip variable template specializations when emitting CodeView. MSVC // doesn't emit them. if (CGM.getCodeGenOpts().EmitCodeView && isa(V)) continue; if (isa(V)) continue; // Reuse the existing static member declaration if one exists auto MI = StaticDataMemberCache.find(V->getCanonicalDecl()); if (MI != StaticDataMemberCache.end()) { assert(MI->second && "Static data member declaration should still exist"); elements.push_back(MI->second); } else { auto Field = CreateRecordStaticField(V, RecordTy, record); elements.push_back(Field); } } else if (const auto *field = dyn_cast(I)) { CollectRecordNormalField(field, layout.getFieldOffset(fieldNo), tunit, elements, RecordTy, record); // Bump field number for next field. ++fieldNo; } else if (CGM.getCodeGenOpts().EmitCodeView) { // Debug info for nested types is included in the member list only for // CodeView. if (const auto *nestedType = dyn_cast(I)) { // MSVC doesn't generate nested type for anonymous struct/union. if (isa(I) && cast(I)->isAnonymousStructOrUnion()) continue; if (!nestedType->isImplicit() && nestedType->getDeclContext() == record) CollectRecordNestedType(nestedType, elements); } } } } llvm::DISubroutineType * CGDebugInfo::getOrCreateMethodType(const CXXMethodDecl *Method, llvm::DIFile *Unit) { const FunctionProtoType *Func = Method->getType()->getAs(); if (Method->isStatic()) return cast_or_null( getOrCreateType(QualType(Func, 0), Unit)); return getOrCreateInstanceMethodType(Method->getThisType(), Func, Unit); } llvm::DISubroutineType *CGDebugInfo::getOrCreateInstanceMethodType( QualType ThisPtr, const FunctionProtoType *Func, llvm::DIFile *Unit) { FunctionProtoType::ExtProtoInfo EPI = Func->getExtProtoInfo(); Qualifiers &Qc = EPI.TypeQuals; Qc.removeConst(); Qc.removeVolatile(); Qc.removeRestrict(); Qc.removeUnaligned(); // Keep the removed qualifiers in sync with // CreateQualifiedType(const FunctionPrototype*, DIFile *Unit) // On a 'real' member function type, these qualifiers are carried on the type // of the first parameter, not as separate DW_TAG_const_type (etc) decorator // tags around them. (But, in the raw function types with qualifiers, they have // to use wrapper types.) // Add "this" pointer. const auto *OriginalFunc = cast( getOrCreateType(CGM.getContext().getFunctionType( Func->getReturnType(), Func->getParamTypes(), EPI), Unit)); llvm::DITypeRefArray Args = OriginalFunc->getTypeArray(); assert(Args.size() && "Invalid number of arguments!"); SmallVector Elts; // First element is always return type. For 'void' functions it is NULL. Elts.push_back(Args[0]); // "this" pointer is always first argument. const CXXRecordDecl *RD = ThisPtr->getPointeeCXXRecordDecl(); if (isa(RD)) { // Create pointer type directly in this case. const PointerType *ThisPtrTy = cast(ThisPtr); uint64_t Size = CGM.getContext().getTypeSize(ThisPtrTy); auto Align = getTypeAlignIfRequired(ThisPtrTy, CGM.getContext()); llvm::DIType *PointeeType = getOrCreateType(ThisPtrTy->getPointeeType(), Unit); llvm::DIType *ThisPtrType = DBuilder.createPointerType(PointeeType, Size, Align); TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); // TODO: This and the artificial type below are misleading, the // types aren't artificial the argument is, but the current // metadata doesn't represent that. ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); Elts.push_back(ThisPtrType); } else { llvm::DIType *ThisPtrType = getOrCreateType(ThisPtr, Unit); TypeCache[ThisPtr.getAsOpaquePtr()].reset(ThisPtrType); ThisPtrType = DBuilder.createObjectPointerType(ThisPtrType); Elts.push_back(ThisPtrType); } // Copy rest of the arguments. for (unsigned i = 1, e = Args.size(); i != e; ++i) Elts.push_back(Args[i]); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); return DBuilder.createSubroutineType(EltTypeArray, OriginalFunc->getFlags(), getDwarfCC(Func->getCallConv())); } /// isFunctionLocalClass - Return true if CXXRecordDecl is defined /// inside a function. static bool isFunctionLocalClass(const CXXRecordDecl *RD) { if (const auto *NRD = dyn_cast(RD->getDeclContext())) return isFunctionLocalClass(NRD); if (isa(RD->getDeclContext())) return true; return false; } llvm::DISubprogram *CGDebugInfo::CreateCXXMemberFunction( const CXXMethodDecl *Method, llvm::DIFile *Unit, llvm::DIType *RecordTy) { bool IsCtorOrDtor = isa(Method) || isa(Method); StringRef MethodName = getFunctionName(Method); llvm::DISubroutineType *MethodTy = getOrCreateMethodType(Method, Unit); // Since a single ctor/dtor corresponds to multiple functions, it doesn't // make sense to give a single ctor/dtor a linkage name. StringRef MethodLinkageName; // FIXME: 'isFunctionLocalClass' seems like an arbitrary/unintentional // property to use here. It may've been intended to model "is non-external // type" but misses cases of non-function-local but non-external classes such // as those in anonymous namespaces as well as the reverse - external types // that are function local, such as those in (non-local) inline functions. if (!IsCtorOrDtor && !isFunctionLocalClass(Method->getParent())) MethodLinkageName = CGM.getMangledName(Method); // Get the location for the method. llvm::DIFile *MethodDefUnit = nullptr; unsigned MethodLine = 0; if (!Method->isImplicit()) { MethodDefUnit = getOrCreateFile(Method->getLocation()); MethodLine = getLineNumber(Method->getLocation()); } // Collect virtual method info. llvm::DIType *ContainingType = nullptr; unsigned VIndex = 0; llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; int ThisAdjustment = 0; if (VTableContextBase::hasVtableSlot(Method)) { if (Method->isPureVirtual()) SPFlags |= llvm::DISubprogram::SPFlagPureVirtual; else SPFlags |= llvm::DISubprogram::SPFlagVirtual; if (CGM.getTarget().getCXXABI().isItaniumFamily()) { // It doesn't make sense to give a virtual destructor a vtable index, // since a single destructor has two entries in the vtable. if (!isa(Method)) VIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(Method); } else { // Emit MS ABI vftable information. There is only one entry for the // deleting dtor. const auto *DD = dyn_cast(Method); GlobalDecl GD = DD ? GlobalDecl(DD, Dtor_Deleting) : GlobalDecl(Method); MethodVFTableLocation ML = CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD); VIndex = ML.Index; // CodeView only records the vftable offset in the class that introduces // the virtual method. This is possible because, unlike Itanium, the MS // C++ ABI does not include all virtual methods from non-primary bases in // the vtable for the most derived class. For example, if C inherits from // A and B, C's primary vftable will not include B's virtual methods. if (Method->size_overridden_methods() == 0) Flags |= llvm::DINode::FlagIntroducedVirtual; // The 'this' adjustment accounts for both the virtual and non-virtual // portions of the adjustment. Presumably the debugger only uses it when // it knows the dynamic type of an object. ThisAdjustment = CGM.getCXXABI() .getVirtualFunctionPrologueThisAdjustment(GD) .getQuantity(); } ContainingType = RecordTy; } if (Method->getCanonicalDecl()->isDeleted()) SPFlags |= llvm::DISubprogram::SPFlagDeleted; if (Method->isNoReturn()) Flags |= llvm::DINode::FlagNoReturn; if (Method->isStatic()) Flags |= llvm::DINode::FlagStaticMember; if (Method->isImplicit()) Flags |= llvm::DINode::FlagArtificial; Flags |= getAccessFlag(Method->getAccess(), Method->getParent()); if (const auto *CXXC = dyn_cast(Method)) { if (CXXC->isExplicit()) Flags |= llvm::DINode::FlagExplicit; } else if (const auto *CXXC = dyn_cast(Method)) { if (CXXC->isExplicit()) Flags |= llvm::DINode::FlagExplicit; } if (Method->hasPrototype()) Flags |= llvm::DINode::FlagPrototyped; if (Method->getRefQualifier() == RQ_LValue) Flags |= llvm::DINode::FlagLValueReference; if (Method->getRefQualifier() == RQ_RValue) Flags |= llvm::DINode::FlagRValueReference; if (!Method->isExternallyVisible()) SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; if (CGM.getLangOpts().Optimize) SPFlags |= llvm::DISubprogram::SPFlagOptimized; // In this debug mode, emit type info for a class when its constructor type // info is emitted. if (DebugKind == llvm::codegenoptions::DebugInfoConstructor) if (const CXXConstructorDecl *CD = dyn_cast(Method)) completeUnusedClass(*CD->getParent()); llvm::DINodeArray TParamsArray = CollectFunctionTemplateParams(Method, Unit); llvm::DISubprogram *SP = DBuilder.createMethod( RecordTy, MethodName, MethodLinkageName, MethodDefUnit, MethodLine, MethodTy, VIndex, ThisAdjustment, ContainingType, Flags, SPFlags, TParamsArray.get()); SPCache[Method->getCanonicalDecl()].reset(SP); return SP; } void CGDebugInfo::CollectCXXMemberFunctions( const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl &EltTys, llvm::DIType *RecordTy) { // Since we want more than just the individual member decls if we // have templated functions iterate over every declaration to gather // the functions. for (const auto *I : RD->decls()) { const auto *Method = dyn_cast(I); // If the member is implicit, don't add it to the member list. This avoids // the member being added to type units by LLVM, while still allowing it // to be emitted into the type declaration/reference inside the compile // unit. // Ditto 'nodebug' methods, for consistency with CodeGenFunction.cpp. // FIXME: Handle Using(Shadow?)Decls here to create // DW_TAG_imported_declarations inside the class for base decls brought into // derived classes. GDB doesn't seem to notice/leverage these when I tried // it, so I'm not rushing to fix this. (GCC seems to produce them, if // referenced) if (!Method || Method->isImplicit() || Method->hasAttr()) continue; if (Method->getType()->castAs()->getContainedAutoType()) continue; // Reuse the existing member function declaration if it exists. // It may be associated with the declaration of the type & should be // reused as we're building the definition. // // This situation can arise in the vtable-based debug info reduction where // implicit members are emitted in a non-vtable TU. auto MI = SPCache.find(Method->getCanonicalDecl()); EltTys.push_back(MI == SPCache.end() ? CreateCXXMemberFunction(Method, Unit, RecordTy) : static_cast(MI->second)); } } void CGDebugInfo::CollectCXXBases(const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl &EltTys, llvm::DIType *RecordTy) { llvm::DenseSet> SeenTypes; CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->bases(), SeenTypes, llvm::DINode::FlagZero); // If we are generating CodeView debug info, we also need to emit records for // indirect virtual base classes. if (CGM.getCodeGenOpts().EmitCodeView) { CollectCXXBasesAux(RD, Unit, EltTys, RecordTy, RD->vbases(), SeenTypes, llvm::DINode::FlagIndirectVirtualBase); } } void CGDebugInfo::CollectCXXBasesAux( const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl &EltTys, llvm::DIType *RecordTy, const CXXRecordDecl::base_class_const_range &Bases, llvm::DenseSet> &SeenTypes, llvm::DINode::DIFlags StartingFlags) { const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); for (const auto &BI : Bases) { const auto *Base = cast(BI.getType()->castAs()->getDecl()); if (!SeenTypes.insert(Base).second) continue; auto *BaseTy = getOrCreateType(BI.getType(), Unit); llvm::DINode::DIFlags BFlags = StartingFlags; uint64_t BaseOffset; uint32_t VBPtrOffset = 0; if (BI.isVirtual()) { if (CGM.getTarget().getCXXABI().isItaniumFamily()) { // virtual base offset offset is -ve. The code generator emits dwarf // expression where it expects +ve number. BaseOffset = 0 - CGM.getItaniumVTableContext() .getVirtualBaseOffsetOffset(RD, Base) .getQuantity(); } else { // In the MS ABI, store the vbtable offset, which is analogous to the // vbase offset offset in Itanium. BaseOffset = 4 * CGM.getMicrosoftVTableContext().getVBTableIndex(RD, Base); VBPtrOffset = CGM.getContext() .getASTRecordLayout(RD) .getVBPtrOffset() .getQuantity(); } BFlags |= llvm::DINode::FlagVirtual; } else BaseOffset = CGM.getContext().toBits(RL.getBaseClassOffset(Base)); // FIXME: Inconsistent units for BaseOffset. It is in bytes when // BI->isVirtual() and bits when not. BFlags |= getAccessFlag(BI.getAccessSpecifier(), RD); llvm::DIType *DTy = DBuilder.createInheritance(RecordTy, BaseTy, BaseOffset, VBPtrOffset, BFlags); EltTys.push_back(DTy); } } llvm::DINodeArray CGDebugInfo::CollectTemplateParams(std::optional OArgs, llvm::DIFile *Unit) { if (!OArgs) return llvm::DINodeArray(); TemplateArgs &Args = *OArgs; SmallVector TemplateParams; for (unsigned i = 0, e = Args.Args.size(); i != e; ++i) { const TemplateArgument &TA = Args.Args[i]; StringRef Name; const bool defaultParameter = TA.getIsDefaulted(); if (Args.TList) Name = Args.TList->getParam(i)->getName(); switch (TA.getKind()) { case TemplateArgument::Type: { llvm::DIType *TTy = getOrCreateType(TA.getAsType(), Unit); TemplateParams.push_back(DBuilder.createTemplateTypeParameter( TheCU, Name, TTy, defaultParameter)); } break; case TemplateArgument::Integral: { llvm::DIType *TTy = getOrCreateType(TA.getIntegralType(), Unit); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, defaultParameter, llvm::ConstantInt::get(CGM.getLLVMContext(), TA.getAsIntegral()))); } break; case TemplateArgument::Declaration: { const ValueDecl *D = TA.getAsDecl(); QualType T = TA.getParamTypeForDecl().getDesugaredType(CGM.getContext()); llvm::DIType *TTy = getOrCreateType(T, Unit); llvm::Constant *V = nullptr; // Skip retrieve the value if that template parameter has cuda device // attribute, i.e. that value is not available at the host side. if (!CGM.getLangOpts().CUDA || CGM.getLangOpts().CUDAIsDevice || !D->hasAttr()) { // Variable pointer template parameters have a value that is the address // of the variable. if (const auto *VD = dyn_cast(D)) V = CGM.GetAddrOfGlobalVar(VD); // Member function pointers have special support for building them, // though this is currently unsupported in LLVM CodeGen. else if (const auto *MD = dyn_cast(D); MD && MD->isImplicitObjectMemberFunction()) V = CGM.getCXXABI().EmitMemberFunctionPointer(MD); else if (const auto *FD = dyn_cast(D)) V = CGM.GetAddrOfFunction(FD); // Member data pointers have special handling too to compute the fixed // offset within the object. else if (const auto *MPT = dyn_cast(T.getTypePtr())) { // These five lines (& possibly the above member function pointer // handling) might be able to be refactored to use similar code in // CodeGenModule::getMemberPointerConstant uint64_t fieldOffset = CGM.getContext().getFieldOffset(D); CharUnits chars = CGM.getContext().toCharUnitsFromBits((int64_t)fieldOffset); V = CGM.getCXXABI().EmitMemberDataPointer(MPT, chars); } else if (const auto *GD = dyn_cast(D)) { V = CGM.GetAddrOfMSGuidDecl(GD).getPointer(); } else if (const auto *TPO = dyn_cast(D)) { if (T->isRecordType()) V = ConstantEmitter(CGM).emitAbstract( SourceLocation(), TPO->getValue(), TPO->getType()); else V = CGM.GetAddrOfTemplateParamObject(TPO).getPointer(); } assert(V && "Failed to find template parameter pointer"); V = V->stripPointerCasts(); } TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, defaultParameter, cast_or_null(V))); } break; case TemplateArgument::NullPtr: { QualType T = TA.getNullPtrType(); llvm::DIType *TTy = getOrCreateType(T, Unit); llvm::Constant *V = nullptr; // Special case member data pointer null values since they're actually -1 // instead of zero. if (const auto *MPT = dyn_cast(T.getTypePtr())) // But treat member function pointers as simple zero integers because // it's easier than having a special case in LLVM's CodeGen. If LLVM // CodeGen grows handling for values of non-null member function // pointers then perhaps we could remove this special case and rely on // EmitNullMemberPointer for member function pointers. if (MPT->isMemberDataPointer()) V = CGM.getCXXABI().EmitNullMemberPointer(MPT); if (!V) V = llvm::ConstantInt::get(CGM.Int8Ty, 0); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, defaultParameter, V)); } break; case TemplateArgument::StructuralValue: { QualType T = TA.getStructuralValueType(); llvm::DIType *TTy = getOrCreateType(T, Unit); llvm::Constant *V = ConstantEmitter(CGM).emitAbstract( SourceLocation(), TA.getAsStructuralValue(), T); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, defaultParameter, V)); } break; case TemplateArgument::Template: { std::string QualName; llvm::raw_string_ostream OS(QualName); TA.getAsTemplate().getAsTemplateDecl()->printQualifiedName( OS, getPrintingPolicy()); TemplateParams.push_back(DBuilder.createTemplateTemplateParameter( TheCU, Name, nullptr, OS.str(), defaultParameter)); break; } case TemplateArgument::Pack: TemplateParams.push_back(DBuilder.createTemplateParameterPack( TheCU, Name, nullptr, CollectTemplateParams({{nullptr, TA.getPackAsArray()}}, Unit))); break; case TemplateArgument::Expression: { const Expr *E = TA.getAsExpr(); QualType T = E->getType(); if (E->isGLValue()) T = CGM.getContext().getLValueReferenceType(T); llvm::Constant *V = ConstantEmitter(CGM).emitAbstract(E, T); assert(V && "Expression in template argument isn't constant"); llvm::DIType *TTy = getOrCreateType(T, Unit); TemplateParams.push_back(DBuilder.createTemplateValueParameter( TheCU, Name, TTy, defaultParameter, V->stripPointerCasts())); } break; // And the following should never occur: case TemplateArgument::TemplateExpansion: case TemplateArgument::Null: llvm_unreachable( "These argument types shouldn't exist in concrete types"); } } return DBuilder.getOrCreateArray(TemplateParams); } std::optional CGDebugInfo::GetTemplateArgs(const FunctionDecl *FD) const { if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplateSpecialization) { const TemplateParameterList *TList = FD->getTemplateSpecializationInfo() ->getTemplate() ->getTemplateParameters(); return {{TList, FD->getTemplateSpecializationArgs()->asArray()}}; } return std::nullopt; } std::optional CGDebugInfo::GetTemplateArgs(const VarDecl *VD) const { // Always get the full list of parameters, not just the ones from the // specialization. A partial specialization may have fewer parameters than // there are arguments. auto *TS = dyn_cast(VD); if (!TS) return std::nullopt; VarTemplateDecl *T = TS->getSpecializedTemplate(); const TemplateParameterList *TList = T->getTemplateParameters(); auto TA = TS->getTemplateArgs().asArray(); return {{TList, TA}}; } std::optional CGDebugInfo::GetTemplateArgs(const RecordDecl *RD) const { if (auto *TSpecial = dyn_cast(RD)) { // Always get the full list of parameters, not just the ones from the // specialization. A partial specialization may have fewer parameters than // there are arguments. TemplateParameterList *TPList = TSpecial->getSpecializedTemplate()->getTemplateParameters(); const TemplateArgumentList &TAList = TSpecial->getTemplateArgs(); return {{TPList, TAList.asArray()}}; } return std::nullopt; } llvm::DINodeArray CGDebugInfo::CollectFunctionTemplateParams(const FunctionDecl *FD, llvm::DIFile *Unit) { return CollectTemplateParams(GetTemplateArgs(FD), Unit); } llvm::DINodeArray CGDebugInfo::CollectVarTemplateParams(const VarDecl *VL, llvm::DIFile *Unit) { return CollectTemplateParams(GetTemplateArgs(VL), Unit); } llvm::DINodeArray CGDebugInfo::CollectCXXTemplateParams(const RecordDecl *RD, llvm::DIFile *Unit) { return CollectTemplateParams(GetTemplateArgs(RD), Unit); } llvm::DINodeArray CGDebugInfo::CollectBTFDeclTagAnnotations(const Decl *D) { if (!D->hasAttr()) return nullptr; SmallVector Annotations; for (const auto *I : D->specific_attrs()) { llvm::Metadata *Ops[2] = { llvm::MDString::get(CGM.getLLVMContext(), StringRef("btf_decl_tag")), llvm::MDString::get(CGM.getLLVMContext(), I->getBTFDeclTag())}; Annotations.push_back(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); } return DBuilder.getOrCreateArray(Annotations); } llvm::DIType *CGDebugInfo::getOrCreateVTablePtrType(llvm::DIFile *Unit) { if (VTablePtrType) return VTablePtrType; ASTContext &Context = CGM.getContext(); /* Function type */ llvm::Metadata *STy = getOrCreateType(Context.IntTy, Unit); llvm::DITypeRefArray SElements = DBuilder.getOrCreateTypeArray(STy); llvm::DIType *SubTy = DBuilder.createSubroutineType(SElements); unsigned Size = Context.getTypeSize(Context.VoidPtrTy); unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); std::optional DWARFAddressSpace = CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); llvm::DIType *vtbl_ptr_type = DBuilder.createPointerType( SubTy, Size, 0, DWARFAddressSpace, "__vtbl_ptr_type"); VTablePtrType = DBuilder.createPointerType(vtbl_ptr_type, Size); return VTablePtrType; } StringRef CGDebugInfo::getVTableName(const CXXRecordDecl *RD) { // Copy the gdb compatible name on the side and use its reference. return internString("_vptr$", RD->getNameAsString()); } StringRef CGDebugInfo::getDynamicInitializerName(const VarDecl *VD, DynamicInitKind StubKind, llvm::Function *InitFn) { // If we're not emitting codeview, use the mangled name. For Itanium, this is // arbitrary. if (!CGM.getCodeGenOpts().EmitCodeView || StubKind == DynamicInitKind::GlobalArrayDestructor) return InitFn->getName(); // Print the normal qualified name for the variable, then break off the last // NNS, and add the appropriate other text. Clang always prints the global // variable name without template arguments, so we can use rsplit("::") and // then recombine the pieces. SmallString<128> QualifiedGV; StringRef Quals; StringRef GVName; { llvm::raw_svector_ostream OS(QualifiedGV); VD->printQualifiedName(OS, getPrintingPolicy()); std::tie(Quals, GVName) = OS.str().rsplit("::"); if (GVName.empty()) std::swap(Quals, GVName); } SmallString<128> InitName; llvm::raw_svector_ostream OS(InitName); if (!Quals.empty()) OS << Quals << "::"; switch (StubKind) { case DynamicInitKind::NoStub: case DynamicInitKind::GlobalArrayDestructor: llvm_unreachable("not an initializer"); case DynamicInitKind::Initializer: OS << "`dynamic initializer for '"; break; case DynamicInitKind::AtExit: OS << "`dynamic atexit destructor for '"; break; } OS << GVName; // Add any template specialization args. if (const auto *VTpl = dyn_cast(VD)) { printTemplateArgumentList(OS, VTpl->getTemplateArgs().asArray(), getPrintingPolicy()); } OS << '\''; return internString(OS.str()); } void CGDebugInfo::CollectVTableInfo(const CXXRecordDecl *RD, llvm::DIFile *Unit, SmallVectorImpl &EltTys) { // If this class is not dynamic then there is not any vtable info to collect. if (!RD->isDynamicClass()) return; // Don't emit any vtable shape or vptr info if this class doesn't have an // extendable vfptr. This can happen if the class doesn't have virtual // methods, or in the MS ABI if those virtual methods only come from virtually // inherited bases. const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); if (!RL.hasExtendableVFPtr()) return; // CodeView needs to know how large the vtable of every dynamic class is, so // emit a special named pointer type into the element list. The vptr type // points to this type as well. llvm::DIType *VPtrTy = nullptr; bool NeedVTableShape = CGM.getCodeGenOpts().EmitCodeView && CGM.getTarget().getCXXABI().isMicrosoft(); if (NeedVTableShape) { uint64_t PtrWidth = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); const VTableLayout &VFTLayout = CGM.getMicrosoftVTableContext().getVFTableLayout(RD, CharUnits::Zero()); unsigned VSlotCount = VFTLayout.vtable_components().size() - CGM.getLangOpts().RTTIData; unsigned VTableWidth = PtrWidth * VSlotCount; unsigned VtblPtrAddressSpace = CGM.getTarget().getVtblPtrAddressSpace(); std::optional DWARFAddressSpace = CGM.getTarget().getDWARFAddressSpace(VtblPtrAddressSpace); // Create a very wide void* type and insert it directly in the element list. llvm::DIType *VTableType = DBuilder.createPointerType( nullptr, VTableWidth, 0, DWARFAddressSpace, "__vtbl_ptr_type"); EltTys.push_back(VTableType); // The vptr is a pointer to this special vtable type. VPtrTy = DBuilder.createPointerType(VTableType, PtrWidth); } // If there is a primary base then the artificial vptr member lives there. if (RL.getPrimaryBase()) return; if (!VPtrTy) VPtrTy = getOrCreateVTablePtrType(Unit); unsigned Size = CGM.getContext().getTypeSize(CGM.getContext().VoidPtrTy); llvm::DIType *VPtrMember = DBuilder.createMemberType(Unit, getVTableName(RD), Unit, 0, Size, 0, 0, llvm::DINode::FlagArtificial, VPtrTy); EltTys.push_back(VPtrMember); } llvm::DIType *CGDebugInfo::getOrCreateRecordType(QualType RTy, SourceLocation Loc) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); llvm::DIType *T = getOrCreateType(RTy, getOrCreateFile(Loc)); return T; } llvm::DIType *CGDebugInfo::getOrCreateInterfaceType(QualType D, SourceLocation Loc) { return getOrCreateStandaloneType(D, Loc); } llvm::DIType *CGDebugInfo::getOrCreateStandaloneType(QualType D, SourceLocation Loc) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); assert(!D.isNull() && "null type"); llvm::DIType *T = getOrCreateType(D, getOrCreateFile(Loc)); assert(T && "could not create debug info for type"); RetainedTypes.push_back(D.getAsOpaquePtr()); return T; } void CGDebugInfo::addHeapAllocSiteMetadata(llvm::CallBase *CI, QualType AllocatedTy, SourceLocation Loc) { if (CGM.getCodeGenOpts().getDebugInfo() <= llvm::codegenoptions::DebugLineTablesOnly) return; llvm::MDNode *node; if (AllocatedTy->isVoidType()) node = llvm::MDNode::get(CGM.getLLVMContext(), std::nullopt); else node = getOrCreateType(AllocatedTy, getOrCreateFile(Loc)); CI->setMetadata("heapallocsite", node); } void CGDebugInfo::completeType(const EnumDecl *ED) { if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return; QualType Ty = CGM.getContext().getEnumType(ED); void *TyPtr = Ty.getAsOpaquePtr(); auto I = TypeCache.find(TyPtr); if (I == TypeCache.end() || !cast(I->second)->isForwardDecl()) return; llvm::DIType *Res = CreateTypeDefinition(Ty->castAs()); assert(!Res->isForwardDecl()); TypeCache[TyPtr].reset(Res); } void CGDebugInfo::completeType(const RecordDecl *RD) { if (DebugKind > llvm::codegenoptions::LimitedDebugInfo || !CGM.getLangOpts().CPlusPlus) completeRequiredType(RD); } /// Return true if the class or any of its methods are marked dllimport. static bool isClassOrMethodDLLImport(const CXXRecordDecl *RD) { if (RD->hasAttr()) return true; for (const CXXMethodDecl *MD : RD->methods()) if (MD->hasAttr()) return true; return false; } /// Does a type definition exist in an imported clang module? static bool isDefinedInClangModule(const RecordDecl *RD) { // Only definitions that where imported from an AST file come from a module. if (!RD || !RD->isFromASTFile()) return false; // Anonymous entities cannot be addressed. Treat them as not from module. if (!RD->isExternallyVisible() && RD->getName().empty()) return false; if (auto *CXXDecl = dyn_cast(RD)) { if (!CXXDecl->isCompleteDefinition()) return false; // Check wether RD is a template. auto TemplateKind = CXXDecl->getTemplateSpecializationKind(); if (TemplateKind != TSK_Undeclared) { // Unfortunately getOwningModule() isn't accurate enough to find the // owning module of a ClassTemplateSpecializationDecl that is inside a // namespace spanning multiple modules. bool Explicit = false; if (auto *TD = dyn_cast(CXXDecl)) Explicit = TD->isExplicitInstantiationOrSpecialization(); if (!Explicit && CXXDecl->getEnclosingNamespaceContext()) return false; // This is a template, check the origin of the first member. if (CXXDecl->field_begin() == CXXDecl->field_end()) return TemplateKind == TSK_ExplicitInstantiationDeclaration; if (!CXXDecl->field_begin()->isFromASTFile()) return false; } } return true; } void CGDebugInfo::completeClassData(const RecordDecl *RD) { if (auto *CXXRD = dyn_cast(RD)) if (CXXRD->isDynamicClass() && CGM.getVTableLinkage(CXXRD) == llvm::GlobalValue::AvailableExternallyLinkage && !isClassOrMethodDLLImport(CXXRD)) return; if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) return; completeClass(RD); } void CGDebugInfo::completeClass(const RecordDecl *RD) { if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return; QualType Ty = CGM.getContext().getRecordType(RD); void *TyPtr = Ty.getAsOpaquePtr(); auto I = TypeCache.find(TyPtr); if (I != TypeCache.end() && !cast(I->second)->isForwardDecl()) return; // We want the canonical definition of the structure to not // be the typedef. Since that would lead to circular typedef // metadata. auto [Res, PrefRes] = CreateTypeDefinition(Ty->castAs()); assert(!Res->isForwardDecl()); TypeCache[TyPtr].reset(Res); } static bool hasExplicitMemberDefinition(CXXRecordDecl::method_iterator I, CXXRecordDecl::method_iterator End) { for (CXXMethodDecl *MD : llvm::make_range(I, End)) if (FunctionDecl *Tmpl = MD->getInstantiatedFromMemberFunction()) if (!Tmpl->isImplicit() && Tmpl->isThisDeclarationADefinition() && !MD->getMemberSpecializationInfo()->isExplicitSpecialization()) return true; return false; } static bool canUseCtorHoming(const CXXRecordDecl *RD) { // Constructor homing can be used for classes that cannnot be constructed // without emitting code for one of their constructors. This is classes that // don't have trivial or constexpr constructors, or can be created from // aggregate initialization. Also skip lambda objects because they don't call // constructors. // Skip this optimization if the class or any of its methods are marked // dllimport. if (isClassOrMethodDLLImport(RD)) return false; if (RD->isLambda() || RD->isAggregate() || RD->hasTrivialDefaultConstructor() || RD->hasConstexprNonCopyMoveConstructor()) return false; for (const CXXConstructorDecl *Ctor : RD->ctors()) { if (Ctor->isCopyOrMoveConstructor()) continue; if (!Ctor->isDeleted()) return true; } return false; } static bool shouldOmitDefinition(llvm::codegenoptions::DebugInfoKind DebugKind, bool DebugTypeExtRefs, const RecordDecl *RD, const LangOptions &LangOpts) { if (DebugTypeExtRefs && isDefinedInClangModule(RD->getDefinition())) return true; if (auto *ES = RD->getASTContext().getExternalSource()) if (ES->hasExternalDefinitions(RD) == ExternalASTSource::EK_Always) return true; // Only emit forward declarations in line tables only to keep debug info size // small. This only applies to CodeView, since we don't emit types in DWARF // line tables only. if (DebugKind == llvm::codegenoptions::DebugLineTablesOnly) return true; if (DebugKind > llvm::codegenoptions::LimitedDebugInfo || RD->hasAttr()) return false; if (!LangOpts.CPlusPlus) return false; if (!RD->isCompleteDefinitionRequired()) return true; const auto *CXXDecl = dyn_cast(RD); if (!CXXDecl) return false; // Only emit complete debug info for a dynamic class when its vtable is // emitted. However, Microsoft debuggers don't resolve type information // across DLL boundaries, so skip this optimization if the class or any of its // methods are marked dllimport. This isn't a complete solution, since objects // without any dllimport methods can be used in one DLL and constructed in // another, but it is the current behavior of LimitedDebugInfo. if (CXXDecl->hasDefinition() && CXXDecl->isDynamicClass() && !isClassOrMethodDLLImport(CXXDecl)) return true; TemplateSpecializationKind Spec = TSK_Undeclared; if (const auto *SD = dyn_cast(RD)) Spec = SD->getSpecializationKind(); if (Spec == TSK_ExplicitInstantiationDeclaration && hasExplicitMemberDefinition(CXXDecl->method_begin(), CXXDecl->method_end())) return true; // In constructor homing mode, only emit complete debug info for a class // when its constructor is emitted. if ((DebugKind == llvm::codegenoptions::DebugInfoConstructor) && canUseCtorHoming(CXXDecl)) return true; return false; } void CGDebugInfo::completeRequiredType(const RecordDecl *RD) { if (shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) return; QualType Ty = CGM.getContext().getRecordType(RD); llvm::DIType *T = getTypeOrNull(Ty); if (T && T->isForwardDecl()) completeClassData(RD); } llvm::DIType *CGDebugInfo::CreateType(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); llvm::DIType *T = cast_or_null(getTypeOrNull(QualType(Ty, 0))); if (T || shouldOmitDefinition(DebugKind, DebugTypeExtRefs, RD, CGM.getLangOpts())) { if (!T) T = getOrCreateRecordFwdDecl(Ty, getDeclContextDescriptor(RD)); return T; } auto [Def, Pref] = CreateTypeDefinition(Ty); return Pref ? Pref : Def; } llvm::DIType *CGDebugInfo::GetPreferredNameType(const CXXRecordDecl *RD, llvm::DIFile *Unit) { if (!RD) return nullptr; auto const *PNA = RD->getAttr(); if (!PNA) return nullptr; return getOrCreateType(PNA->getTypedefType(), Unit); } std::pair CGDebugInfo::CreateTypeDefinition(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); // Get overall information about the record type for the debug info. llvm::DIFile *DefUnit = getOrCreateFile(RD->getLocation()); // Records and classes and unions can all be recursive. To handle them, we // first generate a debug descriptor for the struct as a forward declaration. // Then (if it is a definition) we go through and get debug info for all of // its members. Finally, we create a descriptor for the complete type (which // may refer to the forward decl if the struct is recursive) and replace all // uses of the forward declaration with the final definition. llvm::DICompositeType *FwdDecl = getOrCreateLimitedType(Ty); const RecordDecl *D = RD->getDefinition(); if (!D || !D->isCompleteDefinition()) return {FwdDecl, nullptr}; if (const auto *CXXDecl = dyn_cast(RD)) CollectContainingType(CXXDecl, FwdDecl); // Push the struct on region stack. LexicalBlockStack.emplace_back(&*FwdDecl); RegionMap[Ty->getDecl()].reset(FwdDecl); // Convert all the elements. SmallVector EltTys; // what about nested types? // Note: The split of CXXDecl information here is intentional, the // gdb tests will depend on a certain ordering at printout. The debug // information offsets are still correct if we merge them all together // though. const auto *CXXDecl = dyn_cast(RD); if (CXXDecl) { CollectCXXBases(CXXDecl, DefUnit, EltTys, FwdDecl); CollectVTableInfo(CXXDecl, DefUnit, EltTys); } // Collect data fields (including static variables and any initializers). CollectRecordFields(RD, DefUnit, EltTys, FwdDecl); if (CXXDecl && !CGM.getCodeGenOpts().DebugOmitUnreferencedMethods) CollectCXXMemberFunctions(CXXDecl, DefUnit, EltTys, FwdDecl); LexicalBlockStack.pop_back(); RegionMap.erase(Ty->getDecl()); llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); DBuilder.replaceArrays(FwdDecl, Elements); if (FwdDecl->isTemporary()) FwdDecl = llvm::MDNode::replaceWithPermanent(llvm::TempDICompositeType(FwdDecl)); RegionMap[Ty->getDecl()].reset(FwdDecl); if (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB) if (auto *PrefDI = GetPreferredNameType(CXXDecl, DefUnit)) return {FwdDecl, PrefDI}; return {FwdDecl, nullptr}; } llvm::DIType *CGDebugInfo::CreateType(const ObjCObjectType *Ty, llvm::DIFile *Unit) { // Ignore protocols. return getOrCreateType(Ty->getBaseType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const ObjCTypeParamType *Ty, llvm::DIFile *Unit) { // Ignore protocols. SourceLocation Loc = Ty->getDecl()->getLocation(); // Use Typedefs to represent ObjCTypeParamType. return DBuilder.createTypedef( getOrCreateType(Ty->getDecl()->getUnderlyingType(), Unit), Ty->getDecl()->getName(), getOrCreateFile(Loc), getLineNumber(Loc), getDeclContextDescriptor(Ty->getDecl())); } /// \return true if Getter has the default name for the property PD. static bool hasDefaultGetterName(const ObjCPropertyDecl *PD, const ObjCMethodDecl *Getter) { assert(PD); if (!Getter) return true; assert(Getter->getDeclName().isObjCZeroArgSelector()); return PD->getName() == Getter->getDeclName().getObjCSelector().getNameForSlot(0); } /// \return true if Setter has the default name for the property PD. static bool hasDefaultSetterName(const ObjCPropertyDecl *PD, const ObjCMethodDecl *Setter) { assert(PD); if (!Setter) return true; assert(Setter->getDeclName().isObjCOneArgSelector()); return SelectorTable::constructSetterName(PD->getName()) == Setter->getDeclName().getObjCSelector().getNameForSlot(0); } llvm::DIType *CGDebugInfo::CreateType(const ObjCInterfaceType *Ty, llvm::DIFile *Unit) { ObjCInterfaceDecl *ID = Ty->getDecl(); if (!ID) return nullptr; // Return a forward declaration if this type was imported from a clang module, // and this is not the compile unit with the implementation of the type (which // may contain hidden ivars). if (DebugTypeExtRefs && ID->isFromASTFile() && ID->getDefinition() && !ID->getImplementation()) return DBuilder.createForwardDecl(llvm::dwarf::DW_TAG_structure_type, ID->getName(), getDeclContextDescriptor(ID), Unit, 0); // Get overall information about the record type for the debug info. llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); unsigned Line = getLineNumber(ID->getLocation()); auto RuntimeLang = static_cast(TheCU->getSourceLanguage()); // If this is just a forward declaration return a special forward-declaration // debug type since we won't be able to lay out the entire type. ObjCInterfaceDecl *Def = ID->getDefinition(); if (!Def || !Def->getImplementation()) { llvm::DIScope *Mod = getParentModuleOrNull(ID); llvm::DIType *FwdDecl = DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_structure_type, ID->getName(), Mod ? Mod : TheCU, DefUnit, Line, RuntimeLang); ObjCInterfaceCache.push_back(ObjCInterfaceCacheEntry(Ty, FwdDecl, Unit)); return FwdDecl; } return CreateTypeDefinition(Ty, Unit); } llvm::DIModule *CGDebugInfo::getOrCreateModuleRef(ASTSourceDescriptor Mod, bool CreateSkeletonCU) { // Use the Module pointer as the key into the cache. This is a // nullptr if the "Module" is a PCH, which is safe because we don't // support chained PCH debug info, so there can only be a single PCH. const Module *M = Mod.getModuleOrNull(); auto ModRef = ModuleCache.find(M); if (ModRef != ModuleCache.end()) return cast(ModRef->second); // Macro definitions that were defined with "-D" on the command line. SmallString<128> ConfigMacros; { llvm::raw_svector_ostream OS(ConfigMacros); const auto &PPOpts = CGM.getPreprocessorOpts(); unsigned I = 0; // Translate the macro definitions back into a command line. for (auto &M : PPOpts.Macros) { if (++I > 1) OS << " "; const std::string &Macro = M.first; bool Undef = M.second; OS << "\"-" << (Undef ? 'U' : 'D'); for (char c : Macro) switch (c) { case '\\': OS << "\\\\"; break; case '"': OS << "\\\""; break; default: OS << c; } OS << '\"'; } } bool IsRootModule = M ? !M->Parent : true; // When a module name is specified as -fmodule-name, that module gets a // clang::Module object, but it won't actually be built or imported; it will // be textual. if (CreateSkeletonCU && IsRootModule && Mod.getASTFile().empty() && M) assert(StringRef(M->Name).starts_with(CGM.getLangOpts().ModuleName) && "clang module without ASTFile must be specified by -fmodule-name"); // Return a StringRef to the remapped Path. auto RemapPath = [this](StringRef Path) -> std::string { std::string Remapped = remapDIPath(Path); StringRef Relative(Remapped); StringRef CompDir = TheCU->getDirectory(); if (Relative.consume_front(CompDir)) Relative.consume_front(llvm::sys::path::get_separator()); return Relative.str(); }; if (CreateSkeletonCU && IsRootModule && !Mod.getASTFile().empty()) { // PCH files don't have a signature field in the control block, // but LLVM detects skeleton CUs by looking for a non-zero DWO id. // We use the lower 64 bits for debug info. uint64_t Signature = 0; if (const auto &ModSig = Mod.getSignature()) Signature = ModSig.truncatedValue(); else Signature = ~1ULL; llvm::DIBuilder DIB(CGM.getModule()); SmallString<0> PCM; if (!llvm::sys::path::is_absolute(Mod.getASTFile())) { if (CGM.getHeaderSearchOpts().ModuleFileHomeIsCwd) PCM = getCurrentDirname(); else PCM = Mod.getPath(); } llvm::sys::path::append(PCM, Mod.getASTFile()); DIB.createCompileUnit( TheCU->getSourceLanguage(), // TODO: Support "Source" from external AST providers? DIB.createFile(Mod.getModuleName(), TheCU->getDirectory()), TheCU->getProducer(), false, StringRef(), 0, RemapPath(PCM), llvm::DICompileUnit::FullDebug, Signature); DIB.finalize(); } llvm::DIModule *Parent = IsRootModule ? nullptr : getOrCreateModuleRef(ASTSourceDescriptor(*M->Parent), CreateSkeletonCU); std::string IncludePath = Mod.getPath().str(); llvm::DIModule *DIMod = DBuilder.createModule(Parent, Mod.getModuleName(), ConfigMacros, RemapPath(IncludePath)); ModuleCache[M].reset(DIMod); return DIMod; } llvm::DIType *CGDebugInfo::CreateTypeDefinition(const ObjCInterfaceType *Ty, llvm::DIFile *Unit) { ObjCInterfaceDecl *ID = Ty->getDecl(); llvm::DIFile *DefUnit = getOrCreateFile(ID->getLocation()); unsigned Line = getLineNumber(ID->getLocation()); unsigned RuntimeLang = TheCU->getSourceLanguage(); // Bit size, align and offset of the type. uint64_t Size = CGM.getContext().getTypeSize(Ty); auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; if (ID->getImplementation()) Flags |= llvm::DINode::FlagObjcClassComplete; llvm::DIScope *Mod = getParentModuleOrNull(ID); llvm::DICompositeType *RealDecl = DBuilder.createStructType( Mod ? Mod : Unit, ID->getName(), DefUnit, Line, Size, Align, Flags, nullptr, llvm::DINodeArray(), RuntimeLang); QualType QTy(Ty, 0); TypeCache[QTy.getAsOpaquePtr()].reset(RealDecl); // Push the struct on region stack. LexicalBlockStack.emplace_back(RealDecl); RegionMap[Ty->getDecl()].reset(RealDecl); // Convert all the elements. SmallVector EltTys; ObjCInterfaceDecl *SClass = ID->getSuperClass(); if (SClass) { llvm::DIType *SClassTy = getOrCreateType(CGM.getContext().getObjCInterfaceType(SClass), Unit); if (!SClassTy) return nullptr; llvm::DIType *InhTag = DBuilder.createInheritance(RealDecl, SClassTy, 0, 0, llvm::DINode::FlagZero); EltTys.push_back(InhTag); } // Create entries for all of the properties. auto AddProperty = [&](const ObjCPropertyDecl *PD) { SourceLocation Loc = PD->getLocation(); llvm::DIFile *PUnit = getOrCreateFile(Loc); unsigned PLine = getLineNumber(Loc); ObjCMethodDecl *Getter = PD->getGetterMethodDecl(); ObjCMethodDecl *Setter = PD->getSetterMethodDecl(); llvm::MDNode *PropertyNode = DBuilder.createObjCProperty( PD->getName(), PUnit, PLine, hasDefaultGetterName(PD, Getter) ? "" : getSelectorName(PD->getGetterName()), hasDefaultSetterName(PD, Setter) ? "" : getSelectorName(PD->getSetterName()), PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); EltTys.push_back(PropertyNode); }; { // Use 'char' for the isClassProperty bit as DenseSet requires space for // empty/tombstone keys in the data type (and bool is too small for that). typedef std::pair IsClassAndIdent; /// List of already emitted properties. Two distinct class and instance /// properties can share the same identifier (but not two instance /// properties or two class properties). llvm::DenseSet PropertySet; /// Returns the IsClassAndIdent key for the given property. auto GetIsClassAndIdent = [](const ObjCPropertyDecl *PD) { return std::make_pair(PD->isClassProperty(), PD->getIdentifier()); }; for (const ObjCCategoryDecl *ClassExt : ID->known_extensions()) for (auto *PD : ClassExt->properties()) { PropertySet.insert(GetIsClassAndIdent(PD)); AddProperty(PD); } for (const auto *PD : ID->properties()) { // Don't emit duplicate metadata for properties that were already in a // class extension. if (!PropertySet.insert(GetIsClassAndIdent(PD)).second) continue; AddProperty(PD); } } const ASTRecordLayout &RL = CGM.getContext().getASTObjCInterfaceLayout(ID); unsigned FieldNo = 0; for (ObjCIvarDecl *Field = ID->all_declared_ivar_begin(); Field; Field = Field->getNextIvar(), ++FieldNo) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); if (!FieldTy) return nullptr; StringRef FieldName = Field->getName(); // Ignore unnamed fields. if (FieldName.empty()) continue; // Get the location for the field. llvm::DIFile *FieldDefUnit = getOrCreateFile(Field->getLocation()); unsigned FieldLine = getLineNumber(Field->getLocation()); QualType FType = Field->getType(); uint64_t FieldSize = 0; uint32_t FieldAlign = 0; if (!FType->isIncompleteArrayType()) { // Bit size, align and offset of the type. FieldSize = Field->isBitField() ? Field->getBitWidthValue(CGM.getContext()) : CGM.getContext().getTypeSize(FType); FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); } uint64_t FieldOffset; if (CGM.getLangOpts().ObjCRuntime.isNonFragile()) { // We don't know the runtime offset of an ivar if we're using the // non-fragile ABI. For bitfields, use the bit offset into the first // byte of storage of the bitfield. For other fields, use zero. if (Field->isBitField()) { FieldOffset = CGM.getObjCRuntime().ComputeBitfieldBitOffset(CGM, ID, Field); FieldOffset %= CGM.getContext().getCharWidth(); } else { FieldOffset = 0; } } else { FieldOffset = RL.getFieldOffset(FieldNo); } llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; if (Field->getAccessControl() == ObjCIvarDecl::Protected) Flags = llvm::DINode::FlagProtected; else if (Field->getAccessControl() == ObjCIvarDecl::Private) Flags = llvm::DINode::FlagPrivate; else if (Field->getAccessControl() == ObjCIvarDecl::Public) Flags = llvm::DINode::FlagPublic; if (Field->isBitField()) Flags |= llvm::DINode::FlagBitField; llvm::MDNode *PropertyNode = nullptr; if (ObjCImplementationDecl *ImpD = ID->getImplementation()) { if (ObjCPropertyImplDecl *PImpD = ImpD->FindPropertyImplIvarDecl(Field->getIdentifier())) { if (ObjCPropertyDecl *PD = PImpD->getPropertyDecl()) { SourceLocation Loc = PD->getLocation(); llvm::DIFile *PUnit = getOrCreateFile(Loc); unsigned PLine = getLineNumber(Loc); ObjCMethodDecl *Getter = PImpD->getGetterMethodDecl(); ObjCMethodDecl *Setter = PImpD->getSetterMethodDecl(); PropertyNode = DBuilder.createObjCProperty( PD->getName(), PUnit, PLine, hasDefaultGetterName(PD, Getter) ? "" : getSelectorName(PD->getGetterName()), hasDefaultSetterName(PD, Setter) ? "" : getSelectorName(PD->getSetterName()), PD->getPropertyAttributes(), getOrCreateType(PD->getType(), PUnit)); } } } FieldTy = DBuilder.createObjCIVar(FieldName, FieldDefUnit, FieldLine, FieldSize, FieldAlign, FieldOffset, Flags, FieldTy, PropertyNode); EltTys.push_back(FieldTy); } llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); DBuilder.replaceArrays(RealDecl, Elements); LexicalBlockStack.pop_back(); return RealDecl; } llvm::DIType *CGDebugInfo::CreateType(const VectorType *Ty, llvm::DIFile *Unit) { if (Ty->isExtVectorBoolType()) { // Boolean ext_vector_type(N) are special because their real element type // (bits of bit size) is not their Clang element type (_Bool of size byte). // For now, we pretend the boolean vector were actually a vector of bytes // (where each byte represents 8 bits of the actual vector). // FIXME Debug info should actually represent this proper as a vector mask // type. auto &Ctx = CGM.getContext(); uint64_t Size = CGM.getContext().getTypeSize(Ty); uint64_t NumVectorBytes = Size / Ctx.getCharWidth(); // Construct the vector of 'char' type. QualType CharVecTy = Ctx.getVectorType(Ctx.CharTy, NumVectorBytes, VectorKind::Generic); return CreateType(CharVecTy->getAs(), Unit); } llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); int64_t Count = Ty->getNumElements(); llvm::Metadata *Subscript; QualType QTy(Ty, 0); auto SizeExpr = SizeExprCache.find(QTy); if (SizeExpr != SizeExprCache.end()) Subscript = DBuilder.getOrCreateSubrange( SizeExpr->getSecond() /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/); else { auto *CountNode = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count ? Count : -1)); Subscript = DBuilder.getOrCreateSubrange( CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/); } llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscript); uint64_t Size = CGM.getContext().getTypeSize(Ty); auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); return DBuilder.createVectorType(Size, Align, ElementTy, SubscriptArray); } llvm::DIType *CGDebugInfo::CreateType(const ConstantMatrixType *Ty, llvm::DIFile *Unit) { // FIXME: Create another debug type for matrices // For the time being, it treats it like a nested ArrayType. llvm::DIType *ElementTy = getOrCreateType(Ty->getElementType(), Unit); uint64_t Size = CGM.getContext().getTypeSize(Ty); uint32_t Align = getTypeAlignIfRequired(Ty, CGM.getContext()); // Create ranges for both dimensions. llvm::SmallVector Subscripts; auto *ColumnCountNode = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumColumns())); auto *RowCountNode = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), Ty->getNumRows())); Subscripts.push_back(DBuilder.getOrCreateSubrange( ColumnCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/)); Subscripts.push_back(DBuilder.getOrCreateSubrange( RowCountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/)); llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); return DBuilder.createArrayType(Size, Align, ElementTy, SubscriptArray); } llvm::DIType *CGDebugInfo::CreateType(const ArrayType *Ty, llvm::DIFile *Unit) { uint64_t Size; uint32_t Align; // FIXME: make getTypeAlign() aware of VLAs and incomplete array types if (const auto *VAT = dyn_cast(Ty)) { Size = 0; Align = getTypeAlignIfRequired(CGM.getContext().getBaseElementType(VAT), CGM.getContext()); } else if (Ty->isIncompleteArrayType()) { Size = 0; if (Ty->getElementType()->isIncompleteType()) Align = 0; else Align = getTypeAlignIfRequired(Ty->getElementType(), CGM.getContext()); } else if (Ty->isIncompleteType()) { Size = 0; Align = 0; } else { // Size and align of the whole array, not the element type. Size = CGM.getContext().getTypeSize(Ty); Align = getTypeAlignIfRequired(Ty, CGM.getContext()); } // Add the dimensions of the array. FIXME: This loses CV qualifiers from // interior arrays, do we care? Why aren't nested arrays represented the // obvious/recursive way? SmallVector Subscripts; QualType EltTy(Ty, 0); while ((Ty = dyn_cast(EltTy))) { // If the number of elements is known, then count is that number. Otherwise, // it's -1. This allows us to represent a subrange with an array of 0 // elements, like this: // // struct foo { // int x[0]; // }; int64_t Count = -1; // Count == -1 is an unbounded array. if (const auto *CAT = dyn_cast(Ty)) Count = CAT->getZExtSize(); else if (const auto *VAT = dyn_cast(Ty)) { if (Expr *Size = VAT->getSizeExpr()) { Expr::EvalResult Result; if (Size->EvaluateAsInt(Result, CGM.getContext())) Count = Result.Val.getInt().getExtValue(); } } auto SizeNode = SizeExprCache.find(EltTy); if (SizeNode != SizeExprCache.end()) Subscripts.push_back(DBuilder.getOrCreateSubrange( SizeNode->getSecond() /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/)); else { auto *CountNode = llvm::ConstantAsMetadata::get(llvm::ConstantInt::getSigned( llvm::Type::getInt64Ty(CGM.getLLVMContext()), Count)); Subscripts.push_back(DBuilder.getOrCreateSubrange( CountNode /*count*/, nullptr /*lowerBound*/, nullptr /*upperBound*/, nullptr /*stride*/)); } EltTy = Ty->getElementType(); } llvm::DINodeArray SubscriptArray = DBuilder.getOrCreateArray(Subscripts); return DBuilder.createArrayType(Size, Align, getOrCreateType(EltTy, Unit), SubscriptArray); } llvm::DIType *CGDebugInfo::CreateType(const LValueReferenceType *Ty, llvm::DIFile *Unit) { return CreatePointerLikeType(llvm::dwarf::DW_TAG_reference_type, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const RValueReferenceType *Ty, llvm::DIFile *Unit) { llvm::dwarf::Tag Tag = llvm::dwarf::DW_TAG_rvalue_reference_type; // DW_TAG_rvalue_reference_type was introduced in DWARF 4. if (CGM.getCodeGenOpts().DebugStrictDwarf && CGM.getCodeGenOpts().DwarfVersion < 4) Tag = llvm::dwarf::DW_TAG_reference_type; return CreatePointerLikeType(Tag, Ty, Ty->getPointeeType(), Unit); } llvm::DIType *CGDebugInfo::CreateType(const MemberPointerType *Ty, llvm::DIFile *U) { llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; uint64_t Size = 0; if (!Ty->isIncompleteType()) { Size = CGM.getContext().getTypeSize(Ty); // Set the MS inheritance model. There is no flag for the unspecified model. if (CGM.getTarget().getCXXABI().isMicrosoft()) { switch (Ty->getMostRecentCXXRecordDecl()->getMSInheritanceModel()) { case MSInheritanceModel::Single: Flags |= llvm::DINode::FlagSingleInheritance; break; case MSInheritanceModel::Multiple: Flags |= llvm::DINode::FlagMultipleInheritance; break; case MSInheritanceModel::Virtual: Flags |= llvm::DINode::FlagVirtualInheritance; break; case MSInheritanceModel::Unspecified: break; } } } llvm::DIType *ClassType = getOrCreateType(QualType(Ty->getClass(), 0), U); if (Ty->isMemberDataPointerType()) return DBuilder.createMemberPointerType( getOrCreateType(Ty->getPointeeType(), U), ClassType, Size, /*Align=*/0, Flags); const FunctionProtoType *FPT = Ty->getPointeeType()->castAs(); return DBuilder.createMemberPointerType( getOrCreateInstanceMethodType( CXXMethodDecl::getThisType(FPT, Ty->getMostRecentCXXRecordDecl()), FPT, U), ClassType, Size, /*Align=*/0, Flags); } llvm::DIType *CGDebugInfo::CreateType(const AtomicType *Ty, llvm::DIFile *U) { auto *FromTy = getOrCreateType(Ty->getValueType(), U); return DBuilder.createQualifiedType(llvm::dwarf::DW_TAG_atomic_type, FromTy); } llvm::DIType *CGDebugInfo::CreateType(const PipeType *Ty, llvm::DIFile *U) { return getOrCreateType(Ty->getElementType(), U); } llvm::DIType *CGDebugInfo::CreateEnumType(const EnumType *Ty) { const EnumDecl *ED = Ty->getDecl(); uint64_t Size = 0; uint32_t Align = 0; if (!ED->getTypeForDecl()->isIncompleteType()) { Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); Align = getDeclAlignIfRequired(ED, CGM.getContext()); } SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); bool isImportedFromModule = DebugTypeExtRefs && ED->isFromASTFile() && ED->getDefinition(); // If this is just a forward declaration, construct an appropriately // marked node and just return it. if (isImportedFromModule || !ED->getDefinition()) { // Note that it is possible for enums to be created as part of // their own declcontext. In this case a FwdDecl will be created // twice. This doesn't cause a problem because both FwdDecls are // entered into the ReplaceMap: finalize() will replace the first // FwdDecl with the second and then replace the second with // complete type. llvm::DIScope *EDContext = getDeclContextDescriptor(ED); llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); llvm::TempDIScope TmpContext(DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_enumeration_type, "", TheCU, DefUnit, 0)); unsigned Line = getLineNumber(ED->getLocation()); StringRef EDName = ED->getName(); llvm::DIType *RetTy = DBuilder.createReplaceableCompositeType( llvm::dwarf::DW_TAG_enumeration_type, EDName, EDContext, DefUnit, Line, 0, Size, Align, llvm::DINode::FlagFwdDecl, Identifier); ReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(Ty), std::make_tuple(static_cast(RetTy))); return RetTy; } return CreateTypeDefinition(Ty); } llvm::DIType *CGDebugInfo::CreateTypeDefinition(const EnumType *Ty) { const EnumDecl *ED = Ty->getDecl(); uint64_t Size = 0; uint32_t Align = 0; if (!ED->getTypeForDecl()->isIncompleteType()) { Size = CGM.getContext().getTypeSize(ED->getTypeForDecl()); Align = getDeclAlignIfRequired(ED, CGM.getContext()); } SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); SmallVector Enumerators; ED = ED->getDefinition(); for (const auto *Enum : ED->enumerators()) { Enumerators.push_back( DBuilder.createEnumerator(Enum->getName(), Enum->getInitVal())); } // Return a CompositeType for the enum itself. llvm::DINodeArray EltArray = DBuilder.getOrCreateArray(Enumerators); llvm::DIFile *DefUnit = getOrCreateFile(ED->getLocation()); unsigned Line = getLineNumber(ED->getLocation()); llvm::DIScope *EnumContext = getDeclContextDescriptor(ED); llvm::DIType *ClassTy = getOrCreateType(ED->getIntegerType(), DefUnit); return DBuilder.createEnumerationType( EnumContext, ED->getName(), DefUnit, Line, Size, Align, EltArray, ClassTy, /*RunTimeLang=*/0, Identifier, ED->isScoped()); } llvm::DIMacro *CGDebugInfo::CreateMacro(llvm::DIMacroFile *Parent, unsigned MType, SourceLocation LineLoc, StringRef Name, StringRef Value) { unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); return DBuilder.createMacro(Parent, Line, MType, Name, Value); } llvm::DIMacroFile *CGDebugInfo::CreateTempMacroFile(llvm::DIMacroFile *Parent, SourceLocation LineLoc, SourceLocation FileLoc) { llvm::DIFile *FName = getOrCreateFile(FileLoc); unsigned Line = LineLoc.isInvalid() ? 0 : getLineNumber(LineLoc); return DBuilder.createTempMacroFile(Parent, Line, FName); } llvm::DILocation *CGDebugInfo::CreateTrapFailureMessageFor( llvm::DebugLoc TrapLocation, StringRef Category, StringRef FailureMsg) { // Create a debug location from `TrapLocation` that adds an artificial inline // frame. SmallString<64> FuncName(ClangTrapPrefix); FuncName += "$"; FuncName += Category; FuncName += "$"; FuncName += FailureMsg; llvm::DISubprogram *TrapSP = createInlinedTrapSubprogram(FuncName, TrapLocation->getFile()); return llvm::DILocation::get(CGM.getLLVMContext(), /*Line=*/0, /*Column=*/0, /*Scope=*/TrapSP, /*InlinedAt=*/TrapLocation); } static QualType UnwrapTypeForDebugInfo(QualType T, const ASTContext &C) { Qualifiers Quals; do { Qualifiers InnerQuals = T.getLocalQualifiers(); // Qualifiers::operator+() doesn't like it if you add a Qualifier // that is already there. Quals += Qualifiers::removeCommonQualifiers(Quals, InnerQuals); Quals += InnerQuals; QualType LastT = T; switch (T->getTypeClass()) { default: return C.getQualifiedType(T.getTypePtr(), Quals); case Type::TemplateSpecialization: { const auto *Spec = cast(T); if (Spec->isTypeAlias()) return C.getQualifiedType(T.getTypePtr(), Quals); T = Spec->desugar(); break; } case Type::TypeOfExpr: T = cast(T)->getUnderlyingExpr()->getType(); break; case Type::TypeOf: T = cast(T)->getUnmodifiedType(); break; case Type::Decltype: T = cast(T)->getUnderlyingType(); break; case Type::UnaryTransform: T = cast(T)->getUnderlyingType(); break; case Type::Attributed: T = cast(T)->getEquivalentType(); break; case Type::BTFTagAttributed: T = cast(T)->getWrappedType(); break; case Type::CountAttributed: T = cast(T)->desugar(); break; case Type::Elaborated: T = cast(T)->getNamedType(); break; case Type::Using: T = cast(T)->getUnderlyingType(); break; case Type::Paren: T = cast(T)->getInnerType(); break; case Type::MacroQualified: T = cast(T)->getUnderlyingType(); break; case Type::SubstTemplateTypeParm: T = cast(T)->getReplacementType(); break; case Type::Auto: case Type::DeducedTemplateSpecialization: { QualType DT = cast(T)->getDeducedType(); assert(!DT.isNull() && "Undeduced types shouldn't reach here."); T = DT; break; } case Type::PackIndexing: { T = cast(T)->getSelectedType(); break; } case Type::Adjusted: case Type::Decayed: // Decayed and adjusted types use the adjusted type in LLVM and DWARF. T = cast(T)->getAdjustedType(); break; } assert(T != LastT && "Type unwrapping failed to unwrap!"); (void)LastT; } while (true); } llvm::DIType *CGDebugInfo::getTypeOrNull(QualType Ty) { assert(Ty == UnwrapTypeForDebugInfo(Ty, CGM.getContext())); auto It = TypeCache.find(Ty.getAsOpaquePtr()); if (It != TypeCache.end()) { // Verify that the debug info still exists. if (llvm::Metadata *V = It->second) return cast(V); } return nullptr; } void CGDebugInfo::completeTemplateDefinition( const ClassTemplateSpecializationDecl &SD) { completeUnusedClass(SD); } void CGDebugInfo::completeUnusedClass(const CXXRecordDecl &D) { if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly || D.isDynamicClass()) return; completeClassData(&D); // In case this type has no member function definitions being emitted, ensure // it is retained RetainedTypes.push_back(CGM.getContext().getRecordType(&D).getAsOpaquePtr()); } llvm::DIType *CGDebugInfo::getOrCreateType(QualType Ty, llvm::DIFile *Unit) { if (Ty.isNull()) return nullptr; llvm::TimeTraceScope TimeScope("DebugType", [&]() { std::string Name; llvm::raw_string_ostream OS(Name); Ty.print(OS, getPrintingPolicy()); return Name; }); // Unwrap the type as needed for debug information. Ty = UnwrapTypeForDebugInfo(Ty, CGM.getContext()); if (auto *T = getTypeOrNull(Ty)) return T; llvm::DIType *Res = CreateTypeNode(Ty, Unit); void *TyPtr = Ty.getAsOpaquePtr(); // And update the type cache. TypeCache[TyPtr].reset(Res); return Res; } llvm::DIModule *CGDebugInfo::getParentModuleOrNull(const Decl *D) { // A forward declaration inside a module header does not belong to the module. if (isa(D) && !cast(D)->getDefinition()) return nullptr; if (DebugTypeExtRefs && D->isFromASTFile()) { // Record a reference to an imported clang module or precompiled header. auto *Reader = CGM.getContext().getExternalSource(); auto Idx = D->getOwningModuleID(); auto Info = Reader->getSourceDescriptor(Idx); if (Info) return getOrCreateModuleRef(*Info, /*SkeletonCU=*/true); } else if (ClangModuleMap) { // We are building a clang module or a precompiled header. // // TODO: When D is a CXXRecordDecl or a C++ Enum, the ODR applies // and it wouldn't be necessary to specify the parent scope // because the type is already unique by definition (it would look // like the output of -fno-standalone-debug). On the other hand, // the parent scope helps a consumer to quickly locate the object // file where the type's definition is located, so it might be // best to make this behavior a command line or debugger tuning // option. if (Module *M = D->getOwningModule()) { // This is a (sub-)module. auto Info = ASTSourceDescriptor(*M); return getOrCreateModuleRef(Info, /*SkeletonCU=*/false); } else { // This the precompiled header being built. return getOrCreateModuleRef(PCHDescriptor, /*SkeletonCU=*/false); } } return nullptr; } llvm::DIType *CGDebugInfo::CreateTypeNode(QualType Ty, llvm::DIFile *Unit) { // Handle qualifiers, which recursively handles what they refer to. if (Ty.hasLocalQualifiers()) return CreateQualifiedType(Ty, Unit); // Work out details of type. switch (Ty->getTypeClass()) { #define TYPE(Class, Base) #define ABSTRACT_TYPE(Class, Base) #define NON_CANONICAL_TYPE(Class, Base) #define DEPENDENT_TYPE(Class, Base) case Type::Class: #include "clang/AST/TypeNodes.inc" llvm_unreachable("Dependent types cannot show up in debug information"); case Type::ExtVector: case Type::Vector: return CreateType(cast(Ty), Unit); case Type::ConstantMatrix: return CreateType(cast(Ty), Unit); case Type::ObjCObjectPointer: return CreateType(cast(Ty), Unit); case Type::ObjCObject: return CreateType(cast(Ty), Unit); case Type::ObjCTypeParam: return CreateType(cast(Ty), Unit); case Type::ObjCInterface: return CreateType(cast(Ty), Unit); case Type::Builtin: return CreateType(cast(Ty)); case Type::Complex: return CreateType(cast(Ty)); case Type::Pointer: return CreateType(cast(Ty), Unit); case Type::BlockPointer: return CreateType(cast(Ty), Unit); case Type::Typedef: return CreateType(cast(Ty), Unit); case Type::Record: return CreateType(cast(Ty)); case Type::Enum: return CreateEnumType(cast(Ty)); case Type::FunctionProto: case Type::FunctionNoProto: return CreateType(cast(Ty), Unit); case Type::ConstantArray: case Type::VariableArray: case Type::IncompleteArray: case Type::ArrayParameter: return CreateType(cast(Ty), Unit); case Type::LValueReference: return CreateType(cast(Ty), Unit); case Type::RValueReference: return CreateType(cast(Ty), Unit); case Type::MemberPointer: return CreateType(cast(Ty), Unit); case Type::Atomic: return CreateType(cast(Ty), Unit); case Type::BitInt: return CreateType(cast(Ty)); case Type::Pipe: return CreateType(cast(Ty), Unit); case Type::TemplateSpecialization: return CreateType(cast(Ty), Unit); case Type::CountAttributed: case Type::Auto: case Type::Attributed: case Type::BTFTagAttributed: case Type::Adjusted: case Type::Decayed: case Type::DeducedTemplateSpecialization: case Type::Elaborated: case Type::Using: case Type::Paren: case Type::MacroQualified: case Type::SubstTemplateTypeParm: case Type::TypeOfExpr: case Type::TypeOf: case Type::Decltype: case Type::PackIndexing: case Type::UnaryTransform: break; } llvm_unreachable("type should have been unwrapped!"); } llvm::DICompositeType * CGDebugInfo::getOrCreateLimitedType(const RecordType *Ty) { QualType QTy(Ty, 0); auto *T = cast_or_null(getTypeOrNull(QTy)); // We may have cached a forward decl when we could have created // a non-forward decl. Go ahead and create a non-forward decl // now. if (T && !T->isForwardDecl()) return T; // Otherwise create the type. llvm::DICompositeType *Res = CreateLimitedType(Ty); // Propagate members from the declaration to the definition // CreateType(const RecordType*) will overwrite this with the members in the // correct order if the full type is needed. DBuilder.replaceArrays(Res, T ? T->getElements() : llvm::DINodeArray()); // And update the type cache. TypeCache[QTy.getAsOpaquePtr()].reset(Res); return Res; } // TODO: Currently used for context chains when limiting debug info. llvm::DICompositeType *CGDebugInfo::CreateLimitedType(const RecordType *Ty) { RecordDecl *RD = Ty->getDecl(); // Get overall information about the record type for the debug info. StringRef RDName = getClassName(RD); const SourceLocation Loc = RD->getLocation(); llvm::DIFile *DefUnit = nullptr; unsigned Line = 0; if (Loc.isValid()) { DefUnit = getOrCreateFile(Loc); Line = getLineNumber(Loc); } llvm::DIScope *RDContext = getDeclContextDescriptor(RD); // If we ended up creating the type during the context chain construction, // just return that. auto *T = cast_or_null( getTypeOrNull(CGM.getContext().getRecordType(RD))); if (T && (!T->isForwardDecl() || !RD->getDefinition())) return T; // If this is just a forward or incomplete declaration, construct an // appropriately marked node and just return it. const RecordDecl *D = RD->getDefinition(); if (!D || !D->isCompleteDefinition()) return getOrCreateRecordFwdDecl(Ty, RDContext); uint64_t Size = CGM.getContext().getTypeSize(Ty); // __attribute__((aligned)) can increase or decrease alignment *except* on a // struct or struct member, where it only increases alignment unless 'packed' // is also specified. To handle this case, the `getTypeAlignIfRequired` needs // to be used. auto Align = getTypeAlignIfRequired(Ty, CGM.getContext()); SmallString<256> Identifier = getTypeIdentifier(Ty, CGM, TheCU); // Explicitly record the calling convention and export symbols for C++ // records. auto Flags = llvm::DINode::FlagZero; if (auto CXXRD = dyn_cast(RD)) { if (CGM.getCXXABI().getRecordArgABI(CXXRD) == CGCXXABI::RAA_Indirect) Flags |= llvm::DINode::FlagTypePassByReference; else Flags |= llvm::DINode::FlagTypePassByValue; // Record if a C++ record is non-trivial type. if (!CXXRD->isTrivial()) Flags |= llvm::DINode::FlagNonTrivial; // Record exports it symbols to the containing structure. if (CXXRD->isAnonymousStructOrUnion()) Flags |= llvm::DINode::FlagExportSymbols; Flags |= getAccessFlag(CXXRD->getAccess(), dyn_cast(CXXRD->getDeclContext())); } llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); llvm::DICompositeType *RealDecl = DBuilder.createReplaceableCompositeType( getTagForRecord(RD), RDName, RDContext, DefUnit, Line, 0, Size, Align, Flags, Identifier, Annotations); // Elements of composite types usually have back to the type, creating // uniquing cycles. Distinct nodes are more efficient. switch (RealDecl->getTag()) { default: llvm_unreachable("invalid composite type tag"); case llvm::dwarf::DW_TAG_array_type: case llvm::dwarf::DW_TAG_enumeration_type: // Array elements and most enumeration elements don't have back references, // so they don't tend to be involved in uniquing cycles and there is some // chance of merging them when linking together two modules. Only make // them distinct if they are ODR-uniqued. if (Identifier.empty()) break; [[fallthrough]]; case llvm::dwarf::DW_TAG_structure_type: case llvm::dwarf::DW_TAG_union_type: case llvm::dwarf::DW_TAG_class_type: // Immediately resolve to a distinct node. RealDecl = llvm::MDNode::replaceWithDistinct(llvm::TempDICompositeType(RealDecl)); break; } RegionMap[Ty->getDecl()].reset(RealDecl); TypeCache[QualType(Ty, 0).getAsOpaquePtr()].reset(RealDecl); if (const auto *TSpecial = dyn_cast(RD)) DBuilder.replaceArrays(RealDecl, llvm::DINodeArray(), CollectCXXTemplateParams(TSpecial, DefUnit)); return RealDecl; } void CGDebugInfo::CollectContainingType(const CXXRecordDecl *RD, llvm::DICompositeType *RealDecl) { // A class's primary base or the class itself contains the vtable. llvm::DIType *ContainingType = nullptr; const ASTRecordLayout &RL = CGM.getContext().getASTRecordLayout(RD); if (const CXXRecordDecl *PBase = RL.getPrimaryBase()) { // Seek non-virtual primary base root. while (true) { const ASTRecordLayout &BRL = CGM.getContext().getASTRecordLayout(PBase); const CXXRecordDecl *PBT = BRL.getPrimaryBase(); if (PBT && !BRL.isPrimaryBaseVirtual()) PBase = PBT; else break; } ContainingType = getOrCreateType(QualType(PBase->getTypeForDecl(), 0), getOrCreateFile(RD->getLocation())); } else if (RD->isDynamicClass()) ContainingType = RealDecl; DBuilder.replaceVTableHolder(RealDecl, ContainingType); } llvm::DIType *CGDebugInfo::CreateMemberType(llvm::DIFile *Unit, QualType FType, StringRef Name, uint64_t *Offset) { llvm::DIType *FieldTy = CGDebugInfo::getOrCreateType(FType, Unit); uint64_t FieldSize = CGM.getContext().getTypeSize(FType); auto FieldAlign = getTypeAlignIfRequired(FType, CGM.getContext()); llvm::DIType *Ty = DBuilder.createMemberType(Unit, Name, Unit, 0, FieldSize, FieldAlign, *Offset, llvm::DINode::FlagZero, FieldTy); *Offset += FieldSize; return Ty; } void CGDebugInfo::collectFunctionDeclProps(GlobalDecl GD, llvm::DIFile *Unit, StringRef &Name, StringRef &LinkageName, llvm::DIScope *&FDContext, llvm::DINodeArray &TParamsArray, llvm::DINode::DIFlags &Flags) { const auto *FD = cast(GD.getCanonicalDecl().getDecl()); Name = getFunctionName(FD); // Use mangled name as linkage name for C/C++ functions. if (FD->getType()->getAs()) LinkageName = CGM.getMangledName(GD); if (FD->hasPrototype()) Flags |= llvm::DINode::FlagPrototyped; // No need to replicate the linkage name if it isn't different from the // subprogram name, no need to have it at all unless coverage is enabled or // debug is set to more than just line tables or extra debug info is needed. if (LinkageName == Name || (CGM.getCodeGenOpts().CoverageNotesFile.empty() && CGM.getCodeGenOpts().CoverageDataFile.empty() && !CGM.getCodeGenOpts().DebugInfoForProfiling && !CGM.getCodeGenOpts().PseudoProbeForProfiling && DebugKind <= llvm::codegenoptions::DebugLineTablesOnly)) LinkageName = StringRef(); // Emit the function scope in line tables only mode (if CodeView) to // differentiate between function names. if (CGM.getCodeGenOpts().hasReducedDebugInfo() || (DebugKind == llvm::codegenoptions::DebugLineTablesOnly && CGM.getCodeGenOpts().EmitCodeView)) { if (const NamespaceDecl *NSDecl = dyn_cast_or_null(FD->getDeclContext())) FDContext = getOrCreateNamespace(NSDecl); else if (const RecordDecl *RDecl = dyn_cast_or_null(FD->getDeclContext())) { llvm::DIScope *Mod = getParentModuleOrNull(RDecl); FDContext = getContextDescriptor(RDecl, Mod ? Mod : TheCU); } } if (CGM.getCodeGenOpts().hasReducedDebugInfo()) { // Check if it is a noreturn-marked function if (FD->isNoReturn()) Flags |= llvm::DINode::FlagNoReturn; // Collect template parameters. TParamsArray = CollectFunctionTemplateParams(FD, Unit); } } void CGDebugInfo::collectVarDeclProps(const VarDecl *VD, llvm::DIFile *&Unit, unsigned &LineNo, QualType &T, StringRef &Name, StringRef &LinkageName, llvm::MDTuple *&TemplateParameters, llvm::DIScope *&VDContext) { Unit = getOrCreateFile(VD->getLocation()); LineNo = getLineNumber(VD->getLocation()); setLocation(VD->getLocation()); T = VD->getType(); if (T->isIncompleteArrayType()) { // CodeGen turns int[] into int[1] so we'll do the same here. llvm::APInt ConstVal(32, 1); QualType ET = CGM.getContext().getAsArrayType(T)->getElementType(); T = CGM.getContext().getConstantArrayType(ET, ConstVal, nullptr, ArraySizeModifier::Normal, 0); } Name = VD->getName(); if (VD->getDeclContext() && !isa(VD->getDeclContext()) && !isa(VD->getDeclContext())) LinkageName = CGM.getMangledName(VD); if (LinkageName == Name) LinkageName = StringRef(); if (isa(VD)) { llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VD, &*Unit); TemplateParameters = parameterNodes.get(); } else { TemplateParameters = nullptr; } // Since we emit declarations (DW_AT_members) for static members, place the // definition of those static members in the namespace they were declared in // in the source code (the lexical decl context). // FIXME: Generalize this for even non-member global variables where the // declaration and definition may have different lexical decl contexts, once // we have support for emitting declarations of (non-member) global variables. const DeclContext *DC = VD->isStaticDataMember() ? VD->getLexicalDeclContext() : VD->getDeclContext(); // When a record type contains an in-line initialization of a static data // member, and the record type is marked as __declspec(dllexport), an implicit // definition of the member will be created in the record context. DWARF // doesn't seem to have a nice way to describe this in a form that consumers // are likely to understand, so fake the "normal" situation of a definition // outside the class by putting it in the global scope. if (DC->isRecord()) DC = CGM.getContext().getTranslationUnitDecl(); llvm::DIScope *Mod = getParentModuleOrNull(VD); VDContext = getContextDescriptor(cast(DC), Mod ? Mod : TheCU); } llvm::DISubprogram *CGDebugInfo::getFunctionFwdDeclOrStub(GlobalDecl GD, bool Stub) { llvm::DINodeArray TParamsArray; StringRef Name, LinkageName; llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; SourceLocation Loc = GD.getDecl()->getLocation(); llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *DContext = Unit; unsigned Line = getLineNumber(Loc); collectFunctionDeclProps(GD, Unit, Name, LinkageName, DContext, TParamsArray, Flags); auto *FD = cast(GD.getDecl()); // Build function type. SmallVector ArgTypes; for (const ParmVarDecl *Parm : FD->parameters()) ArgTypes.push_back(Parm->getType()); CallingConv CC = FD->getType()->castAs()->getCallConv(); QualType FnType = CGM.getContext().getFunctionType( FD->getReturnType(), ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); if (!FD->isExternallyVisible()) SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; if (CGM.getLangOpts().Optimize) SPFlags |= llvm::DISubprogram::SPFlagOptimized; if (Stub) { Flags |= getCallSiteRelatedAttrs(); SPFlags |= llvm::DISubprogram::SPFlagDefinition; return DBuilder.createFunction( DContext, Name, LinkageName, Unit, Line, getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, TParamsArray.get(), getFunctionDeclaration(FD)); } llvm::DISubprogram *SP = DBuilder.createTempFunctionFwdDecl( DContext, Name, LinkageName, Unit, Line, getOrCreateFunctionType(GD.getDecl(), FnType, Unit), 0, Flags, SPFlags, TParamsArray.get(), getFunctionDeclaration(FD)); const FunctionDecl *CanonDecl = FD->getCanonicalDecl(); FwdDeclReplaceMap.emplace_back(std::piecewise_construct, std::make_tuple(CanonDecl), std::make_tuple(SP)); return SP; } llvm::DISubprogram *CGDebugInfo::getFunctionForwardDeclaration(GlobalDecl GD) { return getFunctionFwdDeclOrStub(GD, /* Stub = */ false); } llvm::DISubprogram *CGDebugInfo::getFunctionStub(GlobalDecl GD) { return getFunctionFwdDeclOrStub(GD, /* Stub = */ true); } llvm::DIGlobalVariable * CGDebugInfo::getGlobalVariableForwardDeclaration(const VarDecl *VD) { QualType T; StringRef Name, LinkageName; SourceLocation Loc = VD->getLocation(); llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *DContext = Unit; unsigned Line = getLineNumber(Loc); llvm::MDTuple *TemplateParameters = nullptr; collectVarDeclProps(VD, Unit, Line, T, Name, LinkageName, TemplateParameters, DContext); auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); auto *GV = DBuilder.createTempGlobalVariableFwdDecl( DContext, Name, LinkageName, Unit, Line, getOrCreateType(T, Unit), !VD->isExternallyVisible(), nullptr, TemplateParameters, Align); FwdDeclReplaceMap.emplace_back( std::piecewise_construct, std::make_tuple(cast(VD->getCanonicalDecl())), std::make_tuple(static_cast(GV))); return GV; } llvm::DINode *CGDebugInfo::getDeclarationOrDefinition(const Decl *D) { // We only need a declaration (not a definition) of the type - so use whatever // we would otherwise do to get a type for a pointee. (forward declarations in // limited debug info, full definitions (if the type definition is available) // in unlimited debug info) if (const auto *TD = dyn_cast(D)) return getOrCreateType(CGM.getContext().getTypeDeclType(TD), getOrCreateFile(TD->getLocation())); auto I = DeclCache.find(D->getCanonicalDecl()); if (I != DeclCache.end()) { auto N = I->second; if (auto *GVE = dyn_cast_or_null(N)) return GVE->getVariable(); return cast(N); } // Search imported declaration cache if it is already defined // as imported declaration. auto IE = ImportedDeclCache.find(D->getCanonicalDecl()); if (IE != ImportedDeclCache.end()) { auto N = IE->second; if (auto *GVE = dyn_cast_or_null(N)) return cast(GVE); return dyn_cast_or_null(N); } // No definition for now. Emit a forward definition that might be // merged with a potential upcoming definition. if (const auto *FD = dyn_cast(D)) return getFunctionForwardDeclaration(FD); else if (const auto *VD = dyn_cast(D)) return getGlobalVariableForwardDeclaration(VD); return nullptr; } llvm::DISubprogram *CGDebugInfo::getFunctionDeclaration(const Decl *D) { if (!D || DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return nullptr; const auto *FD = dyn_cast(D); if (!FD) return nullptr; // Setup context. auto *S = getDeclContextDescriptor(D); auto MI = SPCache.find(FD->getCanonicalDecl()); if (MI == SPCache.end()) { if (const auto *MD = dyn_cast(FD->getCanonicalDecl())) { return CreateCXXMemberFunction(MD, getOrCreateFile(MD->getLocation()), cast(S)); } } if (MI != SPCache.end()) { auto *SP = dyn_cast_or_null(MI->second); if (SP && !SP->isDefinition()) return SP; } for (auto *NextFD : FD->redecls()) { auto MI = SPCache.find(NextFD->getCanonicalDecl()); if (MI != SPCache.end()) { auto *SP = dyn_cast_or_null(MI->second); if (SP && !SP->isDefinition()) return SP; } } return nullptr; } llvm::DISubprogram *CGDebugInfo::getObjCMethodDeclaration( const Decl *D, llvm::DISubroutineType *FnType, unsigned LineNo, llvm::DINode::DIFlags Flags, llvm::DISubprogram::DISPFlags SPFlags) { if (!D || DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return nullptr; const auto *OMD = dyn_cast(D); if (!OMD) return nullptr; if (CGM.getCodeGenOpts().DwarfVersion < 5 && !OMD->isDirectMethod()) return nullptr; if (OMD->isDirectMethod()) SPFlags |= llvm::DISubprogram::SPFlagObjCDirect; // Starting with DWARF V5 method declarations are emitted as children of // the interface type. auto *ID = dyn_cast_or_null(D->getDeclContext()); if (!ID) ID = OMD->getClassInterface(); if (!ID) return nullptr; QualType QTy(ID->getTypeForDecl(), 0); auto It = TypeCache.find(QTy.getAsOpaquePtr()); if (It == TypeCache.end()) return nullptr; auto *InterfaceType = cast(It->second); llvm::DISubprogram *FD = DBuilder.createFunction( InterfaceType, getObjCMethodName(OMD), StringRef(), InterfaceType->getFile(), LineNo, FnType, LineNo, Flags, SPFlags); DBuilder.finalizeSubprogram(FD); ObjCMethodCache[ID].push_back({FD, OMD->isDirectMethod()}); return FD; } // getOrCreateFunctionType - Construct type. If it is a c++ method, include // implicit parameter "this". llvm::DISubroutineType *CGDebugInfo::getOrCreateFunctionType(const Decl *D, QualType FnType, llvm::DIFile *F) { // In CodeView, we emit the function types in line tables only because the // only way to distinguish between functions is by display name and type. if (!D || (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly && !CGM.getCodeGenOpts().EmitCodeView)) // Create fake but valid subroutine type. Otherwise -verify would fail, and // subprogram DIE will miss DW_AT_decl_file and DW_AT_decl_line fields. return DBuilder.createSubroutineType( DBuilder.getOrCreateTypeArray(std::nullopt)); if (const auto *Method = dyn_cast(D)) return getOrCreateMethodType(Method, F); const auto *FTy = FnType->getAs(); CallingConv CC = FTy ? FTy->getCallConv() : CallingConv::CC_C; if (const auto *OMethod = dyn_cast(D)) { // Add "self" and "_cmd" SmallVector Elts; // First element is always return type. For 'void' functions it is NULL. QualType ResultTy = OMethod->getReturnType(); // Replace the instancetype keyword with the actual type. if (ResultTy == CGM.getContext().getObjCInstanceType()) ResultTy = CGM.getContext().getPointerType( QualType(OMethod->getClassInterface()->getTypeForDecl(), 0)); Elts.push_back(getOrCreateType(ResultTy, F)); // "self" pointer is always first argument. QualType SelfDeclTy; if (auto *SelfDecl = OMethod->getSelfDecl()) SelfDeclTy = SelfDecl->getType(); else if (auto *FPT = dyn_cast(FnType)) if (FPT->getNumParams() > 1) SelfDeclTy = FPT->getParamType(0); if (!SelfDeclTy.isNull()) Elts.push_back( CreateSelfType(SelfDeclTy, getOrCreateType(SelfDeclTy, F))); // "_cmd" pointer is always second argument. Elts.push_back(DBuilder.createArtificialType( getOrCreateType(CGM.getContext().getObjCSelType(), F))); // Get rest of the arguments. for (const auto *PI : OMethod->parameters()) Elts.push_back(getOrCreateType(PI->getType(), F)); // Variadic methods need a special marker at the end of the type list. if (OMethod->isVariadic()) Elts.push_back(DBuilder.createUnspecifiedParameter()); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(Elts); return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, getDwarfCC(CC)); } // Handle variadic function types; they need an additional // unspecified parameter. if (const auto *FD = dyn_cast(D)) if (FD->isVariadic()) { SmallVector EltTys; EltTys.push_back(getOrCreateType(FD->getReturnType(), F)); if (const auto *FPT = dyn_cast(FnType)) for (QualType ParamType : FPT->param_types()) EltTys.push_back(getOrCreateType(ParamType, F)); EltTys.push_back(DBuilder.createUnspecifiedParameter()); llvm::DITypeRefArray EltTypeArray = DBuilder.getOrCreateTypeArray(EltTys); return DBuilder.createSubroutineType(EltTypeArray, llvm::DINode::FlagZero, getDwarfCC(CC)); } return cast(getOrCreateType(FnType, F)); } QualType CGDebugInfo::getFunctionType(const FunctionDecl *FD, QualType RetTy, const SmallVectorImpl &Args) { CallingConv CC = CallingConv::CC_C; if (FD) if (const auto *SrcFnTy = FD->getType()->getAs()) CC = SrcFnTy->getCallConv(); SmallVector ArgTypes; for (const VarDecl *VD : Args) ArgTypes.push_back(VD->getType()); return CGM.getContext().getFunctionType(RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); } void CGDebugInfo::emitFunctionStart(GlobalDecl GD, SourceLocation Loc, SourceLocation ScopeLoc, QualType FnType, llvm::Function *Fn, bool CurFuncIsThunk) { StringRef Name; StringRef LinkageName; FnBeginRegionCount.push_back(LexicalBlockStack.size()); const Decl *D = GD.getDecl(); bool HasDecl = (D != nullptr); llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; llvm::DIFile *Unit = getOrCreateFile(Loc); llvm::DIScope *FDContext = Unit; llvm::DINodeArray TParamsArray; if (!HasDecl) { // Use llvm function name. LinkageName = Fn->getName(); } else if (const auto *FD = dyn_cast(D)) { // If there is a subprogram for this function available then use it. auto FI = SPCache.find(FD->getCanonicalDecl()); if (FI != SPCache.end()) { auto *SP = dyn_cast_or_null(FI->second); if (SP && SP->isDefinition()) { LexicalBlockStack.emplace_back(SP); RegionMap[D].reset(SP); return; } } collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, TParamsArray, Flags); } else if (const auto *OMD = dyn_cast(D)) { Name = getObjCMethodName(OMD); Flags |= llvm::DINode::FlagPrototyped; } else if (isa(D) && GD.getDynamicInitKind() != DynamicInitKind::NoStub) { // This is a global initializer or atexit destructor for a global variable. Name = getDynamicInitializerName(cast(D), GD.getDynamicInitKind(), Fn); } else { Name = Fn->getName(); if (isa(D)) LinkageName = Name; Flags |= llvm::DINode::FlagPrototyped; } if (Name.starts_with("\01")) Name = Name.substr(1); assert((!D || !isa(D) || GD.getDynamicInitKind() != DynamicInitKind::NoStub) && "Unexpected DynamicInitKind !"); if (!HasDecl || D->isImplicit() || D->hasAttr() || isa(D) || isa(D)) { Flags |= llvm::DINode::FlagArtificial; // Artificial functions should not silently reuse CurLoc. CurLoc = SourceLocation(); } if (CurFuncIsThunk) Flags |= llvm::DINode::FlagThunk; if (Fn->hasLocalLinkage()) SPFlags |= llvm::DISubprogram::SPFlagLocalToUnit; if (CGM.getLangOpts().Optimize) SPFlags |= llvm::DISubprogram::SPFlagOptimized; llvm::DINode::DIFlags FlagsForDef = Flags | getCallSiteRelatedAttrs(); llvm::DISubprogram::DISPFlags SPFlagsForDef = SPFlags | llvm::DISubprogram::SPFlagDefinition; const unsigned LineNo = getLineNumber(Loc.isValid() ? Loc : CurLoc); unsigned ScopeLine = getLineNumber(ScopeLoc); llvm::DISubroutineType *DIFnType = getOrCreateFunctionType(D, FnType, Unit); llvm::DISubprogram *Decl = nullptr; llvm::DINodeArray Annotations = nullptr; if (D) { Decl = isa(D) ? getObjCMethodDeclaration(D, DIFnType, LineNo, Flags, SPFlags) : getFunctionDeclaration(D); Annotations = CollectBTFDeclTagAnnotations(D); } // FIXME: The function declaration we're constructing here is mostly reusing // declarations from CXXMethodDecl and not constructing new ones for arbitrary // FunctionDecls. When/if we fix this we can have FDContext be TheCU/null for // all subprograms instead of the actual context since subprogram definitions // are emitted as CU level entities by the backend. llvm::DISubprogram *SP = DBuilder.createFunction( FDContext, Name, LinkageName, Unit, LineNo, DIFnType, ScopeLine, FlagsForDef, SPFlagsForDef, TParamsArray.get(), Decl, nullptr, Annotations); Fn->setSubprogram(SP); // We might get here with a VarDecl in the case we're generating // code for the initialization of globals. Do not record these decls // as they will overwrite the actual VarDecl Decl in the cache. if (HasDecl && isa(D)) DeclCache[D->getCanonicalDecl()].reset(SP); // Push the function onto the lexical block stack. LexicalBlockStack.emplace_back(SP); if (HasDecl) RegionMap[D].reset(SP); } void CGDebugInfo::EmitFunctionDecl(GlobalDecl GD, SourceLocation Loc, QualType FnType, llvm::Function *Fn) { StringRef Name; StringRef LinkageName; const Decl *D = GD.getDecl(); if (!D) return; llvm::TimeTraceScope TimeScope("DebugFunction", [&]() { return GetName(D, true); }); llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; llvm::DIFile *Unit = getOrCreateFile(Loc); bool IsDeclForCallSite = Fn ? true : false; llvm::DIScope *FDContext = IsDeclForCallSite ? Unit : getDeclContextDescriptor(D); llvm::DINodeArray TParamsArray; if (isa(D)) { // If there is a DISubprogram for this function available then use it. collectFunctionDeclProps(GD, Unit, Name, LinkageName, FDContext, TParamsArray, Flags); } else if (const auto *OMD = dyn_cast(D)) { Name = getObjCMethodName(OMD); Flags |= llvm::DINode::FlagPrototyped; } else { llvm_unreachable("not a function or ObjC method"); } if (!Name.empty() && Name[0] == '\01') Name = Name.substr(1); if (D->isImplicit()) { Flags |= llvm::DINode::FlagArtificial; // Artificial functions without a location should not silently reuse CurLoc. if (Loc.isInvalid()) CurLoc = SourceLocation(); } unsigned LineNo = getLineNumber(Loc); unsigned ScopeLine = 0; llvm::DISubprogram::DISPFlags SPFlags = llvm::DISubprogram::SPFlagZero; if (CGM.getLangOpts().Optimize) SPFlags |= llvm::DISubprogram::SPFlagOptimized; llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); llvm::DISubroutineType *STy = getOrCreateFunctionType(D, FnType, Unit); llvm::DISubprogram *SP = DBuilder.createFunction( FDContext, Name, LinkageName, Unit, LineNo, STy, ScopeLine, Flags, SPFlags, TParamsArray.get(), nullptr, nullptr, Annotations); // Preserve btf_decl_tag attributes for parameters of extern functions // for BPF target. The parameters created in this loop are attached as // DISubprogram's retainedNodes in the subsequent finalizeSubprogram call. if (IsDeclForCallSite && CGM.getTarget().getTriple().isBPF()) { if (auto *FD = dyn_cast(D)) { llvm::DITypeRefArray ParamTypes = STy->getTypeArray(); unsigned ArgNo = 1; for (ParmVarDecl *PD : FD->parameters()) { llvm::DINodeArray ParamAnnotations = CollectBTFDeclTagAnnotations(PD); DBuilder.createParameterVariable( SP, PD->getName(), ArgNo, Unit, LineNo, ParamTypes[ArgNo], true, llvm::DINode::FlagZero, ParamAnnotations); ++ArgNo; } } } if (IsDeclForCallSite) Fn->setSubprogram(SP); DBuilder.finalizeSubprogram(SP); } void CGDebugInfo::EmitFuncDeclForCallSite(llvm::CallBase *CallOrInvoke, QualType CalleeType, const FunctionDecl *CalleeDecl) { if (!CallOrInvoke) return; auto *Func = CallOrInvoke->getCalledFunction(); if (!Func) return; if (Func->getSubprogram()) return; // Do not emit a declaration subprogram for a function with nodebug // attribute, or if call site info isn't required. if (CalleeDecl->hasAttr() || getCallSiteRelatedAttrs() == llvm::DINode::FlagZero) return; // If there is no DISubprogram attached to the function being called, // create the one describing the function in order to have complete // call site debug info. if (!CalleeDecl->isStatic() && !CalleeDecl->isInlined()) EmitFunctionDecl(CalleeDecl, CalleeDecl->getLocation(), CalleeType, Func); } void CGDebugInfo::EmitInlineFunctionStart(CGBuilderTy &Builder, GlobalDecl GD) { const auto *FD = cast(GD.getDecl()); // If there is a subprogram for this function available then use it. auto FI = SPCache.find(FD->getCanonicalDecl()); llvm::DISubprogram *SP = nullptr; if (FI != SPCache.end()) SP = dyn_cast_or_null(FI->second); if (!SP || !SP->isDefinition()) SP = getFunctionStub(GD); FnBeginRegionCount.push_back(LexicalBlockStack.size()); LexicalBlockStack.emplace_back(SP); setInlinedAt(Builder.getCurrentDebugLocation()); EmitLocation(Builder, FD->getLocation()); } void CGDebugInfo::EmitInlineFunctionEnd(CGBuilderTy &Builder) { assert(CurInlinedAt && "unbalanced inline scope stack"); EmitFunctionEnd(Builder, nullptr); setInlinedAt(llvm::DebugLoc(CurInlinedAt).getInlinedAt()); } void CGDebugInfo::EmitLocation(CGBuilderTy &Builder, SourceLocation Loc) { // Update our current location setLocation(Loc); if (CurLoc.isInvalid() || CurLoc.isMacroID() || LexicalBlockStack.empty()) return; llvm::MDNode *Scope = LexicalBlockStack.back(); Builder.SetCurrentDebugLocation( llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(CurLoc), getColumnNumber(CurLoc), Scope, CurInlinedAt)); } void CGDebugInfo::CreateLexicalBlock(SourceLocation Loc) { llvm::MDNode *Back = nullptr; if (!LexicalBlockStack.empty()) Back = LexicalBlockStack.back().get(); LexicalBlockStack.emplace_back(DBuilder.createLexicalBlock( cast(Back), getOrCreateFile(CurLoc), getLineNumber(CurLoc), getColumnNumber(CurLoc))); } void CGDebugInfo::AppendAddressSpaceXDeref( unsigned AddressSpace, SmallVectorImpl &Expr) const { std::optional DWARFAddressSpace = CGM.getTarget().getDWARFAddressSpace(AddressSpace); if (!DWARFAddressSpace) return; Expr.push_back(llvm::dwarf::DW_OP_constu); Expr.push_back(*DWARFAddressSpace); Expr.push_back(llvm::dwarf::DW_OP_swap); Expr.push_back(llvm::dwarf::DW_OP_xderef); } void CGDebugInfo::EmitLexicalBlockStart(CGBuilderTy &Builder, SourceLocation Loc) { // Set our current location. setLocation(Loc); // Emit a line table change for the current location inside the new scope. Builder.SetCurrentDebugLocation(llvm::DILocation::get( CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), LexicalBlockStack.back(), CurInlinedAt)); if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return; // Create a new lexical block and push it on the stack. CreateLexicalBlock(Loc); } void CGDebugInfo::EmitLexicalBlockEnd(CGBuilderTy &Builder, SourceLocation Loc) { assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); // Provide an entry in the line table for the end of the block. EmitLocation(Builder, Loc); if (DebugKind <= llvm::codegenoptions::DebugLineTablesOnly) return; LexicalBlockStack.pop_back(); } void CGDebugInfo::EmitFunctionEnd(CGBuilderTy &Builder, llvm::Function *Fn) { assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); unsigned RCount = FnBeginRegionCount.back(); assert(RCount <= LexicalBlockStack.size() && "Region stack mismatch"); // Pop all regions for this function. while (LexicalBlockStack.size() != RCount) { // Provide an entry in the line table for the end of the block. EmitLocation(Builder, CurLoc); LexicalBlockStack.pop_back(); } FnBeginRegionCount.pop_back(); if (Fn && Fn->getSubprogram()) DBuilder.finalizeSubprogram(Fn->getSubprogram()); } CGDebugInfo::BlockByRefType CGDebugInfo::EmitTypeForVarWithBlocksAttr(const VarDecl *VD, uint64_t *XOffset) { SmallVector EltTys; QualType FType; uint64_t FieldSize, FieldOffset; uint32_t FieldAlign; llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); QualType Type = VD->getType(); FieldOffset = 0; FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back(CreateMemberType(Unit, FType, "__isa", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__forwarding", &FieldOffset)); FType = CGM.getContext().IntTy; EltTys.push_back(CreateMemberType(Unit, FType, "__flags", &FieldOffset)); EltTys.push_back(CreateMemberType(Unit, FType, "__size", &FieldOffset)); bool HasCopyAndDispose = CGM.getContext().BlockRequiresCopying(Type, VD); if (HasCopyAndDispose) { FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back( CreateMemberType(Unit, FType, "__copy_helper", &FieldOffset)); EltTys.push_back( CreateMemberType(Unit, FType, "__destroy_helper", &FieldOffset)); } bool HasByrefExtendedLayout; Qualifiers::ObjCLifetime Lifetime; if (CGM.getContext().getByrefLifetime(Type, Lifetime, HasByrefExtendedLayout) && HasByrefExtendedLayout) { FType = CGM.getContext().getPointerType(CGM.getContext().VoidTy); EltTys.push_back( CreateMemberType(Unit, FType, "__byref_variable_layout", &FieldOffset)); } CharUnits Align = CGM.getContext().getDeclAlign(VD); if (Align > CGM.getContext().toCharUnitsFromBits( CGM.getTarget().getPointerAlign(LangAS::Default))) { CharUnits FieldOffsetInBytes = CGM.getContext().toCharUnitsFromBits(FieldOffset); CharUnits AlignedOffsetInBytes = FieldOffsetInBytes.alignTo(Align); CharUnits NumPaddingBytes = AlignedOffsetInBytes - FieldOffsetInBytes; if (NumPaddingBytes.isPositive()) { llvm::APInt pad(32, NumPaddingBytes.getQuantity()); FType = CGM.getContext().getConstantArrayType( CGM.getContext().CharTy, pad, nullptr, ArraySizeModifier::Normal, 0); EltTys.push_back(CreateMemberType(Unit, FType, "", &FieldOffset)); } } FType = Type; llvm::DIType *WrappedTy = getOrCreateType(FType, Unit); FieldSize = CGM.getContext().getTypeSize(FType); FieldAlign = CGM.getContext().toBits(Align); *XOffset = FieldOffset; llvm::DIType *FieldTy = DBuilder.createMemberType( Unit, VD->getName(), Unit, 0, FieldSize, FieldAlign, FieldOffset, llvm::DINode::FlagZero, WrappedTy); EltTys.push_back(FieldTy); FieldOffset += FieldSize; llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); return {DBuilder.createStructType(Unit, "", Unit, 0, FieldOffset, 0, llvm::DINode::FlagZero, nullptr, Elements), WrappedTy}; } llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const VarDecl *VD, llvm::Value *Storage, std::optional ArgNo, CGBuilderTy &Builder, const bool UsePointerValue) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (VD->hasAttr()) return nullptr; bool Unwritten = VD->isImplicit() || (isa(VD->getDeclContext()) && cast(VD->getDeclContext())->isImplicit()); llvm::DIFile *Unit = nullptr; if (!Unwritten) Unit = getOrCreateFile(VD->getLocation()); llvm::DIType *Ty; uint64_t XOffset = 0; if (VD->hasAttr()) Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; else Ty = getOrCreateType(VD->getType(), Unit); // If there is no debug info for this type then do not emit debug info // for this variable. if (!Ty) return nullptr; // Get location information. unsigned Line = 0; unsigned Column = 0; if (!Unwritten) { Line = getLineNumber(VD->getLocation()); Column = getColumnNumber(VD->getLocation()); } SmallVector Expr; llvm::DINode::DIFlags Flags = llvm::DINode::FlagZero; if (VD->isImplicit()) Flags |= llvm::DINode::FlagArtificial; auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(VD->getType()); AppendAddressSpaceXDeref(AddressSpace, Expr); // If this is implicit parameter of CXXThis or ObjCSelf kind, then give it an // object pointer flag. if (const auto *IPD = dyn_cast(VD)) { if (IPD->getParameterKind() == ImplicitParamKind::CXXThis || IPD->getParameterKind() == ImplicitParamKind::ObjCSelf) Flags |= llvm::DINode::FlagObjectPointer; } // Note: Older versions of clang used to emit byval references with an extra // DW_OP_deref, because they referenced the IR arg directly instead of // referencing an alloca. Newer versions of LLVM don't treat allocas // differently from other function arguments when used in a dbg.declare. auto *Scope = cast(LexicalBlockStack.back()); StringRef Name = VD->getName(); if (!Name.empty()) { // __block vars are stored on the heap if they are captured by a block that // can escape the local scope. if (VD->isEscapingByref()) { // Here, we need an offset *into* the alloca. CharUnits offset = CharUnits::fromQuantity(32); Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); // offset of __forwarding field offset = CGM.getContext().toCharUnitsFromBits( CGM.getTarget().getPointerWidth(LangAS::Default)); Expr.push_back(offset.getQuantity()); Expr.push_back(llvm::dwarf::DW_OP_deref); Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); // offset of x field offset = CGM.getContext().toCharUnitsFromBits(XOffset); Expr.push_back(offset.getQuantity()); } } else if (const auto *RT = dyn_cast(VD->getType())) { // If VD is an anonymous union then Storage represents value for // all union fields. const RecordDecl *RD = RT->getDecl(); if (RD->isUnion() && RD->isAnonymousStructOrUnion()) { // GDB has trouble finding local variables in anonymous unions, so we emit // artificial local variables for each of the members. // // FIXME: Remove this code as soon as GDB supports this. // The debug info verifier in LLVM operates based on the assumption that a // variable has the same size as its storage and we had to disable the // check for artificial variables. for (const auto *Field : RD->fields()) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); StringRef FieldName = Field->getName(); // Ignore unnamed fields. Do not ignore unnamed records. if (FieldName.empty() && !isa(Field->getType())) continue; // Use VarDecl's Tag, Scope and Line number. auto FieldAlign = getDeclAlignIfRequired(Field, CGM.getContext()); auto *D = DBuilder.createAutoVariable( Scope, FieldName, Unit, Line, FieldTy, CGM.getLangOpts().Optimize, Flags | llvm::DINode::FlagArtificial, FieldAlign); // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, Scope, CurInlinedAt), Builder.GetInsertBlock()); } } } // Clang stores the sret pointer provided by the caller in a static alloca. // Use DW_OP_deref to tell the debugger to load the pointer and treat it as // the address of the variable. if (UsePointerValue) { assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && "Debug info already contains DW_OP_deref."); Expr.push_back(llvm::dwarf::DW_OP_deref); } // Create the descriptor for the variable. llvm::DILocalVariable *D = nullptr; if (ArgNo) { llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(VD); D = DBuilder.createParameterVariable(Scope, Name, *ArgNo, Unit, Line, Ty, CGM.getLangOpts().Optimize, Flags, Annotations); } else { // For normal local variable, we will try to find out whether 'VD' is the // copy parameter of coroutine. // If yes, we are going to use DIVariable of the origin parameter instead // of creating the new one. // If no, it might be a normal alloc, we just create a new one for it. // Check whether the VD is move parameters. auto RemapCoroArgToLocalVar = [&]() -> llvm::DILocalVariable * { // The scope of parameter and move-parameter should be distinct // DISubprogram. if (!isa(Scope) || !Scope->isDistinct()) return nullptr; auto Iter = llvm::find_if(CoroutineParameterMappings, [&](auto &Pair) { Stmt *StmtPtr = const_cast(Pair.second); if (DeclStmt *DeclStmtPtr = dyn_cast(StmtPtr)) { DeclGroupRef DeclGroup = DeclStmtPtr->getDeclGroup(); Decl *Decl = DeclGroup.getSingleDecl(); if (VD == dyn_cast_or_null(Decl)) return true; } return false; }); if (Iter != CoroutineParameterMappings.end()) { ParmVarDecl *PD = const_cast(Iter->first); auto Iter2 = llvm::find_if(ParamDbgMappings, [&](auto &DbgPair) { return DbgPair.first == PD && DbgPair.second->getScope() == Scope; }); if (Iter2 != ParamDbgMappings.end()) return const_cast(Iter2->second); } return nullptr; }; // If we couldn't find a move param DIVariable, create a new one. D = RemapCoroArgToLocalVar(); // Or we will create a new DIVariable for this Decl if D dose not exists. if (!D) D = DBuilder.createAutoVariable(Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize, Flags, Align); } // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, Scope, CurInlinedAt), Builder.GetInsertBlock()); return D; } llvm::DILocalVariable *CGDebugInfo::EmitDeclare(const BindingDecl *BD, llvm::Value *Storage, std::optional ArgNo, CGBuilderTy &Builder, const bool UsePointerValue) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (BD->hasAttr()) return nullptr; // Skip the tuple like case, we don't handle that here if (isa(BD->getBinding())) return nullptr; llvm::DIFile *Unit = getOrCreateFile(BD->getLocation()); llvm::DIType *Ty = getOrCreateType(BD->getType(), Unit); // If there is no debug info for this type then do not emit debug info // for this variable. if (!Ty) return nullptr; auto Align = getDeclAlignIfRequired(BD, CGM.getContext()); unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(BD->getType()); SmallVector Expr; AppendAddressSpaceXDeref(AddressSpace, Expr); // Clang stores the sret pointer provided by the caller in a static alloca. // Use DW_OP_deref to tell the debugger to load the pointer and treat it as // the address of the variable. if (UsePointerValue) { assert(!llvm::is_contained(Expr, llvm::dwarf::DW_OP_deref) && "Debug info already contains DW_OP_deref."); Expr.push_back(llvm::dwarf::DW_OP_deref); } unsigned Line = getLineNumber(BD->getLocation()); unsigned Column = getColumnNumber(BD->getLocation()); StringRef Name = BD->getName(); auto *Scope = cast(LexicalBlockStack.back()); // Create the descriptor for the variable. llvm::DILocalVariable *D = DBuilder.createAutoVariable( Scope, Name, Unit, Line, Ty, CGM.getLangOpts().Optimize, llvm::DINode::FlagZero, Align); if (const MemberExpr *ME = dyn_cast(BD->getBinding())) { if (const FieldDecl *FD = dyn_cast(ME->getMemberDecl())) { const unsigned fieldIndex = FD->getFieldIndex(); const clang::CXXRecordDecl *parent = (const CXXRecordDecl *)FD->getParent(); const ASTRecordLayout &layout = CGM.getContext().getASTRecordLayout(parent); const uint64_t fieldOffset = layout.getFieldOffset(fieldIndex); if (FD->isBitField()) { const CGRecordLayout &RL = CGM.getTypes().getCGRecordLayout(FD->getParent()); const CGBitFieldInfo &Info = RL.getBitFieldInfo(FD); // Use DW_OP_plus_uconst to adjust to the start of the bitfield // storage. if (!Info.StorageOffset.isZero()) { Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); Expr.push_back(Info.StorageOffset.getQuantity()); } // Use LLVM_extract_bits to extract the appropriate bits from this // bitfield. Expr.push_back(Info.IsSigned ? llvm::dwarf::DW_OP_LLVM_extract_bits_sext : llvm::dwarf::DW_OP_LLVM_extract_bits_zext); Expr.push_back(Info.Offset); // If we have an oversized bitfield then the value won't be more than // the size of the type. const uint64_t TypeSize = CGM.getContext().getTypeSize(BD->getType()); Expr.push_back(std::min((uint64_t)Info.Size, TypeSize)); } else if (fieldOffset != 0) { assert(fieldOffset % CGM.getContext().getCharWidth() == 0 && "Unexpected non-bitfield with non-byte-aligned offset"); Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); Expr.push_back( CGM.getContext().toCharUnitsFromBits(fieldOffset).getQuantity()); } } } else if (const ArraySubscriptExpr *ASE = dyn_cast(BD->getBinding())) { if (const IntegerLiteral *IL = dyn_cast(ASE->getIdx())) { const uint64_t value = IL->getValue().getZExtValue(); const uint64_t typeSize = CGM.getContext().getTypeSize(BD->getType()); if (value != 0) { Expr.push_back(llvm::dwarf::DW_OP_plus_uconst); Expr.push_back(CGM.getContext() .toCharUnitsFromBits(value * typeSize) .getQuantity()); } } } // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Storage, D, DBuilder.createExpression(Expr), llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, Scope, CurInlinedAt), Builder.GetInsertBlock()); return D; } llvm::DILocalVariable * CGDebugInfo::EmitDeclareOfAutoVariable(const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, const bool UsePointerValue) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); if (auto *DD = dyn_cast(VD)) { for (auto *B : DD->bindings()) { EmitDeclare(B, Storage, std::nullopt, Builder, VD->getType()->isReferenceType()); } // Don't emit an llvm.dbg.declare for the composite storage as it doesn't // correspond to a user variable. return nullptr; } return EmitDeclare(VD, Storage, std::nullopt, Builder, UsePointerValue); } void CGDebugInfo::EmitLabel(const LabelDecl *D, CGBuilderTy &Builder) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (D->hasAttr()) return; auto *Scope = cast(LexicalBlockStack.back()); llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); // Get location information. unsigned Line = getLineNumber(D->getLocation()); unsigned Column = getColumnNumber(D->getLocation()); StringRef Name = D->getName(); // Create the descriptor for the label. auto *L = DBuilder.createLabel(Scope, Name, Unit, Line, CGM.getLangOpts().Optimize); // Insert an llvm.dbg.label into the current block. DBuilder.insertLabel(L, llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, Scope, CurInlinedAt), Builder.GetInsertBlock()); } llvm::DIType *CGDebugInfo::CreateSelfType(const QualType &QualTy, llvm::DIType *Ty) { llvm::DIType *CachedTy = getTypeOrNull(QualTy); if (CachedTy) Ty = CachedTy; return DBuilder.createObjectPointerType(Ty); } void CGDebugInfo::EmitDeclareOfBlockDeclRefVariable( const VarDecl *VD, llvm::Value *Storage, CGBuilderTy &Builder, const CGBlockInfo &blockInfo, llvm::Instruction *InsertPoint) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); assert(!LexicalBlockStack.empty() && "Region stack mismatch, stack empty!"); if (Builder.GetInsertBlock() == nullptr) return; if (VD->hasAttr()) return; bool isByRef = VD->hasAttr(); uint64_t XOffset = 0; llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); llvm::DIType *Ty; if (isByRef) Ty = EmitTypeForVarWithBlocksAttr(VD, &XOffset).WrappedType; else Ty = getOrCreateType(VD->getType(), Unit); // Self is passed along as an implicit non-arg variable in a // block. Mark it as the object pointer. if (const auto *IPD = dyn_cast(VD)) if (IPD->getParameterKind() == ImplicitParamKind::ObjCSelf) Ty = CreateSelfType(VD->getType(), Ty); // Get location information. const unsigned Line = getLineNumber(VD->getLocation().isValid() ? VD->getLocation() : CurLoc); unsigned Column = getColumnNumber(VD->getLocation()); const llvm::DataLayout &target = CGM.getDataLayout(); CharUnits offset = CharUnits::fromQuantity( target.getStructLayout(blockInfo.StructureType) ->getElementOffset(blockInfo.getCapture(VD).getIndex())); SmallVector addr; addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus_uconst); addr.push_back(offset.getQuantity()); if (isByRef) { addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus_uconst); // offset of __forwarding field offset = CGM.getContext().toCharUnitsFromBits(target.getPointerSizeInBits(0)); addr.push_back(offset.getQuantity()); addr.push_back(llvm::dwarf::DW_OP_deref); addr.push_back(llvm::dwarf::DW_OP_plus_uconst); // offset of x field offset = CGM.getContext().toCharUnitsFromBits(XOffset); addr.push_back(offset.getQuantity()); } // Create the descriptor for the variable. auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); auto *D = DBuilder.createAutoVariable( cast(LexicalBlockStack.back()), VD->getName(), Unit, Line, Ty, false, llvm::DINode::FlagZero, Align); // Insert an llvm.dbg.declare into the current block. auto DL = llvm::DILocation::get(CGM.getLLVMContext(), Line, Column, LexicalBlockStack.back(), CurInlinedAt); auto *Expr = DBuilder.createExpression(addr); if (InsertPoint) DBuilder.insertDeclare(Storage, D, Expr, DL, InsertPoint); else DBuilder.insertDeclare(Storage, D, Expr, DL, Builder.GetInsertBlock()); } llvm::DILocalVariable * CGDebugInfo::EmitDeclareOfArgVariable(const VarDecl *VD, llvm::Value *AI, unsigned ArgNo, CGBuilderTy &Builder, bool UsePointerValue) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); return EmitDeclare(VD, AI, ArgNo, Builder, UsePointerValue); } namespace { struct BlockLayoutChunk { uint64_t OffsetInBits; const BlockDecl::Capture *Capture; }; bool operator<(const BlockLayoutChunk &l, const BlockLayoutChunk &r) { return l.OffsetInBits < r.OffsetInBits; } } // namespace void CGDebugInfo::collectDefaultFieldsForBlockLiteralDeclare( const CGBlockInfo &Block, const ASTContext &Context, SourceLocation Loc, const llvm::StructLayout &BlockLayout, llvm::DIFile *Unit, SmallVectorImpl &Fields) { // Blocks in OpenCL have unique constraints which make the standard fields // redundant while requiring size and align fields for enqueue_kernel. See // initializeForBlockHeader in CGBlocks.cpp if (CGM.getLangOpts().OpenCL) { Fields.push_back(createFieldType("__size", Context.IntTy, Loc, AS_public, BlockLayout.getElementOffsetInBits(0), Unit, Unit)); Fields.push_back(createFieldType("__align", Context.IntTy, Loc, AS_public, BlockLayout.getElementOffsetInBits(1), Unit, Unit)); } else { Fields.push_back(createFieldType("__isa", Context.VoidPtrTy, Loc, AS_public, BlockLayout.getElementOffsetInBits(0), Unit, Unit)); Fields.push_back(createFieldType("__flags", Context.IntTy, Loc, AS_public, BlockLayout.getElementOffsetInBits(1), Unit, Unit)); Fields.push_back( createFieldType("__reserved", Context.IntTy, Loc, AS_public, BlockLayout.getElementOffsetInBits(2), Unit, Unit)); auto *FnTy = Block.getBlockExpr()->getFunctionType(); auto FnPtrType = CGM.getContext().getPointerType(FnTy->desugar()); Fields.push_back(createFieldType("__FuncPtr", FnPtrType, Loc, AS_public, BlockLayout.getElementOffsetInBits(3), Unit, Unit)); Fields.push_back(createFieldType( "__descriptor", Context.getPointerType(Block.NeedsCopyDispose ? Context.getBlockDescriptorExtendedType() : Context.getBlockDescriptorType()), Loc, AS_public, BlockLayout.getElementOffsetInBits(4), Unit, Unit)); } } void CGDebugInfo::EmitDeclareOfBlockLiteralArgVariable(const CGBlockInfo &block, StringRef Name, unsigned ArgNo, llvm::AllocaInst *Alloca, CGBuilderTy &Builder) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); ASTContext &C = CGM.getContext(); const BlockDecl *blockDecl = block.getBlockDecl(); // Collect some general information about the block's location. SourceLocation loc = blockDecl->getCaretLocation(); llvm::DIFile *tunit = getOrCreateFile(loc); unsigned line = getLineNumber(loc); unsigned column = getColumnNumber(loc); // Build the debug-info type for the block literal. getDeclContextDescriptor(blockDecl); const llvm::StructLayout *blockLayout = CGM.getDataLayout().getStructLayout(block.StructureType); SmallVector fields; collectDefaultFieldsForBlockLiteralDeclare(block, C, loc, *blockLayout, tunit, fields); // We want to sort the captures by offset, not because DWARF // requires this, but because we're paranoid about debuggers. SmallVector chunks; // 'this' capture. if (blockDecl->capturesCXXThis()) { BlockLayoutChunk chunk; chunk.OffsetInBits = blockLayout->getElementOffsetInBits(block.CXXThisIndex); chunk.Capture = nullptr; chunks.push_back(chunk); } // Variable captures. for (const auto &capture : blockDecl->captures()) { const VarDecl *variable = capture.getVariable(); const CGBlockInfo::Capture &captureInfo = block.getCapture(variable); // Ignore constant captures. if (captureInfo.isConstant()) continue; BlockLayoutChunk chunk; chunk.OffsetInBits = blockLayout->getElementOffsetInBits(captureInfo.getIndex()); chunk.Capture = &capture; chunks.push_back(chunk); } // Sort by offset. llvm::array_pod_sort(chunks.begin(), chunks.end()); for (const BlockLayoutChunk &Chunk : chunks) { uint64_t offsetInBits = Chunk.OffsetInBits; const BlockDecl::Capture *capture = Chunk.Capture; // If we have a null capture, this must be the C++ 'this' capture. if (!capture) { QualType type; if (auto *Method = cast_or_null(blockDecl->getNonClosureContext())) type = Method->getThisType(); else if (auto *RDecl = dyn_cast(blockDecl->getParent())) type = QualType(RDecl->getTypeForDecl(), 0); else llvm_unreachable("unexpected block declcontext"); fields.push_back(createFieldType("this", type, loc, AS_public, offsetInBits, tunit, tunit)); continue; } const VarDecl *variable = capture->getVariable(); StringRef name = variable->getName(); llvm::DIType *fieldType; if (capture->isByRef()) { TypeInfo PtrInfo = C.getTypeInfo(C.VoidPtrTy); auto Align = PtrInfo.isAlignRequired() ? PtrInfo.Align : 0; // FIXME: This recomputes the layout of the BlockByRefWrapper. uint64_t xoffset; fieldType = EmitTypeForVarWithBlocksAttr(variable, &xoffset).BlockByRefWrapper; fieldType = DBuilder.createPointerType(fieldType, PtrInfo.Width); fieldType = DBuilder.createMemberType(tunit, name, tunit, line, PtrInfo.Width, Align, offsetInBits, llvm::DINode::FlagZero, fieldType); } else { auto Align = getDeclAlignIfRequired(variable, CGM.getContext()); fieldType = createFieldType(name, variable->getType(), loc, AS_public, offsetInBits, Align, tunit, tunit); } fields.push_back(fieldType); } SmallString<36> typeName; llvm::raw_svector_ostream(typeName) << "__block_literal_" << CGM.getUniqueBlockCount(); llvm::DINodeArray fieldsArray = DBuilder.getOrCreateArray(fields); llvm::DIType *type = DBuilder.createStructType(tunit, typeName.str(), tunit, line, CGM.getContext().toBits(block.BlockSize), 0, llvm::DINode::FlagZero, nullptr, fieldsArray); type = DBuilder.createPointerType(type, CGM.PointerWidthInBits); // Get overall information about the block. llvm::DINode::DIFlags flags = llvm::DINode::FlagArtificial; auto *scope = cast(LexicalBlockStack.back()); // Create the descriptor for the parameter. auto *debugVar = DBuilder.createParameterVariable( scope, Name, ArgNo, tunit, line, type, CGM.getLangOpts().Optimize, flags); // Insert an llvm.dbg.declare into the current block. DBuilder.insertDeclare(Alloca, debugVar, DBuilder.createExpression(), llvm::DILocation::get(CGM.getLLVMContext(), line, column, scope, CurInlinedAt), Builder.GetInsertBlock()); } llvm::DIDerivedType * CGDebugInfo::getOrCreateStaticDataMemberDeclarationOrNull(const VarDecl *D) { if (!D || !D->isStaticDataMember()) return nullptr; auto MI = StaticDataMemberCache.find(D->getCanonicalDecl()); if (MI != StaticDataMemberCache.end()) { assert(MI->second && "Static data member declaration should still exist"); return MI->second; } // If the member wasn't found in the cache, lazily construct and add it to the // type (used when a limited form of the type is emitted). auto DC = D->getDeclContext(); auto *Ctxt = cast(getDeclContextDescriptor(D)); return CreateRecordStaticField(D, Ctxt, cast(DC)); } llvm::DIGlobalVariableExpression *CGDebugInfo::CollectAnonRecordDecls( const RecordDecl *RD, llvm::DIFile *Unit, unsigned LineNo, StringRef LinkageName, llvm::GlobalVariable *Var, llvm::DIScope *DContext) { llvm::DIGlobalVariableExpression *GVE = nullptr; for (const auto *Field : RD->fields()) { llvm::DIType *FieldTy = getOrCreateType(Field->getType(), Unit); StringRef FieldName = Field->getName(); // Ignore unnamed fields, but recurse into anonymous records. if (FieldName.empty()) { if (const auto *RT = dyn_cast(Field->getType())) GVE = CollectAnonRecordDecls(RT->getDecl(), Unit, LineNo, LinkageName, Var, DContext); continue; } // Use VarDecl's Tag, Scope and Line number. GVE = DBuilder.createGlobalVariableExpression( DContext, FieldName, LinkageName, Unit, LineNo, FieldTy, Var->hasLocalLinkage()); Var->addDebugInfo(GVE); } return GVE; } static bool ReferencesAnonymousEntity(ArrayRef Args); static bool ReferencesAnonymousEntity(RecordType *RT) { // Unnamed classes/lambdas can't be reconstituted due to a lack of column // info we produce in the DWARF, so we can't get Clang's full name back. // But so long as it's not one of those, it doesn't matter if some sub-type // of the record (a template parameter) can't be reconstituted - because the // un-reconstitutable type itself will carry its own name. const auto *RD = dyn_cast(RT->getDecl()); if (!RD) return false; if (!RD->getIdentifier()) return true; auto *TSpecial = dyn_cast(RD); if (!TSpecial) return false; return ReferencesAnonymousEntity(TSpecial->getTemplateArgs().asArray()); } static bool ReferencesAnonymousEntity(ArrayRef Args) { return llvm::any_of(Args, [&](const TemplateArgument &TA) { switch (TA.getKind()) { case TemplateArgument::Pack: return ReferencesAnonymousEntity(TA.getPackAsArray()); case TemplateArgument::Type: { struct ReferencesAnonymous : public RecursiveASTVisitor { bool RefAnon = false; bool VisitRecordType(RecordType *RT) { if (ReferencesAnonymousEntity(RT)) { RefAnon = true; return false; } return true; } }; ReferencesAnonymous RT; RT.TraverseType(TA.getAsType()); if (RT.RefAnon) return true; break; } default: break; } return false; }); } namespace { struct ReconstitutableType : public RecursiveASTVisitor { bool Reconstitutable = true; bool VisitVectorType(VectorType *FT) { Reconstitutable = false; return false; } bool VisitAtomicType(AtomicType *FT) { Reconstitutable = false; return false; } bool VisitType(Type *T) { // _BitInt(N) isn't reconstitutable because the bit width isn't encoded in // the DWARF, only the byte width. if (T->isBitIntType()) { Reconstitutable = false; return false; } return true; } bool TraverseEnumType(EnumType *ET) { // Unnamed enums can't be reconstituted due to a lack of column info we // produce in the DWARF, so we can't get Clang's full name back. if (const auto *ED = dyn_cast(ET->getDecl())) { if (!ED->getIdentifier()) { Reconstitutable = false; return false; } if (!ED->isExternallyVisible()) { Reconstitutable = false; return false; } } return true; } bool VisitFunctionProtoType(FunctionProtoType *FT) { // noexcept is not encoded in DWARF, so the reversi Reconstitutable &= !isNoexceptExceptionSpec(FT->getExceptionSpecType()); Reconstitutable &= !FT->getNoReturnAttr(); return Reconstitutable; } bool VisitRecordType(RecordType *RT) { if (ReferencesAnonymousEntity(RT)) { Reconstitutable = false; return false; } return true; } }; } // anonymous namespace // Test whether a type name could be rebuilt from emitted debug info. static bool IsReconstitutableType(QualType QT) { ReconstitutableType T; T.TraverseType(QT); return T.Reconstitutable; } bool CGDebugInfo::HasReconstitutableArgs( ArrayRef Args) const { return llvm::all_of(Args, [&](const TemplateArgument &TA) { switch (TA.getKind()) { case TemplateArgument::Template: // Easy to reconstitute - the value of the parameter in the debug // info is the string name of the template. The template name // itself won't benefit from any name rebuilding, but that's a // representational limitation - maybe DWARF could be // changed/improved to use some more structural representation. return true; case TemplateArgument::Declaration: // Reference and pointer non-type template parameters point to // variables, functions, etc and their value is, at best (for // variables) represented as an address - not a reference to the // DWARF describing the variable/function/etc. This makes it hard, // possibly impossible to rebuild the original name - looking up // the address in the executable file's symbol table would be // needed. return false; case TemplateArgument::NullPtr: // These could be rebuilt, but figured they're close enough to the // declaration case, and not worth rebuilding. return false; case TemplateArgument::Pack: // A pack is invalid if any of the elements of the pack are // invalid. return HasReconstitutableArgs(TA.getPackAsArray()); case TemplateArgument::Integral: // Larger integers get encoded as DWARF blocks which are a bit // harder to parse back into a large integer, etc - so punting on // this for now. Re-parsing the integers back into APInt is // probably feasible some day. return TA.getAsIntegral().getBitWidth() <= 64 && IsReconstitutableType(TA.getIntegralType()); case TemplateArgument::StructuralValue: return false; case TemplateArgument::Type: return IsReconstitutableType(TA.getAsType()); case TemplateArgument::Expression: return IsReconstitutableType(TA.getAsExpr()->getType()); default: llvm_unreachable("Other, unresolved, template arguments should " "not be seen here"); } }); } std::string CGDebugInfo::GetName(const Decl *D, bool Qualified) const { std::string Name; llvm::raw_string_ostream OS(Name); const NamedDecl *ND = dyn_cast(D); if (!ND) return Name; llvm::codegenoptions::DebugTemplateNamesKind TemplateNamesKind = CGM.getCodeGenOpts().getDebugSimpleTemplateNames(); if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) TemplateNamesKind = llvm::codegenoptions::DebugTemplateNamesKind::Full; std::optional Args; bool IsOperatorOverload = false; // isa(ND); if (auto *RD = dyn_cast(ND)) { Args = GetTemplateArgs(RD); } else if (auto *FD = dyn_cast(ND)) { Args = GetTemplateArgs(FD); auto NameKind = ND->getDeclName().getNameKind(); IsOperatorOverload |= NameKind == DeclarationName::CXXOperatorName || NameKind == DeclarationName::CXXConversionFunctionName; } else if (auto *VD = dyn_cast(ND)) { Args = GetTemplateArgs(VD); } // A conversion operator presents complications/ambiguity if there's a // conversion to class template that is itself a template, eg: // template // operator ns::t1(); // This should be named, eg: "operator ns::t1" // (ignoring clang bug that means this is currently "operator t1") // but if the arguments were stripped, the consumer couldn't differentiate // whether the template argument list for the conversion type was the // function's argument list (& no reconstitution was needed) or not. // This could be handled if reconstitutable names had a separate attribute // annotating them as such - this would remove the ambiguity. // // Alternatively the template argument list could be parsed enough to check // whether there's one list or two, then compare that with the DWARF // description of the return type and the template argument lists to determine // how many lists there should be and if one is missing it could be assumed(?) // to be the function's template argument list & then be rebuilt. // // Other operator overloads that aren't conversion operators could be // reconstituted but would require a bit more nuance about detecting the // difference between these different operators during that rebuilding. bool Reconstitutable = Args && HasReconstitutableArgs(Args->Args) && !IsOperatorOverload; PrintingPolicy PP = getPrintingPolicy(); if (TemplateNamesKind == llvm::codegenoptions::DebugTemplateNamesKind::Full || !Reconstitutable) { ND->getNameForDiagnostic(OS, PP, Qualified); } else { bool Mangled = TemplateNamesKind == llvm::codegenoptions::DebugTemplateNamesKind::Mangled; // check if it's a template if (Mangled) OS << "_STN|"; OS << ND->getDeclName(); std::string EncodedOriginalName; llvm::raw_string_ostream EncodedOriginalNameOS(EncodedOriginalName); EncodedOriginalNameOS << ND->getDeclName(); if (Mangled) { OS << "|"; printTemplateArgumentList(OS, Args->Args, PP); printTemplateArgumentList(EncodedOriginalNameOS, Args->Args, PP); #ifndef NDEBUG std::string CanonicalOriginalName; llvm::raw_string_ostream OriginalOS(CanonicalOriginalName); ND->getNameForDiagnostic(OriginalOS, PP, Qualified); assert(EncodedOriginalNameOS.str() == OriginalOS.str()); #endif } } return Name; } void CGDebugInfo::EmitGlobalVariable(llvm::GlobalVariable *Var, const VarDecl *D) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); if (D->hasAttr()) return; llvm::TimeTraceScope TimeScope("DebugGlobalVariable", [&]() { return GetName(D, true); }); // If we already created a DIGlobalVariable for this declaration, just attach // it to the llvm::GlobalVariable. auto Cached = DeclCache.find(D->getCanonicalDecl()); if (Cached != DeclCache.end()) return Var->addDebugInfo( cast(Cached->second)); // Create global variable debug descriptor. llvm::DIFile *Unit = nullptr; llvm::DIScope *DContext = nullptr; unsigned LineNo; StringRef DeclName, LinkageName; QualType T; llvm::MDTuple *TemplateParameters = nullptr; collectVarDeclProps(D, Unit, LineNo, T, DeclName, LinkageName, TemplateParameters, DContext); // Attempt to store one global variable for the declaration - even if we // emit a lot of fields. llvm::DIGlobalVariableExpression *GVE = nullptr; // If this is an anonymous union then we'll want to emit a global // variable for each member of the anonymous union so that it's possible // to find the name of any field in the union. if (T->isUnionType() && DeclName.empty()) { const RecordDecl *RD = T->castAs()->getDecl(); assert(RD->isAnonymousStructOrUnion() && "unnamed non-anonymous struct or union?"); GVE = CollectAnonRecordDecls(RD, Unit, LineNo, LinkageName, Var, DContext); } else { auto Align = getDeclAlignIfRequired(D, CGM.getContext()); SmallVector Expr; unsigned AddressSpace = CGM.getTypes().getTargetAddressSpace(D->getType()); if (CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) { if (D->hasAttr()) AddressSpace = CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared); else if (D->hasAttr()) AddressSpace = CGM.getContext().getTargetAddressSpace(LangAS::cuda_constant); } AppendAddressSpaceXDeref(AddressSpace, Expr); llvm::DINodeArray Annotations = CollectBTFDeclTagAnnotations(D); GVE = DBuilder.createGlobalVariableExpression( DContext, DeclName, LinkageName, Unit, LineNo, getOrCreateType(T, Unit), Var->hasLocalLinkage(), true, Expr.empty() ? nullptr : DBuilder.createExpression(Expr), getOrCreateStaticDataMemberDeclarationOrNull(D), TemplateParameters, Align, Annotations); Var->addDebugInfo(GVE); } DeclCache[D->getCanonicalDecl()].reset(GVE); } void CGDebugInfo::EmitGlobalVariable(const ValueDecl *VD, const APValue &Init) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); if (VD->hasAttr()) return; llvm::TimeTraceScope TimeScope("DebugConstGlobalVariable", [&]() { return GetName(VD, true); }); auto Align = getDeclAlignIfRequired(VD, CGM.getContext()); // Create the descriptor for the variable. llvm::DIFile *Unit = getOrCreateFile(VD->getLocation()); StringRef Name = VD->getName(); llvm::DIType *Ty = getOrCreateType(VD->getType(), Unit); if (const auto *ECD = dyn_cast(VD)) { const auto *ED = cast(ECD->getDeclContext()); assert(isa(ED->getTypeForDecl()) && "Enum without EnumType?"); if (CGM.getCodeGenOpts().EmitCodeView) { // If CodeView, emit enums as global variables, unless they are defined // inside a class. We do this because MSVC doesn't emit S_CONSTANTs for // enums in classes, and because it is difficult to attach this scope // information to the global variable. if (isa(ED->getDeclContext())) return; } else { // If not CodeView, emit DW_TAG_enumeration_type if necessary. For // example: for "enum { ZERO };", a DW_TAG_enumeration_type is created the // first time `ZERO` is referenced in a function. llvm::DIType *EDTy = getOrCreateType(QualType(ED->getTypeForDecl(), 0), Unit); assert (EDTy->getTag() == llvm::dwarf::DW_TAG_enumeration_type); (void)EDTy; return; } } // Do not emit separate definitions for function local consts. if (isa(VD->getDeclContext())) return; VD = cast(VD->getCanonicalDecl()); auto *VarD = dyn_cast(VD); if (VarD && VarD->isStaticDataMember()) { auto *RD = cast(VarD->getDeclContext()); getDeclContextDescriptor(VarD); // Ensure that the type is retained even though it's otherwise unreferenced. // // FIXME: This is probably unnecessary, since Ty should reference RD // through its scope. RetainedTypes.push_back( CGM.getContext().getRecordType(RD).getAsOpaquePtr()); return; } llvm::DIScope *DContext = getDeclContextDescriptor(VD); auto &GV = DeclCache[VD]; if (GV) return; llvm::DIExpression *InitExpr = createConstantValueExpression(VD, Init); llvm::MDTuple *TemplateParameters = nullptr; if (isa(VD)) if (VarD) { llvm::DINodeArray parameterNodes = CollectVarTemplateParams(VarD, &*Unit); TemplateParameters = parameterNodes.get(); } GV.reset(DBuilder.createGlobalVariableExpression( DContext, Name, StringRef(), Unit, getLineNumber(VD->getLocation()), Ty, true, true, InitExpr, getOrCreateStaticDataMemberDeclarationOrNull(VarD), TemplateParameters, Align)); } void CGDebugInfo::EmitExternalVariable(llvm::GlobalVariable *Var, const VarDecl *D) { assert(CGM.getCodeGenOpts().hasReducedDebugInfo()); if (D->hasAttr()) return; auto Align = getDeclAlignIfRequired(D, CGM.getContext()); llvm::DIFile *Unit = getOrCreateFile(D->getLocation()); StringRef Name = D->getName(); llvm::DIType *Ty = getOrCreateType(D->getType(), Unit); llvm::DIScope *DContext = getDeclContextDescriptor(D); llvm::DIGlobalVariableExpression *GVE = DBuilder.createGlobalVariableExpression( DContext, Name, StringRef(), Unit, getLineNumber(D->getLocation()), Ty, false, false, nullptr, nullptr, nullptr, Align); Var->addDebugInfo(GVE); } void CGDebugInfo::EmitPseudoVariable(CGBuilderTy &Builder, llvm::Instruction *Value, QualType Ty) { // Only when -g2 or above is specified, debug info for variables will be // generated. if (CGM.getCodeGenOpts().getDebugInfo() <= llvm::codegenoptions::DebugLineTablesOnly) return; llvm::DILocation *DIL = Value->getDebugLoc().get(); if (!DIL) return; llvm::DIFile *Unit = DIL->getFile(); llvm::DIType *Type = getOrCreateType(Ty, Unit); // Check if Value is already a declared variable and has debug info, in this // case we have nothing to do. Clang emits a declared variable as alloca, and // it is loaded upon use, so we identify such pattern here. if (llvm::LoadInst *Load = dyn_cast(Value)) { llvm::Value *Var = Load->getPointerOperand(); // There can be implicit type cast applied on a variable if it is an opaque // ptr, in this case its debug info may not match the actual type of object // being used as in the next instruction, so we will need to emit a pseudo // variable for type-casted value. auto DeclareTypeMatches = [&](auto *DbgDeclare) { return DbgDeclare->getVariable()->getType() == Type; }; if (any_of(llvm::findDbgDeclares(Var), DeclareTypeMatches) || any_of(llvm::findDVRDeclares(Var), DeclareTypeMatches)) return; } llvm::DILocalVariable *D = DBuilder.createAutoVariable(LexicalBlockStack.back(), "", nullptr, 0, Type, false, llvm::DINode::FlagArtificial); if (auto InsertPoint = Value->getInsertionPointAfterDef()) { DBuilder.insertDbgValueIntrinsic(Value, D, DBuilder.createExpression(), DIL, &**InsertPoint); } } void CGDebugInfo::EmitGlobalAlias(const llvm::GlobalValue *GV, const GlobalDecl GD) { assert(GV); if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) return; const auto *D = cast(GD.getDecl()); if (D->hasAttr()) return; auto AliaseeDecl = CGM.getMangledNameDecl(GV->getName()); llvm::DINode *DI; if (!AliaseeDecl) // FIXME: Aliasee not declared yet - possibly declared later // For example, // // 1 extern int newname __attribute__((alias("oldname"))); // 2 int oldname = 1; // // No debug info would be generated for 'newname' in this case. // // Fix compiler to generate "newname" as imported_declaration // pointing to the DIE of "oldname". return; if (!(DI = getDeclarationOrDefinition( AliaseeDecl.getCanonicalDecl().getDecl()))) return; llvm::DIScope *DContext = getDeclContextDescriptor(D); auto Loc = D->getLocation(); llvm::DIImportedEntity *ImportDI = DBuilder.createImportedDeclaration( DContext, DI, getOrCreateFile(Loc), getLineNumber(Loc), D->getName()); // Record this DIE in the cache for nested declaration reference. ImportedDeclCache[GD.getCanonicalDecl().getDecl()].reset(ImportDI); } void CGDebugInfo::AddStringLiteralDebugInfo(llvm::GlobalVariable *GV, const StringLiteral *S) { SourceLocation Loc = S->getStrTokenLoc(0); PresumedLoc PLoc = CGM.getContext().getSourceManager().getPresumedLoc(Loc); if (!PLoc.isValid()) return; llvm::DIFile *File = getOrCreateFile(Loc); llvm::DIGlobalVariableExpression *Debug = DBuilder.createGlobalVariableExpression( nullptr, StringRef(), StringRef(), getOrCreateFile(Loc), getLineNumber(Loc), getOrCreateType(S->getType(), File), true); GV->addDebugInfo(Debug); } llvm::DIScope *CGDebugInfo::getCurrentContextDescriptor(const Decl *D) { if (!LexicalBlockStack.empty()) return LexicalBlockStack.back(); llvm::DIScope *Mod = getParentModuleOrNull(D); return getContextDescriptor(D, Mod ? Mod : TheCU); } void CGDebugInfo::EmitUsingDirective(const UsingDirectiveDecl &UD) { if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) return; const NamespaceDecl *NSDecl = UD.getNominatedNamespace(); if (!NSDecl->isAnonymousNamespace() || CGM.getCodeGenOpts().DebugExplicitImport) { auto Loc = UD.getLocation(); if (!Loc.isValid()) Loc = CurLoc; DBuilder.createImportedModule( getCurrentContextDescriptor(cast(UD.getDeclContext())), getOrCreateNamespace(NSDecl), getOrCreateFile(Loc), getLineNumber(Loc)); } } void CGDebugInfo::EmitUsingShadowDecl(const UsingShadowDecl &USD) { if (llvm::DINode *Target = getDeclarationOrDefinition(USD.getUnderlyingDecl())) { auto Loc = USD.getLocation(); DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast(USD.getDeclContext())), Target, getOrCreateFile(Loc), getLineNumber(Loc)); } } void CGDebugInfo::EmitUsingDecl(const UsingDecl &UD) { if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) return; assert(UD.shadow_size() && "We shouldn't be codegening an invalid UsingDecl containing no decls"); for (const auto *USD : UD.shadows()) { // FIXME: Skip functions with undeduced auto return type for now since we // don't currently have the plumbing for separate declarations & definitions // of free functions and mismatched types (auto in the declaration, concrete // return type in the definition) if (const auto *FD = dyn_cast(USD->getUnderlyingDecl())) if (const auto *AT = FD->getType() ->castAs() ->getContainedAutoType()) if (AT->getDeducedType().isNull()) continue; EmitUsingShadowDecl(*USD); // Emitting one decl is sufficient - debuggers can detect that this is an // overloaded name & provide lookup for all the overloads. break; } } void CGDebugInfo::EmitUsingEnumDecl(const UsingEnumDecl &UD) { if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) return; assert(UD.shadow_size() && "We shouldn't be codegening an invalid UsingEnumDecl" " containing no decls"); for (const auto *USD : UD.shadows()) EmitUsingShadowDecl(*USD); } void CGDebugInfo::EmitImportDecl(const ImportDecl &ID) { if (CGM.getCodeGenOpts().getDebuggerTuning() != llvm::DebuggerKind::LLDB) return; if (Module *M = ID.getImportedModule()) { auto Info = ASTSourceDescriptor(*M); auto Loc = ID.getLocation(); DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast(ID.getDeclContext())), getOrCreateModuleRef(Info, DebugTypeExtRefs), getOrCreateFile(Loc), getLineNumber(Loc)); } } llvm::DIImportedEntity * CGDebugInfo::EmitNamespaceAlias(const NamespaceAliasDecl &NA) { if (!CGM.getCodeGenOpts().hasReducedDebugInfo()) return nullptr; auto &VH = NamespaceAliasCache[&NA]; if (VH) return cast(VH); llvm::DIImportedEntity *R; auto Loc = NA.getLocation(); if (const auto *Underlying = dyn_cast(NA.getAliasedNamespace())) // This could cache & dedup here rather than relying on metadata deduping. R = DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast(NA.getDeclContext())), EmitNamespaceAlias(*Underlying), getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); else R = DBuilder.createImportedDeclaration( getCurrentContextDescriptor(cast(NA.getDeclContext())), getOrCreateNamespace(cast(NA.getAliasedNamespace())), getOrCreateFile(Loc), getLineNumber(Loc), NA.getName()); VH.reset(R); return R; } llvm::DINamespace * CGDebugInfo::getOrCreateNamespace(const NamespaceDecl *NSDecl) { // Don't canonicalize the NamespaceDecl here: The DINamespace will be uniqued // if necessary, and this way multiple declarations of the same namespace in // different parent modules stay distinct. auto I = NamespaceCache.find(NSDecl); if (I != NamespaceCache.end()) return cast(I->second); llvm::DIScope *Context = getDeclContextDescriptor(NSDecl); // Don't trust the context if it is a DIModule (see comment above). llvm::DINamespace *NS = DBuilder.createNameSpace(Context, NSDecl->getName(), NSDecl->isInline()); NamespaceCache[NSDecl].reset(NS); return NS; } void CGDebugInfo::setDwoId(uint64_t Signature) { assert(TheCU && "no main compile unit"); TheCU->setDWOId(Signature); } void CGDebugInfo::finalize() { // Creating types might create further types - invalidating the current // element and the size(), so don't cache/reference them. for (size_t i = 0; i != ObjCInterfaceCache.size(); ++i) { ObjCInterfaceCacheEntry E = ObjCInterfaceCache[i]; llvm::DIType *Ty = E.Type->getDecl()->getDefinition() ? CreateTypeDefinition(E.Type, E.Unit) : E.Decl; DBuilder.replaceTemporary(llvm::TempDIType(E.Decl), Ty); } // Add methods to interface. for (const auto &P : ObjCMethodCache) { if (P.second.empty()) continue; QualType QTy(P.first->getTypeForDecl(), 0); auto It = TypeCache.find(QTy.getAsOpaquePtr()); assert(It != TypeCache.end()); llvm::DICompositeType *InterfaceDecl = cast(It->second); auto CurElts = InterfaceDecl->getElements(); SmallVector EltTys(CurElts.begin(), CurElts.end()); // For DWARF v4 or earlier, only add objc_direct methods. for (auto &SubprogramDirect : P.second) if (CGM.getCodeGenOpts().DwarfVersion >= 5 || SubprogramDirect.getInt()) EltTys.push_back(SubprogramDirect.getPointer()); llvm::DINodeArray Elements = DBuilder.getOrCreateArray(EltTys); DBuilder.replaceArrays(InterfaceDecl, Elements); } for (const auto &P : ReplaceMap) { assert(P.second); auto *Ty = cast(P.second); assert(Ty->isForwardDecl()); auto It = TypeCache.find(P.first); assert(It != TypeCache.end()); assert(It->second); DBuilder.replaceTemporary(llvm::TempDIType(Ty), cast(It->second)); } for (const auto &P : FwdDeclReplaceMap) { assert(P.second); llvm::TempMDNode FwdDecl(cast(P.second)); llvm::Metadata *Repl; auto It = DeclCache.find(P.first); // If there has been no definition for the declaration, call RAUW // with ourselves, that will destroy the temporary MDNode and // replace it with a standard one, avoiding leaking memory. if (It == DeclCache.end()) Repl = P.second; else Repl = It->second; if (auto *GVE = dyn_cast_or_null(Repl)) Repl = GVE->getVariable(); DBuilder.replaceTemporary(std::move(FwdDecl), cast(Repl)); } // We keep our own list of retained types, because we need to look // up the final type in the type cache. for (auto &RT : RetainedTypes) if (auto MD = TypeCache[RT]) DBuilder.retainType(cast(MD)); DBuilder.finalize(); } // Don't ignore in case of explicit cast where it is referenced indirectly. void CGDebugInfo::EmitExplicitCastType(QualType Ty) { if (CGM.getCodeGenOpts().hasReducedDebugInfo()) if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) DBuilder.retainType(DieTy); } void CGDebugInfo::EmitAndRetainType(QualType Ty) { if (CGM.getCodeGenOpts().hasMaybeUnusedDebugInfo()) if (auto *DieTy = getOrCreateType(Ty, TheCU->getFile())) DBuilder.retainType(DieTy); } llvm::DebugLoc CGDebugInfo::SourceLocToDebugLoc(SourceLocation Loc) { if (LexicalBlockStack.empty()) return llvm::DebugLoc(); llvm::MDNode *Scope = LexicalBlockStack.back(); return llvm::DILocation::get(CGM.getLLVMContext(), getLineNumber(Loc), getColumnNumber(Loc), Scope); } llvm::DINode::DIFlags CGDebugInfo::getCallSiteRelatedAttrs() const { // Call site-related attributes are only useful in optimized programs, and // when there's a possibility of debugging backtraces. if (!CGM.getLangOpts().Optimize || DebugKind == llvm::codegenoptions::NoDebugInfo || DebugKind == llvm::codegenoptions::LocTrackingOnly) return llvm::DINode::FlagZero; // Call site-related attributes are available in DWARF v5. Some debuggers, // while not fully DWARF v5-compliant, may accept these attributes as if they // were part of DWARF v4. bool SupportsDWARFv4Ext = CGM.getCodeGenOpts().DwarfVersion == 4 && (CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::LLDB || CGM.getCodeGenOpts().getDebuggerTuning() == llvm::DebuggerKind::GDB); if (!SupportsDWARFv4Ext && CGM.getCodeGenOpts().DwarfVersion < 5) return llvm::DINode::FlagZero; return llvm::DINode::FlagAllCallsDescribed; } llvm::DIExpression * CGDebugInfo::createConstantValueExpression(const clang::ValueDecl *VD, const APValue &Val) { // FIXME: Add a representation for integer constants wider than 64 bits. if (CGM.getContext().getTypeSize(VD->getType()) > 64) return nullptr; if (Val.isFloat()) return DBuilder.createConstantValueExpression( Val.getFloat().bitcastToAPInt().getZExtValue()); if (!Val.isInt()) return nullptr; llvm::APSInt const &ValInt = Val.getInt(); std::optional ValIntOpt; if (ValInt.isUnsigned()) ValIntOpt = ValInt.tryZExtValue(); else if (auto tmp = ValInt.trySExtValue()) // Transform a signed optional to unsigned optional. When cpp 23 comes, // use std::optional::transform ValIntOpt = static_cast(*tmp); if (ValIntOpt) return DBuilder.createConstantValueExpression(ValIntOpt.value()); return nullptr; }